xref: /linux/block/blk-core.c (revision 61d0b5a4b2777dcf5daef245e212b3c1fa8091ca)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36 
37 #include "blk.h"
38 #include "blk-cgroup.h"
39 
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
43 
44 DEFINE_IDA(blk_queue_ida);
45 
46 /*
47  * For the allocated request tables
48  */
49 static struct kmem_cache *request_cachep;
50 
51 /*
52  * For queue allocation
53  */
54 struct kmem_cache *blk_requestq_cachep;
55 
56 /*
57  * Controlling structure to kblockd
58  */
59 static struct workqueue_struct *kblockd_workqueue;
60 
61 static void drive_stat_acct(struct request *rq, int new_io)
62 {
63 	struct hd_struct *part;
64 	int rw = rq_data_dir(rq);
65 	int cpu;
66 
67 	if (!blk_do_io_stat(rq))
68 		return;
69 
70 	cpu = part_stat_lock();
71 
72 	if (!new_io) {
73 		part = rq->part;
74 		part_stat_inc(cpu, part, merges[rw]);
75 	} else {
76 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 		if (!hd_struct_try_get(part)) {
78 			/*
79 			 * The partition is already being removed,
80 			 * the request will be accounted on the disk only
81 			 *
82 			 * We take a reference on disk->part0 although that
83 			 * partition will never be deleted, so we can treat
84 			 * it as any other partition.
85 			 */
86 			part = &rq->rq_disk->part0;
87 			hd_struct_get(part);
88 		}
89 		part_round_stats(cpu, part);
90 		part_inc_in_flight(part, rw);
91 		rq->part = part;
92 	}
93 
94 	part_stat_unlock();
95 }
96 
97 void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 	int nr;
100 
101 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 	if (nr > q->nr_requests)
103 		nr = q->nr_requests;
104 	q->nr_congestion_on = nr;
105 
106 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 	if (nr < 1)
108 		nr = 1;
109 	q->nr_congestion_off = nr;
110 }
111 
112 /**
113  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114  * @bdev:	device
115  *
116  * Locates the passed device's request queue and returns the address of its
117  * backing_dev_info
118  *
119  * Will return NULL if the request queue cannot be located.
120  */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 	struct backing_dev_info *ret = NULL;
124 	struct request_queue *q = bdev_get_queue(bdev);
125 
126 	if (q)
127 		ret = &q->backing_dev_info;
128 	return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131 
132 void blk_rq_init(struct request_queue *q, struct request *rq)
133 {
134 	memset(rq, 0, sizeof(*rq));
135 
136 	INIT_LIST_HEAD(&rq->queuelist);
137 	INIT_LIST_HEAD(&rq->timeout_list);
138 	rq->cpu = -1;
139 	rq->q = q;
140 	rq->__sector = (sector_t) -1;
141 	INIT_HLIST_NODE(&rq->hash);
142 	RB_CLEAR_NODE(&rq->rb_node);
143 	rq->cmd = rq->__cmd;
144 	rq->cmd_len = BLK_MAX_CDB;
145 	rq->tag = -1;
146 	rq->ref_count = 1;
147 	rq->start_time = jiffies;
148 	set_start_time_ns(rq);
149 	rq->part = NULL;
150 }
151 EXPORT_SYMBOL(blk_rq_init);
152 
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 			  unsigned int nbytes, int error)
155 {
156 	if (error)
157 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 		error = -EIO;
160 
161 	if (unlikely(nbytes > bio->bi_size)) {
162 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 		       __func__, nbytes, bio->bi_size);
164 		nbytes = bio->bi_size;
165 	}
166 
167 	if (unlikely(rq->cmd_flags & REQ_QUIET))
168 		set_bit(BIO_QUIET, &bio->bi_flags);
169 
170 	bio->bi_size -= nbytes;
171 	bio->bi_sector += (nbytes >> 9);
172 
173 	if (bio_integrity(bio))
174 		bio_integrity_advance(bio, nbytes);
175 
176 	/* don't actually finish bio if it's part of flush sequence */
177 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 		bio_endio(bio, error);
179 }
180 
181 void blk_dump_rq_flags(struct request *rq, char *msg)
182 {
183 	int bit;
184 
185 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 		rq->cmd_flags);
188 
189 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
190 	       (unsigned long long)blk_rq_pos(rq),
191 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
193 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194 
195 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 		printk(KERN_INFO "  cdb: ");
197 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 			printk("%02x ", rq->cmd[bit]);
199 		printk("\n");
200 	}
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203 
204 static void blk_delay_work(struct work_struct *work)
205 {
206 	struct request_queue *q;
207 
208 	q = container_of(work, struct request_queue, delay_work.work);
209 	spin_lock_irq(q->queue_lock);
210 	__blk_run_queue(q);
211 	spin_unlock_irq(q->queue_lock);
212 }
213 
214 /**
215  * blk_delay_queue - restart queueing after defined interval
216  * @q:		The &struct request_queue in question
217  * @msecs:	Delay in msecs
218  *
219  * Description:
220  *   Sometimes queueing needs to be postponed for a little while, to allow
221  *   resources to come back. This function will make sure that queueing is
222  *   restarted around the specified time. Queue lock must be held.
223  */
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225 {
226 	if (likely(!blk_queue_dead(q)))
227 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
228 				   msecs_to_jiffies(msecs));
229 }
230 EXPORT_SYMBOL(blk_delay_queue);
231 
232 /**
233  * blk_start_queue - restart a previously stopped queue
234  * @q:    The &struct request_queue in question
235  *
236  * Description:
237  *   blk_start_queue() will clear the stop flag on the queue, and call
238  *   the request_fn for the queue if it was in a stopped state when
239  *   entered. Also see blk_stop_queue(). Queue lock must be held.
240  **/
241 void blk_start_queue(struct request_queue *q)
242 {
243 	WARN_ON(!irqs_disabled());
244 
245 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
246 	__blk_run_queue(q);
247 }
248 EXPORT_SYMBOL(blk_start_queue);
249 
250 /**
251  * blk_stop_queue - stop a queue
252  * @q:    The &struct request_queue in question
253  *
254  * Description:
255  *   The Linux block layer assumes that a block driver will consume all
256  *   entries on the request queue when the request_fn strategy is called.
257  *   Often this will not happen, because of hardware limitations (queue
258  *   depth settings). If a device driver gets a 'queue full' response,
259  *   or if it simply chooses not to queue more I/O at one point, it can
260  *   call this function to prevent the request_fn from being called until
261  *   the driver has signalled it's ready to go again. This happens by calling
262  *   blk_start_queue() to restart queue operations. Queue lock must be held.
263  **/
264 void blk_stop_queue(struct request_queue *q)
265 {
266 	cancel_delayed_work(&q->delay_work);
267 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
268 }
269 EXPORT_SYMBOL(blk_stop_queue);
270 
271 /**
272  * blk_sync_queue - cancel any pending callbacks on a queue
273  * @q: the queue
274  *
275  * Description:
276  *     The block layer may perform asynchronous callback activity
277  *     on a queue, such as calling the unplug function after a timeout.
278  *     A block device may call blk_sync_queue to ensure that any
279  *     such activity is cancelled, thus allowing it to release resources
280  *     that the callbacks might use. The caller must already have made sure
281  *     that its ->make_request_fn will not re-add plugging prior to calling
282  *     this function.
283  *
284  *     This function does not cancel any asynchronous activity arising
285  *     out of elevator or throttling code. That would require elevaotor_exit()
286  *     and blkcg_exit_queue() to be called with queue lock initialized.
287  *
288  */
289 void blk_sync_queue(struct request_queue *q)
290 {
291 	del_timer_sync(&q->timeout);
292 	cancel_delayed_work_sync(&q->delay_work);
293 }
294 EXPORT_SYMBOL(blk_sync_queue);
295 
296 /**
297  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
298  * @q:	The queue to run
299  *
300  * Description:
301  *    Invoke request handling on a queue if there are any pending requests.
302  *    May be used to restart request handling after a request has completed.
303  *    This variant runs the queue whether or not the queue has been
304  *    stopped. Must be called with the queue lock held and interrupts
305  *    disabled. See also @blk_run_queue.
306  */
307 inline void __blk_run_queue_uncond(struct request_queue *q)
308 {
309 	if (unlikely(blk_queue_dead(q)))
310 		return;
311 
312 	/*
313 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
314 	 * the queue lock internally. As a result multiple threads may be
315 	 * running such a request function concurrently. Keep track of the
316 	 * number of active request_fn invocations such that blk_drain_queue()
317 	 * can wait until all these request_fn calls have finished.
318 	 */
319 	q->request_fn_active++;
320 	q->request_fn(q);
321 	q->request_fn_active--;
322 }
323 
324 /**
325  * __blk_run_queue - run a single device queue
326  * @q:	The queue to run
327  *
328  * Description:
329  *    See @blk_run_queue. This variant must be called with the queue lock
330  *    held and interrupts disabled.
331  */
332 void __blk_run_queue(struct request_queue *q)
333 {
334 	if (unlikely(blk_queue_stopped(q)))
335 		return;
336 
337 	__blk_run_queue_uncond(q);
338 }
339 EXPORT_SYMBOL(__blk_run_queue);
340 
341 /**
342  * blk_run_queue_async - run a single device queue in workqueue context
343  * @q:	The queue to run
344  *
345  * Description:
346  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
347  *    of us. The caller must hold the queue lock.
348  */
349 void blk_run_queue_async(struct request_queue *q)
350 {
351 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
352 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
353 }
354 EXPORT_SYMBOL(blk_run_queue_async);
355 
356 /**
357  * blk_run_queue - run a single device queue
358  * @q: The queue to run
359  *
360  * Description:
361  *    Invoke request handling on this queue, if it has pending work to do.
362  *    May be used to restart queueing when a request has completed.
363  */
364 void blk_run_queue(struct request_queue *q)
365 {
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(q->queue_lock, flags);
369 	__blk_run_queue(q);
370 	spin_unlock_irqrestore(q->queue_lock, flags);
371 }
372 EXPORT_SYMBOL(blk_run_queue);
373 
374 void blk_put_queue(struct request_queue *q)
375 {
376 	kobject_put(&q->kobj);
377 }
378 EXPORT_SYMBOL(blk_put_queue);
379 
380 /**
381  * __blk_drain_queue - drain requests from request_queue
382  * @q: queue to drain
383  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
384  *
385  * Drain requests from @q.  If @drain_all is set, all requests are drained.
386  * If not, only ELVPRIV requests are drained.  The caller is responsible
387  * for ensuring that no new requests which need to be drained are queued.
388  */
389 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
390 	__releases(q->queue_lock)
391 	__acquires(q->queue_lock)
392 {
393 	int i;
394 
395 	lockdep_assert_held(q->queue_lock);
396 
397 	while (true) {
398 		bool drain = false;
399 
400 		/*
401 		 * The caller might be trying to drain @q before its
402 		 * elevator is initialized.
403 		 */
404 		if (q->elevator)
405 			elv_drain_elevator(q);
406 
407 		blkcg_drain_queue(q);
408 
409 		/*
410 		 * This function might be called on a queue which failed
411 		 * driver init after queue creation or is not yet fully
412 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
413 		 * in such cases.  Kick queue iff dispatch queue has
414 		 * something on it and @q has request_fn set.
415 		 */
416 		if (!list_empty(&q->queue_head) && q->request_fn)
417 			__blk_run_queue(q);
418 
419 		drain |= q->nr_rqs_elvpriv;
420 		drain |= q->request_fn_active;
421 
422 		/*
423 		 * Unfortunately, requests are queued at and tracked from
424 		 * multiple places and there's no single counter which can
425 		 * be drained.  Check all the queues and counters.
