1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 #include <linux/list_sort.h> 31 #include <linux/delay.h> 32 #include <linux/ratelimit.h> 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/block.h> 36 37 #include "blk.h" 38 #include "blk-cgroup.h" 39 40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 43 44 DEFINE_IDA(blk_queue_ida); 45 46 /* 47 * For the allocated request tables 48 */ 49 static struct kmem_cache *request_cachep; 50 51 /* 52 * For queue allocation 53 */ 54 struct kmem_cache *blk_requestq_cachep; 55 56 /* 57 * Controlling structure to kblockd 58 */ 59 static struct workqueue_struct *kblockd_workqueue; 60 61 static void drive_stat_acct(struct request *rq, int new_io) 62 { 63 struct hd_struct *part; 64 int rw = rq_data_dir(rq); 65 int cpu; 66 67 if (!blk_do_io_stat(rq)) 68 return; 69 70 cpu = part_stat_lock(); 71 72 if (!new_io) { 73 part = rq->part; 74 part_stat_inc(cpu, part, merges[rw]); 75 } else { 76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 77 if (!hd_struct_try_get(part)) { 78 /* 79 * The partition is already being removed, 80 * the request will be accounted on the disk only 81 * 82 * We take a reference on disk->part0 although that 83 * partition will never be deleted, so we can treat 84 * it as any other partition. 85 */ 86 part = &rq->rq_disk->part0; 87 hd_struct_get(part); 88 } 89 part_round_stats(cpu, part); 90 part_inc_in_flight(part, rw); 91 rq->part = part; 92 } 93 94 part_stat_unlock(); 95 } 96 97 void blk_queue_congestion_threshold(struct request_queue *q) 98 { 99 int nr; 100 101 nr = q->nr_requests - (q->nr_requests / 8) + 1; 102 if (nr > q->nr_requests) 103 nr = q->nr_requests; 104 q->nr_congestion_on = nr; 105 106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 107 if (nr < 1) 108 nr = 1; 109 q->nr_congestion_off = nr; 110 } 111 112 /** 113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 114 * @bdev: device 115 * 116 * Locates the passed device's request queue and returns the address of its 117 * backing_dev_info 118 * 119 * Will return NULL if the request queue cannot be located. 120 */ 121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 122 { 123 struct backing_dev_info *ret = NULL; 124 struct request_queue *q = bdev_get_queue(bdev); 125 126 if (q) 127 ret = &q->backing_dev_info; 128 return ret; 129 } 130 EXPORT_SYMBOL(blk_get_backing_dev_info); 131 132 void blk_rq_init(struct request_queue *q, struct request *rq) 133 { 134 memset(rq, 0, sizeof(*rq)); 135 136 INIT_LIST_HEAD(&rq->queuelist); 137 INIT_LIST_HEAD(&rq->timeout_list); 138 rq->cpu = -1; 139 rq->q = q; 140 rq->__sector = (sector_t) -1; 141 INIT_HLIST_NODE(&rq->hash); 142 RB_CLEAR_NODE(&rq->rb_node); 143 rq->cmd = rq->__cmd; 144 rq->cmd_len = BLK_MAX_CDB; 145 rq->tag = -1; 146 rq->ref_count = 1; 147 rq->start_time = jiffies; 148 set_start_time_ns(rq); 149 rq->part = NULL; 150 } 151 EXPORT_SYMBOL(blk_rq_init); 152 153 static void req_bio_endio(struct request *rq, struct bio *bio, 154 unsigned int nbytes, int error) 155 { 156 if (error) 157 clear_bit(BIO_UPTODATE, &bio->bi_flags); 158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 159 error = -EIO; 160 161 if (unlikely(nbytes > bio->bi_size)) { 162 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 163 __func__, nbytes, bio->bi_size); 164 nbytes = bio->bi_size; 165 } 166 167 if (unlikely(rq->cmd_flags & REQ_QUIET)) 168 set_bit(BIO_QUIET, &bio->bi_flags); 169 170 bio->bi_size -= nbytes; 171 bio->bi_sector += (nbytes >> 9); 172 173 if (bio_integrity(bio)) 174 bio_integrity_advance(bio, nbytes); 175 176 /* don't actually finish bio if it's part of flush sequence */ 177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 178 bio_endio(bio, error); 179 } 180 181 void blk_dump_rq_flags(struct request *rq, char *msg) 182 { 183 int bit; 184 185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 187 rq->cmd_flags); 188 189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 190 (unsigned long long)blk_rq_pos(rq), 191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 194 195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 196 printk(KERN_INFO " cdb: "); 197 for (bit = 0; bit < BLK_MAX_CDB; bit++) 198 printk("%02x ", rq->cmd[bit]); 199 printk("\n"); 200 } 201 } 202 EXPORT_SYMBOL(blk_dump_rq_flags); 203 204 static void blk_delay_work(struct work_struct *work) 205 { 206 struct request_queue *q; 207 208 q = container_of(work, struct request_queue, delay_work.work); 209 spin_lock_irq(q->queue_lock); 210 __blk_run_queue(q); 211 spin_unlock_irq(q->queue_lock); 212 } 213 214 /** 215 * blk_delay_queue - restart queueing after defined interval 216 * @q: The &struct request_queue in question 217 * @msecs: Delay in msecs 218 * 219 * Description: 220 * Sometimes queueing needs to be postponed for a little while, to allow 221 * resources to come back. This function will make sure that queueing is 222 * restarted around the specified time. Queue lock must be held. 223 */ 224 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 225 { 226 if (likely(!blk_queue_dead(q))) 227 queue_delayed_work(kblockd_workqueue, &q->delay_work, 228 msecs_to_jiffies(msecs)); 229 } 230 EXPORT_SYMBOL(blk_delay_queue); 231 232 /** 233 * blk_start_queue - restart a previously stopped queue 234 * @q: The &struct request_queue in question 235 * 236 * Description: 237 * blk_start_queue() will clear the stop flag on the queue, and call 238 * the request_fn for the queue if it was in a stopped state when 239 * entered. Also see blk_stop_queue(). Queue lock must be held. 240 **/ 241 void blk_start_queue(struct request_queue *q) 242 { 243 WARN_ON(!irqs_disabled()); 244 245 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 246 __blk_run_queue(q); 247 } 248 EXPORT_SYMBOL(blk_start_queue); 249 250 /** 251 * blk_stop_queue - stop a queue 252 * @q: The &struct request_queue in question 253 * 254 * Description: 255 * The Linux block layer assumes that a block driver will consume all 256 * entries on the request queue when the request_fn strategy is called. 257 * Often this will not happen, because of hardware limitations (queue 258 * depth settings). If a device driver gets a 'queue full' response, 259 * or if it simply chooses not to queue more I/O at one point, it can 260 * call this function to prevent the request_fn from being called until 261 * the driver has signalled it's ready to go again. This happens by calling 262 * blk_start_queue() to restart queue operations. Queue lock must be held. 263 **/ 264 void blk_stop_queue(struct request_queue *q) 265 { 266 cancel_delayed_work(&q->delay_work); 267 queue_flag_set(QUEUE_FLAG_STOPPED, q); 268 } 269 EXPORT_SYMBOL(blk_stop_queue); 270 271 /** 272 * blk_sync_queue - cancel any pending callbacks on a queue 273 * @q: the queue 274 * 275 * Description: 276 * The block layer may perform asynchronous callback activity 277 * on a queue, such as calling the unplug function after a timeout. 278 * A block device may call blk_sync_queue to ensure that any 279 * such activity is cancelled, thus allowing it to release resources 280 * that the callbacks might use. The caller must already have made sure 281 * that its ->make_request_fn will not re-add plugging prior to calling 282 * this function. 283 * 284 * This function does not cancel any asynchronous activity arising 285 * out of elevator or throttling code. That would require elevaotor_exit() 286 * and blkcg_exit_queue() to be called with queue lock initialized. 287 * 288 */ 289 void blk_sync_queue(struct request_queue *q) 290 { 291 del_timer_sync(&q->timeout); 292 cancel_delayed_work_sync(&q->delay_work); 293 } 294 EXPORT_SYMBOL(blk_sync_queue); 295 296 /** 297 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 298 * @q: The queue to run 299 * 300 * Description: 301 * Invoke request handling on a queue if there are any pending requests. 302 * May be used to restart request handling after a request has completed. 303 * This variant runs the queue whether or not the queue has been 304 * stopped. Must be called with the queue lock held and interrupts 305 * disabled. See also @blk_run_queue. 306 */ 307 inline void __blk_run_queue_uncond(struct request_queue *q) 308 { 309 if (unlikely(blk_queue_dead(q))) 310 return; 311 312 /* 313 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 314 * the queue lock internally. As a result multiple threads may be 315 * running such a request function concurrently. Keep track of the 316 * number of active request_fn invocations such that blk_drain_queue() 317 * can wait until all these request_fn calls have finished. 318 */ 319 q->request_fn_active++; 320 q->request_fn(q); 321 q->request_fn_active--; 322 } 323 324 /** 325 * __blk_run_queue - run a single device queue 326 * @q: The queue to run 327 * 328 * Description: 329 * See @blk_run_queue. This variant must be called with the queue lock 330 * held and interrupts disabled. 331 */ 332 void __blk_run_queue(struct request_queue *q) 333 { 334 if (unlikely(blk_queue_stopped(q))) 335 return; 336 337 __blk_run_queue_uncond(q); 338 } 339 EXPORT_SYMBOL(__blk_run_queue); 340 341 /** 342 * blk_run_queue_async - run a single device queue in workqueue context 343 * @q: The queue to run 344 * 345 * Description: 346 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 347 * of us. The caller must hold the queue lock. 348 */ 349 void blk_run_queue_async(struct request_queue *q) 350 { 351 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 352 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 353 } 354 EXPORT_SYMBOL(blk_run_queue_async); 355 356 /** 357 * blk_run_queue - run a single device queue 358 * @q: The queue to run 359 * 360 * Description: 361 * Invoke request handling on this queue, if it has pending work to do. 362 * May be used to restart queueing when a request has completed. 363 */ 364 void blk_run_queue(struct request_queue *q) 365 { 366 unsigned long flags; 367 368 spin_lock_irqsave(q->queue_lock, flags); 369 __blk_run_queue(q); 370 spin_unlock_irqrestore(q->queue_lock, flags); 371 } 372 EXPORT_SYMBOL(blk_run_queue); 373 374 void blk_put_queue(struct request_queue *q) 375 { 376 kobject_put(&q->kobj); 377 } 378 EXPORT_SYMBOL(blk_put_queue); 379 380 /** 381 * __blk_drain_queue - drain requests from request_queue 382 * @q: queue to drain 383 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 384 * 385 * Drain requests from @q. If @drain_all is set, all requests are drained. 386 * If not, only ELVPRIV requests are drained. The caller is responsible 387 * for ensuring that no new requests which need to be drained are queued. 388 */ 389 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 390 __releases(q->queue_lock) 391 __acquires(q->queue_lock) 392 { 393 int i; 394 395 lockdep_assert_held(q->queue_lock); 396 397 while (true) { 398 bool drain = false; 399 400 /* 401 * The caller might be trying to drain @q before its 402 * elevator is initialized. 403 */ 404 if (q->elevator) 405 elv_drain_elevator(q); 406 407 blkcg_drain_queue(q); 408 409 /* 410 * This function might be called on a queue which failed 411 * driver init after queue creation or is not yet fully 412 * active yet. Some drivers (e.g. fd and loop) get unhappy 413 * in such cases. Kick queue iff dispatch queue has 414 * something on it and @q has request_fn set. 415 */ 416 if (!list_empty(&q->queue_head) && q->request_fn) 417 __blk_run_queue(q); 418 419 drain |= q->nr_rqs_elvpriv; 420 drain |= q->request_fn_active; 421 422 /* 423 * Unfortunately, requests are queued at and tracked from 424 * multiple places and there's no single counter which can 425 * be drained. Check all the queues and counters. 