xref: /linux/block/blk-core.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33 
34 #include "blk.h"
35 
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
38 
39 static int __make_request(struct request_queue *q, struct bio *bio);
40 
41 /*
42  * For the allocated request tables
43  */
44 static struct kmem_cache *request_cachep;
45 
46 /*
47  * For queue allocation
48  */
49 struct kmem_cache *blk_requestq_cachep;
50 
51 /*
52  * Controlling structure to kblockd
53  */
54 static struct workqueue_struct *kblockd_workqueue;
55 
56 static void drive_stat_acct(struct request *rq, int new_io)
57 {
58 	struct hd_struct *part;
59 	int rw = rq_data_dir(rq);
60 	int cpu;
61 
62 	if (!blk_do_io_stat(rq))
63 		return;
64 
65 	cpu = part_stat_lock();
66 	part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
67 
68 	if (!new_io)
69 		part_stat_inc(cpu, part, merges[rw]);
70 	else {
71 		part_round_stats(cpu, part);
72 		part_inc_in_flight(part);
73 	}
74 
75 	part_stat_unlock();
76 }
77 
78 void blk_queue_congestion_threshold(struct request_queue *q)
79 {
80 	int nr;
81 
82 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
83 	if (nr > q->nr_requests)
84 		nr = q->nr_requests;
85 	q->nr_congestion_on = nr;
86 
87 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
88 	if (nr < 1)
89 		nr = 1;
90 	q->nr_congestion_off = nr;
91 }
92 
93 /**
94  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
95  * @bdev:	device
96  *
97  * Locates the passed device's request queue and returns the address of its
98  * backing_dev_info
99  *
100  * Will return NULL if the request queue cannot be located.
101  */
102 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
103 {
104 	struct backing_dev_info *ret = NULL;
105 	struct request_queue *q = bdev_get_queue(bdev);
106 
107 	if (q)
108 		ret = &q->backing_dev_info;
109 	return ret;
110 }
111 EXPORT_SYMBOL(blk_get_backing_dev_info);
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->cmd = rq->__cmd;
125 	rq->cmd_len = BLK_MAX_CDB;
126 	rq->tag = -1;
127 	rq->ref_count = 1;
128 	rq->start_time = jiffies;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 			  unsigned int nbytes, int error)
134 {
135 	struct request_queue *q = rq->q;
136 
137 	if (&q->bar_rq != rq) {
138 		if (error)
139 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
140 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
141 			error = -EIO;
142 
143 		if (unlikely(nbytes > bio->bi_size)) {
144 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
145 			       __func__, nbytes, bio->bi_size);
146 			nbytes = bio->bi_size;
147 		}
148 
149 		if (unlikely(rq->cmd_flags & REQ_QUIET))
150 			set_bit(BIO_QUIET, &bio->bi_flags);
151 
152 		bio->bi_size -= nbytes;
153 		bio->bi_sector += (nbytes >> 9);
154 
155 		if (bio_integrity(bio))
156 			bio_integrity_advance(bio, nbytes);
157 
158 		if (bio->bi_size == 0)
159 			bio_endio(bio, error);
160 	} else {
161 
162 		/*
163 		 * Okay, this is the barrier request in progress, just
164 		 * record the error;
165 		 */
166 		if (error && !q->orderr)
167 			q->orderr = error;
168 	}
169 }
170 
171 void blk_dump_rq_flags(struct request *rq, char *msg)
172 {
173 	int bit;
174 
175 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
176 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
177 		rq->cmd_flags);
178 
179 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
180 	       (unsigned long long)blk_rq_pos(rq),
181 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
182 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
183 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
184 
185 	if (blk_pc_request(rq)) {
186 		printk(KERN_INFO "  cdb: ");
187 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
188 			printk("%02x ", rq->cmd[bit]);
189 		printk("\n");
190 	}
191 }
192 EXPORT_SYMBOL(blk_dump_rq_flags);
193 
194 /*
195  * "plug" the device if there are no outstanding requests: this will
196  * force the transfer to start only after we have put all the requests
197  * on the list.
198  *
199  * This is called with interrupts off and no requests on the queue and
200  * with the queue lock held.
201  */
202 void blk_plug_device(struct request_queue *q)
203 {
204 	WARN_ON(!irqs_disabled());
205 
206 	/*
207 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
208 	 * which will restart the queueing
209 	 */
210 	if (blk_queue_stopped(q))
211 		return;
212 
213 	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
214 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
215 		trace_block_plug(q);
216 	}
217 }
218 EXPORT_SYMBOL(blk_plug_device);
219 
220 /**
221  * blk_plug_device_unlocked - plug a device without queue lock held
222  * @q:    The &struct request_queue to plug
223  *
224  * Description:
225  *   Like @blk_plug_device(), but grabs the queue lock and disables
226  *   interrupts.