426 		 */
427 		if (drain_all) {
428 			drain |= !list_empty(&q->queue_head);
429 			for (i = 0; i < 2; i++) {
430 				drain |= q->nr_rqs[i];
431 				drain |= q->in_flight[i];
432 				drain |= !list_empty(&q->flush_queue[i]);
433 			}
434 		}
435 
436 		if (!drain)
437 			break;
438 
439 		spin_unlock_irq(q->queue_lock);
440 
441 		msleep(10);
442 
443 		spin_lock_irq(q->queue_lock);
444 	}
445 
446 	/*
447 	 * With queue marked dead, any woken up waiter will fail the
448 	 * allocation path, so the wakeup chaining is lost and we're
449 	 * left with hung waiters. We need to wake up those waiters.
450 	 */
451 	if (q->request_fn) {
452 		struct request_list *rl;
453 
454 		blk_queue_for_each_rl(rl, q)
455 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
456 				wake_up_all(&rl->wait[i]);
457 	}
458 }
459 
460 /**
461  * blk_queue_bypass_start - enter queue bypass mode
462  * @q: queue of interest
463  *
464  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
465  * function makes @q enter bypass mode and drains all requests which were
466  * throttled or issued before.  On return, it's guaranteed that no request
467  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
468  * inside queue or RCU read lock.
469  */
470 void blk_queue_bypass_start(struct request_queue *q)
471 {
472 	bool drain;
473 
474 	spin_lock_irq(q->queue_lock);
475 	drain = !q->bypass_depth++;
476 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
477 	spin_unlock_irq(q->queue_lock);
478 
479 	if (drain) {
480 		spin_lock_irq(q->queue_lock);
481 		__blk_drain_queue(q, false);
482 		spin_unlock_irq(q->queue_lock);
483 
484 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
485 		synchronize_rcu();
486 	}
487 }
488 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
489 
490 /**
491  * blk_queue_bypass_end - leave queue bypass mode
492  * @q: queue of interest
493  *
494  * Leave bypass mode and restore the normal queueing behavior.
495  */
496 void blk_queue_bypass_end(struct request_queue *q)
497 {
498 	spin_lock_irq(q->queue_lock);
499 	if (!--q->bypass_depth)
500 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
501 	WARN_ON_ONCE(q->bypass_depth < 0);
502 	spin_unlock_irq(q->queue_lock);
503 }
504 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
505 
506 /**
507  * blk_cleanup_queue - shutdown a request queue
508  * @q: request queue to shutdown
509  *
510  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
511  * put it.  All future requests will be failed immediately with -ENODEV.
512  */
513 void blk_cleanup_queue(struct request_queue *q)
514 {
515 	spinlock_t *lock = q->queue_lock;
516 
517 	/* mark @q DYING, no new request or merges will be allowed afterwards */
518 	mutex_lock(&q->sysfs_lock);
519 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
520 	spin_lock_irq(lock);
521 
522 	/*
523 	 * A dying queue is permanently in bypass mode till released.  Note
524 	 * that, unlike blk_queue_bypass_start(), we aren't performing
525 	 * synchronize_rcu() after entering bypass mode to avoid the delay
526 	 * as some drivers create and destroy a lot of queues while
527 	 * probing.  This is still safe because blk_release_queue() will be
528 	 * called only after the queue refcnt drops to zero and nothing,
529 	 * RCU or not, would be traversing the queue by then.
530 	 */
531 	q->bypass_depth++;
532 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
533 
534 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
535 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
536 	queue_flag_set(QUEUE_FLAG_DYING, q);
537 	spin_unlock_irq(lock);
538 	mutex_unlock(&q->sysfs_lock);
539 
540 	/*
541 	 * Drain all requests queued before DYING marking. Set DEAD flag to
542 	 * prevent that q->request_fn() gets invoked after draining finished.
543 	 */
544 	spin_lock_irq(lock);
545 	__blk_drain_queue(q, true);
546 	queue_flag_set(QUEUE_FLAG_DEAD, q);
547 	spin_unlock_irq(lock);
548 
549 	/* @q won't process any more request, flush async actions */
550 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
551 	blk_sync_queue(q);
552 
553 	spin_lock_irq(lock);
554 	if (q->queue_lock != &q->__queue_lock)
555 		q->queue_lock = &q->__queue_lock;
556 	spin_unlock_irq(lock);
557 
558 	/* @q is and will stay empty, shutdown and put */
559 	blk_put_queue(q);
560 }
561 EXPORT_SYMBOL(blk_cleanup_queue);
562 
563 int blk_init_rl(struct request_list *rl, struct request_queue *q,
564 		gfp_t gfp_mask)
565 {
566 	if (unlikely(rl->rq_pool))
567 		return 0;
568 
569 	rl->q = q;
570 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
571 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
572 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
573 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
574 
575 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
576 					  mempool_free_slab, request_cachep,
577 					  gfp_mask, q->node);
578 	if (!rl->rq_pool)
579 		return -ENOMEM;
580 
581 	return 0;
582 }
583 
584 void blk_exit_rl(struct request_list *rl)
585 {
586 	if (rl->rq_pool)
587 		mempool_destroy(rl->rq_pool);
588 }
589 
590 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
591 {
592 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
593 }
594 EXPORT_SYMBOL(blk_alloc_queue);
595 
596 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
597 {
598 	struct request_queue *q;
599 	int err;
600 
601 	q = kmem_cache_alloc_node(blk_requestq_cachep,
602 				gfp_mask | __GFP_ZERO, node_id);
603 	if (!q)
604 		return NULL;
605 
606 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
607 	if (q->id < 0)
608 		goto fail_q;
609 
610 	q->backing_dev_info.ra_pages =
611 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
612 	q->backing_dev_info.state = 0;
613 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
614 	q->backing_dev_info.name = "block";
615 	q->node = node_id;
616 
617 	err = bdi_init(&q->backing_dev_info);
618 	if (err)
619 		goto fail_id;
620 
621 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
622 		    laptop_mode_timer_fn, (unsigned long) q);
623 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
624 	INIT_LIST_HEAD(&q->queue_head);
625 	INIT_LIST_HEAD(&q->timeout_list);
626 	INIT_LIST_HEAD(&q->icq_list);
627 #ifdef CONFIG_BLK_CGROUP
628 	INIT_LIST_HEAD(&q->blkg_list);
629 #endif
630 	INIT_LIST_HEAD(&q->flush_queue[0]);
631 	INIT_LIST_HEAD(&q->flush_queue[1]);
632 	INIT_LIST_HEAD(&q->flush_data_in_flight);
633 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
634 
635 	kobject_init(&q->kobj, &blk_queue_ktype);
636 
637 	mutex_init(&q->sysfs_lock);
638 	spin_lock_init(&q->__queue_lock);
639 
640 	/*
641 	 * By default initialize queue_lock to internal lock and driver can
642 	 * override it later if need be.
643 	 */
644 	q->queue_lock = &q->__queue_lock;
645 
646 	/*
647 	 * A queue starts its life with bypass turned on to avoid
648 	 * unnecessary bypass on/off overhead and nasty surprises during
649 	 * init.  The initial bypass will be finished when the queue is
650 	 * registered by blk_register_queue().
651 	 */
652 	q->bypass_depth = 1;
653 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
654 
655 	if (blkcg_init_queue(q))
656 		goto fail_id;
657 
658 	return q;
659 
660 fail_id:
661 	ida_simple_remove(&blk_queue_ida, q->id);
662 fail_q:
663 	kmem_cache_free(blk_requestq_cachep, q);
664 	return NULL;
665 }
666 EXPORT_SYMBOL(blk_alloc_queue_node);
667 
668 /**
669  * blk_init_queue  - prepare a request queue for use with a block device
670  * @rfn:  The function to be called to process requests that have been
671  *        placed on the queue.
672  * @lock: Request queue spin lock
673  *
674  * Description:
675  *    If a block device wishes to use the standard request handling procedures,
676  *    which sorts requests and coalesces adjacent requests, then it must
677  *    call blk_init_queue().  The function @rfn will be called when there
678  *    are requests on the queue that need to be processed.  If the device
679  *    supports plugging, then @rfn may not be called immediately when requests
680  *    are available on the queue, but may be called at some time later instead.
681  *    Plugged queues are generally unplugged when a buffer belonging to one
682  *    of the requests on the queue is needed, or due to memory pressure.
683  *
684  *    @rfn is not required, or even expected, to remove all requests off the
685  *    queue, but only as many as it can handle at a time.  If it does leave
686  *    requests on the queue, it is responsible for arranging that the requests
687  *    get dealt with eventually.
688  *
689  *    The queue spin lock must be held while manipulating the requests on the
690  *    request queue; this lock will be taken also from interrupt context, so irq
691  *    disabling is needed for it.
692  *
693  *    Function returns a pointer to the initialized request queue, or %NULL if
694  *    it didn't succeed.
695  *
696  * Note:
697  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
698  *    when the block device is deactivated (such as at module unload).
699  **/
700 
701 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
702 {
703 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
704 }
705 EXPORT_SYMBOL(blk_init_queue);
706 
707 struct request_queue *
708 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
709 {
710 	struct request_queue *uninit_q, *q;
711 
712 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
713 	if (!uninit_q)
714 		return NULL;
715 
716 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
717 	if (!q)
718 		blk_cleanup_queue(uninit_q);
719 
720 	return q;
721 }
722 EXPORT_SYMBOL(blk_init_queue_node);
723 
724 struct request_queue *
725 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
726 			 spinlock_t *lock)
727 {
728 	if (!q)
729 		return NULL;
730 
731 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
732 		return NULL;
733 
734 	q->request_fn		= rfn;
735 	q->prep_rq_fn		= NULL;
736 	q->unprep_rq_fn		= NULL;
737 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
738 
739 	/* Override internal queue lock with supplied lock pointer */
740 	if (lock)
741 		q->queue_lock		= lock;
742 
743 	/*
744 	 * This also sets hw/phys segments, boundary and size
745 	 */
746 	blk_queue_make_request(q, blk_queue_bio);
747 
748 	q->sg_reserved_size = INT_MAX;
749 
750 	/* init elevator */
751 	if (elevator_init(q, NULL))
752 		return NULL;
753 	return q;
754 }
755 EXPORT_SYMBOL(blk_init_allocated_queue);
756 
757 bool blk_get_queue(struct request_queue *q)
758 {
759 	if (likely(!blk_queue_dying(q))) {
760 		__blk_get_queue(q);
761 		return true;
762 	}
763 
764 	return false;
765 }
766 EXPORT_SYMBOL(blk_get_queue);
767 
768 static inline void blk_free_request(struct request_list *rl, struct request *rq)
769 {
770 	if (rq->cmd_flags & REQ_ELVPRIV) {
771 		elv_put_request(rl->q, rq);
772 		if (rq->elv.icq)
773 			put_io_context(rq->elv.icq->ioc);
774 	}
775 
776 	mempool_free(rq, rl->rq_pool);
777 }
778 
779 /*
780  * ioc_batching returns true if the ioc is a valid batching request and
781  * should be given priority access to a request.
782  */
783 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
784 {
785 	if (!ioc)
786 		return 0;
787 
788 	/*
789 	 * Make sure the process is able to allocate at least 1 request
790 	 * even if the batch times out, otherwise we could theoretically
791 	 * lose wakeups.
792 	 */
793 	return ioc->nr_batch_requests == q->nr_batching ||
794 		(ioc->nr_batch_requests > 0
795 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
796 }
797 
798 /*
799  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
800  * will cause the process to be a "batcher" on all queues in the system. This
801  * is the behaviour we want though - once it gets a wakeup it should be given
802  * a nice run.
803  */
804 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
805 {
806 	if (!ioc || ioc_batching(q, ioc))
807 		return;
808 
809 	ioc->nr_batch_requests = q->nr_batching;
810 	ioc->last_waited = jiffies;
811 }
812 
813 static void __freed_request(struct request_list *rl, int sync)
814 {
815 	struct request_queue *q = rl->q;
816 
817 	/*
818 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
819 	 * blkcg anyway, just use root blkcg state.