426 */ 427 if (drain_all) { 428 drain |= !list_empty(&q->queue_head); 429 for (i = 0; i < 2; i++) { 430 drain |= q->nr_rqs[i]; 431 drain |= q->in_flight[i]; 432 drain |= !list_empty(&q->flush_queue[i]); 433 } 434 } 435 436 if (!drain) 437 break; 438 439 spin_unlock_irq(q->queue_lock); 440 441 msleep(10); 442 443 spin_lock_irq(q->queue_lock); 444 } 445 446 /* 447 * With queue marked dead, any woken up waiter will fail the 448 * allocation path, so the wakeup chaining is lost and we're 449 * left with hung waiters. We need to wake up those waiters. 450 */ 451 if (q->request_fn) { 452 struct request_list *rl; 453 454 blk_queue_for_each_rl(rl, q) 455 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 456 wake_up_all(&rl->wait[i]); 457 } 458 } 459 460 /** 461 * blk_queue_bypass_start - enter queue bypass mode 462 * @q: queue of interest 463 * 464 * In bypass mode, only the dispatch FIFO queue of @q is used. This 465 * function makes @q enter bypass mode and drains all requests which were 466 * throttled or issued before. On return, it's guaranteed that no request 467 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 468 * inside queue or RCU read lock. 469 */ 470 void blk_queue_bypass_start(struct request_queue *q) 471 { 472 bool drain; 473 474 spin_lock_irq(q->queue_lock); 475 drain = !q->bypass_depth++; 476 queue_flag_set(QUEUE_FLAG_BYPASS, q); 477 spin_unlock_irq(q->queue_lock); 478 479 if (drain) { 480 spin_lock_irq(q->queue_lock); 481 __blk_drain_queue(q, false); 482 spin_unlock_irq(q->queue_lock); 483 484 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 485 synchronize_rcu(); 486 } 487 } 488 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 489 490 /** 491 * blk_queue_bypass_end - leave queue bypass mode 492 * @q: queue of interest 493 * 494 * Leave bypass mode and restore the normal queueing behavior. 495 */ 496 void blk_queue_bypass_end(struct request_queue *q) 497 { 498 spin_lock_irq(q->queue_lock); 499 if (!--q->bypass_depth) 500 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 501 WARN_ON_ONCE(q->bypass_depth < 0); 502 spin_unlock_irq(q->queue_lock); 503 } 504 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 505 506 /** 507 * blk_cleanup_queue - shutdown a request queue 508 * @q: request queue to shutdown 509 * 510 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 511 * put it. All future requests will be failed immediately with -ENODEV. 512 */ 513 void blk_cleanup_queue(struct request_queue *q) 514 { 515 spinlock_t *lock = q->queue_lock; 516 517 /* mark @q DYING, no new request or merges will be allowed afterwards */ 518 mutex_lock(&q->sysfs_lock); 519 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 520 spin_lock_irq(lock); 521 522 /* 523 * A dying queue is permanently in bypass mode till released. Note 524 * that, unlike blk_queue_bypass_start(), we aren't performing 525 * synchronize_rcu() after entering bypass mode to avoid the delay 526 * as some drivers create and destroy a lot of queues while 527 * probing. This is still safe because blk_release_queue() will be 528 * called only after the queue refcnt drops to zero and nothing, 529 * RCU or not, would be traversing the queue by then. 530 */ 531 q->bypass_depth++; 532 queue_flag_set(QUEUE_FLAG_BYPASS, q); 533 534 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 535 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 536 queue_flag_set(QUEUE_FLAG_DYING, q); 537 spin_unlock_irq(lock); 538 mutex_unlock(&q->sysfs_lock); 539 540 /* 541 * Drain all requests queued before DYING marking. Set DEAD flag to 542 * prevent that q->request_fn() gets invoked after draining finished. 543 */ 544 spin_lock_irq(lock); 545 __blk_drain_queue(q, true); 546 queue_flag_set(QUEUE_FLAG_DEAD, q); 547 spin_unlock_irq(lock); 548 549 /* @q won't process any more request, flush async actions */ 550 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 551 blk_sync_queue(q); 552 553 spin_lock_irq(lock); 554 if (q->queue_lock != &q->__queue_lock) 555 q->queue_lock = &q->__queue_lock; 556 spin_unlock_irq(lock); 557 558 /* @q is and will stay empty, shutdown and put */ 559 blk_put_queue(q); 560 } 561 EXPORT_SYMBOL(blk_cleanup_queue); 562 563 int blk_init_rl(struct request_list *rl, struct request_queue *q, 564 gfp_t gfp_mask) 565 { 566 if (unlikely(rl->rq_pool)) 567 return 0; 568 569 rl->q = q; 570 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 571 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 572 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 573 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 574 575 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 576 mempool_free_slab, request_cachep, 577 gfp_mask, q->node); 578 if (!rl->rq_pool) 579 return -ENOMEM; 580 581 return 0; 582 } 583 584 void blk_exit_rl(struct request_list *rl) 585 { 586 if (rl->rq_pool) 587 mempool_destroy(rl->rq_pool); 588 } 589 590 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 591 { 592 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 593 } 594 EXPORT_SYMBOL(blk_alloc_queue); 595 596 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 597 { 598 struct request_queue *q; 599 int err; 600 601 q = kmem_cache_alloc_node(blk_requestq_cachep, 602 gfp_mask | __GFP_ZERO, node_id); 603 if (!q) 604 return NULL; 605 606 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 607 if (q->id < 0) 608 goto fail_q; 609 610 q->backing_dev_info.ra_pages = 611 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 612 q->backing_dev_info.state = 0; 613 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 614 q->backing_dev_info.name = "block"; 615 q->node = node_id; 616 617 err = bdi_init(&q->backing_dev_info); 618 if (err) 619 goto fail_id; 620 621 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 622 laptop_mode_timer_fn, (unsigned long) q); 623 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 624 INIT_LIST_HEAD(&q->queue_head); 625 INIT_LIST_HEAD(&q->timeout_list); 626 INIT_LIST_HEAD(&q->icq_list); 627 #ifdef CONFIG_BLK_CGROUP 628 INIT_LIST_HEAD(&q->blkg_list); 629 #endif 630 INIT_LIST_HEAD(&q->flush_queue[0]); 631 INIT_LIST_HEAD(&q->flush_queue[1]); 632 INIT_LIST_HEAD(&q->flush_data_in_flight); 633 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 634 635 kobject_init(&q->kobj, &blk_queue_ktype); 636 637 mutex_init(&q->sysfs_lock); 638 spin_lock_init(&q->__queue_lock); 639 640 /* 641 * By default initialize queue_lock to internal lock and driver can 642 * override it later if need be. 643 */ 644 q->queue_lock = &q->__queue_lock; 645 646 /* 647 * A queue starts its life with bypass turned on to avoid 648 * unnecessary bypass on/off overhead and nasty surprises during 649 * init. The initial bypass will be finished when the queue is 650 * registered by blk_register_queue(). 651 */ 652 q->bypass_depth = 1; 653 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 654 655 if (blkcg_init_queue(q)) 656 goto fail_id; 657 658 return q; 659 660 fail_id: 661 ida_simple_remove(&blk_queue_ida, q->id); 662 fail_q: 663 kmem_cache_free(blk_requestq_cachep, q); 664 return NULL; 665 } 666 EXPORT_SYMBOL(blk_alloc_queue_node); 667 668 /** 669 * blk_init_queue - prepare a request queue for use with a block device 670 * @rfn: The function to be called to process requests that have been 671 * placed on the queue. 672 * @lock: Request queue spin lock 673 * 674 * Description: 675 * If a block device wishes to use the standard request handling procedures, 676 * which sorts requests and coalesces adjacent requests, then it must 677 * call blk_init_queue(). The function @rfn will be called when there 678 * are requests on the queue that need to be processed. If the device 679 * supports plugging, then @rfn may not be called immediately when requests 680 * are available on the queue, but may be called at some time later instead. 681 * Plugged queues are generally unplugged when a buffer belonging to one 682 * of the requests on the queue is needed, or due to memory pressure. 683 * 684 * @rfn is not required, or even expected, to remove all requests off the 685 * queue, but only as many as it can handle at a time. If it does leave 686 * requests on the queue, it is responsible for arranging that the requests 687 * get dealt with eventually. 688 * 689 * The queue spin lock must be held while manipulating the requests on the 690 * request queue; this lock will be taken also from interrupt context, so irq 691 * disabling is needed for it. 692 * 693 * Function returns a pointer to the initialized request queue, or %NULL if 694 * it didn't succeed. 695 * 696 * Note: 697 * blk_init_queue() must be paired with a blk_cleanup_queue() call 698 * when the block device is deactivated (such as at module unload). 699 **/ 700 701 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 702 { 703 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 704 } 705 EXPORT_SYMBOL(blk_init_queue); 706 707 struct request_queue * 708 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 709 { 710 struct request_queue *uninit_q, *q; 711 712 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 713 if (!uninit_q) 714 return NULL; 715 716 q = blk_init_allocated_queue(uninit_q, rfn, lock); 717 if (!q) 718 blk_cleanup_queue(uninit_q); 719 720 return q; 721 } 722 EXPORT_SYMBOL(blk_init_queue_node); 723 724 struct request_queue * 725 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 726 spinlock_t *lock) 727 { 728 if (!q) 729 return NULL; 730 731 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 732 return NULL; 733 734 q->request_fn = rfn; 735 q->prep_rq_fn = NULL; 736 q->unprep_rq_fn = NULL; 737 q->queue_flags |= QUEUE_FLAG_DEFAULT; 738 739 /* Override internal queue lock with supplied lock pointer */ 740 if (lock) 741 q->queue_lock = lock; 742 743 /* 744 * This also sets hw/phys segments, boundary and size 745 */ 746 blk_queue_make_request(q, blk_queue_bio); 747 748 q->sg_reserved_size = INT_MAX; 749 750 /* init elevator */ 751 if (elevator_init(q, NULL)) 752 return NULL; 753 return q; 754 } 755 EXPORT_SYMBOL(blk_init_allocated_queue); 756 757 bool blk_get_queue(struct request_queue *q) 758 { 759 if (likely(!blk_queue_dying(q))) { 760 __blk_get_queue(q); 761 return true; 762 } 763 764 return false; 765 } 766 EXPORT_SYMBOL(blk_get_queue); 767 768 static inline void blk_free_request(struct request_list *rl, struct request *rq) 769 { 770 if (rq->cmd_flags & REQ_ELVPRIV) { 771 elv_put_request(rl->q, rq); 772 if (rq->elv.icq) 773 put_io_context(rq->elv.icq->ioc); 774 } 775 776 mempool_free(rq, rl->rq_pool); 777 } 778 779 /* 780 * ioc_batching returns true if the ioc is a valid batching request and 781 * should be given priority access to a request. 782 */ 783 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 784 { 785 if (!ioc) 786 return 0; 787 788 /* 789 * Make sure the process is able to allocate at least 1 request 790 * even if the batch times out, otherwise we could theoretically 791 * lose wakeups. 