227  **/
228 void blk_plug_device_unlocked(struct request_queue *q)
229 {
230 	unsigned long flags;
231 
232 	spin_lock_irqsave(q->queue_lock, flags);
233 	blk_plug_device(q);
234 	spin_unlock_irqrestore(q->queue_lock, flags);
235 }
236 EXPORT_SYMBOL(blk_plug_device_unlocked);
237 
238 /*
239  * remove the queue from the plugged list, if present. called with
240  * queue lock held and interrupts disabled.
241  */
242 int blk_remove_plug(struct request_queue *q)
243 {
244 	WARN_ON(!irqs_disabled());
245 
246 	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
247 		return 0;
248 
249 	del_timer(&q->unplug_timer);
250 	return 1;
251 }
252 EXPORT_SYMBOL(blk_remove_plug);
253 
254 /*
255  * remove the plug and let it rip..
256  */
257 void __generic_unplug_device(struct request_queue *q)
258 {
259 	if (unlikely(blk_queue_stopped(q)))
260 		return;
261 	if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
262 		return;
263 
264 	q->request_fn(q);
265 }
266 
267 /**
268  * generic_unplug_device - fire a request queue
269  * @q:    The &struct request_queue in question
270  *
271  * Description:
272  *   Linux uses plugging to build bigger requests queues before letting
273  *   the device have at them. If a queue is plugged, the I/O scheduler
274  *   is still adding and merging requests on the queue. Once the queue
275  *   gets unplugged, the request_fn defined for the queue is invoked and
276  *   transfers started.
277  **/
278 void generic_unplug_device(struct request_queue *q)
279 {
280 	if (blk_queue_plugged(q)) {
281 		spin_lock_irq(q->queue_lock);
282 		__generic_unplug_device(q);
283 		spin_unlock_irq(q->queue_lock);
284 	}
285 }
286 EXPORT_SYMBOL(generic_unplug_device);
287 
288 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
289 				   struct page *page)
290 {
291 	struct request_queue *q = bdi->unplug_io_data;
292 
293 	blk_unplug(q);
294 }
295 
296 void blk_unplug_work(struct work_struct *work)
297 {
298 	struct request_queue *q =
299 		container_of(work, struct request_queue, unplug_work);
300 
301 	trace_block_unplug_io(q);
302 	q->unplug_fn(q);
303 }
304 
305 void blk_unplug_timeout(unsigned long data)
306 {
307 	struct request_queue *q = (struct request_queue *)data;
308 
309 	trace_block_unplug_timer(q);
310 	kblockd_schedule_work(q, &q->unplug_work);
311 }
312 
313 void blk_unplug(struct request_queue *q)
314 {
315 	/*
316 	 * devices don't necessarily have an ->unplug_fn defined
317 	 */
318 	if (q->unplug_fn) {
319 		trace_block_unplug_io(q);
320 		q->unplug_fn(q);
321 	}
322 }
323 EXPORT_SYMBOL(blk_unplug);
324 
325 /**
326  * blk_start_queue - restart a previously stopped queue
327  * @q:    The &struct request_queue in question
328  *
329  * Description:
330  *   blk_start_queue() will clear the stop flag on the queue, and call
331  *   the request_fn for the queue if it was in a stopped state when
332  *   entered. Also see blk_stop_queue(). Queue lock must be held.
333  **/
334 void blk_start_queue(struct request_queue *q)
335 {
336 	WARN_ON(!irqs_disabled());
337 
338 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
339 	__blk_run_queue(q);
340 }
341 EXPORT_SYMBOL(blk_start_queue);
342 
343 /**
344  * blk_stop_queue - stop a queue
345  * @q:    The &struct request_queue in question
346  *
347  * Description:
348  *   The Linux block layer assumes that a block driver will consume all
349  *   entries on the request queue when the request_fn strategy is called.
350  *   Often this will not happen, because of hardware limitations (queue
351  *   depth settings). If a device driver gets a 'queue full' response,
352  *   or if it simply chooses not to queue more I/O at one point, it can
353  *   call this function to prevent the request_fn from being called until
354  *   the driver has signalled it's ready to go again. This happens by calling
355  *   blk_start_queue() to restart queue operations. Queue lock must be held.
356  **/
357 void blk_stop_queue(struct request_queue *q)
358 {
359 	blk_remove_plug(q);
360 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
361 }
362 EXPORT_SYMBOL(blk_stop_queue);
363 
364 /**
365  * blk_sync_queue - cancel any pending callbacks on a queue
366  * @q: the queue
367  *
368  * Description:
369  *     The block layer may perform asynchronous callback activity
370  *     on a queue, such as calling the unplug function after a timeout.
371  *     A block device may call blk_sync_queue to ensure that any
372  *     such activity is cancelled, thus allowing it to release resources
373  *     that the callbacks might use. The caller must already have made sure
374  *     that its ->make_request_fn will not re-add plugging prior to calling
375  *     this function.
376  *
377  */
378 void blk_sync_queue(struct request_queue *q)
379 {
380 	del_timer_sync(&q->unplug_timer);
381 	del_timer_sync(&q->timeout);
382 	cancel_work_sync(&q->unplug_work);
383 }
384 EXPORT_SYMBOL(blk_sync_queue);
385 
386 /**
387  * __blk_run_queue - run a single device queue
388  * @q:	The queue to run
389  *
390  * Description:
391  *    See @blk_run_queue. This variant must be called with the queue lock
392  *    held and interrupts disabled.