820 	 */
821 	if (rl == &q->root_rl &&
822 	    rl->count[sync] < queue_congestion_off_threshold(q))
823 		blk_clear_queue_congested(q, sync);
824 
825 	if (rl->count[sync] + 1 <= q->nr_requests) {
826 		if (waitqueue_active(&rl->wait[sync]))
827 			wake_up(&rl->wait[sync]);
828 
829 		blk_clear_rl_full(rl, sync);
830 	}
831 }
832 
833 /*
834  * A request has just been released.  Account for it, update the full and
835  * congestion status, wake up any waiters.   Called under q->queue_lock.
836  */
837 static void freed_request(struct request_list *rl, unsigned int flags)
838 {
839 	struct request_queue *q = rl->q;
840 	int sync = rw_is_sync(flags);
841 
842 	q->nr_rqs[sync]--;
843 	rl->count[sync]--;
844 	if (flags & REQ_ELVPRIV)
845 		q->nr_rqs_elvpriv--;
846 
847 	__freed_request(rl, sync);
848 
849 	if (unlikely(rl->starved[sync ^ 1]))
850 		__freed_request(rl, sync ^ 1);
851 }
852 
853 /*
854  * Determine if elevator data should be initialized when allocating the
855  * request associated with @bio.
856  */
857 static bool blk_rq_should_init_elevator(struct bio *bio)
858 {
859 	if (!bio)
860 		return true;
861 
862 	/*
863 	 * Flush requests do not use the elevator so skip initialization.
864 	 * This allows a request to share the flush and elevator data.
865 	 */
866 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
867 		return false;
868 
869 	return true;
870 }
871 
872 /**
873  * rq_ioc - determine io_context for request allocation
874  * @bio: request being allocated is for this bio (can be %NULL)
875  *
876  * Determine io_context to use for request allocation for @bio.  May return
877  * %NULL if %current->io_context doesn't exist.
878  */
879 static struct io_context *rq_ioc(struct bio *bio)
880 {
881 #ifdef CONFIG_BLK_CGROUP
882 	if (bio && bio->bi_ioc)
883 		return bio->bi_ioc;
884 #endif
885 	return current->io_context;
886 }
887 
888 /**
889  * __get_request - get a free request
890  * @rl: request list to allocate from
891  * @rw_flags: RW and SYNC flags
892  * @bio: bio to allocate request for (can be %NULL)
893  * @gfp_mask: allocation mask
894  *
895  * Get a free request from @q.  This function may fail under memory
896  * pressure or if @q is dead.
897  *
898  * Must be callled with @q->queue_lock held and,
899  * Returns %NULL on failure, with @q->queue_lock held.
900  * Returns !%NULL on success, with @q->queue_lock *not held*.
901  */
902 static struct request *__get_request(struct request_list *rl, int rw_flags,
903 				     struct bio *bio, gfp_t gfp_mask)
904 {
905 	struct request_queue *q = rl->q;
906 	struct request *rq;
907 	struct elevator_type *et = q->elevator->type;
908 	struct io_context *ioc = rq_ioc(bio);
909 	struct io_cq *icq = NULL;
910 	const bool is_sync = rw_is_sync(rw_flags) != 0;
911 	int may_queue;
912 
913 	if (unlikely(blk_queue_dying(q)))
914 		return NULL;
915 
916 	may_queue = elv_may_queue(q, rw_flags);
917 	if (may_queue == ELV_MQUEUE_NO)
918 		goto rq_starved;
919 
920 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
921 		if (rl->count[is_sync]+1 >= q->nr_requests) {
922 			/*
923 			 * The queue will fill after this allocation, so set
924 			 * it as full, and mark this process as "batching".
925 			 * This process will be allowed to complete a batch of
926 			 * requests, others will be blocked.
927 			 */
928 			if (!blk_rl_full(rl, is_sync)) {
929 				ioc_set_batching(q, ioc);
930 				blk_set_rl_full(rl, is_sync);
931 			} else {
932 				if (may_queue != ELV_MQUEUE_MUST
933 						&& !ioc_batching(q, ioc)) {
934 					/*
935 					 * The queue is full and the allocating
936 					 * process is not a "batcher", and not
937 					 * exempted by the IO scheduler
938 					 */
939 					return NULL;
940 				}
941 			}
942 		}
943 		/*
944 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
945 		 * root blkcg anyway, just use root blkcg state.
946 		 */
947 		if (rl == &q->root_rl)
948 			blk_set_queue_congested(q, is_sync);
949 	}
950 
951 	/*
952 	 * Only allow batching queuers to allocate up to 50% over the defined
953 	 * limit of requests, otherwise we could have thousands of requests
954 	 * allocated with any setting of ->nr_requests
955 	 */
956 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
957 		return NULL;
958 
959 	q->nr_rqs[is_sync]++;
960 	rl->count[is_sync]++;
961 	rl->starved[is_sync] = 0;
962 
963 	/*
964 	 * Decide whether the new request will be managed by elevator.  If
965 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
966 	 * prevent the current elevator from being destroyed until the new
967 	 * request is freed.  This guarantees icq's won't be destroyed and
968 	 * makes creating new ones safe.
969 	 *
970 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
971 	 * it will be created after releasing queue_lock.
972 	 */
973 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
974 		rw_flags |= REQ_ELVPRIV;
975 		q->nr_rqs_elvpriv++;
976 		if (et->icq_cache && ioc)
977 			icq = ioc_lookup_icq(ioc, q);
978 	}
979 
980 	if (blk_queue_io_stat(q))
981 		rw_flags |= REQ_IO_STAT;
982 	spin_unlock_irq(q->queue_lock);
983 
984 	/* allocate and init request */
985 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
986 	if (!rq)
987 		goto fail_alloc;
988 
989 	blk_rq_init(q, rq);
990 	blk_rq_set_rl(rq, rl);
991 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
992 
993 	/* init elvpriv */
994 	if (rw_flags & REQ_ELVPRIV) {
995 		if (unlikely(et->icq_cache && !icq)) {
996 			if (ioc)
997 				icq = ioc_create_icq(ioc, q, gfp_mask);
998 			if (!icq)
999 				goto fail_elvpriv;
1000 		}
1001 
1002 		rq->elv.icq = icq;
1003 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1004 			goto fail_elvpriv;
1005 
1006 		/* @rq->elv.icq holds io_context until @rq is freed */
1007 		if (icq)
1008 			get_io_context(icq->ioc);
1009 	}
1010 out:
1011 	/*
1012 	 * ioc may be NULL here, and ioc_batching will be false. That's
1013 	 * OK, if the queue is under the request limit then requests need
1014 	 * not count toward the nr_batch_requests limit. There will always
1015 	 * be some limit enforced by BLK_BATCH_TIME.
1016 	 */
1017 	if (ioc_batching(q, ioc))
1018 		ioc->nr_batch_requests--;
1019 
1020 	trace_block_getrq(q, bio, rw_flags & 1);
1021 	return rq;
1022 
1023 fail_elvpriv:
1024 	/*
1025 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1026 	 * and may fail indefinitely under memory pressure and thus
1027 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1028 	 * disturb iosched and blkcg but weird is bettern than dead.
1029 	 */
1030 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1031 			   dev_name(q->backing_dev_info.dev));
1032 
1033 	rq->cmd_flags &= ~REQ_ELVPRIV;
1034 	rq->elv.icq = NULL;
1035 
1036 	spin_lock_irq(q->queue_lock);
1037 	q->nr_rqs_elvpriv--;
1038 	spin_unlock_irq(q->queue_lock);
1039 	goto out;
1040 
1041 fail_alloc:
1042 	/*
1043 	 * Allocation failed presumably due to memory. Undo anything we
1044 	 * might have messed up.
1045 	 *
1046 	 * Allocating task should really be put onto the front of the wait
1047 	 * queue, but this is pretty rare.
1048 	 */
1049 	spin_lock_irq(q->queue_lock);
1050 	freed_request(rl, rw_flags);
1051 
1052 	/*
1053 	 * in the very unlikely event that allocation failed and no
1054 	 * requests for this direction was pending, mark us starved so that
1055 	 * freeing of a request in the other direction will notice
1056 	 * us. another possible fix would be to split the rq mempool into
1057 	 * READ and WRITE
1058 	 */
1059 rq_starved:
1060 	if (unlikely(rl->count[is_sync] == 0))
1061 		rl->starved[is_sync] = 1;
1062 	return NULL;
1063 }
1064 
1065 /**
1066  * get_request - get a free request
1067  * @q: request_queue to allocate request from
1068  * @rw_flags: RW and SYNC flags
1069  * @bio: bio to allocate request for (can be %NULL)
1070  * @gfp_mask: allocation mask
1071  *
1072  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1073  * function keeps retrying under memory pressure and fails iff @q is dead.
1074  *
1075  * Must be callled with @q->queue_lock held and,
1076  * Returns %NULL on failure, with @q->queue_lock held.
1077  * Returns !%NULL on success, with @q->queue_lock *not held*.
1078  */
1079 static struct request *get_request(struct request_queue *q, int rw_flags,
1080 				   struct bio *bio, gfp_t gfp_mask)
1081 {
1082 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1083 	DEFINE_WAIT(wait);
1084 	struct request_list *rl;
1085 	struct request *rq;
1086 
1087 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1088 retry:
1089 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1090 	if (rq)
1091 		return rq;
1092 
1093 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1094 		blk_put_rl(rl);
1095 		return NULL;
1096 	}
1097 
1098 	/* wait on @rl and retry */
1099 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1100 				  TASK_UNINTERRUPTIBLE);
1101 
1102 	trace_block_sleeprq(q, bio, rw_flags & 1);
1103 
1104 	spin_unlock_irq(q->queue_lock);
1105 	io_schedule();
1106 
1107 	/*
1108 	 * After sleeping, we become a "batching" process and will be able
1109 	 * to allocate at least one request, and up to a big batch of them
1110 	 * for a small period time.  See ioc_batching, ioc_set_batching
1111 	 */
1112 	ioc_set_batching(q, current->io_context);
1113 
1114 	spin_lock_irq(q->queue_lock);
1115 	finish_wait(&rl->wait[is_sync], &wait);
1116 
1117 	goto retry;
1118 }
1119 
1120 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1121 {
1122 	struct request *rq;
1123 
1124 	BUG_ON(rw != READ && rw != WRITE);
1125 
1126 	/* create ioc upfront */
1127 	create_io_context(gfp_mask, q->node);
1128 
1129 	spin_lock_irq(q->queue_lock);
1130 	rq = get_request(q, rw, NULL, gfp_mask);
1131 	if (!rq)
1132 		spin_unlock_irq(q->queue_lock);
1133 	/* q->queue_lock is unlocked at this point */
1134 
1135 	return rq;
1136 }
1137 EXPORT_SYMBOL(blk_get_request);
1138 
1139 /**
1140  * blk_make_request - given a bio, allocate a corresponding struct request.
1141  * @q: target request queue
1142  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1143  *        It may be a chained-bio properly constructed by block/bio layer.
1144  * @gfp_mask: gfp flags to be used for memory allocation
1145  *
1146  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1147  * type commands. Where the struct request needs to be farther initialized by
1148  * the caller. It is passed a &struct bio, which describes the memory info of
1149  * the I/O transfer.
1150  *
1151  * The caller of blk_make_request must make sure that bi_io_vec
1152  * are set to describe the memory buffers. That bio_data_dir() will return
1153  * the needed direction of the request. (And all bio's in the passed bio-chain
1154  * are properly set accordingly)
1155  *
1156  * If called under none-sleepable conditions, mapped bio buffers must not
1157  * need bouncing, by calling the appropriate masked or flagged allocator,
1158  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1159  * BUG.
1160  *
1161  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1162  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1163  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1164  * completion of a bio that hasn't been submitted yet, thus resulting in a
1165  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1166  * of bio_alloc(), as that avoids the mempool deadlock.
1167  * If possible a big IO should be split into smaller parts when allocation
1168  * fails. Partial allocation should not be an error, or you risk a live-lock.