792 */ 793 return ioc->nr_batch_requests == q->nr_batching || 794 (ioc->nr_batch_requests > 0 795 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 796 } 797 798 /* 799 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 800 * will cause the process to be a "batcher" on all queues in the system. This 801 * is the behaviour we want though - once it gets a wakeup it should be given 802 * a nice run. 803 */ 804 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 805 { 806 if (!ioc || ioc_batching(q, ioc)) 807 return; 808 809 ioc->nr_batch_requests = q->nr_batching; 810 ioc->last_waited = jiffies; 811 } 812 813 static void __freed_request(struct request_list *rl, int sync) 814 { 815 struct request_queue *q = rl->q; 816 817 /* 818 * bdi isn't aware of blkcg yet. As all async IOs end up root 819 * blkcg anyway, just use root blkcg state. 820 */ 821 if (rl == &q->root_rl && 822 rl->count[sync] < queue_congestion_off_threshold(q)) 823 blk_clear_queue_congested(q, sync); 824 825 if (rl->count[sync] + 1 <= q->nr_requests) { 826 if (waitqueue_active(&rl->wait[sync])) 827 wake_up(&rl->wait[sync]); 828 829 blk_clear_rl_full(rl, sync); 830 } 831 } 832 833 /* 834 * A request has just been released. Account for it, update the full and 835 * congestion status, wake up any waiters. Called under q->queue_lock. 836 */ 837 static void freed_request(struct request_list *rl, unsigned int flags) 838 { 839 struct request_queue *q = rl->q; 840 int sync = rw_is_sync(flags); 841 842 q->nr_rqs[sync]--; 843 rl->count[sync]--; 844 if (flags & REQ_ELVPRIV) 845 q->nr_rqs_elvpriv--; 846 847 __freed_request(rl, sync); 848 849 if (unlikely(rl->starved[sync ^ 1])) 850 __freed_request(rl, sync ^ 1); 851 } 852 853 /* 854 * Determine if elevator data should be initialized when allocating the 855 * request associated with @bio. 856 */ 857 static bool blk_rq_should_init_elevator(struct bio *bio) 858 { 859 if (!bio) 860 return true; 861 862 /* 863 * Flush requests do not use the elevator so skip initialization. 864 * This allows a request to share the flush and elevator data. 865 */ 866 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 867 return false; 868 869 return true; 870 } 871 872 /** 873 * rq_ioc - determine io_context for request allocation 874 * @bio: request being allocated is for this bio (can be %NULL) 875 * 876 * Determine io_context to use for request allocation for @bio. May return 877 * %NULL if %current->io_context doesn't exist. 878 */ 879 static struct io_context *rq_ioc(struct bio *bio) 880 { 881 #ifdef CONFIG_BLK_CGROUP 882 if (bio && bio->bi_ioc) 883 return bio->bi_ioc; 884 #endif 885 return current->io_context; 886 } 887 888 /** 889 * __get_request - get a free request 890 * @rl: request list to allocate from 891 * @rw_flags: RW and SYNC flags 892 * @bio: bio to allocate request for (can be %NULL) 893 * @gfp_mask: allocation mask 894 * 895 * Get a free request from @q. This function may fail under memory 896 * pressure or if @q is dead. 897 * 898 * Must be callled with @q->queue_lock held and, 899 * Returns %NULL on failure, with @q->queue_lock held. 900 * Returns !%NULL on success, with @q->queue_lock *not held*. 901 */ 902 static struct request *__get_request(struct request_list *rl, int rw_flags, 903 struct bio *bio, gfp_t gfp_mask) 904 { 905 struct request_queue *q = rl->q; 906 struct request *rq; 907 struct elevator_type *et = q->elevator->type; 908 struct io_context *ioc = rq_ioc(bio); 909 struct io_cq *icq = NULL; 910 const bool is_sync = rw_is_sync(rw_flags) != 0; 911 int may_queue; 912 913 if (unlikely(blk_queue_dying(q))) 914 return NULL; 915 916 may_queue = elv_may_queue(q, rw_flags); 917 if (may_queue == ELV_MQUEUE_NO) 918 goto rq_starved; 919 920 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 921 if (rl->count[is_sync]+1 >= q->nr_requests) { 922 /* 923 * The queue will fill after this allocation, so set 924 * it as full, and mark this process as "batching". 925 * This process will be allowed to complete a batch of 926 * requests, others will be blocked. 927 */ 928 if (!blk_rl_full(rl, is_sync)) { 929 ioc_set_batching(q, ioc); 930 blk_set_rl_full(rl, is_sync); 931 } else { 932 if (may_queue != ELV_MQUEUE_MUST 933 && !ioc_batching(q, ioc)) { 934 /* 935 * The queue is full and the allocating 936 * process is not a "batcher", and not 937 * exempted by the IO scheduler 938 */ 939 return NULL; 940 } 941 } 942 } 943 /* 944 * bdi isn't aware of blkcg yet. As all async IOs end up 945 * root blkcg anyway, just use root blkcg state. 946 */ 947 if (rl == &q->root_rl) 948 blk_set_queue_congested(q, is_sync); 949 } 950 951 /* 952 * Only allow batching queuers to allocate up to 50% over the defined 953 * limit of requests, otherwise we could have thousands of requests 954 * allocated with any setting of ->nr_requests 955 */ 956 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 957 return NULL; 958 959 q->nr_rqs[is_sync]++; 960 rl->count[is_sync]++; 961 rl->starved[is_sync] = 0; 962 963 /* 964 * Decide whether the new request will be managed by elevator. If 965 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 966 * prevent the current elevator from being destroyed until the new 967 * request is freed. This guarantees icq's won't be destroyed and 968 * makes creating new ones safe. 969 * 970 * Also, lookup icq while holding queue_lock. If it doesn't exist, 971 * it will be created after releasing queue_lock. 972 */ 973 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 974 rw_flags |= REQ_ELVPRIV; 975 q->nr_rqs_elvpriv++; 976 if (et->icq_cache && ioc) 977 icq = ioc_lookup_icq(ioc, q); 978 } 979 980 if (blk_queue_io_stat(q)) 981 rw_flags |= REQ_IO_STAT; 982 spin_unlock_irq(q->queue_lock); 983 984 /* allocate and init request */ 985 rq = mempool_alloc(rl->rq_pool, gfp_mask); 986 if (!rq) 987 goto fail_alloc; 988 989 blk_rq_init(q, rq); 990 blk_rq_set_rl(rq, rl); 991 rq->cmd_flags = rw_flags | REQ_ALLOCED; 992 993 /* init elvpriv */ 994 if (rw_flags & REQ_ELVPRIV) { 995 if (unlikely(et->icq_cache && !icq)) { 996 if (ioc) 997 icq = ioc_create_icq(ioc, q, gfp_mask); 998 if (!icq) 999 goto fail_elvpriv; 1000 } 1001 1002 rq->elv.icq = icq; 1003 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1004 goto fail_elvpriv; 1005 1006 /* @rq->elv.icq holds io_context until @rq is freed */ 1007 if (icq) 1008 get_io_context(icq->ioc); 1009 } 1010 out: 1011 /* 1012 * ioc may be NULL here, and ioc_batching will be false. That's 1013 * OK, if the queue is under the request limit then requests need 1014 * not count toward the nr_batch_requests limit. There will always 1015 * be some limit enforced by BLK_BATCH_TIME. 1016 */ 1017 if (ioc_batching(q, ioc)) 1018 ioc->nr_batch_requests--; 1019 1020 trace_block_getrq(q, bio, rw_flags & 1); 1021 return rq; 1022 1023 fail_elvpriv: 1024 /* 1025 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1026 * and may fail indefinitely under memory pressure and thus 1027 * shouldn't stall IO. Treat this request as !elvpriv. This will 1028 * disturb iosched and blkcg but weird is bettern than dead. 1029 */ 1030 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n", 1031 dev_name(q->backing_dev_info.dev)); 1032 1033 rq->cmd_flags &= ~REQ_ELVPRIV; 1034 rq->elv.icq = NULL; 1035 1036 spin_lock_irq(q->queue_lock); 1037 q->nr_rqs_elvpriv--; 1038 spin_unlock_irq(q->queue_lock); 1039 goto out; 1040 1041 fail_alloc: 1042 /* 1043 * Allocation failed presumably due to memory. Undo anything we 1044 * might have messed up. 1045 * 1046 * Allocating task should really be put onto the front of the wait 1047 * queue, but this is pretty rare. 1048 */ 1049 spin_lock_irq(q->queue_lock); 1050 freed_request(rl, rw_flags); 1051 1052 /* 1053 * in the very unlikely event that allocation failed and no 1054 * requests for this direction was pending, mark us starved so that 1055 * freeing of a request in the other direction will notice 1056 * us. another possible fix would be to split the rq mempool into 1057 * READ and WRITE 1058 */ 1059 rq_starved: 1060 if (unlikely(rl->count[is_sync] == 0)) 1061 rl->starved[is_sync] = 1; 1062 return NULL; 1063 } 1064 1065 /** 1066 * get_request - get a free request 1067 * @q: request_queue to allocate request from 1068 * @rw_flags: RW and SYNC flags 1069 * @bio: bio to allocate request for (can be %NULL) 1070 * @gfp_mask: allocation mask 1071 * 1072 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1073 * function keeps retrying under memory pressure and fails iff @q is dead. 1074 * 1075 * Must be callled with @q->queue_lock held and, 1076 * Returns %NULL on failure, with @q->queue_lock held. 1077 * Returns !%NULL on success, with @q->queue_lock *not held*. 1078 */ 1079 static struct request *get_request(struct request_queue *q, int rw_flags, 1080 struct bio *bio, gfp_t gfp_mask) 1081 { 1082 const bool is_sync = rw_is_sync(rw_flags) != 0; 1083 DEFINE_WAIT(wait); 1084 struct request_list *rl; 1085 struct request *rq; 1086 1087 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1088 retry: 1089 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1090 if (rq) 1091 return rq; 1092 1093 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1094 blk_put_rl(rl); 1095 return NULL; 1096 } 1097 1098 /* wait on @rl and retry */ 1099 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1100 TASK_UNINTERRUPTIBLE); 1101 1102 trace_block_sleeprq(q, bio, rw_flags & 1); 1103 1104 spin_unlock_irq(q->queue_lock); 1105 io_schedule(); 1106 1107 /* 1108 * After sleeping, we become a "batching" process and will be able 1109 * to allocate at least one request, and up to a big batch of them 1110 * for a small period time. See ioc_batching, ioc_set_batching 1111 */ 1112 ioc_set_batching(q, current->io_context); 1113 1114 spin_lock_irq(q->queue_lock); 1115 finish_wait(&rl->wait[is_sync], &wait); 1116 1117 goto retry; 1118 } 1119 1120 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1121 { 1122 struct request *rq; 1123 1124 BUG_ON(rw != READ && rw != WRITE); 1125 1126 /* create ioc upfront */ 1127 create_io_context(gfp_mask, q->node); 1128 1129 spin_lock_irq(q->queue_lock); 1130 rq = get_request(q, rw, NULL, gfp_mask); 1131 if (!rq) 1132 spin_unlock_irq(q->queue_lock); 1133 /* q->queue_lock is unlocked at this point */ 1134 1135 return rq; 1136 } 1137 EXPORT_SYMBOL(blk_get_request); 1138 1139 /** 1140 * blk_make_request - given a bio, allocate a corresponding struct request. 1141 * @q: target request queue 1142 * @bio: The bio describing the memory mappings that will be submitted for IO. 1143 * It may be a chained-bio properly constructed by block/bio layer. 1144 * @gfp_mask: gfp flags to be used for memory allocation 1145 * 1146 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1147 * type commands. Where the struct request needs to be farther initialized by 1148 * the caller. It is passed a &struct bio, which describes the memory info of 1149 * the I/O transfer. 1150 * 1151 * The caller of blk_make_request must make sure that bi_io_vec 1152 * are set to describe the memory buffers. That bio_data_dir() will return 1153 * the needed direction of the request. (And all bio's in the passed bio-chain 1154 * are properly set accordingly) 1155 * 1156 * If called under none-sleepable conditions, mapped bio buffers must not 1157 * need bouncing, by calling the appropriate masked or flagged allocator, 1158 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1159 * BUG. 1160 * 1161 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1162 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1163 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1164 * completion of a bio that hasn't been submitted yet, thus resulting in a 1165 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1166 * of bio_alloc(), as that avoids the mempool deadlock. 