393  *
394  */
395 void __blk_run_queue(struct request_queue *q)
396 {
397 	blk_remove_plug(q);
398 
399 	if (unlikely(blk_queue_stopped(q)))
400 		return;
401 
402 	if (elv_queue_empty(q))
403 		return;
404 
405 	/*
406 	 * Only recurse once to avoid overrunning the stack, let the unplug
407 	 * handling reinvoke the handler shortly if we already got there.
408 	 */
409 	if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
410 		q->request_fn(q);
411 		queue_flag_clear(QUEUE_FLAG_REENTER, q);
412 	} else {
413 		queue_flag_set(QUEUE_FLAG_PLUGGED, q);
414 		kblockd_schedule_work(q, &q->unplug_work);
415 	}
416 }
417 EXPORT_SYMBOL(__blk_run_queue);
418 
419 /**
420  * blk_run_queue - run a single device queue
421  * @q: The queue to run
422  *
423  * Description:
424  *    Invoke request handling on this queue, if it has pending work to do.
425  *    May be used to restart queueing when a request has completed.
426  */
427 void blk_run_queue(struct request_queue *q)
428 {
429 	unsigned long flags;
430 
431 	spin_lock_irqsave(q->queue_lock, flags);
432 	__blk_run_queue(q);
433 	spin_unlock_irqrestore(q->queue_lock, flags);
434 }
435 EXPORT_SYMBOL(blk_run_queue);
436 
437 void blk_put_queue(struct request_queue *q)
438 {
439 	kobject_put(&q->kobj);
440 }
441 
442 void blk_cleanup_queue(struct request_queue *q)
443 {
444 	/*
445 	 * We know we have process context here, so we can be a little
446 	 * cautious and ensure that pending block actions on this device
447 	 * are done before moving on. Going into this function, we should
448 	 * not have processes doing IO to this device.
449 	 */
450 	blk_sync_queue(q);
451 
452 	mutex_lock(&q->sysfs_lock);
453 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
454 	mutex_unlock(&q->sysfs_lock);
455 
456 	if (q->elevator)
457 		elevator_exit(q->elevator);
458 
459 	blk_put_queue(q);
460 }
461 EXPORT_SYMBOL(blk_cleanup_queue);
462 
463 static int blk_init_free_list(struct request_queue *q)
464 {
465 	struct request_list *rl = &q->rq;
466 
467 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
468 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
469 	rl->elvpriv = 0;
470 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
471 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
472 
473 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
474 				mempool_free_slab, request_cachep, q->node);
475 
476 	if (!rl->rq_pool)
477 		return -ENOMEM;
478 
479 	return 0;
480 }
481 
482 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
483 {
484 	return blk_alloc_queue_node(gfp_mask, -1);
485 }
486 EXPORT_SYMBOL(blk_alloc_queue);
487 
488 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
489 {
490 	struct request_queue *q;
491 	int err;
492 
493 	q = kmem_cache_alloc_node(blk_requestq_cachep,
494 				gfp_mask | __GFP_ZERO, node_id);
495 	if (!q)
496 		return NULL;
497 
498 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
499 	q->backing_dev_info.unplug_io_data = q;
500 	q->backing_dev_info.ra_pages =
501 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
502 	q->backing_dev_info.state = 0;
503 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
504 
505 	err = bdi_init(&q->backing_dev_info);
506 	if (err) {
507 		kmem_cache_free(blk_requestq_cachep, q);
508 		return NULL;
509 	}
510 
511 	init_timer(&q->unplug_timer);
512 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
513 	INIT_LIST_HEAD(&q->timeout_list);
514 	INIT_WORK(&q->unplug_work, blk_unplug_work);
515 
516 	kobject_init(&q->kobj, &blk_queue_ktype);
517 
518 	mutex_init(&q->sysfs_lock);
519 	spin_lock_init(&q->__queue_lock);
520 
521 	return q;
522 }
523 EXPORT_SYMBOL(blk_alloc_queue_node);
524 
525 /**
526  * blk_init_queue  - prepare a request queue for use with a block device
527  * @rfn:  The function to be called to process requests that have been
528  *        placed on the queue.
529  * @lock: Request queue spin lock
530  *
531  * Description:
532  *    If a block device wishes to use the standard request handling procedures,
533  *    which sorts requests and coalesces adjacent requests, then it must
534  *    call blk_init_queue().  The function @rfn will be called when there
535  *    are requests on the queue that need to be processed.  If the device
536  *    supports plugging, then @rfn may not be called immediately when requests
537  *    are available on the queue, but may be called at some time later instead.
538  *    Plugged queues are generally unplugged when a buffer belonging to one
539  *    of the requests on the queue is needed, or due to memory pressure.
540  *
541  *    @rfn is not required, or even expected, to remove all requests off the
542  *    queue, but only as many as it can handle at a time.  If it does leave
543  *    requests on the queue, it is responsible for arranging that the requests
544  *    get dealt with eventually.