1169  */
1170 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1171 				 gfp_t gfp_mask)
1172 {
1173 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1174 
1175 	if (unlikely(!rq))
1176 		return ERR_PTR(-ENOMEM);
1177 
1178 	for_each_bio(bio) {
1179 		struct bio *bounce_bio = bio;
1180 		int ret;
1181 
1182 		blk_queue_bounce(q, &bounce_bio);
1183 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1184 		if (unlikely(ret)) {
1185 			blk_put_request(rq);
1186 			return ERR_PTR(ret);
1187 		}
1188 	}
1189 
1190 	return rq;
1191 }
1192 EXPORT_SYMBOL(blk_make_request);
1193 
1194 /**
1195  * blk_requeue_request - put a request back on queue
1196  * @q:		request queue where request should be inserted
1197  * @rq:		request to be inserted
1198  *
1199  * Description:
1200  *    Drivers often keep queueing requests until the hardware cannot accept
1201  *    more, when that condition happens we need to put the request back
1202  *    on the queue. Must be called with queue lock held.
1203  */
1204 void blk_requeue_request(struct request_queue *q, struct request *rq)
1205 {
1206 	blk_delete_timer(rq);
1207 	blk_clear_rq_complete(rq);
1208 	trace_block_rq_requeue(q, rq);
1209 
1210 	if (blk_rq_tagged(rq))
1211 		blk_queue_end_tag(q, rq);
1212 
1213 	BUG_ON(blk_queued_rq(rq));
1214 
1215 	elv_requeue_request(q, rq);
1216 }
1217 EXPORT_SYMBOL(blk_requeue_request);
1218 
1219 static void add_acct_request(struct request_queue *q, struct request *rq,
1220 			     int where)
1221 {
1222 	drive_stat_acct(rq, 1);
1223 	__elv_add_request(q, rq, where);
1224 }
1225 
1226 static void part_round_stats_single(int cpu, struct hd_struct *part,
1227 				    unsigned long now)
1228 {
1229 	if (now == part->stamp)
1230 		return;
1231 
1232 	if (part_in_flight(part)) {
1233 		__part_stat_add(cpu, part, time_in_queue,
1234 				part_in_flight(part) * (now - part->stamp));
1235 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1236 	}
1237 	part->stamp = now;
1238 }
1239 
1240 /**
1241  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1242  * @cpu: cpu number for stats access
1243  * @part: target partition
1244  *
1245  * The average IO queue length and utilisation statistics are maintained
1246  * by observing the current state of the queue length and the amount of
1247  * time it has been in this state for.
1248  *
1249  * Normally, that accounting is done on IO completion, but that can result
1250  * in more than a second's worth of IO being accounted for within any one
1251  * second, leading to >100% utilisation.  To deal with that, we call this
1252  * function to do a round-off before returning the results when reading
1253  * /proc/diskstats.  This accounts immediately for all queue usage up to
1254  * the current jiffies and restarts the counters again.
1255  */
1256 void part_round_stats(int cpu, struct hd_struct *part)
1257 {
1258 	unsigned long now = jiffies;
1259 
1260 	if (part->partno)
1261 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1262 	part_round_stats_single(cpu, part, now);
1263 }
1264 EXPORT_SYMBOL_GPL(part_round_stats);
1265 
1266 /*
1267  * queue lock must be held
1268  */
1269 void __blk_put_request(struct request_queue *q, struct request *req)
1270 {
1271 	if (unlikely(!q))
1272 		return;
1273 	if (unlikely(--req->ref_count))
1274 		return;
1275 
1276 	elv_completed_request(q, req);
1277 
1278 	/* this is a bio leak */
1279 	WARN_ON(req->bio != NULL);
1280 
1281 	/*
1282 	 * Request may not have originated from ll_rw_blk. if not,
1283 	 * it didn't come out of our reserved rq pools
1284 	 */
1285 	if (req->cmd_flags & REQ_ALLOCED) {
1286 		unsigned int flags = req->cmd_flags;
1287 		struct request_list *rl = blk_rq_rl(req);
1288 
1289 		BUG_ON(!list_empty(&req->queuelist));
1290 		BUG_ON(!hlist_unhashed(&req->hash));
1291 
1292 		blk_free_request(rl, req);
1293 		freed_request(rl, flags);
1294 		blk_put_rl(rl);
1295 	}
1296 }
1297 EXPORT_SYMBOL_GPL(__blk_put_request);
1298 
1299 void blk_put_request(struct request *req)
1300 {
1301 	unsigned long flags;
1302 	struct request_queue *q = req->q;
1303 
1304 	spin_lock_irqsave(q->queue_lock, flags);
1305 	__blk_put_request(q, req);
1306 	spin_unlock_irqrestore(q->queue_lock, flags);
1307 }
1308 EXPORT_SYMBOL(blk_put_request);
1309 
1310 /**
1311  * blk_add_request_payload - add a payload to a request
1312  * @rq: request to update
1313  * @page: page backing the payload
1314  * @len: length of the payload.
1315  *
1316  * This allows to later add a payload to an already submitted request by
1317  * a block driver.  The driver needs to take care of freeing the payload
1318  * itself.
1319  *
1320  * Note that this is a quite horrible hack and nothing but handling of
1321  * discard requests should ever use it.
1322  */
1323 void blk_add_request_payload(struct request *rq, struct page *page,
1324 		unsigned int len)
1325 {
1326 	struct bio *bio = rq->bio;
1327 
1328 	bio->bi_io_vec->bv_page = page;
1329 	bio->bi_io_vec->bv_offset = 0;
1330 	bio->bi_io_vec->bv_len = len;
1331 
1332 	bio->bi_size = len;
1333 	bio->bi_vcnt = 1;
1334 	bio->bi_phys_segments = 1;
1335 
1336 	rq->__data_len = rq->resid_len = len;
1337 	rq->nr_phys_segments = 1;
1338 	rq->buffer = bio_data(bio);
1339 }
1340 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1341 
1342 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1343 				   struct bio *bio)
1344 {
1345 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1346 
1347 	if (!ll_back_merge_fn(q, req, bio))
1348 		return false;
1349 
1350 	trace_block_bio_backmerge(q, req, bio);
1351 
1352 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1353 		blk_rq_set_mixed_merge(req);
1354 
1355 	req->biotail->bi_next = bio;
1356 	req->biotail = bio;
1357 	req->__data_len += bio->bi_size;
1358 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1359 
1360 	drive_stat_acct(req, 0);
1361 	return true;
1362 }
1363 
1364 static bool bio_attempt_front_merge(struct request_queue *q,
1365 				    struct request *req, struct bio *bio)
1366 {
1367 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1368 
1369 	if (!ll_front_merge_fn(q, req, bio))
1370 		return false;
1371 
1372 	trace_block_bio_frontmerge(q, req, bio);
1373 
1374 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1375 		blk_rq_set_mixed_merge(req);
1376 
1377 	bio->bi_next = req->bio;
1378 	req->bio = bio;
1379 
1380 	/*
1381 	 * may not be valid. if the low level driver said
1382 	 * it didn't need a bounce buffer then it better
1383 	 * not touch req->buffer either...
1384 	 */
1385 	req->buffer = bio_data(bio);
1386 	req->__sector = bio->bi_sector;
1387 	req->__data_len += bio->bi_size;
1388 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1389 
1390 	drive_stat_acct(req, 0);
1391 	return true;
1392 }
1393 
1394 /**
1395  * attempt_plug_merge - try to merge with %current's plugged list
1396  * @q: request_queue new bio is being queued at
1397  * @bio: new bio being queued
1398  * @request_count: out parameter for number of traversed plugged requests
1399  *
1400  * Determine whether @bio being queued on @q can be merged with a request
1401  * on %current's plugged list.  Returns %true if merge was successful,
1402  * otherwise %false.
1403  *
1404  * Plugging coalesces IOs from the same issuer for the same purpose without
1405  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1406  * than scheduling, and the request, while may have elvpriv data, is not
1407  * added on the elevator at this point.  In addition, we don't have
1408  * reliable access to the elevator outside queue lock.  Only check basic
1409  * merging parameters without querying the elevator.
1410  */
1411 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1412 			       unsigned int *request_count)
1413 {
1414 	struct blk_plug *plug;
1415 	struct request *rq;
1416 	bool ret = false;
1417 
1418 	plug = current->plug;
1419 	if (!plug)
1420 		goto out;
1421 	*request_count = 0;
1422 
1423 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1424 		int el_ret;
1425 
1426 		if (rq->q == q)
1427 			(*request_count)++;
1428 
1429 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1430 			continue;
1431 
1432 		el_ret = blk_try_merge(rq, bio);
1433 		if (el_ret == ELEVATOR_BACK_MERGE) {
1434 			ret = bio_attempt_back_merge(q, rq, bio);
1435 			if (ret)
1436 				break;
1437 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1438 			ret = bio_attempt_front_merge(q, rq, bio);
1439 			if (ret)
1440 				break;
1441 		}
1442 	}
1443 out:
1444 	return ret;
1445 }
1446 
1447 void init_request_from_bio(struct request *req, struct bio *bio)
1448 {
1449 	req->cmd_type = REQ_TYPE_FS;
1450 
1451 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1452 	if (bio->bi_rw & REQ_RAHEAD)
1453 		req->cmd_flags |= REQ_FAILFAST_MASK;
1454 
1455 	req->errors = 0;
1456 	req->__sector = bio->bi_sector;
1457 	req->ioprio = bio_prio(bio);
1458 	blk_rq_bio_prep(req->q, req, bio);
1459 }
1460 
1461 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1462 {
1463 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1464 	struct blk_plug *plug;
1465 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1466 	struct request *req;
1467 	unsigned int request_count = 0;
1468 
1469 	/*
1470 	 * low level driver can indicate that it wants pages above a
1471 	 * certain limit bounced to low memory (ie for highmem, or even
1472 	 * ISA dma in theory)
1473 	 */
1474 	blk_queue_bounce(q, &bio);
1475 
1476 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1477 		bio_endio(bio, -EIO);
1478 		return;
1479 	}
1480 
1481 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1482 		spin_lock_irq(q->queue_lock);
1483 		where = ELEVATOR_INSERT_FLUSH;
1484 		goto get_rq;
1485 	}
1486 
1487 	/*
1488 	 * Check if we can merge with the plugged list before grabbing
1489 	 * any locks.
1490 	 */
1491 	if (attempt_plug_merge(q, bio, &request_count))
1492 		return;
1493 
1494 	spin_lock_irq(q->queue_lock);
1495 
1496 	el_ret = elv_merge(q, &req, bio);
1497 	if (el_ret == ELEVATOR_BACK_MERGE) {
1498 		if (bio_attempt_back_merge(q, req, bio)) {
1499 			elv_bio_merged(q, req, bio);
1500 			if (!attempt_back_merge(q, req))
1501 				elv_merged_request(q, req, el_ret);
1502 			goto out_unlock;
1503 		}
1504 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1505 		if (bio_attempt_front_merge(q, req, bio)) {
1506 			elv_bio_merged(q, req, bio);
1507 			if (!attempt_front_merge(q, req))
1508 				elv_merged_request(q, req, el_ret);
1509 			goto out_unlock;
1510 		}
1511 	}
1512 
1513 get_rq:
1514 	/*
1515 	 * This sync check and mask will be re-done in init_request_from_bio(),
1516 	 * but we need to set it earlier to expose the sync flag to the
1517 	 * rq allocator and io schedulers.
1518 	 */
1519 	rw_flags = bio_data_dir(bio);
1520 	if (sync)
1521 		rw_flags |= REQ_SYNC;
1522 
1523 	/*
1524 	 * Grab a free request. This is might sleep but can not fail.
1525 	 * Returns with the queue unlocked.
1526 	 */
1527 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1528 	if (unlikely(!req)) {
1529 		bio_endio(bio, -ENODEV);	/* @q is dead */
1530 		goto out_unlock;
1531 	}
1532 
1533 	/*
1534 	 * After dropping the lock and possibly sleeping here, our request
1535 	 * may now be mergeable after it had proven unmergeable (above).
1536 	 * We don't worry about that case for efficiency. It won't happen
1537 	 * often, and the elevators are able to handle it.