1167 * If possible a big IO should be split into smaller parts when allocation 1168 * fails. Partial allocation should not be an error, or you risk a live-lock. 1169 */ 1170 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1171 gfp_t gfp_mask) 1172 { 1173 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1174 1175 if (unlikely(!rq)) 1176 return ERR_PTR(-ENOMEM); 1177 1178 for_each_bio(bio) { 1179 struct bio *bounce_bio = bio; 1180 int ret; 1181 1182 blk_queue_bounce(q, &bounce_bio); 1183 ret = blk_rq_append_bio(q, rq, bounce_bio); 1184 if (unlikely(ret)) { 1185 blk_put_request(rq); 1186 return ERR_PTR(ret); 1187 } 1188 } 1189 1190 return rq; 1191 } 1192 EXPORT_SYMBOL(blk_make_request); 1193 1194 /** 1195 * blk_requeue_request - put a request back on queue 1196 * @q: request queue where request should be inserted 1197 * @rq: request to be inserted 1198 * 1199 * Description: 1200 * Drivers often keep queueing requests until the hardware cannot accept 1201 * more, when that condition happens we need to put the request back 1202 * on the queue. Must be called with queue lock held. 1203 */ 1204 void blk_requeue_request(struct request_queue *q, struct request *rq) 1205 { 1206 blk_delete_timer(rq); 1207 blk_clear_rq_complete(rq); 1208 trace_block_rq_requeue(q, rq); 1209 1210 if (blk_rq_tagged(rq)) 1211 blk_queue_end_tag(q, rq); 1212 1213 BUG_ON(blk_queued_rq(rq)); 1214 1215 elv_requeue_request(q, rq); 1216 } 1217 EXPORT_SYMBOL(blk_requeue_request); 1218 1219 static void add_acct_request(struct request_queue *q, struct request *rq, 1220 int where) 1221 { 1222 drive_stat_acct(rq, 1); 1223 __elv_add_request(q, rq, where); 1224 } 1225 1226 static void part_round_stats_single(int cpu, struct hd_struct *part, 1227 unsigned long now) 1228 { 1229 if (now == part->stamp) 1230 return; 1231 1232 if (part_in_flight(part)) { 1233 __part_stat_add(cpu, part, time_in_queue, 1234 part_in_flight(part) * (now - part->stamp)); 1235 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1236 } 1237 part->stamp = now; 1238 } 1239 1240 /** 1241 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1242 * @cpu: cpu number for stats access 1243 * @part: target partition 1244 * 1245 * The average IO queue length and utilisation statistics are maintained 1246 * by observing the current state of the queue length and the amount of 1247 * time it has been in this state for. 1248 * 1249 * Normally, that accounting is done on IO completion, but that can result 1250 * in more than a second's worth of IO being accounted for within any one 1251 * second, leading to >100% utilisation. To deal with that, we call this 1252 * function to do a round-off before returning the results when reading 1253 * /proc/diskstats. This accounts immediately for all queue usage up to 1254 * the current jiffies and restarts the counters again. 1255 */ 1256 void part_round_stats(int cpu, struct hd_struct *part) 1257 { 1258 unsigned long now = jiffies; 1259 1260 if (part->partno) 1261 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1262 part_round_stats_single(cpu, part, now); 1263 } 1264 EXPORT_SYMBOL_GPL(part_round_stats); 1265 1266 /* 1267 * queue lock must be held 1268 */ 1269 void __blk_put_request(struct request_queue *q, struct request *req) 1270 { 1271 if (unlikely(!q)) 1272 return; 1273 if (unlikely(--req->ref_count)) 1274 return; 1275 1276 elv_completed_request(q, req); 1277 1278 /* this is a bio leak */ 1279 WARN_ON(req->bio != NULL); 1280 1281 /* 1282 * Request may not have originated from ll_rw_blk. if not, 1283 * it didn't come out of our reserved rq pools 1284 */ 1285 if (req->cmd_flags & REQ_ALLOCED) { 1286 unsigned int flags = req->cmd_flags; 1287 struct request_list *rl = blk_rq_rl(req); 1288 1289 BUG_ON(!list_empty(&req->queuelist)); 1290 BUG_ON(!hlist_unhashed(&req->hash)); 1291 1292 blk_free_request(rl, req); 1293 freed_request(rl, flags); 1294 blk_put_rl(rl); 1295 } 1296 } 1297 EXPORT_SYMBOL_GPL(__blk_put_request); 1298 1299 void blk_put_request(struct request *req) 1300 { 1301 unsigned long flags; 1302 struct request_queue *q = req->q; 1303 1304 spin_lock_irqsave(q->queue_lock, flags); 1305 __blk_put_request(q, req); 1306 spin_unlock_irqrestore(q->queue_lock, flags); 1307 } 1308 EXPORT_SYMBOL(blk_put_request); 1309 1310 /** 1311 * blk_add_request_payload - add a payload to a request 1312 * @rq: request to update 1313 * @page: page backing the payload 1314 * @len: length of the payload. 1315 * 1316 * This allows to later add a payload to an already submitted request by 1317 * a block driver. The driver needs to take care of freeing the payload 1318 * itself. 1319 * 1320 * Note that this is a quite horrible hack and nothing but handling of 1321 * discard requests should ever use it. 1322 */ 1323 void blk_add_request_payload(struct request *rq, struct page *page, 1324 unsigned int len) 1325 { 1326 struct bio *bio = rq->bio; 1327 1328 bio->bi_io_vec->bv_page = page; 1329 bio->bi_io_vec->bv_offset = 0; 1330 bio->bi_io_vec->bv_len = len; 1331 1332 bio->bi_size = len; 1333 bio->bi_vcnt = 1; 1334 bio->bi_phys_segments = 1; 1335 1336 rq->__data_len = rq->resid_len = len; 1337 rq->nr_phys_segments = 1; 1338 rq->buffer = bio_data(bio); 1339 } 1340 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1341 1342 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1343 struct bio *bio) 1344 { 1345 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1346 1347 if (!ll_back_merge_fn(q, req, bio)) 1348 return false; 1349 1350 trace_block_bio_backmerge(q, req, bio); 1351 1352 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1353 blk_rq_set_mixed_merge(req); 1354 1355 req->biotail->bi_next = bio; 1356 req->biotail = bio; 1357 req->__data_len += bio->bi_size; 1358 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1359 1360 drive_stat_acct(req, 0); 1361 return true; 1362 } 1363 1364 static bool bio_attempt_front_merge(struct request_queue *q, 1365 struct request *req, struct bio *bio) 1366 { 1367 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1368 1369 if (!ll_front_merge_fn(q, req, bio)) 1370 return false; 1371 1372 trace_block_bio_frontmerge(q, req, bio); 1373 1374 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1375 blk_rq_set_mixed_merge(req); 1376 1377 bio->bi_next = req->bio; 1378 req->bio = bio; 1379 1380 /* 1381 * may not be valid. if the low level driver said 1382 * it didn't need a bounce buffer then it better 1383 * not touch req->buffer either... 1384 */ 1385 req->buffer = bio_data(bio); 1386 req->__sector = bio->bi_sector; 1387 req->__data_len += bio->bi_size; 1388 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1389 1390 drive_stat_acct(req, 0); 1391 return true; 1392 } 1393 1394 /** 1395 * attempt_plug_merge - try to merge with %current's plugged list 1396 * @q: request_queue new bio is being queued at 1397 * @bio: new bio being queued 1398 * @request_count: out parameter for number of traversed plugged requests 1399 * 1400 * Determine whether @bio being queued on @q can be merged with a request 1401 * on %current's plugged list. Returns %true if merge was successful, 1402 * otherwise %false. 1403 * 1404 * Plugging coalesces IOs from the same issuer for the same purpose without 1405 * going through @q->queue_lock. As such it's more of an issuing mechanism 1406 * than scheduling, and the request, while may have elvpriv data, is not 1407 * added on the elevator at this point. In addition, we don't have 1408 * reliable access to the elevator outside queue lock. Only check basic 1409 * merging parameters without querying the elevator. 1410 */ 1411 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio, 1412 unsigned int *request_count) 1413 { 1414 struct blk_plug *plug; 1415 struct request *rq; 1416 bool ret = false; 1417 1418 plug = current->plug; 1419 if (!plug) 1420 goto out; 1421 *request_count = 0; 1422 1423 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1424 int el_ret; 1425 1426 if (rq->q == q) 1427 (*request_count)++; 1428 1429 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1430 continue; 1431 1432 el_ret = blk_try_merge(rq, bio); 1433 if (el_ret == ELEVATOR_BACK_MERGE) { 1434 ret = bio_attempt_back_merge(q, rq, bio); 1435 if (ret) 1436 break; 1437 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1438 ret = bio_attempt_front_merge(q, rq, bio); 1439 if (ret) 1440 break; 1441 } 1442 } 1443 out: 1444 return ret; 1445 } 1446 1447 void init_request_from_bio(struct request *req, struct bio *bio) 1448 { 1449 req->cmd_type = REQ_TYPE_FS; 1450 1451 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1452 if (bio->bi_rw & REQ_RAHEAD) 1453 req->cmd_flags |= REQ_FAILFAST_MASK; 1454 1455 req->errors = 0; 1456 req->__sector = bio->bi_sector; 1457 req->ioprio = bio_prio(bio); 1458 blk_rq_bio_prep(req->q, req, bio); 1459 } 1460 1461 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1462 { 1463 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1464 struct blk_plug *plug; 1465 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1466 struct request *req; 1467 unsigned int request_count = 0; 1468 1469 /* 1470 * low level driver can indicate that it wants pages above a 1471 * certain limit bounced to low memory (ie for highmem, or even 1472 * ISA dma in theory) 1473 */ 1474 blk_queue_bounce(q, &bio); 1475 1476 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1477 bio_endio(bio, -EIO); 1478 return; 1479 } 1480 1481 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1482 spin_lock_irq(q->queue_lock); 1483 where = ELEVATOR_INSERT_FLUSH; 1484 goto get_rq; 1485 } 1486 1487 /* 1488 * Check if we can merge with the plugged list before grabbing 1489 * any locks. 1490 */ 1491 if (attempt_plug_merge(q, bio, &request_count)) 1492 return; 1493 1494 spin_lock_irq(q->queue_lock); 1495 1496 el_ret = elv_merge(q, &req, bio); 1497 if (el_ret == ELEVATOR_BACK_MERGE) { 1498 if (bio_attempt_back_merge(q, req, bio)) { 1499 elv_bio_merged(q, req, bio); 1500 if (!attempt_back_merge(q, req)) 1501 elv_merged_request(q, req, el_ret); 1502 goto out_unlock; 1503 } 1504 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1505 if (bio_attempt_front_merge(q, req, bio)) { 1506 elv_bio_merged(q, req, bio); 1507 if (!attempt_front_merge(q, req)) 1508 elv_merged_request(q, req, el_ret); 1509 goto out_unlock; 1510 } 1511 } 1512 1513 get_rq: 1514 /* 1515 * This sync check and mask will be re-done in init_request_from_bio(), 1516 * but we need to set it earlier to expose the sync flag to the 1517 * rq allocator and io schedulers. 1518 */ 1519 rw_flags = bio_data_dir(bio); 1520 if (sync) 1521 rw_flags |= REQ_SYNC; 1522 1523 /* 1524 * Grab a free request. This is might sleep but can not fail. 1525 * Returns with the queue unlocked. 1526 */ 1527 req = get_request(q, rw_flags, bio, GFP_NOIO); 1528 if (unlikely(!req)) { 1529 bio_endio(bio, -ENODEV); /* @q is dead */ 1530 goto out_unlock; 1531 } 1532 1533 /* 1534 * After dropping the lock and possibly sleeping here, our request 1535 * may now be mergeable after it had proven unmergeable (above). 