545  *
546  *    The queue spin lock must be held while manipulating the requests on the
547  *    request queue; this lock will be taken also from interrupt context, so irq
548  *    disabling is needed for it.
549  *
550  *    Function returns a pointer to the initialized request queue, or %NULL if
551  *    it didn't succeed.
552  *
553  * Note:
554  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
555  *    when the block device is deactivated (such as at module unload).
556  **/
557 
558 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
559 {
560 	return blk_init_queue_node(rfn, lock, -1);
561 }
562 EXPORT_SYMBOL(blk_init_queue);
563 
564 struct request_queue *
565 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
566 {
567 	struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
568 
569 	if (!q)
570 		return NULL;
571 
572 	q->node = node_id;
573 	if (blk_init_free_list(q)) {
574 		kmem_cache_free(blk_requestq_cachep, q);
575 		return NULL;
576 	}
577 
578 	/*
579 	 * if caller didn't supply a lock, they get per-queue locking with
580 	 * our embedded lock
581 	 */
582 	if (!lock)
583 		lock = &q->__queue_lock;
584 
585 	q->request_fn		= rfn;
586 	q->prep_rq_fn		= NULL;
587 	q->unplug_fn		= generic_unplug_device;
588 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
589 	q->queue_lock		= lock;
590 
591 	/*
592 	 * This also sets hw/phys segments, boundary and size
593 	 */
594 	blk_queue_make_request(q, __make_request);
595 
596 	q->sg_reserved_size = INT_MAX;
597 
598 	/*
599 	 * all done
600 	 */
601 	if (!elevator_init(q, NULL)) {
602 		blk_queue_congestion_threshold(q);
603 		return q;
604 	}
605 
606 	blk_put_queue(q);
607 	return NULL;
608 }
609 EXPORT_SYMBOL(blk_init_queue_node);
610 
611 int blk_get_queue(struct request_queue *q)
612 {
613 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
614 		kobject_get(&q->kobj);
615 		return 0;
616 	}
617 
618 	return 1;
619 }
620 
621 static inline void blk_free_request(struct request_queue *q, struct request *rq)
622 {
623 	if (rq->cmd_flags & REQ_ELVPRIV)
624 		elv_put_request(q, rq);
625 	mempool_free(rq, q->rq.rq_pool);
626 }
627 
628 static struct request *
629 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
630 {
631 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
632 
633 	if (!rq)
634 		return NULL;
635 
636 	blk_rq_init(q, rq);
637 
638 	rq->cmd_flags = flags | REQ_ALLOCED;
639 
640 	if (priv) {
641 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
642 			mempool_free(rq, q->rq.rq_pool);
643 			return NULL;
644 		}
645 		rq->cmd_flags |= REQ_ELVPRIV;
646 	}
647 
648 	return rq;
649 }
650 
651 /*
652  * ioc_batching returns true if the ioc is a valid batching request and
653  * should be given priority access to a request.
654  */
655 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
656 {
657 	if (!ioc)
658 		return 0;
659 
660 	/*
661 	 * Make sure the process is able to allocate at least 1 request
662 	 * even if the batch times out, otherwise we could theoretically
663 	 * lose wakeups.
664 	 */
665 	return ioc->nr_batch_requests == q->nr_batching ||
666 		(ioc->nr_batch_requests > 0
667 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
668 }
669 
670 /*
671  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
672  * will cause the process to be a "batcher" on all queues in the system. This
673  * is the behaviour we want though - once it gets a wakeup it should be given
674  * a nice run.
675  */
676 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
677 {
678 	if (!ioc || ioc_batching(q, ioc))
679 		return;
680 
681 	ioc->nr_batch_requests = q->nr_batching;
682 	ioc->last_waited = jiffies;
683 }
684 
685 static void __freed_request(struct request_queue *q, int sync)
686 {
687 	struct request_list *rl = &q->rq;
688 
689 	if (rl->count[sync] < queue_congestion_off_threshold(q))
690 		blk_clear_queue_congested(q, sync);
691 
692 	if (rl->count[sync] + 1 <= q->nr_requests) {
693 		if (waitqueue_active(&rl->wait[sync]))
694 			wake_up(&rl->wait[sync]);
695 
696 		blk_clear_queue_full(q, sync);
697 	}
698 }
699 
700 /*
701  * A request has just been released.  Account for it, update the full and
702  * congestion status, wake up any waiters.   Called under q->queue_lock.
703  */
704 static void freed_request(struct request_queue *q, int sync, int priv)
705 {
706 	struct request_list *rl = &q->rq;
707 
708 	rl->count[sync]--;
709 	if (priv)
710 		rl->elvpriv--;
711 
712 	__freed_request(q, sync);
713 
714 	if (unlikely(rl->starved[sync ^ 1]))
715 		__freed_request(q, sync ^ 1);
716 }
717 
718 /*
719  * Get a free request, queue_lock must be held.
720  * Returns NULL on failure, with queue_lock held.