1538 	 */
1539 	init_request_from_bio(req, bio);
1540 
1541 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1542 		req->cpu = raw_smp_processor_id();
1543 
1544 	plug = current->plug;
1545 	if (plug) {
1546 		/*
1547 		 * If this is the first request added after a plug, fire
1548 		 * of a plug trace. If others have been added before, check
1549 		 * if we have multiple devices in this plug. If so, make a
1550 		 * note to sort the list before dispatch.
1551 		 */
1552 		if (list_empty(&plug->list))
1553 			trace_block_plug(q);
1554 		else {
1555 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1556 				blk_flush_plug_list(plug, false);
1557 				trace_block_plug(q);
1558 			}
1559 		}
1560 		list_add_tail(&req->queuelist, &plug->list);
1561 		drive_stat_acct(req, 1);
1562 	} else {
1563 		spin_lock_irq(q->queue_lock);
1564 		add_acct_request(q, req, where);
1565 		__blk_run_queue(q);
1566 out_unlock:
1567 		spin_unlock_irq(q->queue_lock);
1568 	}
1569 }
1570 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1571 
1572 /*
1573  * If bio->bi_dev is a partition, remap the location
1574  */
1575 static inline void blk_partition_remap(struct bio *bio)
1576 {
1577 	struct block_device *bdev = bio->bi_bdev;
1578 
1579 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1580 		struct hd_struct *p = bdev->bd_part;
1581 
1582 		bio->bi_sector += p->start_sect;
1583 		bio->bi_bdev = bdev->bd_contains;
1584 
1585 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1586 				      bdev->bd_dev,
1587 				      bio->bi_sector - p->start_sect);
1588 	}
1589 }
1590 
1591 static void handle_bad_sector(struct bio *bio)
1592 {
1593 	char b[BDEVNAME_SIZE];
1594 
1595 	printk(KERN_INFO "attempt to access beyond end of device\n");
1596 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1597 			bdevname(bio->bi_bdev, b),
1598 			bio->bi_rw,
1599 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1600 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1601 
1602 	set_bit(BIO_EOF, &bio->bi_flags);
1603 }
1604 
1605 #ifdef CONFIG_FAIL_MAKE_REQUEST
1606 
1607 static DECLARE_FAULT_ATTR(fail_make_request);
1608 
1609 static int __init setup_fail_make_request(char *str)
1610 {
1611 	return setup_fault_attr(&fail_make_request, str);
1612 }
1613 __setup("fail_make_request=", setup_fail_make_request);
1614 
1615 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1616 {
1617 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1618 }
1619 
1620 static int __init fail_make_request_debugfs(void)
1621 {
1622 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1623 						NULL, &fail_make_request);
1624 
1625 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1626 }
1627 
1628 late_initcall(fail_make_request_debugfs);
1629 
1630 #else /* CONFIG_FAIL_MAKE_REQUEST */
1631 
1632 static inline bool should_fail_request(struct hd_struct *part,
1633 					unsigned int bytes)
1634 {
1635 	return false;
1636 }
1637 
1638 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1639 
1640 /*
1641  * Check whether this bio extends beyond the end of the device.
1642  */
1643 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1644 {
1645 	sector_t maxsector;
1646 
1647 	if (!nr_sectors)
1648 		return 0;
1649 
1650 	/* Test device or partition size, when known. */
1651 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1652 	if (maxsector) {
1653 		sector_t sector = bio->bi_sector;
1654 
1655 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1656 			/*
1657 			 * This may well happen - the kernel calls bread()
1658 			 * without checking the size of the device, e.g., when
1659 			 * mounting a device.
1660 			 */
1661 			handle_bad_sector(bio);
1662 			return 1;
1663 		}
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 static noinline_for_stack bool
1670 generic_make_request_checks(struct bio *bio)
1671 {
1672 	struct request_queue *q;
1673 	int nr_sectors = bio_sectors(bio);
1674 	int err = -EIO;
1675 	char b[BDEVNAME_SIZE];
1676 	struct hd_struct *part;
1677 
1678 	might_sleep();
1679 
1680 	if (bio_check_eod(bio, nr_sectors))
1681 		goto end_io;
1682 
1683 	q = bdev_get_queue(bio->bi_bdev);
1684 	if (unlikely(!q)) {
1685 		printk(KERN_ERR
1686 		       "generic_make_request: Trying to access "
1687 			"nonexistent block-device %s (%Lu)\n",
1688 			bdevname(bio->bi_bdev, b),
1689 			(long long) bio->bi_sector);
1690 		goto end_io;
1691 	}
1692 
1693 	if (likely(bio_is_rw(bio) &&
1694 		   nr_sectors > queue_max_hw_sectors(q))) {
1695 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1696 		       bdevname(bio->bi_bdev, b),
1697 		       bio_sectors(bio),
1698 		       queue_max_hw_sectors(q));
1699 		goto end_io;
1700 	}
1701 
1702 	part = bio->bi_bdev->bd_part;
1703 	if (should_fail_request(part, bio->bi_size) ||
1704 	    should_fail_request(&part_to_disk(part)->part0,
1705 				bio->bi_size))
1706 		goto end_io;
1707 
1708 	/*
1709 	 * If this device has partitions, remap block n
1710 	 * of partition p to block n+start(p) of the disk.
1711 	 */
1712 	blk_partition_remap(bio);
1713 
1714 	if (bio_check_eod(bio, nr_sectors))
1715 		goto end_io;
1716 
1717 	/*
1718 	 * Filter flush bio's early so that make_request based
1719 	 * drivers without flush support don't have to worry
1720 	 * about them.
1721 	 */
1722 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1723 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1724 		if (!nr_sectors) {
1725 			err = 0;
1726 			goto end_io;
1727 		}
1728 	}
1729 
1730 	if ((bio->bi_rw & REQ_DISCARD) &&
1731 	    (!blk_queue_discard(q) ||
1732 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1733 		err = -EOPNOTSUPP;
1734 		goto end_io;
1735 	}
1736 
1737 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1738 		err = -EOPNOTSUPP;
1739 		goto end_io;
1740 	}
1741 
1742 	/*
1743 	 * Various block parts want %current->io_context and lazy ioc
1744 	 * allocation ends up trading a lot of pain for a small amount of
1745 	 * memory.  Just allocate it upfront.  This may fail and block
1746 	 * layer knows how to live with it.
1747 	 */
1748 	create_io_context(GFP_ATOMIC, q->node);
1749 
1750 	if (blk_throtl_bio(q, bio))
1751 		return false;	/* throttled, will be resubmitted later */
1752 
1753 	trace_block_bio_queue(q, bio);
1754 	return true;
1755 
1756 end_io:
1757 	bio_endio(bio, err);
1758 	return false;
1759 }
1760 
1761 /**
1762  * generic_make_request - hand a buffer to its device driver for I/O
1763  * @bio:  The bio describing the location in memory and on the device.
1764  *
1765  * generic_make_request() is used to make I/O requests of block
1766  * devices. It is passed a &struct bio, which describes the I/O that needs
1767  * to be done.
1768  *
1769  * generic_make_request() does not return any status.  The
1770  * success/failure status of the request, along with notification of
1771  * completion, is delivered asynchronously through the bio->bi_end_io
1772  * function described (one day) else where.
1773  *
1774  * The caller of generic_make_request must make sure that bi_io_vec
1775  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1776  * set to describe the device address, and the
1777  * bi_end_io and optionally bi_private are set to describe how
1778  * completion notification should be signaled.
1779  *
1780  * generic_make_request and the drivers it calls may use bi_next if this
1781  * bio happens to be merged with someone else, and may resubmit the bio to
1782  * a lower device by calling into generic_make_request recursively, which
1783  * means the bio should NOT be touched after the call to ->make_request_fn.
1784  */
1785 void generic_make_request(struct bio *bio)
1786 {
1787 	struct bio_list bio_list_on_stack;
1788 
1789 	if (!generic_make_request_checks(bio))
1790 		return;
1791 
1792 	/*
1793 	 * We only want one ->make_request_fn to be active at a time, else
1794 	 * stack usage with stacked devices could be a problem.  So use
1795 	 * current->bio_list to keep a list of requests submited by a
1796 	 * make_request_fn function.  current->bio_list is also used as a
1797 	 * flag to say if generic_make_request is currently active in this
1798 	 * task or not.  If it is NULL, then no make_request is active.  If
1799 	 * it is non-NULL, then a make_request is active, and new requests
1800 	 * should be added at the tail
1801 	 */
1802 	if (current->bio_list) {
1803 		bio_list_add(current->bio_list, bio);
1804 		return;
1805 	}
1806 
1807 	/* following loop may be a bit non-obvious, and so deserves some
1808 	 * explanation.
1809 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1810 	 * ensure that) so we have a list with a single bio.
1811 	 * We pretend that we have just taken it off a longer list, so
1812 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1813 	 * thus initialising the bio_list of new bios to be
1814 	 * added.  ->make_request() may indeed add some more bios
1815 	 * through a recursive call to generic_make_request.  If it
1816 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1817 	 * from the top.  In this case we really did just take the bio
1818 	 * of the top of the list (no pretending) and so remove it from
1819 	 * bio_list, and call into ->make_request() again.
1820 	 */
1821 	BUG_ON(bio->bi_next);
1822 	bio_list_init(&bio_list_on_stack);
1823 	current->bio_list = &bio_list_on_stack;
1824 	do {
1825 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1826 
1827 		q->make_request_fn(q, bio);
1828 
1829 		bio = bio_list_pop(current->bio_list);
1830 	} while (bio);
1831 	current->bio_list = NULL; /* deactivate */
1832 }
1833 EXPORT_SYMBOL(generic_make_request);
1834 
1835 /**
1836  * submit_bio - submit a bio to the block device layer for I/O
1837  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1838  * @bio: The &struct bio which describes the I/O
1839  *
1840  * submit_bio() is very similar in purpose to generic_make_request(), and
1841  * uses that function to do most of the work. Both are fairly rough
1842  * interfaces; @bio must be presetup and ready for I/O.
1843  *
1844  */
1845 void submit_bio(int rw, struct bio *bio)
1846 {
1847 	bio->bi_rw |= rw;
1848 
1849 	/*
1850 	 * If it's a regular read/write or a barrier with data attached,
1851 	 * go through the normal accounting stuff before submission.
1852 	 */
1853 	if (bio_has_data(bio)) {
1854 		unsigned int count;
1855 
1856 		if (unlikely(rw & REQ_WRITE_SAME))
1857 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1858 		else
1859 			count = bio_sectors(bio);
1860 
1861 		if (rw & WRITE) {
1862 			count_vm_events(PGPGOUT, count);
1863 		} else {
1864 			task_io_account_read(bio->bi_size);
1865 			count_vm_events(PGPGIN, count);
1866 		}
1867 
1868 		if (unlikely(block_dump)) {
1869 			char b[BDEVNAME_SIZE];
1870 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1871 			current->comm, task_pid_nr(current),
1872 				(rw & WRITE) ? "WRITE" : "READ",
1873 				(unsigned long long)bio->bi_sector,
1874 				bdevname(bio->bi_bdev, b),
1875 				count);
1876 		}
1877 	}
1878 
1879 	generic_make_request(bio);
1880 }
1881 EXPORT_SYMBOL(submit_bio);
1882 
1883 /**
1884  * blk_rq_check_limits - Helper function to check a request for the queue limit
1885  * @q:  the queue
1886  * @rq: the request being checked
1887  *
1888  * Description:
1889  *    @rq may have been made based on weaker limitations of upper-level queues
1890  *    in request stacking drivers, and it may violate the limitation of @q.
1891  *    Since the block layer and the underlying device driver trust @rq
1892  *    after it is inserted to @q, it should be checked against @q before
1893  *    the insertion using this generic function.
1894  *
1895  *    This function should also be useful for request stacking drivers
1896  *    in some cases below, so export this function.
1897  *    Request stacking drivers like request-based dm may change the queue
1898  *    limits while requests are in the queue (e.g. dm's table swapping).
1899  *    Such request stacking drivers should check those requests agaist
1900  *    the new queue limits again when they dispatch those requests,
1901  *    although such checkings are also done against the old queue limits
1902  *    when submitting requests.