1536 * We don't worry about that case for efficiency. It won't happen 1537 * often, and the elevators are able to handle it. 1538 */ 1539 init_request_from_bio(req, bio); 1540 1541 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1542 req->cpu = raw_smp_processor_id(); 1543 1544 plug = current->plug; 1545 if (plug) { 1546 /* 1547 * If this is the first request added after a plug, fire 1548 * of a plug trace. If others have been added before, check 1549 * if we have multiple devices in this plug. If so, make a 1550 * note to sort the list before dispatch. 1551 */ 1552 if (list_empty(&plug->list)) 1553 trace_block_plug(q); 1554 else { 1555 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1556 blk_flush_plug_list(plug, false); 1557 trace_block_plug(q); 1558 } 1559 } 1560 list_add_tail(&req->queuelist, &plug->list); 1561 drive_stat_acct(req, 1); 1562 } else { 1563 spin_lock_irq(q->queue_lock); 1564 add_acct_request(q, req, where); 1565 __blk_run_queue(q); 1566 out_unlock: 1567 spin_unlock_irq(q->queue_lock); 1568 } 1569 } 1570 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1571 1572 /* 1573 * If bio->bi_dev is a partition, remap the location 1574 */ 1575 static inline void blk_partition_remap(struct bio *bio) 1576 { 1577 struct block_device *bdev = bio->bi_bdev; 1578 1579 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1580 struct hd_struct *p = bdev->bd_part; 1581 1582 bio->bi_sector += p->start_sect; 1583 bio->bi_bdev = bdev->bd_contains; 1584 1585 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1586 bdev->bd_dev, 1587 bio->bi_sector - p->start_sect); 1588 } 1589 } 1590 1591 static void handle_bad_sector(struct bio *bio) 1592 { 1593 char b[BDEVNAME_SIZE]; 1594 1595 printk(KERN_INFO "attempt to access beyond end of device\n"); 1596 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1597 bdevname(bio->bi_bdev, b), 1598 bio->bi_rw, 1599 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1600 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1601 1602 set_bit(BIO_EOF, &bio->bi_flags); 1603 } 1604 1605 #ifdef CONFIG_FAIL_MAKE_REQUEST 1606 1607 static DECLARE_FAULT_ATTR(fail_make_request); 1608 1609 static int __init setup_fail_make_request(char *str) 1610 { 1611 return setup_fault_attr(&fail_make_request, str); 1612 } 1613 __setup("fail_make_request=", setup_fail_make_request); 1614 1615 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1616 { 1617 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1618 } 1619 1620 static int __init fail_make_request_debugfs(void) 1621 { 1622 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1623 NULL, &fail_make_request); 1624 1625 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1626 } 1627 1628 late_initcall(fail_make_request_debugfs); 1629 1630 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1631 1632 static inline bool should_fail_request(struct hd_struct *part, 1633 unsigned int bytes) 1634 { 1635 return false; 1636 } 1637 1638 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1639 1640 /* 1641 * Check whether this bio extends beyond the end of the device. 1642 */ 1643 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1644 { 1645 sector_t maxsector; 1646 1647 if (!nr_sectors) 1648 return 0; 1649 1650 /* Test device or partition size, when known. */ 1651 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1652 if (maxsector) { 1653 sector_t sector = bio->bi_sector; 1654 1655 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1656 /* 1657 * This may well happen - the kernel calls bread() 1658 * without checking the size of the device, e.g., when 1659 * mounting a device. 1660 */ 1661 handle_bad_sector(bio); 1662 return 1; 1663 } 1664 } 1665 1666 return 0; 1667 } 1668 1669 static noinline_for_stack bool 1670 generic_make_request_checks(struct bio *bio) 1671 { 1672 struct request_queue *q; 1673 int nr_sectors = bio_sectors(bio); 1674 int err = -EIO; 1675 char b[BDEVNAME_SIZE]; 1676 struct hd_struct *part; 1677 1678 might_sleep(); 1679 1680 if (bio_check_eod(bio, nr_sectors)) 1681 goto end_io; 1682 1683 q = bdev_get_queue(bio->bi_bdev); 1684 if (unlikely(!q)) { 1685 printk(KERN_ERR 1686 "generic_make_request: Trying to access " 1687 "nonexistent block-device %s (%Lu)\n", 1688 bdevname(bio->bi_bdev, b), 1689 (long long) bio->bi_sector); 1690 goto end_io; 1691 } 1692 1693 if (likely(bio_is_rw(bio) && 1694 nr_sectors > queue_max_hw_sectors(q))) { 1695 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1696 bdevname(bio->bi_bdev, b), 1697 bio_sectors(bio), 1698 queue_max_hw_sectors(q)); 1699 goto end_io; 1700 } 1701 1702 part = bio->bi_bdev->bd_part; 1703 if (should_fail_request(part, bio->bi_size) || 1704 should_fail_request(&part_to_disk(part)->part0, 1705 bio->bi_size)) 1706 goto end_io; 1707 1708 /* 1709 * If this device has partitions, remap block n 1710 * of partition p to block n+start(p) of the disk. 1711 */ 1712 blk_partition_remap(bio); 1713 1714 if (bio_check_eod(bio, nr_sectors)) 1715 goto end_io; 1716 1717 /* 1718 * Filter flush bio's early so that make_request based 1719 * drivers without flush support don't have to worry 1720 * about them. 1721 */ 1722 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1723 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1724 if (!nr_sectors) { 1725 err = 0; 1726 goto end_io; 1727 } 1728 } 1729 1730 if ((bio->bi_rw & REQ_DISCARD) && 1731 (!blk_queue_discard(q) || 1732 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1733 err = -EOPNOTSUPP; 1734 goto end_io; 1735 } 1736 1737 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1738 err = -EOPNOTSUPP; 1739 goto end_io; 1740 } 1741 1742 /* 1743 * Various block parts want %current->io_context and lazy ioc 1744 * allocation ends up trading a lot of pain for a small amount of 1745 * memory. Just allocate it upfront. This may fail and block 1746 * layer knows how to live with it. 1747 */ 1748 create_io_context(GFP_ATOMIC, q->node); 1749 1750 if (blk_throtl_bio(q, bio)) 1751 return false; /* throttled, will be resubmitted later */ 1752 1753 trace_block_bio_queue(q, bio); 1754 return true; 1755 1756 end_io: 1757 bio_endio(bio, err); 1758 return false; 1759 } 1760 1761 /** 1762 * generic_make_request - hand a buffer to its device driver for I/O 1763 * @bio: The bio describing the location in memory and on the device. 1764 * 1765 * generic_make_request() is used to make I/O requests of block 1766 * devices. It is passed a &struct bio, which describes the I/O that needs 1767 * to be done. 1768 * 1769 * generic_make_request() does not return any status. The 1770 * success/failure status of the request, along with notification of 1771 * completion, is delivered asynchronously through the bio->bi_end_io 1772 * function described (one day) else where. 1773 * 1774 * The caller of generic_make_request must make sure that bi_io_vec 1775 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1776 * set to describe the device address, and the 1777 * bi_end_io and optionally bi_private are set to describe how 1778 * completion notification should be signaled. 1779 * 1780 * generic_make_request and the drivers it calls may use bi_next if this 1781 * bio happens to be merged with someone else, and may resubmit the bio to 1782 * a lower device by calling into generic_make_request recursively, which 1783 * means the bio should NOT be touched after the call to ->make_request_fn. 1784 */ 1785 void generic_make_request(struct bio *bio) 1786 { 1787 struct bio_list bio_list_on_stack; 1788 1789 if (!generic_make_request_checks(bio)) 1790 return; 1791 1792 /* 1793 * We only want one ->make_request_fn to be active at a time, else 1794 * stack usage with stacked devices could be a problem. So use 1795 * current->bio_list to keep a list of requests submited by a 1796 * make_request_fn function. current->bio_list is also used as a 1797 * flag to say if generic_make_request is currently active in this 1798 * task or not. If it is NULL, then no make_request is active. If 1799 * it is non-NULL, then a make_request is active, and new requests 1800 * should be added at the tail 1801 */ 1802 if (current->bio_list) { 1803 bio_list_add(current->bio_list, bio); 1804 return; 1805 } 1806 1807 /* following loop may be a bit non-obvious, and so deserves some 1808 * explanation. 1809 * Before entering the loop, bio->bi_next is NULL (as all callers 1810 * ensure that) so we have a list with a single bio. 1811 * We pretend that we have just taken it off a longer list, so 1812 * we assign bio_list to a pointer to the bio_list_on_stack, 1813 * thus initialising the bio_list of new bios to be 1814 * added. ->make_request() may indeed add some more bios 1815 * through a recursive call to generic_make_request. If it 1816 * did, we find a non-NULL value in bio_list and re-enter the loop 1817 * from the top. In this case we really did just take the bio 1818 * of the top of the list (no pretending) and so remove it from 1819 * bio_list, and call into ->make_request() again. 1820 */ 1821 BUG_ON(bio->bi_next); 1822 bio_list_init(&bio_list_on_stack); 1823 current->bio_list = &bio_list_on_stack; 1824 do { 1825 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1826 1827 q->make_request_fn(q, bio); 1828 1829 bio = bio_list_pop(current->bio_list); 1830 } while (bio); 1831 current->bio_list = NULL; /* deactivate */ 1832 } 1833 EXPORT_SYMBOL(generic_make_request); 1834 1835 /** 1836 * submit_bio - submit a bio to the block device layer for I/O 1837 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1838 * @bio: The &struct bio which describes the I/O 1839 * 1840 * submit_bio() is very similar in purpose to generic_make_request(), and 1841 * uses that function to do most of the work. Both are fairly rough 1842 * interfaces; @bio must be presetup and ready for I/O. 1843 * 1844 */ 1845 void submit_bio(int rw, struct bio *bio) 1846 { 1847 bio->bi_rw |= rw; 1848 1849 /* 1850 * If it's a regular read/write or a barrier with data attached, 1851 * go through the normal accounting stuff before submission. 1852 */ 1853 if (bio_has_data(bio)) { 1854 unsigned int count; 1855 1856 if (unlikely(rw & REQ_WRITE_SAME)) 1857 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1858 else 1859 count = bio_sectors(bio); 1860 1861 if (rw & WRITE) { 1862 count_vm_events(PGPGOUT, count); 1863 } else { 1864 task_io_account_read(bio->bi_size); 1865 count_vm_events(PGPGIN, count); 1866 } 1867 1868 if (unlikely(block_dump)) { 1869 char b[BDEVNAME_SIZE]; 1870 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1871 current->comm, task_pid_nr(current), 1872 (rw & WRITE) ? "WRITE" : "READ", 1873 (unsigned long long)bio->bi_sector, 1874 bdevname(bio->bi_bdev, b), 1875 count); 1876 } 1877 } 1878 1879 generic_make_request(bio); 1880 } 1881 EXPORT_SYMBOL(submit_bio); 1882 1883 /** 1884 * blk_rq_check_limits - Helper function to check a request for the queue limit 1885 * @q: the queue 1886 * @rq: the request being checked 1887 * 1888 * Description: 1889 * @rq may have been made based on weaker limitations of upper-level queues 1890 * in request stacking drivers, and it may violate the limitation of @q. 1891 * Since the block layer and the underlying device driver trust @rq 1892 * after it is inserted to @q, it should be checked against @q before 1893 * the insertion using this generic function. 1894 * 1895 * This function should also be useful for request stacking drivers 1896 * in some cases below, so export this function. 