721  * Returns !NULL on success, with queue_lock *not held*.
722  */
723 static struct request *get_request(struct request_queue *q, int rw_flags,
724 				   struct bio *bio, gfp_t gfp_mask)
725 {
726 	struct request *rq = NULL;
727 	struct request_list *rl = &q->rq;
728 	struct io_context *ioc = NULL;
729 	const bool is_sync = rw_is_sync(rw_flags) != 0;
730 	int may_queue, priv;
731 
732 	may_queue = elv_may_queue(q, rw_flags);
733 	if (may_queue == ELV_MQUEUE_NO)
734 		goto rq_starved;
735 
736 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
737 		if (rl->count[is_sync]+1 >= q->nr_requests) {
738 			ioc = current_io_context(GFP_ATOMIC, q->node);
739 			/*
740 			 * The queue will fill after this allocation, so set
741 			 * it as full, and mark this process as "batching".
742 			 * This process will be allowed to complete a batch of
743 			 * requests, others will be blocked.
744 			 */
745 			if (!blk_queue_full(q, is_sync)) {
746 				ioc_set_batching(q, ioc);
747 				blk_set_queue_full(q, is_sync);
748 			} else {
749 				if (may_queue != ELV_MQUEUE_MUST
750 						&& !ioc_batching(q, ioc)) {
751 					/*
752 					 * The queue is full and the allocating
753 					 * process is not a "batcher", and not
754 					 * exempted by the IO scheduler
755 					 */
756 					goto out;
757 				}
758 			}
759 		}
760 		blk_set_queue_congested(q, is_sync);
761 	}
762 
763 	/*
764 	 * Only allow batching queuers to allocate up to 50% over the defined
765 	 * limit of requests, otherwise we could have thousands of requests
766 	 * allocated with any setting of ->nr_requests
767 	 */
768 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
769 		goto out;
770 
771 	rl->count[is_sync]++;
772 	rl->starved[is_sync] = 0;
773 
774 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
775 	if (priv)
776 		rl->elvpriv++;
777 
778 	if (blk_queue_io_stat(q))
779 		rw_flags |= REQ_IO_STAT;
780 	spin_unlock_irq(q->queue_lock);
781 
782 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
783 	if (unlikely(!rq)) {
784 		/*
785 		 * Allocation failed presumably due to memory. Undo anything
786 		 * we might have messed up.
787 		 *
788 		 * Allocating task should really be put onto the front of the
789 		 * wait queue, but this is pretty rare.
790 		 */
791 		spin_lock_irq(q->queue_lock);
792 		freed_request(q, is_sync, priv);
793 
794 		/*
795 		 * in the very unlikely event that allocation failed and no
796 		 * requests for this direction was pending, mark us starved
797 		 * so that freeing of a request in the other direction will
798 		 * notice us. another possible fix would be to split the
799 		 * rq mempool into READ and WRITE
800 		 */
801 rq_starved:
802 		if (unlikely(rl->count[is_sync] == 0))
803 			rl->starved[is_sync] = 1;
804 
805 		goto out;
806 	}
807 
808 	/*
809 	 * ioc may be NULL here, and ioc_batching will be false. That's
810 	 * OK, if the queue is under the request limit then requests need
811 	 * not count toward the nr_batch_requests limit. There will always
812 	 * be some limit enforced by BLK_BATCH_TIME.
813 	 */
814 	if (ioc_batching(q, ioc))
815 		ioc->nr_batch_requests--;
816 
817 	trace_block_getrq(q, bio, rw_flags & 1);
818 out:
819 	return rq;
820 }
821 
822 /*
823  * No available requests for this queue, unplug the device and wait for some
824  * requests to become available.
825  *
826  * Called with q->queue_lock held, and returns with it unlocked.
827  */
828 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
829 					struct bio *bio)
830 {
831 	const bool is_sync = rw_is_sync(rw_flags) != 0;
832 	struct request *rq;
833 
834 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
835 	while (!rq) {
836 		DEFINE_WAIT(wait);
837 		struct io_context *ioc;
838 		struct request_list *rl = &q->rq;
839 
840 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
841 				TASK_UNINTERRUPTIBLE);
842 
843 		trace_block_sleeprq(q, bio, rw_flags & 1);
844 
845 		__generic_unplug_device(q);
846 		spin_unlock_irq(q->queue_lock);
847 		io_schedule();
848 
849 		/*
850 		 * After sleeping, we become a "batching" process and
851 		 * will be able to allocate at least one request, and
852 		 * up to a big batch of them for a small period time.