1903  */
1904 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1905 {
1906 	if (!rq_mergeable(rq))
1907 		return 0;
1908 
1909 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1910 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1911 		return -EIO;
1912 	}
1913 
1914 	/*
1915 	 * queue's settings related to segment counting like q->bounce_pfn
1916 	 * may differ from that of other stacking queues.
1917 	 * Recalculate it to check the request correctly on this queue's
1918 	 * limitation.
1919 	 */
1920 	blk_recalc_rq_segments(rq);
1921 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1922 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1923 		return -EIO;
1924 	}
1925 
1926 	return 0;
1927 }
1928 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1929 
1930 /**
1931  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1932  * @q:  the queue to submit the request
1933  * @rq: the request being queued
1934  */
1935 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1936 {
1937 	unsigned long flags;
1938 	int where = ELEVATOR_INSERT_BACK;
1939 
1940 	if (blk_rq_check_limits(q, rq))
1941 		return -EIO;
1942 
1943 	if (rq->rq_disk &&
1944 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1945 		return -EIO;
1946 
1947 	spin_lock_irqsave(q->queue_lock, flags);
1948 	if (unlikely(blk_queue_dying(q))) {
1949 		spin_unlock_irqrestore(q->queue_lock, flags);
1950 		return -ENODEV;
1951 	}
1952 
1953 	/*
1954 	 * Submitting request must be dequeued before calling this function
1955 	 * because it will be linked to another request_queue
1956 	 */
1957 	BUG_ON(blk_queued_rq(rq));
1958 
1959 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1960 		where = ELEVATOR_INSERT_FLUSH;
1961 
1962 	add_acct_request(q, rq, where);
1963 	if (where == ELEVATOR_INSERT_FLUSH)
1964 		__blk_run_queue(q);
1965 	spin_unlock_irqrestore(q->queue_lock, flags);
1966 
1967 	return 0;
1968 }
1969 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1970 
1971 /**
1972  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1973  * @rq: request to examine
1974  *
1975  * Description:
1976  *     A request could be merge of IOs which require different failure
1977  *     handling.  This function determines the number of bytes which
1978  *     can be failed from the beginning of the request without
1979  *     crossing into area which need to be retried further.
1980  *
1981  * Return:
1982  *     The number of bytes to fail.
1983  *
1984  * Context:
1985  *     queue_lock must be held.
1986  */
1987 unsigned int blk_rq_err_bytes(const struct request *rq)
1988 {
1989 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1990 	unsigned int bytes = 0;
1991 	struct bio *bio;
1992 
1993 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1994 		return blk_rq_bytes(rq);
1995 
1996 	/*
1997 	 * Currently the only 'mixing' which can happen is between
1998 	 * different fastfail types.  We can safely fail portions
1999 	 * which have all the failfast bits that the first one has -
2000 	 * the ones which are at least as eager to fail as the first
2001 	 * one.
2002 	 */
2003 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2004 		if ((bio->bi_rw & ff) != ff)
2005 			break;
2006 		bytes += bio->bi_size;
2007 	}
2008 
2009 	/* this could lead to infinite loop */
2010 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2011 	return bytes;
2012 }
2013 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2014 
2015 static void blk_account_io_completion(struct request *req, unsigned int bytes)
2016 {
2017 	if (blk_do_io_stat(req)) {
2018 		const int rw = rq_data_dir(req);
2019 		struct hd_struct *part;
2020 		int cpu;
2021 
2022 		cpu = part_stat_lock();
2023 		part = req->part;
2024 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2025 		part_stat_unlock();
2026 	}
2027 }
2028 
2029 static void blk_account_io_done(struct request *req)
2030 {
2031 	/*
2032 	 * Account IO completion.  flush_rq isn't accounted as a
2033 	 * normal IO on queueing nor completion.  Accounting the
2034 	 * containing request is enough.
2035 	 */
2036 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2037 		unsigned long duration = jiffies - req->start_time;
2038 		const int rw = rq_data_dir(req);
2039 		struct hd_struct *part;
2040 		int cpu;
2041 
2042 		cpu = part_stat_lock();
2043 		part = req->part;
2044 
2045 		part_stat_inc(cpu, part, ios[rw]);
2046 		part_stat_add(cpu, part, ticks[rw], duration);
2047 		part_round_stats(cpu, part);
2048 		part_dec_in_flight(part, rw);
2049 
2050 		hd_struct_put(part);
2051 		part_stat_unlock();
2052 	}
2053 }
2054 
2055 /**
2056  * blk_peek_request - peek at the top of a request queue
2057  * @q: request queue to peek at
2058  *
2059  * Description:
2060  *     Return the request at the top of @q.  The returned request
2061  *     should be started using blk_start_request() before LLD starts
2062  *     processing it.
2063  *
2064  * Return:
2065  *     Pointer to the request at the top of @q if available.  Null
2066  *     otherwise.
2067  *
2068  * Context:
2069  *     queue_lock must be held.
2070  */
2071 struct request *blk_peek_request(struct request_queue *q)
2072 {
2073 	struct request *rq;
2074 	int ret;
2075 
2076 	while ((rq = __elv_next_request(q)) != NULL) {
2077 		if (!(rq->cmd_flags & REQ_STARTED)) {
2078 			/*
2079 			 * This is the first time the device driver
2080 			 * sees this request (possibly after
2081 			 * requeueing).  Notify IO scheduler.
2082 			 */
2083 			if (rq->cmd_flags & REQ_SORTED)
2084 				elv_activate_rq(q, rq);
2085 
2086 			/*
2087 			 * just mark as started even if we don't start
2088 			 * it, a request that has been delayed should
2089 			 * not be passed by new incoming requests
2090 			 */
2091 			rq->cmd_flags |= REQ_STARTED;
2092 			trace_block_rq_issue(q, rq);
2093 		}
2094 
2095 		if (!q->boundary_rq || q->boundary_rq == rq) {
2096 			q->end_sector = rq_end_sector(rq);
2097 			q->boundary_rq = NULL;
2098 		}
2099 
2100 		if (rq->cmd_flags & REQ_DONTPREP)
2101 			break;
2102 
2103 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2104 			/*
2105 			 * make sure space for the drain appears we
2106 			 * know we can do this because max_hw_segments
2107 			 * has been adjusted to be one fewer than the
2108 			 * device can handle
2109 			 */
2110 			rq->nr_phys_segments++;
2111 		}
2112 
2113 		if (!q->prep_rq_fn)
2114 			break;
2115 
2116 		ret = q->prep_rq_fn(q, rq);
2117 		if (ret == BLKPREP_OK) {
2118 			break;
2119 		} else if (ret == BLKPREP_DEFER) {
2120 			/*
2121 			 * the request may have been (partially) prepped.
2122 			 * we need to keep this request in the front to
2123 			 * avoid resource deadlock.  REQ_STARTED will
2124 			 * prevent other fs requests from passing this one.
2125 			 */
2126 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2127 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2128 				/*
2129 				 * remove the space for the drain we added
2130 				 * so that we don't add it again
2131 				 */
2132 				--rq->nr_phys_segments;
2133 			}
2134 
2135 			rq = NULL;
2136 			break;
2137 		} else if (ret == BLKPREP_KILL) {
2138 			rq->cmd_flags |= REQ_QUIET;
2139 			/*
2140 			 * Mark this request as started so we don't trigger
2141 			 * any debug logic in the end I/O path.
2142 			 */
2143 			blk_start_request(rq);
2144 			__blk_end_request_all(rq, -EIO);
2145 		} else {
2146 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2147 			break;
2148 		}
2149 	}
2150 
2151 	return rq;
2152 }
2153 EXPORT_SYMBOL(blk_peek_request);
2154 
2155 void blk_dequeue_request(struct request *rq)
2156 {
2157 	struct request_queue *q = rq->q;
2158 
2159 	BUG_ON(list_empty(&rq->queuelist));
2160 	BUG_ON(ELV_ON_HASH(rq));
2161 
2162 	list_del_init(&rq->queuelist);
2163 
2164 	/*
2165 	 * the time frame between a request being removed from the lists
2166 	 * and to it is freed is accounted as io that is in progress at
2167 	 * the driver side.
2168 	 */
2169 	if (blk_account_rq(rq)) {
2170 		q->in_flight[rq_is_sync(rq)]++;
2171 		set_io_start_time_ns(rq);
2172 	}
2173 }
2174 
2175 /**
2176  * blk_start_request - start request processing on the driver
2177  * @req: request to dequeue
2178  *
2179  * Description:
2180  *     Dequeue @req and start timeout timer on it.  This hands off the
2181  *     request to the driver.
2182  *
2183  *     Block internal functions which don't want to start timer should
2184  *     call blk_dequeue_request().
2185  *
2186  * Context:
2187  *     queue_lock must be held.
2188  */
2189 void blk_start_request(struct request *req)
2190 {
2191 	blk_dequeue_request(req);
2192 
2193 	/*
2194 	 * We are now handing the request to the hardware, initialize
2195 	 * resid_len to full count and add the timeout handler.
2196 	 */
2197 	req->resid_len = blk_rq_bytes(req);
2198 	if (unlikely(blk_bidi_rq(req)))
2199 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2200 
2201 	blk_add_timer(req);
2202 }
2203 EXPORT_SYMBOL(blk_start_request);
2204 
2205 /**
2206  * blk_fetch_request - fetch a request from a request queue
2207  * @q: request queue to fetch a request from
2208  *
2209  * Description:
2210  *     Return the request at the top of @q.  The request is started on
2211  *     return and LLD can start processing it immediately.
2212  *
2213  * Return:
2214  *     Pointer to the request at the top of @q if available.  Null
2215  *     otherwise.
2216  *
2217  * Context:
2218  *     queue_lock must be held.
2219  */
2220 struct request *blk_fetch_request(struct request_queue *q)
2221 {
2222 	struct request *rq;
2223 
2224 	rq = blk_peek_request(q);
2225 	if (rq)
2226 		blk_start_request(rq);
2227 	return rq;
2228 }
2229 EXPORT_SYMBOL(blk_fetch_request);
2230 
2231 /**
2232  * blk_update_request - Special helper function for request stacking drivers
2233  * @req:      the request being processed
2234  * @error:    %0 for success, < %0 for error
2235  * @nr_bytes: number of bytes to complete @req
2236  *
2237  * Description:
2238  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2239  *     the request structure even if @req doesn't have leftover.
2240  *     If @req has leftover, sets it up for the next range of segments.
2241  *
2242  *     This special helper function is only for request stacking drivers
2243  *     (e.g. request-based dm) so that they can handle partial completion.
2244  *     Actual device drivers should use blk_end_request instead.
2245  *
2246  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2247  *     %false return from this function.
2248  *
2249  * Return:
2250  *     %false - this request doesn't have any more data
2251  *     %true  - this request has more data
2252  **/
2253 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2254 {
2255 	int total_bytes, bio_nbytes, next_idx = 0;
2256 	struct bio *bio;
2257 
2258 	if (!req->bio)
2259 		return false;
2260 
2261 	trace_block_rq_complete(req->q, req);
2262 
2263 	/*
2264 	 * For fs requests, rq is just carrier of independent bio's
2265 	 * and each partial completion should be handled separately.
2266 	 * Reset per-request error on each partial completion.
2267 	 *
2268 	 * TODO: tj: This is too subtle.  It would be better to let
2269 	 * low level drivers do what they see fit.
2270 	 */
2271 	if (req->cmd_type == REQ_TYPE_FS)
2272 		req->errors = 0;
2273 
2274 	if (error && req->cmd_type == REQ_TYPE_FS &&
2275 	    !(req->cmd_flags & REQ_QUIET)) {
2276 		char *error_type;
2277 
2278 		switch (error) {
2279 		case -ENOLINK:
2280 			error_type = "recoverable transport";
2281 			break;
2282 		case -EREMOTEIO:
2283 			error_type = "critical target";
2284 			break;
2285 		case -EBADE:
2286 			error_type = "critical nexus";
2287 			break;
2288 		case -EIO:
2289 		default:
2290 			error_type = "I/O";
2291 			break;
2292 		}
2293 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2294 				   error_type, req->rq_disk ?