1897 * Request stacking drivers like request-based dm may change the queue 1898 * limits while requests are in the queue (e.g. dm's table swapping). 1899 * Such request stacking drivers should check those requests agaist 1900 * the new queue limits again when they dispatch those requests, 1901 * although such checkings are also done against the old queue limits 1902 * when submitting requests. 1903 */ 1904 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1905 { 1906 if (!rq_mergeable(rq)) 1907 return 0; 1908 1909 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 1910 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1911 return -EIO; 1912 } 1913 1914 /* 1915 * queue's settings related to segment counting like q->bounce_pfn 1916 * may differ from that of other stacking queues. 1917 * Recalculate it to check the request correctly on this queue's 1918 * limitation. 1919 */ 1920 blk_recalc_rq_segments(rq); 1921 if (rq->nr_phys_segments > queue_max_segments(q)) { 1922 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1923 return -EIO; 1924 } 1925 1926 return 0; 1927 } 1928 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1929 1930 /** 1931 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1932 * @q: the queue to submit the request 1933 * @rq: the request being queued 1934 */ 1935 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1936 { 1937 unsigned long flags; 1938 int where = ELEVATOR_INSERT_BACK; 1939 1940 if (blk_rq_check_limits(q, rq)) 1941 return -EIO; 1942 1943 if (rq->rq_disk && 1944 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1945 return -EIO; 1946 1947 spin_lock_irqsave(q->queue_lock, flags); 1948 if (unlikely(blk_queue_dying(q))) { 1949 spin_unlock_irqrestore(q->queue_lock, flags); 1950 return -ENODEV; 1951 } 1952 1953 /* 1954 * Submitting request must be dequeued before calling this function 1955 * because it will be linked to another request_queue 1956 */ 1957 BUG_ON(blk_queued_rq(rq)); 1958 1959 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 1960 where = ELEVATOR_INSERT_FLUSH; 1961 1962 add_acct_request(q, rq, where); 1963 if (where == ELEVATOR_INSERT_FLUSH) 1964 __blk_run_queue(q); 1965 spin_unlock_irqrestore(q->queue_lock, flags); 1966 1967 return 0; 1968 } 1969 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1970 1971 /** 1972 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1973 * @rq: request to examine 1974 * 1975 * Description: 1976 * A request could be merge of IOs which require different failure 1977 * handling. This function determines the number of bytes which 1978 * can be failed from the beginning of the request without 1979 * crossing into area which need to be retried further. 1980 * 1981 * Return: 1982 * The number of bytes to fail. 1983 * 1984 * Context: 1985 * queue_lock must be held. 1986 */ 1987 unsigned int blk_rq_err_bytes(const struct request *rq) 1988 { 1989 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1990 unsigned int bytes = 0; 1991 struct bio *bio; 1992 1993 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1994 return blk_rq_bytes(rq); 1995 1996 /* 1997 * Currently the only 'mixing' which can happen is between 1998 * different fastfail types. We can safely fail portions 1999 * which have all the failfast bits that the first one has - 2000 * the ones which are at least as eager to fail as the first 2001 * one. 2002 */ 2003 for (bio = rq->bio; bio; bio = bio->bi_next) { 2004 if ((bio->bi_rw & ff) != ff) 2005 break; 2006 bytes += bio->bi_size; 2007 } 2008 2009 /* this could lead to infinite loop */ 2010 BUG_ON(blk_rq_bytes(rq) && !bytes); 2011 return bytes; 2012 } 2013 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2014 2015 static void blk_account_io_completion(struct request *req, unsigned int bytes) 2016 { 2017 if (blk_do_io_stat(req)) { 2018 const int rw = rq_data_dir(req); 2019 struct hd_struct *part; 2020 int cpu; 2021 2022 cpu = part_stat_lock(); 2023 part = req->part; 2024 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2025 part_stat_unlock(); 2026 } 2027 } 2028 2029 static void blk_account_io_done(struct request *req) 2030 { 2031 /* 2032 * Account IO completion. flush_rq isn't accounted as a 2033 * normal IO on queueing nor completion. Accounting the 2034 * containing request is enough. 2035 */ 2036 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2037 unsigned long duration = jiffies - req->start_time; 2038 const int rw = rq_data_dir(req); 2039 struct hd_struct *part; 2040 int cpu; 2041 2042 cpu = part_stat_lock(); 2043 part = req->part; 2044 2045 part_stat_inc(cpu, part, ios[rw]); 2046 part_stat_add(cpu, part, ticks[rw], duration); 2047 part_round_stats(cpu, part); 2048 part_dec_in_flight(part, rw); 2049 2050 hd_struct_put(part); 2051 part_stat_unlock(); 2052 } 2053 } 2054 2055 /** 2056 * blk_peek_request - peek at the top of a request queue 2057 * @q: request queue to peek at 2058 * 2059 * Description: 2060 * Return the request at the top of @q. The returned request 2061 * should be started using blk_start_request() before LLD starts 2062 * processing it. 2063 * 2064 * Return: 2065 * Pointer to the request at the top of @q if available. Null 2066 * otherwise. 2067 * 2068 * Context: 2069 * queue_lock must be held. 2070 */ 2071 struct request *blk_peek_request(struct request_queue *q) 2072 { 2073 struct request *rq; 2074 int ret; 2075 2076 while ((rq = __elv_next_request(q)) != NULL) { 2077 if (!(rq->cmd_flags & REQ_STARTED)) { 2078 /* 2079 * This is the first time the device driver 2080 * sees this request (possibly after 2081 * requeueing). Notify IO scheduler. 2082 */ 2083 if (rq->cmd_flags & REQ_SORTED) 2084 elv_activate_rq(q, rq); 2085 2086 /* 2087 * just mark as started even if we don't start 2088 * it, a request that has been delayed should 2089 * not be passed by new incoming requests 2090 */ 2091 rq->cmd_flags |= REQ_STARTED; 2092 trace_block_rq_issue(q, rq); 2093 } 2094 2095 if (!q->boundary_rq || q->boundary_rq == rq) { 2096 q->end_sector = rq_end_sector(rq); 2097 q->boundary_rq = NULL; 2098 } 2099 2100 if (rq->cmd_flags & REQ_DONTPREP) 2101 break; 2102 2103 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2104 /* 2105 * make sure space for the drain appears we 2106 * know we can do this because max_hw_segments 2107 * has been adjusted to be one fewer than the 2108 * device can handle 2109 */ 2110 rq->nr_phys_segments++; 2111 } 2112 2113 if (!q->prep_rq_fn) 2114 break; 2115 2116 ret = q->prep_rq_fn(q, rq); 2117 if (ret == BLKPREP_OK) { 2118 break; 2119 } else if (ret == BLKPREP_DEFER) { 2120 /* 2121 * the request may have been (partially) prepped. 2122 * we need to keep this request in the front to 2123 * avoid resource deadlock. REQ_STARTED will 2124 * prevent other fs requests from passing this one. 2125 */ 2126 if (q->dma_drain_size && blk_rq_bytes(rq) && 2127 !(rq->cmd_flags & REQ_DONTPREP)) { 2128 /* 2129 * remove the space for the drain we added 2130 * so that we don't add it again 2131 */ 2132 --rq->nr_phys_segments; 2133 } 2134 2135 rq = NULL; 2136 break; 2137 } else if (ret == BLKPREP_KILL) { 2138 rq->cmd_flags |= REQ_QUIET; 2139 /* 2140 * Mark this request as started so we don't trigger 2141 * any debug logic in the end I/O path. 2142 */ 2143 blk_start_request(rq); 2144 __blk_end_request_all(rq, -EIO); 2145 } else { 2146 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2147 break; 2148 } 2149 } 2150 2151 return rq; 2152 } 2153 EXPORT_SYMBOL(blk_peek_request); 2154 2155 void blk_dequeue_request(struct request *rq) 2156 { 2157 struct request_queue *q = rq->q; 2158 2159 BUG_ON(list_empty(&rq->queuelist)); 2160 BUG_ON(ELV_ON_HASH(rq)); 2161 2162 list_del_init(&rq->queuelist); 2163 2164 /* 2165 * the time frame between a request being removed from the lists 2166 * and to it is freed is accounted as io that is in progress at 2167 * the driver side. 2168 */ 2169 if (blk_account_rq(rq)) { 2170 q->in_flight[rq_is_sync(rq)]++; 2171 set_io_start_time_ns(rq); 2172 } 2173 } 2174 2175 /** 2176 * blk_start_request - start request processing on the driver 2177 * @req: request to dequeue 2178 * 2179 * Description: 2180 * Dequeue @req and start timeout timer on it. This hands off the 2181 * request to the driver. 2182 * 2183 * Block internal functions which don't want to start timer should 2184 * call blk_dequeue_request(). 2185 * 2186 * Context: 2187 * queue_lock must be held. 2188 */ 2189 void blk_start_request(struct request *req) 2190 { 2191 blk_dequeue_request(req); 2192 2193 /* 2194 * We are now handing the request to the hardware, initialize 2195 * resid_len to full count and add the timeout handler. 2196 */ 2197 req->resid_len = blk_rq_bytes(req); 2198 if (unlikely(blk_bidi_rq(req))) 2199 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2200 2201 blk_add_timer(req); 2202 } 2203 EXPORT_SYMBOL(blk_start_request); 2204 2205 /** 2206 * blk_fetch_request - fetch a request from a request queue 2207 * @q: request queue to fetch a request from 2208 * 2209 * Description: 2210 * Return the request at the top of @q. The request is started on 2211 * return and LLD can start processing it immediately. 2212 * 2213 * Return: 2214 * Pointer to the request at the top of @q if available. Null 2215 * otherwise. 2216 * 2217 * Context: 2218 * queue_lock must be held. 2219 */ 2220 struct request *blk_fetch_request(struct request_queue *q) 2221 { 2222 struct request *rq; 2223 2224 rq = blk_peek_request(q); 2225 if (rq) 2226 blk_start_request(rq); 2227 return rq; 2228 } 2229 EXPORT_SYMBOL(blk_fetch_request); 2230 2231 /** 2232 * blk_update_request - Special helper function for request stacking drivers 2233 * @req: the request being processed 2234 * @error: %0 for success, < %0 for error 2235 * @nr_bytes: number of bytes to complete @req 2236 * 2237 * Description: 2238 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2239 * the request structure even if @req doesn't have leftover. 2240 * If @req has leftover, sets it up for the next range of segments. 2241 * 2242 * This special helper function is only for request stacking drivers 2243 * (e.g. request-based dm) so that they can handle partial completion. 2244 * Actual device drivers should use blk_end_request instead. 2245 * 2246 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2247 * %false return from this function. 2248 * 2249 * Return: 2250 * %false - this request doesn't have any more data 2251 * %true - this request has more data 2252 **/ 2253 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2254 { 2255 int total_bytes, bio_nbytes, next_idx = 0; 2256 struct bio *bio; 2257 2258 if (!req->bio) 2259 return false; 2260 2261 trace_block_rq_complete(req->q, req); 2262 2263 /* 2264 * For fs requests, rq is just carrier of independent bio's 2265 * and each partial completion should be handled separately. 2266 * Reset per-request error on each partial completion. 2267 * 2268 * TODO: tj: This is too subtle. It would be better to let 2269 * low level drivers do what they see fit. 2270 */ 2271 if (req->cmd_type == REQ_TYPE_FS) 2272 req->errors = 0; 2273 2274 if (error && req->cmd_type == REQ_TYPE_FS && 2275 !