853 		 * See ioc_batching, ioc_set_batching
854 		 */
855 		ioc = current_io_context(GFP_NOIO, q->node);
856 		ioc_set_batching(q, ioc);
857 
858 		spin_lock_irq(q->queue_lock);
859 		finish_wait(&rl->wait[is_sync], &wait);
860 
861 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
862 	};
863 
864 	return rq;
865 }
866 
867 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
868 {
869 	struct request *rq;
870 
871 	BUG_ON(rw != READ && rw != WRITE);
872 
873 	spin_lock_irq(q->queue_lock);
874 	if (gfp_mask & __GFP_WAIT) {
875 		rq = get_request_wait(q, rw, NULL);
876 	} else {
877 		rq = get_request(q, rw, NULL, gfp_mask);
878 		if (!rq)
879 			spin_unlock_irq(q->queue_lock);
880 	}
881 	/* q->queue_lock is unlocked at this point */
882 
883 	return rq;
884 }
885 EXPORT_SYMBOL(blk_get_request);
886 
887 /**
888  * blk_make_request - given a bio, allocate a corresponding struct request.
889  * @q: target request queue
890  * @bio:  The bio describing the memory mappings that will be submitted for IO.
891  *        It may be a chained-bio properly constructed by block/bio layer.
892  * @gfp_mask: gfp flags to be used for memory allocation
893  *
894  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
895  * type commands. Where the struct request needs to be farther initialized by
896  * the caller. It is passed a &struct bio, which describes the memory info of
897  * the I/O transfer.
898  *
899  * The caller of blk_make_request must make sure that bi_io_vec
900  * are set to describe the memory buffers. That bio_data_dir() will return
901  * the needed direction of the request. (And all bio's in the passed bio-chain
902  * are properly set accordingly)
903  *
904  * If called under none-sleepable conditions, mapped bio buffers must not
905  * need bouncing, by calling the appropriate masked or flagged allocator,
906  * suitable for the target device. Otherwise the call to blk_queue_bounce will
907  * BUG.
908  *
909  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
910  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
911  * anything but the first bio in the chain. Otherwise you risk waiting for IO
912  * completion of a bio that hasn't been submitted yet, thus resulting in a
913  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
914  * of bio_alloc(), as that avoids the mempool deadlock.
915  * If possible a big IO should be split into smaller parts when allocation
916  * fails. Partial allocation should not be an error, or you risk a live-lock.
917  */
918 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
919 				 gfp_t gfp_mask)
920 {
921 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
922 
923 	if (unlikely(!rq))
924 		return ERR_PTR(-ENOMEM);
925 
926 	for_each_bio(bio) {
927 		struct bio *bounce_bio = bio;
928 		int ret;
929 
930 		blk_queue_bounce(q, &bounce_bio);
931 		ret = blk_rq_append_bio(q, rq, bounce_bio);
932 		if (unlikely(ret)) {
933 			blk_put_request(rq);
934 			return ERR_PTR(ret);
935 		}
936 	}
937 
938 	return rq;
939 }
940 EXPORT_SYMBOL(blk_make_request);
941 
942 /**
943  * blk_requeue_request - put a request back on queue
944  * @q:		request queue where request should be inserted
945  * @rq:		request to be inserted
946  *
947  * Description:
948  *    Drivers often keep queueing requests until the hardware cannot accept
949  *    more, when that condition happens we need to put the request back
950  *    on the queue. Must be called with queue lock held.
951  */
952 void blk_requeue_request(struct request_queue *q, struct request *rq)
953 {
954 	blk_delete_timer(rq);
955 	blk_clear_rq_complete(rq);
956 	trace_block_rq_requeue(q, rq);
957 
958 	if (blk_rq_tagged(rq))
959 		blk_queue_end_tag(q, rq);
960 
961 	BUG_ON(blk_queued_rq(rq));
962 
963 	elv_requeue_request(q, rq);
964 }
965 EXPORT_SYMBOL(blk_requeue_request);
966 
967 /**
968  * blk_insert_request - insert a special request into a request queue
969  * @q:		request queue where request should be inserted
970  * @rq:		request to be inserted
971  * @at_head:	insert request at head or tail of queue
972  * @data:	private data
973  *
974  * Description:
975  *    Many block devices need to execute commands asynchronously, so they don't
976  *    block the whole kernel from preemption during request execution.  This is
977  *    accomplished normally by inserting aritficial requests tagged as
978  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
979  *    be scheduled for actual execution by the request queue.
980  *
981  *    We have the option of inserting the head or the tail of the queue.
982  *    Typically we use the tail for new ioctls and so forth.  We use the head
983  *    of the queue for things like a QUEUE_FULL message from a device, or a
984  *    host that is unable to accept a particular command.
985  */
986 void blk_insert_request(struct request_queue *q, struct request *rq,
987 			int at_head, void *data)
988 {
989 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
990 	unsigned long flags;
991 
992 	/*
993 	 * tell I/O scheduler that this isn't a regular read/write (ie it
994 	 * must not attempt merges on this) and that it acts as a soft
995 	 * barrier
996 	 */
997 	rq->cmd_type = REQ_TYPE_SPECIAL;
998 
999 	rq->special = data;
1000 
1001 	spin_lock_irqsave(q->queue_lock, flags);
1002 
1003 	/*
1004 	 * If command is tagged, release the tag
1005 	 */
1006 	if (blk_rq_tagged(rq))
1007 		blk_queue_end_tag(q, rq);
1008 
1009 	drive_stat_acct(rq, 1);
1010 	__elv_add_request(q, rq, where, 0);
1011 	__blk_run_queue(q);
1012 	spin_unlock_irqrestore(q->queue_lock, flags);
1013 }
1014 EXPORT_SYMBOL(blk_insert_request);
1015 
1016 /*
1017  * add-request adds a request to the linked list.