2295 				   req->rq_disk->disk_name : "?",
2296 				   (unsigned long long)blk_rq_pos(req));
2297 
2298 	}
2299 
2300 	blk_account_io_completion(req, nr_bytes);
2301 
2302 	total_bytes = bio_nbytes = 0;
2303 	while ((bio = req->bio) != NULL) {
2304 		int nbytes;
2305 
2306 		if (nr_bytes >= bio->bi_size) {
2307 			req->bio = bio->bi_next;
2308 			nbytes = bio->bi_size;
2309 			req_bio_endio(req, bio, nbytes, error);
2310 			next_idx = 0;
2311 			bio_nbytes = 0;
2312 		} else {
2313 			int idx = bio->bi_idx + next_idx;
2314 
2315 			if (unlikely(idx >= bio->bi_vcnt)) {
2316 				blk_dump_rq_flags(req, "__end_that");
2317 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2318 				       __func__, idx, bio->bi_vcnt);
2319 				break;
2320 			}
2321 
2322 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2323 			BIO_BUG_ON(nbytes > bio->bi_size);
2324 
2325 			/*
2326 			 * not a complete bvec done
2327 			 */
2328 			if (unlikely(nbytes > nr_bytes)) {
2329 				bio_nbytes += nr_bytes;
2330 				total_bytes += nr_bytes;
2331 				break;
2332 			}
2333 
2334 			/*
2335 			 * advance to the next vector
2336 			 */
2337 			next_idx++;
2338 			bio_nbytes += nbytes;
2339 		}
2340 
2341 		total_bytes += nbytes;
2342 		nr_bytes -= nbytes;
2343 
2344 		bio = req->bio;
2345 		if (bio) {
2346 			/*
2347 			 * end more in this run, or just return 'not-done'
2348 			 */
2349 			if (unlikely(nr_bytes <= 0))
2350 				break;
2351 		}
2352 	}
2353 
2354 	/*
2355 	 * completely done
2356 	 */
2357 	if (!req->bio) {
2358 		/*
2359 		 * Reset counters so that the request stacking driver
2360 		 * can find how many bytes remain in the request
2361 		 * later.
2362 		 */
2363 		req->__data_len = 0;
2364 		return false;
2365 	}
2366 
2367 	/*
2368 	 * if the request wasn't completed, update state
2369 	 */
2370 	if (bio_nbytes) {
2371 		req_bio_endio(req, bio, bio_nbytes, error);
2372 		bio->bi_idx += next_idx;
2373 		bio_iovec(bio)->bv_offset += nr_bytes;
2374 		bio_iovec(bio)->bv_len -= nr_bytes;
2375 	}
2376 
2377 	req->__data_len -= total_bytes;
2378 	req->buffer = bio_data(req->bio);
2379 
2380 	/* update sector only for requests with clear definition of sector */
2381 	if (req->cmd_type == REQ_TYPE_FS)
2382 		req->__sector += total_bytes >> 9;
2383 
2384 	/* mixed attributes always follow the first bio */
2385 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2386 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2387 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2388 	}
2389 
2390 	/*
2391 	 * If total number of sectors is less than the first segment
2392 	 * size, something has gone terribly wrong.
2393 	 */
2394 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2395 		blk_dump_rq_flags(req, "request botched");
2396 		req->__data_len = blk_rq_cur_bytes(req);
2397 	}
2398 
2399 	/* recalculate the number of segments */
2400 	blk_recalc_rq_segments(req);
2401 
2402 	return true;
2403 }
2404 EXPORT_SYMBOL_GPL(blk_update_request);
2405 
2406 static bool blk_update_bidi_request(struct request *rq, int error,
2407 				    unsigned int nr_bytes,
2408 				    unsigned int bidi_bytes)
2409 {
2410 	if (blk_update_request(rq, error, nr_bytes))
2411 		return true;
2412 
2413 	/* Bidi request must be completed as a whole */
2414 	if (unlikely(blk_bidi_rq(rq)) &&
2415 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2416 		return true;
2417 
2418 	if (blk_queue_add_random(rq->q))
2419 		add_disk_randomness(rq->rq_disk);
2420 
2421 	return false;
2422 }
2423 
2424 /**
2425  * blk_unprep_request - unprepare a request
2426  * @req:	the request
2427  *
2428  * This function makes a request ready for complete resubmission (or
2429  * completion).  It happens only after all error handling is complete,
2430  * so represents the appropriate moment to deallocate any resources
2431  * that were allocated to the request in the prep_rq_fn.  The queue
2432  * lock is held when calling this.
2433  */
2434 void blk_unprep_request(struct request *req)
2435 {
2436 	struct request_queue *q = req->q;
2437 
2438 	req->cmd_flags &= ~REQ_DONTPREP;
2439 	if (q->unprep_rq_fn)
2440 		q->unprep_rq_fn(q, req);
2441 }
2442 EXPORT_SYMBOL_GPL(blk_unprep_request);
2443 
2444 /*
2445  * queue lock must be held
2446  */
2447 static void blk_finish_request(struct request *req, int error)
2448 {
2449 	if (blk_rq_tagged(req))
2450 		blk_queue_end_tag(req->q, req);
2451 
2452 	BUG_ON(blk_queued_rq(req));
2453 
2454 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2455 		laptop_io_completion(&req->q->backing_dev_info);
2456 
2457 	blk_delete_timer(req);
2458 
2459 	if (req->cmd_flags & REQ_DONTPREP)
2460 		blk_unprep_request(req);
2461 
2462 
2463 	blk_account_io_done(req);
2464 
2465 	if (req->end_io)
2466 		req->end_io(req, error);
2467 	else {
2468 		if (blk_bidi_rq(req))
2469 			__blk_put_request(req->next_rq->q, req->next_rq);
2470 
2471 		__blk_put_request(req->q, req);
2472 	}
2473 }
2474 
2475 /**
2476  * blk_end_bidi_request - Complete a bidi request
2477  * @rq:         the request to complete
2478  * @error:      %0 for success, < %0 for error
2479  * @nr_bytes:   number of bytes to complete @rq
2480  * @bidi_bytes: number of bytes to complete @rq->next_rq
2481  *
2482  * Description:
2483  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2484  *     Drivers that supports bidi can safely call this member for any
2485  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2486  *     just ignored.
2487  *
2488  * Return:
2489  *     %false - we are done with this request
2490  *     %true  - still buffers pending for this request
2491  **/
2492 static bool blk_end_bidi_request(struct request *rq, int error,
2493 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2494 {
2495 	struct request_queue *q = rq->q;
2496 	unsigned long flags;
2497 
2498 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2499 		return true;
2500 
2501 	spin_lock_irqsave(q->queue_lock, flags);
2502 	blk_finish_request(rq, error);
2503 	spin_unlock_irqrestore(q->queue_lock, flags);
2504 
2505 	return false;
2506 }
2507 
2508 /**
2509  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2510  * @rq:         the request to complete
2511  * @error:      %0 for success, < %0 for error
2512  * @nr_bytes:   number of bytes to complete @rq
2513  * @bidi_bytes: number of bytes to complete @rq->next_rq
2514  *
2515  * Description:
2516  *     Identical to blk_end_bidi_request() except that queue lock is
2517  *     assumed to be locked on entry and remains so on return.
2518  *
2519  * Return:
2520  *     %false - we are done with this request
2521  *     %true  - still buffers pending for this request
2522  **/
2523 bool __blk_end_bidi_request(struct request *rq, int error,
2524 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2525 {
2526 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2527 		return true;
2528 
2529 	blk_finish_request(rq, error);
2530 
2531 	return false;
2532 }
2533 
2534 /**
2535  * blk_end_request - Helper function for drivers to complete the request.
2536  * @rq:       the request being processed
2537  * @error:    %0 for success, < %0 for error
2538  * @nr_bytes: number of bytes to complete
2539  *
2540  * Description:
2541  *     Ends I/O on a number of bytes attached to @rq.
2542  *     If @rq has leftover, sets it up for the next range of segments.
2543  *
2544  * Return:
2545  *     %false - we are done with this request
2546  *     %true  - still buffers pending for this request
2547  **/
2548 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2549 {
2550 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2551 }
2552 EXPORT_SYMBOL(blk_end_request);
2553 
2554 /**
2555  * blk_end_request_all - Helper function for drives to finish the request.
2556  * @rq: the request to finish
2557  * @error: %0 for success, < %0 for error
2558  *
2559  * Description:
2560  *     Completely finish @rq.
2561  */
2562 void blk_end_request_all(struct request *rq, int error)
2563 {
2564 	bool pending;
2565 	unsigned int bidi_bytes = 0;
2566 
2567 	if (unlikely(blk_bidi_rq(rq)))
2568 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2569 
2570 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2571 	BUG_ON(pending);
2572 }
2573 EXPORT_SYMBOL(blk_end_request_all);
2574 
2575 /**
2576  * blk_end_request_cur - Helper function to finish the current request chunk.
2577  * @rq: the request to finish the current chunk for
2578  * @error: %0 for success, < %0 for error
2579  *
2580  * Description:
2581  *     Complete the current consecutively mapped chunk from @rq.
2582  *
2583  * Return:
2584  *     %false - we are done with this request
2585  *     %true  - still buffers pending for this request
2586  */
2587 bool blk_end_request_cur(struct request *rq, int error)
2588 {
2589 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2590 }
2591 EXPORT_SYMBOL(blk_end_request_cur);
2592 
2593 /**
2594  * blk_end_request_err - Finish a request till the next failure boundary.
2595  * @rq: the request to finish till the next failure boundary for
2596  * @error: must be negative errno
2597  *
2598  * Description:
2599  *     Complete @rq till the next failure boundary.
2600  *
2601  * Return:
2602  *     %false - we are done with this request
2603  *     %true  - still buffers pending for this request
2604  */
2605 bool blk_end_request_err(struct request *rq, int error)
2606 {
2607 	WARN_ON(error >= 0);
2608 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2609 }
2610 EXPORT_SYMBOL_GPL(blk_end_request_err);
2611 
2612 /**
2613  * __blk_end_request - Helper function for drivers to complete the request.
2614  * @rq:       the request being processed
2615  * @error:    %0 for success, < %0 for error
2616  * @nr_bytes: number of bytes to complete
2617  *
2618  * Description:
2619  *     Must be called with queue lock held unlike blk_end_request().
2620  *
2621  * Return:
2622  *     %false - we are done with this request
2623  *     %true  - still buffers pending for this request
2624  **/
2625 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2626 {
2627 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2628 }
2629 EXPORT_SYMBOL(__blk_end_request);
2630 
2631 /**
2632  * __blk_end_request_all - Helper function for drives to finish the request.
2633  * @rq: the request to finish
2634  * @error: %0 for success, < %0 for error
2635  *
2636  * Description:
2637  *     Completely finish @rq.  Must be called with queue lock held.
2638  */
2639 void __blk_end_request_all(struct request *rq, int error)
2640 {
2641 	bool pending;
2642 	unsigned int bidi_bytes = 0;
2643 
2644 	if (unlikely(blk_bidi_rq(rq)))
2645 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2646 
2647 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2648 	BUG_ON(pending);
2649 }
2650 EXPORT_SYMBOL(__blk_end_request_all);
2651 
2652 /**
2653  * __blk_end_request_cur - Helper function to finish the current request chunk.
2654  * @rq: the request to finish the current chunk for
2655  * @error: %0 for success, < %0 for error
2656  *
2657  * Description:
2658  *     Complete the current consecutively mapped chunk from @rq.  Must
2659  *     be called with queue lock held.
2660  *
2661  * Return:
2662  *     %false - we are done with this request
2663  *     %true  - still buffers pending for this request
2664  */
2665 bool __blk_end_request_cur(struct request *rq, int error)
2666 {
2667 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2668 }
2669 EXPORT_SYMBOL(__blk_end_request_cur);
2670 
2671 /**
2672  * __blk_end_request_err - Finish a request till the next failure boundary.