(req->cmd_flags & REQ_QUIET)) { 2276 char *error_type; 2277 2278 switch (error) { 2279 case -ENOLINK: 2280 error_type = "recoverable transport"; 2281 break; 2282 case -EREMOTEIO: 2283 error_type = "critical target"; 2284 break; 2285 case -EBADE: 2286 error_type = "critical nexus"; 2287 break; 2288 case -EIO: 2289 default: 2290 error_type = "I/O"; 2291 break; 2292 } 2293 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2294 error_type, req->rq_disk ? 2295 req->rq_disk->disk_name : "?", 2296 (unsigned long long)blk_rq_pos(req)); 2297 2298 } 2299 2300 blk_account_io_completion(req, nr_bytes); 2301 2302 total_bytes = bio_nbytes = 0; 2303 while ((bio = req->bio) != NULL) { 2304 int nbytes; 2305 2306 if (nr_bytes >= bio->bi_size) { 2307 req->bio = bio->bi_next; 2308 nbytes = bio->bi_size; 2309 req_bio_endio(req, bio, nbytes, error); 2310 next_idx = 0; 2311 bio_nbytes = 0; 2312 } else { 2313 int idx = bio->bi_idx + next_idx; 2314 2315 if (unlikely(idx >= bio->bi_vcnt)) { 2316 blk_dump_rq_flags(req, "__end_that"); 2317 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2318 __func__, idx, bio->bi_vcnt); 2319 break; 2320 } 2321 2322 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2323 BIO_BUG_ON(nbytes > bio->bi_size); 2324 2325 /* 2326 * not a complete bvec done 2327 */ 2328 if (unlikely(nbytes > nr_bytes)) { 2329 bio_nbytes += nr_bytes; 2330 total_bytes += nr_bytes; 2331 break; 2332 } 2333 2334 /* 2335 * advance to the next vector 2336 */ 2337 next_idx++; 2338 bio_nbytes += nbytes; 2339 } 2340 2341 total_bytes += nbytes; 2342 nr_bytes -= nbytes; 2343 2344 bio = req->bio; 2345 if (bio) { 2346 /* 2347 * end more in this run, or just return 'not-done' 2348 */ 2349 if (unlikely(nr_bytes <= 0)) 2350 break; 2351 } 2352 } 2353 2354 /* 2355 * completely done 2356 */ 2357 if (!req->bio) { 2358 /* 2359 * Reset counters so that the request stacking driver 2360 * can find how many bytes remain in the request 2361 * later. 2362 */ 2363 req->__data_len = 0; 2364 return false; 2365 } 2366 2367 /* 2368 * if the request wasn't completed, update state 2369 */ 2370 if (bio_nbytes) { 2371 req_bio_endio(req, bio, bio_nbytes, error); 2372 bio->bi_idx += next_idx; 2373 bio_iovec(bio)->bv_offset += nr_bytes; 2374 bio_iovec(bio)->bv_len -= nr_bytes; 2375 } 2376 2377 req->__data_len -= total_bytes; 2378 req->buffer = bio_data(req->bio); 2379 2380 /* update sector only for requests with clear definition of sector */ 2381 if (req->cmd_type == REQ_TYPE_FS) 2382 req->__sector += total_bytes >> 9; 2383 2384 /* mixed attributes always follow the first bio */ 2385 if (req->cmd_flags & REQ_MIXED_MERGE) { 2386 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2387 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2388 } 2389 2390 /* 2391 * If total number of sectors is less than the first segment 2392 * size, something has gone terribly wrong. 2393 */ 2394 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2395 blk_dump_rq_flags(req, "request botched"); 2396 req->__data_len = blk_rq_cur_bytes(req); 2397 } 2398 2399 /* recalculate the number of segments */ 2400 blk_recalc_rq_segments(req); 2401 2402 return true; 2403 } 2404 EXPORT_SYMBOL_GPL(blk_update_request); 2405 2406 static bool blk_update_bidi_request(struct request *rq, int error, 2407 unsigned int nr_bytes, 2408 unsigned int bidi_bytes) 2409 { 2410 if (blk_update_request(rq, error, nr_bytes)) 2411 return true; 2412 2413 /* Bidi request must be completed as a whole */ 2414 if (unlikely(blk_bidi_rq(rq)) && 2415 blk_update_request(rq->next_rq, error, bidi_bytes)) 2416 return true; 2417 2418 if (blk_queue_add_random(rq->q)) 2419 add_disk_randomness(rq->rq_disk); 2420 2421 return false; 2422 } 2423 2424 /** 2425 * blk_unprep_request - unprepare a request 2426 * @req: the request 2427 * 2428 * This function makes a request ready for complete resubmission (or 2429 * completion). It happens only after all error handling is complete, 2430 * so represents the appropriate moment to deallocate any resources 2431 * that were allocated to the request in the prep_rq_fn. The queue 2432 * lock is held when calling this. 2433 */ 2434 void blk_unprep_request(struct request *req) 2435 { 2436 struct request_queue *q = req->q; 2437 2438 req->cmd_flags &= ~REQ_DONTPREP; 2439 if (q->unprep_rq_fn) 2440 q->unprep_rq_fn(q, req); 2441 } 2442 EXPORT_SYMBOL_GPL(blk_unprep_request); 2443 2444 /* 2445 * queue lock must be held 2446 */ 2447 static void blk_finish_request(struct request *req, int error) 2448 { 2449 if (blk_rq_tagged(req)) 2450 blk_queue_end_tag(req->q, req); 2451 2452 BUG_ON(blk_queued_rq(req)); 2453 2454 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2455 laptop_io_completion(&req->q->backing_dev_info); 2456 2457 blk_delete_timer(req); 2458 2459 if (req->cmd_flags & REQ_DONTPREP) 2460 blk_unprep_request(req); 2461 2462 2463 blk_account_io_done(req); 2464 2465 if (req->end_io) 2466 req->end_io(req, error); 2467 else { 2468 if (blk_bidi_rq(req)) 2469 __blk_put_request(req->next_rq->q, req->next_rq); 2470 2471 __blk_put_request(req->q, req); 2472 } 2473 } 2474 2475 /** 2476 * blk_end_bidi_request - Complete a bidi request 2477 * @rq: the request to complete 2478 * @error: %0 for success, < %0 for error 2479 * @nr_bytes: number of bytes to complete @rq 2480 * @bidi_bytes: number of bytes to complete @rq->next_rq 2481 * 2482 * Description: 2483 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2484 * Drivers that supports bidi can safely call this member for any 2485 * type of request, bidi or uni. In the later case @bidi_bytes is 2486 * just ignored. 2487 * 2488 * Return: 2489 * %false - we are done with this request 2490 * %true - still buffers pending for this request 2491 **/ 2492 static bool blk_end_bidi_request(struct request *rq, int error, 2493 unsigned int nr_bytes, unsigned int bidi_bytes) 2494 { 2495 struct request_queue *q = rq->q; 2496 unsigned long flags; 2497 2498 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2499 return true; 2500 2501 spin_lock_irqsave(q->queue_lock, flags); 2502 blk_finish_request(rq, error); 2503 spin_unlock_irqrestore(q->queue_lock, flags); 2504 2505 return false; 2506 } 2507 2508 /** 2509 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2510 * @rq: the request to complete 2511 * @error: %0 for success, < %0 for error 2512 * @nr_bytes: number of bytes to complete @rq 2513 * @bidi_bytes: number of bytes to complete @rq->next_rq 2514 * 2515 * Description: 2516 * Identical to blk_end_bidi_request() except that queue lock is 2517 * assumed to be locked on entry and remains so on return. 2518 * 2519 * Return: 2520 * %false - we are done with this request 2521 * %true - still buffers pending for this request 2522 **/ 2523 bool __blk_end_bidi_request(struct request *rq, int error, 2524 unsigned int nr_bytes, unsigned int bidi_bytes) 2525 { 2526 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2527 return true; 2528 2529 blk_finish_request(rq, error); 2530 2531 return false; 2532 } 2533 2534 /** 2535 * blk_end_request - Helper function for drivers to complete the request. 2536 * @rq: the request being processed 2537 * @error: %0 for success, < %0 for error 2538 * @nr_bytes: number of bytes to complete 2539 * 2540 * Description: 2541 * Ends I/O on a number of bytes attached to @rq. 2542 * If @rq has leftover, sets it up for the next range of segments. 2543 * 2544 * Return: 2545 * %false - we are done with this request 2546 * %true - still buffers pending for this request 2547 **/ 2548 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2549 { 2550 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2551 } 2552 EXPORT_SYMBOL(blk_end_request); 2553 2554 /** 2555 * blk_end_request_all - Helper function for drives to finish the request. 2556 * @rq: the request to finish 2557 * @error: %0 for success, < %0 for error 2558 * 2559 * Description: 2560 * Completely finish @rq. 2561 */ 2562 void blk_end_request_all(struct request *rq, int error) 2563 { 2564 bool pending; 2565 unsigned int bidi_bytes = 0; 2566 2567 if (unlikely(blk_bidi_rq(rq))) 2568 bidi_bytes = blk_rq_bytes(rq->next_rq); 2569 2570 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2571 BUG_ON(pending); 2572 } 2573 EXPORT_SYMBOL(blk_end_request_all); 2574 2575 /** 2576 * blk_end_request_cur - Helper function to finish the current request chunk. 2577 * @rq: the request to finish the current chunk for 2578 * @error: %0 for success, < %0 for error 2579 * 2580 * Description: 2581 * Complete the current consecutively mapped chunk from @rq. 2582 * 2583 * Return: 2584 * %false - we are done with this request 2585 * %true - still buffers pending for this request 2586 */ 2587 bool blk_end_request_cur(struct request *rq, int error) 2588 { 2589 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2590 } 2591 EXPORT_SYMBOL(blk_end_request_cur); 2592 2593 /** 2594 * blk_end_request_err - Finish a request till the next failure boundary. 2595 * @rq: the request to finish till the next failure boundary for 2596 * @error: must be negative errno 2597 * 2598 * Description: 2599 * Complete @rq till the next failure boundary. 2600 * 2601 * Return: 2602 * %false - we are done with this request 2603 * %true - still buffers pending for this request 2604 */ 2605 bool blk_end_request_err(struct request *rq, int error) 2606 { 2607 WARN_ON(error >= 0); 2608 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2609 } 2610 EXPORT_SYMBOL_GPL(blk_end_request_err); 2611 2612 /** 2613 * __blk_end_request - Helper function for drivers to complete the request. 2614 * @rq: the request being processed 2615 * @error: %0 for success, < %0 for error 2616 * @nr_bytes: number of bytes to complete 2617 * 2618 * Description: 2619 * Must be called with queue lock held unlike blk_end_request(). 2620 * 2621 * Return: 2622 * %false - we are done with this request 2623 * %true - still buffers pending for this request 2624 **/ 2625 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2626 { 2627 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2628 } 2629 EXPORT_SYMBOL(__blk_end_request); 2630 2631 /** 2632 * __blk_end_request_all - Helper function for drives to finish the request. 2633 * @rq: the request to finish 2634 * @error: %0 for success, < %0 for error 2635 * 2636 * Description: 2637 * Completely finish @rq. Must be called with queue lock held. 2638 */ 2639 void __blk_end_request_all(struct request *rq, int error) 2640 { 2641 bool pending; 2642 unsigned int bidi_bytes = 0; 2643 2644 if (unlikely(blk_bidi_rq(rq))) 2645 bidi_bytes = blk_rq_bytes(rq->next_rq); 2646 2647 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2648 BUG_ON(pending); 2649 } 2650 EXPORT_SYMBOL(__blk_end_request_all); 2651 2652 /** 2653 * __blk_end_request_cur - Helper function to finish the current request chunk. 2654 * @rq: the request to finish the current chunk for 2655 * @error: %0 for success, < %0 for error 2656 * 2657 * Description: 2658 * Complete the current consecutively mapped chunk from @rq. Must 2659 * be called with queue lock held. 2660 * 2661 * Return: 2662 * %false - we are done with this request 2663 * %true - still buffers pending for this request 2664 */ 2665 bool __blk_end_request_cur(struct request *rq, int error) 2666 { 2667 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2668 } 2669 EXPORT_SYMBOL(__blk_end_request_cur); 2670 2671 /** 2672 * __blk_end_request_err - Finish a request till the next failure boundary. 