1018  * queue lock is held and interrupts disabled, as we muck with the
1019  * request queue list.
1020  */
1021 static inline void add_request(struct request_queue *q, struct request *req)
1022 {
1023 	drive_stat_acct(req, 1);
1024 
1025 	/*
1026 	 * elevator indicated where it wants this request to be
1027 	 * inserted at elevator_merge time
1028 	 */
1029 	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1030 }
1031 
1032 static void part_round_stats_single(int cpu, struct hd_struct *part,
1033 				    unsigned long now)
1034 {
1035 	if (now == part->stamp)
1036 		return;
1037 
1038 	if (part->in_flight) {
1039 		__part_stat_add(cpu, part, time_in_queue,
1040 				part->in_flight * (now - part->stamp));
1041 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1042 	}
1043 	part->stamp = now;
1044 }
1045 
1046 /**
1047  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1048  * @cpu: cpu number for stats access
1049  * @part: target partition
1050  *
1051  * The average IO queue length and utilisation statistics are maintained
1052  * by observing the current state of the queue length and the amount of
1053  * time it has been in this state for.
1054  *
1055  * Normally, that accounting is done on IO completion, but that can result
1056  * in more than a second's worth of IO being accounted for within any one
1057  * second, leading to >100% utilisation.  To deal with that, we call this
1058  * function to do a round-off before returning the results when reading
1059  * /proc/diskstats.  This accounts immediately for all queue usage up to
1060  * the current jiffies and restarts the counters again.
1061  */
1062 void part_round_stats(int cpu, struct hd_struct *part)
1063 {
1064 	unsigned long now = jiffies;
1065 
1066 	if (part->partno)
1067 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1068 	part_round_stats_single(cpu, part, now);
1069 }
1070 EXPORT_SYMBOL_GPL(part_round_stats);
1071 
1072 /*
1073  * queue lock must be held
1074  */
1075 void __blk_put_request(struct request_queue *q, struct request *req)
1076 {
1077 	if (unlikely(!q))
1078 		return;
1079 	if (unlikely(--req->ref_count))
1080 		return;
1081 
1082 	elv_completed_request(q, req);
1083 
1084 	/* this is a bio leak */
1085 	WARN_ON(req->bio != NULL);
1086 
1087 	/*
1088 	 * Request may not have originated from ll_rw_blk. if not,
1089 	 * it didn't come out of our reserved rq pools
1090 	 */
1091 	if (req->cmd_flags & REQ_ALLOCED) {
1092 		int is_sync = rq_is_sync(req) != 0;
1093 		int priv = req->cmd_flags & REQ_ELVPRIV;
1094 
1095 		BUG_ON(!list_empty(&req->queuelist));
1096 		BUG_ON(!hlist_unhashed(&req->hash));
1097 
1098 		blk_free_request(q, req);
1099 		freed_request(q, is_sync, priv);
1100 	}
1101 }
1102 EXPORT_SYMBOL_GPL(__blk_put_request);
1103 
1104 void blk_put_request(struct request *req)
1105 {
1106 	unsigned long flags;
1107 	struct request_queue *q = req->q;
1108 
1109 	spin_lock_irqsave(q->queue_lock, flags);
1110 	__blk_put_request(q, req);
1111 	spin_unlock_irqrestore(q->queue_lock, flags);
1112 }
1113 EXPORT_SYMBOL(blk_put_request);
1114 
1115 void init_request_from_bio(struct request *req, struct bio *bio)
1116 {
1117 	req->cpu = bio->bi_comp_cpu;
1118 	req->cmd_type = REQ_TYPE_FS;
1119 
1120 	/*
1121 	 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1122 	 */
1123 	if (bio_rw_ahead(bio))
1124 		req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1125 				   REQ_FAILFAST_DRIVER);
1126 	if (bio_failfast_dev(bio))
1127 		req->cmd_flags |= REQ_FAILFAST_DEV;
1128 	if (bio_failfast_transport(bio))
1129 		req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1130 	if (bio_failfast_driver(bio))
1131 		req->cmd_flags |= REQ_FAILFAST_DRIVER;
1132 
1133 	if (unlikely(bio_discard(bio))) {
1134 		req->cmd_flags |= REQ_DISCARD;
1135 		if (bio_barrier(bio))
1136 			req->cmd_flags |= REQ_SOFTBARRIER;
1137 		req->q->prepare_discard_fn(req->q, req);
1138 	} else if (unlikely(bio_barrier(bio)))
1139 		req->cmd_flags |= REQ_HARDBARRIER;
1140 
1141 	if (bio_sync(bio))
1142 		req->cmd_flags |= REQ_RW_SYNC;