2673  * @rq: the request to finish till the next failure boundary for
2674  * @error: must be negative errno
2675  *
2676  * Description:
2677  *     Complete @rq till the next failure boundary.  Must be called
2678  *     with queue lock held.
2679  *
2680  * Return:
2681  *     %false - we are done with this request
2682  *     %true  - still buffers pending for this request
2683  */
2684 bool __blk_end_request_err(struct request *rq, int error)
2685 {
2686 	WARN_ON(error >= 0);
2687 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2688 }
2689 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2690 
2691 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2692 		     struct bio *bio)
2693 {
2694 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2695 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2696 
2697 	if (bio_has_data(bio)) {
2698 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2699 		rq->buffer = bio_data(bio);
2700 	}
2701 	rq->__data_len = bio->bi_size;
2702 	rq->bio = rq->biotail = bio;
2703 
2704 	if (bio->bi_bdev)
2705 		rq->rq_disk = bio->bi_bdev->bd_disk;
2706 }
2707 
2708 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2709 /**
2710  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2711  * @rq: the request to be flushed
2712  *
2713  * Description:
2714  *     Flush all pages in @rq.
2715  */
2716 void rq_flush_dcache_pages(struct request *rq)
2717 {
2718 	struct req_iterator iter;
2719 	struct bio_vec *bvec;
2720 
2721 	rq_for_each_segment(bvec, rq, iter)
2722 		flush_dcache_page(bvec->bv_page);
2723 }
2724 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2725 #endif
2726 
2727 /**
2728  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2729  * @q : the queue of the device being checked
2730  *
2731  * Description:
2732  *    Check if underlying low-level drivers of a device are busy.
2733  *    If the drivers want to export their busy state, they must set own
2734  *    exporting function using blk_queue_lld_busy() first.
2735  *
2736  *    Basically, this function is used only by request stacking drivers
2737  *    to stop dispatching requests to underlying devices when underlying
2738  *    devices are busy.  This behavior helps more I/O merging on the queue
2739  *    of the request stacking driver and prevents I/O throughput regression
2740  *    on burst I/O load.
2741  *
2742  * Return:
2743  *    0 - Not busy (The request stacking driver should dispatch request)
2744  *    1 - Busy (The request stacking driver should stop dispatching request)
2745  */
2746 int blk_lld_busy(struct request_queue *q)
2747 {
2748 	if (q->lld_busy_fn)
2749 		return q->lld_busy_fn(q);
2750 
2751 	return 0;
2752 }
2753 EXPORT_SYMBOL_GPL(blk_lld_busy);
2754 
2755 /**
2756  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2757  * @rq: the clone request to be cleaned up
2758  *
2759  * Description:
2760  *     Free all bios in @rq for a cloned request.
2761  */
2762 void blk_rq_unprep_clone(struct request *rq)
2763 {
2764 	struct bio *bio;
2765 
2766 	while ((bio = rq->bio) != NULL) {
2767 		rq->bio = bio->bi_next;
2768 
2769 		bio_put(bio);
2770 	}
2771 }
2772 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2773 
2774 /*
2775  * Copy attributes of the original request to the clone request.
2776  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2777  */
2778 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2779 {
2780 	dst->cpu = src->cpu;
2781 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2782 	dst->cmd_type = src->cmd_type;
2783 	dst->__sector = blk_rq_pos(src);
2784 	dst->__data_len = blk_rq_bytes(src);
2785 	dst->nr_phys_segments = src->nr_phys_segments;
2786 	dst->ioprio = src->ioprio;
2787 	dst->extra_len = src->extra_len;
2788 }
2789 
2790 /**
2791  * blk_rq_prep_clone - Helper function to setup clone request
2792  * @rq: the request to be setup
2793  * @rq_src: original request to be cloned
2794  * @bs: bio_set that bios for clone are allocated from
2795  * @gfp_mask: memory allocation mask for bio
2796  * @bio_ctr: setup function to be called for each clone bio.
2797  *           Returns %0 for success, non %0 for failure.
2798  * @data: private data to be passed to @bio_ctr
2799  *
2800  * Description:
2801  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2802  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2803  *     are not copied, and copying such parts is the caller's responsibility.
2804  *     Also, pages which the original bios are pointing to are not copied
2805  *     and the cloned bios just point same pages.
2806  *     So cloned bios must be completed before original bios, which means
2807  *     the caller must complete @rq before @rq_src.
2808  */
2809 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2810 		      struct bio_set *bs, gfp_t gfp_mask,
2811 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2812 		      void *data)
2813 {
2814 	struct bio *bio, *bio_src;
2815 
2816 	if (!bs)
2817 		bs = fs_bio_set;
2818 
2819 	blk_rq_init(NULL, rq);
2820 
2821 	__rq_for_each_bio(bio_src, rq_src) {
2822 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2823 		if (!bio)
2824 			goto free_and_out;
2825 
2826 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2827 			goto free_and_out;
2828 
2829 		if (rq->bio) {
2830 			rq->biotail->bi_next = bio;
2831 			rq->biotail = bio;
2832 		} else
2833 			rq->bio = rq->biotail = bio;
2834 	}
2835 
2836 	__blk_rq_prep_clone(rq, rq_src);
2837 
2838 	return 0;
2839 
2840 free_and_out:
2841 	if (bio)
2842 		bio_put(bio);
2843 	blk_rq_unprep_clone(rq);
2844 
2845 	return -ENOMEM;
2846 }
2847 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2848 
2849 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2850 {
2851 	return queue_work(kblockd_workqueue, work);
2852 }
2853 EXPORT_SYMBOL(kblockd_schedule_work);
2854 
2855 int kblockd_schedule_delayed_work(struct request_queue *q,
2856 			struct delayed_work *dwork, unsigned long delay)
2857 {
2858 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2859 }
2860 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2861 
2862 #define PLUG_MAGIC	0x91827364
2863 
2864 /**
2865  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2866  * @plug:	The &struct blk_plug that needs to be initialized
2867  *
2868  * Description:
2869  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2870  *   pending I/O should the task end up blocking between blk_start_plug() and
2871  *   blk_finish_plug(). This is important from a performance perspective, but
2872  *   also ensures that we don't deadlock. For instance, if the task is blocking
2873  *   for a memory allocation, memory reclaim could end up wanting to free a
2874  *   page belonging to that request that is currently residing in our private
2875  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2876  *   this kind of deadlock.
2877  */
2878 void blk_start_plug(struct blk_plug *plug)
2879 {
2880 	struct task_struct *tsk = current;
2881 
2882 	plug->magic = PLUG_MAGIC;
2883 	INIT_LIST_HEAD(&plug->list);
2884 	INIT_LIST_HEAD(&plug->cb_list);
2885 
2886 	/*
2887 	 * If this is a nested plug, don't actually assign it. It will be
2888 	 * flushed on its own.
2889 	 */
2890 	if (!tsk->plug) {
2891 		/*
2892 		 * Store ordering should not be needed here, since a potential
2893 		 * preempt will imply a full memory barrier
2894 		 */
2895 		tsk->plug = plug;
2896 	}
2897 }
2898 EXPORT_SYMBOL(blk_start_plug);
2899 
2900 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2901 {
2902 	struct request *rqa = container_of(a, struct request, queuelist);
2903 	struct request *rqb = container_of(b, struct request, queuelist);
2904 
2905 	return !(rqa->q < rqb->q ||
2906 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2907 }
2908 
2909 /*
2910  * If 'from_schedule' is true, then postpone the dispatch of requests
2911  * until a safe kblockd context. We due this to avoid accidental big
2912  * additional stack usage in driver dispatch, in places where the originally
2913  * plugger did not intend it.
2914  */
2915 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2916 			    bool from_schedule)
2917 	__releases(q->queue_lock)
2918 {
2919 	trace_block_unplug(q, depth, !from_schedule);
2920 
2921 	if (from_schedule)
2922 		blk_run_queue_async(q);
2923 	else
2924 		__blk_run_queue(q);
2925 	spin_unlock(q->queue_lock);
2926 }
2927 
2928 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2929 {
2930 	LIST_HEAD(callbacks);
2931 
2932 	while (!list_empty(&plug->cb_list)) {
2933 		list_splice_init(&plug->cb_list, &callbacks);
2934 
2935 		while (!list_empty(&callbacks)) {
2936 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2937 							  struct blk_plug_cb,
2938 							  list);
2939 			list_del(&cb->list);
2940 			cb->callback(cb, from_schedule);
2941 		}
2942 	}
2943 }
2944 
2945 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2946 				      int size)
2947 {
2948 	struct blk_plug *plug = current->plug;
2949 	struct blk_plug_cb *cb;
2950 
2951 	if (!plug)
2952 		return NULL;
2953 
2954 	list_for_each_entry(cb, &plug->cb_list, list)
2955 		if (cb->callback == unplug && cb->data == data)
2956 			return cb;
2957 
2958 	/* Not currently on the callback list */
2959 	BUG_ON(size < sizeof(*cb));
2960 	cb = kzalloc(size, GFP_ATOMIC);
2961 	if (cb) {
2962 		cb->data = data;
2963 		cb->callback = unplug;
2964 		list_add(&cb->list, &plug->cb_list);
2965 	}
2966 	return cb;
2967 }
2968 EXPORT_SYMBOL(blk_check_plugged);
2969 
2970 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2971 {
2972 	struct request_queue *q;
2973 	unsigned long flags;
2974 	struct request *rq;
2975 	LIST_HEAD(list);
2976 	unsigned int depth;
2977 
2978 	BUG_ON(plug->magic != PLUG_MAGIC);
2979 
2980 	flush_plug_callbacks(plug, from_schedule);
2981 	if (list_empty(&plug->list))
2982 		return;
2983 
2984 	list_splice_init(&plug->list, &list);
2985 
2986 	list_sort(NULL, &list, plug_rq_cmp);
2987 
2988 	q = NULL;
2989 	depth = 0;
2990 
2991 	/*
2992 	 * Save and disable interrupts here, to avoid doing it for every
2993 	 * queue lock we have to take.
2994 	 */
2995 	local_irq_save(flags);
2996 	while (!list_empty(&list)) {
2997 		rq = list_entry_rq(list.next);
2998 		list_del_init(&rq->queuelist);
2999 		BUG_ON(!rq->q);
3000 		if (rq->q != q) {
3001 			/*
3002 			 * This drops the queue lock
3003 			 */
3004 			if (q)
3005 				queue_unplugged(q, depth, from_schedule);
3006 			q = rq->q;
3007 			depth = 0;
3008 			spin_lock(q->queue_lock);
3009 		}
3010 
3011 		/*
3012 		 * Short-circuit if @q is dead
3013 		 */
3014 		if (unlikely(blk_queue_dying(q))) {
3015 			__blk_end_request_all(rq, -ENODEV);
3016 			continue;
3017 		}
3018 
3019 		/*
3020 		 * rq is already accounted, so use raw insert
3021 		 */
3022 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3023 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3024 		else
3025 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3026 
3027 		depth++;
3028 	}
3029 
3030 	/*
3031 	 * This drops the queue lock
3032 	 */
3033 	if (q)
3034 		queue_unplugged(q, depth, from_schedule);
3035 
3036 	local_irq_restore(flags);
3037 }
3038 
3039 void blk_finish_plug(struct blk_plug *plug)
3040 {
3041 	blk_flush_plug_list(plug, false);
3042 
3043 	if (plug == current->plug)
3044 		current->plug = NULL;
3045 }
3046 EXPORT_SYMBOL(blk_finish_plug);
3047 
3048 int __init blk_dev_init(void)
3049 {
3050 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3051 			sizeof(((struct request *)0)->cmd_flags));
3052 
3053 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3054 	kblockd_workqueue = alloc_workqueue("kblockd",
3055 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3056 	if (!kblockd_workqueue)
3057 		panic("Failed to create kblockd\n");
3058 
3059 	request_cachep = kmem_cache_create("blkdev_requests",
3060 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3061 
3062 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3063 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3064 
3065 	return 0;
3066 }
3067