2673 * @rq: the request to finish till the next failure boundary for 2674 * @error: must be negative errno 2675 * 2676 * Description: 2677 * Complete @rq till the next failure boundary. Must be called 2678 * with queue lock held. 2679 * 2680 * Return: 2681 * %false - we are done with this request 2682 * %true - still buffers pending for this request 2683 */ 2684 bool __blk_end_request_err(struct request *rq, int error) 2685 { 2686 WARN_ON(error >= 0); 2687 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2688 } 2689 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2690 2691 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2692 struct bio *bio) 2693 { 2694 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2695 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2696 2697 if (bio_has_data(bio)) { 2698 rq->nr_phys_segments = bio_phys_segments(q, bio); 2699 rq->buffer = bio_data(bio); 2700 } 2701 rq->__data_len = bio->bi_size; 2702 rq->bio = rq->biotail = bio; 2703 2704 if (bio->bi_bdev) 2705 rq->rq_disk = bio->bi_bdev->bd_disk; 2706 } 2707 2708 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2709 /** 2710 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2711 * @rq: the request to be flushed 2712 * 2713 * Description: 2714 * Flush all pages in @rq. 2715 */ 2716 void rq_flush_dcache_pages(struct request *rq) 2717 { 2718 struct req_iterator iter; 2719 struct bio_vec *bvec; 2720 2721 rq_for_each_segment(bvec, rq, iter) 2722 flush_dcache_page(bvec->bv_page); 2723 } 2724 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2725 #endif 2726 2727 /** 2728 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2729 * @q : the queue of the device being checked 2730 * 2731 * Description: 2732 * Check if underlying low-level drivers of a device are busy. 2733 * If the drivers want to export their busy state, they must set own 2734 * exporting function using blk_queue_lld_busy() first. 2735 * 2736 * Basically, this function is used only by request stacking drivers 2737 * to stop dispatching requests to underlying devices when underlying 2738 * devices are busy. This behavior helps more I/O merging on the queue 2739 * of the request stacking driver and prevents I/O throughput regression 2740 * on burst I/O load. 2741 * 2742 * Return: 2743 * 0 - Not busy (The request stacking driver should dispatch request) 2744 * 1 - Busy (The request stacking driver should stop dispatching request) 2745 */ 2746 int blk_lld_busy(struct request_queue *q) 2747 { 2748 if (q->lld_busy_fn) 2749 return q->lld_busy_fn(q); 2750 2751 return 0; 2752 } 2753 EXPORT_SYMBOL_GPL(blk_lld_busy); 2754 2755 /** 2756 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2757 * @rq: the clone request to be cleaned up 2758 * 2759 * Description: 2760 * Free all bios in @rq for a cloned request. 2761 */ 2762 void blk_rq_unprep_clone(struct request *rq) 2763 { 2764 struct bio *bio; 2765 2766 while ((bio = rq->bio) != NULL) { 2767 rq->bio = bio->bi_next; 2768 2769 bio_put(bio); 2770 } 2771 } 2772 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2773 2774 /* 2775 * Copy attributes of the original request to the clone request. 2776 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2777 */ 2778 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2779 { 2780 dst->cpu = src->cpu; 2781 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2782 dst->cmd_type = src->cmd_type; 2783 dst->__sector = blk_rq_pos(src); 2784 dst->__data_len = blk_rq_bytes(src); 2785 dst->nr_phys_segments = src->nr_phys_segments; 2786 dst->ioprio = src->ioprio; 2787 dst->extra_len = src->extra_len; 2788 } 2789 2790 /** 2791 * blk_rq_prep_clone - Helper function to setup clone request 2792 * @rq: the request to be setup 2793 * @rq_src: original request to be cloned 2794 * @bs: bio_set that bios for clone are allocated from 2795 * @gfp_mask: memory allocation mask for bio 2796 * @bio_ctr: setup function to be called for each clone bio. 2797 * Returns %0 for success, non %0 for failure. 2798 * @data: private data to be passed to @bio_ctr 2799 * 2800 * Description: 2801 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2802 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2803 * are not copied, and copying such parts is the caller's responsibility. 2804 * Also, pages which the original bios are pointing to are not copied 2805 * and the cloned bios just point same pages. 2806 * So cloned bios must be completed before original bios, which means 2807 * the caller must complete @rq before @rq_src. 2808 */ 2809 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2810 struct bio_set *bs, gfp_t gfp_mask, 2811 int (*bio_ctr)(struct bio *, struct bio *, void *), 2812 void *data) 2813 { 2814 struct bio *bio, *bio_src; 2815 2816 if (!bs) 2817 bs = fs_bio_set; 2818 2819 blk_rq_init(NULL, rq); 2820 2821 __rq_for_each_bio(bio_src, rq_src) { 2822 bio = bio_clone_bioset(bio_src, gfp_mask, bs); 2823 if (!bio) 2824 goto free_and_out; 2825 2826 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2827 goto free_and_out; 2828 2829 if (rq->bio) { 2830 rq->biotail->bi_next = bio; 2831 rq->biotail = bio; 2832 } else 2833 rq->bio = rq->biotail = bio; 2834 } 2835 2836 __blk_rq_prep_clone(rq, rq_src); 2837 2838 return 0; 2839 2840 free_and_out: 2841 if (bio) 2842 bio_put(bio); 2843 blk_rq_unprep_clone(rq); 2844 2845 return -ENOMEM; 2846 } 2847 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2848 2849 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2850 { 2851 return queue_work(kblockd_workqueue, work); 2852 } 2853 EXPORT_SYMBOL(kblockd_schedule_work); 2854 2855 int kblockd_schedule_delayed_work(struct request_queue *q, 2856 struct delayed_work *dwork, unsigned long delay) 2857 { 2858 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2859 } 2860 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2861 2862 #define PLUG_MAGIC 0x91827364 2863 2864 /** 2865 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2866 * @plug: The &struct blk_plug that needs to be initialized 2867 * 2868 * Description: 2869 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2870 * pending I/O should the task end up blocking between blk_start_plug() and 2871 * blk_finish_plug(). This is important from a performance perspective, but 2872 * also ensures that we don't deadlock. For instance, if the task is blocking 2873 * for a memory allocation, memory reclaim could end up wanting to free a 2874 * page belonging to that request that is currently residing in our private 2875 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2876 * this kind of deadlock. 2877 */ 2878 void blk_start_plug(struct blk_plug *plug) 2879 { 2880 struct task_struct *tsk = current; 2881 2882 plug->magic = PLUG_MAGIC; 2883 INIT_LIST_HEAD(&plug->list); 2884 INIT_LIST_HEAD(&plug->cb_list); 2885 2886 /* 2887 * If this is a nested plug, don't actually assign it. It will be 2888 * flushed on its own. 2889 */ 2890 if (!tsk->plug) { 2891 /* 2892 * Store ordering should not be needed here, since a potential 2893 * preempt will imply a full memory barrier 2894 */ 2895 tsk->plug = plug; 2896 } 2897 } 2898 EXPORT_SYMBOL(blk_start_plug); 2899 2900 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2901 { 2902 struct request *rqa = container_of(a, struct request, queuelist); 2903 struct request *rqb = container_of(b, struct request, queuelist); 2904 2905 return !(rqa->q < rqb->q || 2906 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 2907 } 2908 2909 /* 2910 * If 'from_schedule' is true, then postpone the dispatch of requests 2911 * until a safe kblockd context. We due this to avoid accidental big 2912 * additional stack usage in driver dispatch, in places where the originally 2913 * plugger did not intend it. 2914 */ 2915 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2916 bool from_schedule) 2917 __releases(q->queue_lock) 2918 { 2919 trace_block_unplug(q, depth, !from_schedule); 2920 2921 if (from_schedule) 2922 blk_run_queue_async(q); 2923 else 2924 __blk_run_queue(q); 2925 spin_unlock(q->queue_lock); 2926 } 2927 2928 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 2929 { 2930 LIST_HEAD(callbacks); 2931 2932 while (!list_empty(&plug->cb_list)) { 2933 list_splice_init(&plug->cb_list, &callbacks); 2934 2935 while (!list_empty(&callbacks)) { 2936 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2937 struct blk_plug_cb, 2938 list); 2939 list_del(&cb->list); 2940 cb->callback(cb, from_schedule); 2941 } 2942 } 2943 } 2944 2945 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 2946 int size) 2947 { 2948 struct blk_plug *plug = current->plug; 2949 struct blk_plug_cb *cb; 2950 2951 if (!plug) 2952 return NULL; 2953 2954 list_for_each_entry(cb, &plug->cb_list, list) 2955 if (cb->callback == unplug && cb->data == data) 2956 return cb; 2957 2958 /* Not currently on the callback list */ 2959 BUG_ON(size < sizeof(*cb)); 2960 cb = kzalloc(size, GFP_ATOMIC); 2961 if (cb) { 2962 cb->data = data; 2963 cb->callback = unplug; 2964 list_add(&cb->list, &plug->cb_list); 2965 } 2966 return cb; 2967 } 2968 EXPORT_SYMBOL(blk_check_plugged); 2969 2970 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2971 { 2972 struct request_queue *q; 2973 unsigned long flags; 2974 struct request *rq; 2975 LIST_HEAD(list); 2976 unsigned int depth; 2977 2978 BUG_ON(plug->magic != PLUG_MAGIC); 2979 2980 flush_plug_callbacks(plug, from_schedule); 2981 if (list_empty(&plug->list)) 2982 return; 2983 2984 list_splice_init(&plug->list, &list); 2985 2986 list_sort(NULL, &list, plug_rq_cmp); 2987 2988 q = NULL; 2989 depth = 0; 2990 2991 /* 2992 * Save and disable interrupts here, to avoid doing it for every 2993 * queue lock we have to take. 2994 */ 2995 local_irq_save(flags); 2996 while (!list_empty(&list)) { 2997 rq = list_entry_rq(list.next); 2998 list_del_init(&rq->queuelist); 2999 BUG_ON(!rq->q); 3000 if (rq->q != q) { 3001 /* 3002 * This drops the queue lock 3003 */ 3004 if (q) 3005 queue_unplugged(q, depth, from_schedule); 3006 q = rq->q; 3007 depth = 0; 3008 spin_lock(q->queue_lock); 3009 } 3010 3011 /* 3012 * Short-circuit if @q is dead 3013 */ 3014 if (unlikely(blk_queue_dying(q))) { 3015 __blk_end_request_all(rq, -ENODEV); 3016 continue; 3017 } 3018 3019 /* 3020 * rq is already accounted, so use raw insert 3021 */ 3022 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3023 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3024 else 3025 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3026 3027 depth++; 3028 } 3029 3030 /* 3031 * This drops the queue lock 3032 */ 3033 if (q) 3034 queue_unplugged(q, depth, from_schedule); 3035 3036 local_irq_restore(flags); 3037 } 3038 3039 void blk_finish_plug(struct blk_plug *plug) 3040 { 3041 blk_flush_plug_list(plug, false); 3042 3043 if (plug == current->plug) 3044 current->plug = NULL; 3045 } 3046 EXPORT_SYMBOL(blk_finish_plug); 3047 3048 int __init blk_dev_init(void) 3049 { 3050 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3051 sizeof(((struct request *)0)->cmd_flags)); 3052 3053 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3054 kblockd_workqueue = alloc_workqueue("kblockd", 3055 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3056 if (!kblockd_workqueue) 3057 panic("Failed to create kblockd\n"); 3058 3059 request_cachep = kmem_cache_create("blkdev_requests", 3060 sizeof(struct request), 0, SLAB_PANIC, NULL); 3061 3062 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3063 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3064 3065 return 0; 3066 } 3067