1143 	if (bio_rw_meta(bio))
1144 		req->cmd_flags |= REQ_RW_META;
1145 	if (bio_noidle(bio))
1146 		req->cmd_flags |= REQ_NOIDLE;
1147 
1148 	req->errors = 0;
1149 	req->__sector = bio->bi_sector;
1150 	req->ioprio = bio_prio(bio);
1151 	blk_rq_bio_prep(req->q, req, bio);
1152 }
1153 
1154 /*
1155  * Only disabling plugging for non-rotational devices if it does tagging
1156  * as well, otherwise we do need the proper merging
1157  */
1158 static inline bool queue_should_plug(struct request_queue *q)
1159 {
1160 	return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1161 }
1162 
1163 static int __make_request(struct request_queue *q, struct bio *bio)
1164 {
1165 	struct request *req;
1166 	int el_ret;
1167 	unsigned int bytes = bio->bi_size;
1168 	const unsigned short prio = bio_prio(bio);
1169 	const int sync = bio_sync(bio);
1170 	const int unplug = bio_unplug(bio);
1171 	int rw_flags;
1172 
1173 	if (bio_barrier(bio) && bio_has_data(bio) &&
1174 	    (q->next_ordered == QUEUE_ORDERED_NONE)) {
1175 		bio_endio(bio, -EOPNOTSUPP);
1176 		return 0;
1177 	}
1178 	/*
1179 	 * low level driver can indicate that it wants pages above a
1180 	 * certain limit bounced to low memory (ie for highmem, or even
1181 	 * ISA dma in theory)
1182 	 */
1183 	blk_queue_bounce(q, &bio);
1184 
1185 	spin_lock_irq(q->queue_lock);
1186 
1187 	if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1188 		goto get_rq;
1189 
1190 	el_ret = elv_merge(q, &req, bio);
1191 	switch (el_ret) {
1192 	case ELEVATOR_BACK_MERGE:
1193 		BUG_ON(!rq_mergeable(req));
1194 
1195 		if (!ll_back_merge_fn(q, req, bio))
1196 			break;
1197 
1198 		trace_block_bio_backmerge(q, bio);
1199 
1200 		req->biotail->bi_next = bio;
1201 		req->biotail = bio;
1202 		req->__data_len += bytes;
1203 		req->ioprio = ioprio_best(req->ioprio, prio);
1204 		if (!blk_rq_cpu_valid(req))
1205 			req->cpu = bio->bi_comp_cpu;
1206 		drive_stat_acct(req, 0);
1207 		if (!attempt_back_merge(q, req))
1208 			elv_merged_request(q, req, el_ret);
1209 		goto out;
1210 
1211 	case ELEVATOR_FRONT_MERGE:
1212 		BUG_ON(!rq_mergeable(req));
1213 
1214 		if (!ll_front_merge_fn(q, req, bio))
1215 			break;
1216 
1217 		trace_block_bio_frontmerge(q, bio);
1218 
1219 		bio->bi_next = req->bio;
1220 		req->bio = bio;
1221 
1222 		/*
1223 		 * may not be valid. if the low level driver said
1224 		 * it didn't need a bounce buffer then it better
1225 		 * not touch req->buffer either...
1226 		 */
1227 		req->buffer = bio_data(bio);
1228 		req->__sector = bio->bi_sector;
1229 		req->__data_len += bytes;
1230 		req->ioprio = ioprio_best(req->ioprio, prio);
1231 		if (!blk_rq_cpu_valid(req))
1232 			req->cpu = bio->bi_comp_cpu;
1233 		drive_stat_acct(req, 0);
1234 		if (!attempt_front_merge(q, req))
1235 			elv_merged_request(q, req, el_ret);
1236 		goto out;
1237 
1238 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1239 	default:
1240 		;
1241 	}
1242 
1243 get_rq:
1244 	/*
1245 	 * This sync check and mask will be re-done in init_request_from_bio(),
1246 	 * but we need to set it earlier to expose the sync flag to the
1247 	 * rq allocator and io schedulers.
1248 	 */
1249 	rw_flags = bio_data_dir(bio);
1250 	if (sync)
1251 		rw_flags |= REQ_RW_SYNC;
1252 
1253 	/*
1254 	 * Grab a free request. This is might sleep but can not fail.
1255 	 * Returns with the queue unlocked.
1256 	 */
1257 	req = get_request_wait(q, rw_flags, bio);
1258 
1259 	/*
1260 	 * After dropping the lock and possibly sleeping here, our request
1261 	 * may now be mergeable after it had proven unmergeable (above).
1262 	 * We don't worry about that case for efficiency. It won't happen
1263 	 * often, and the elevators are able to handle it.
1264 	 */
1265 	init_request_from_bio(req, bio);
1266 
1267 	spin_lock_irq(q->queue_lock);
1268 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1269 	    bio_flagged(bio, BIO_CPU_AFFINE))
1270 		req->cpu = blk_cpu_to_group(smp_processor_id());
1271 	if (queue_should_plug(q) && elv_queue_empty(q))
1272 		blk_plug_device(q);
1273 	add_request(q, req);
1274 out:
1275 	if (unplug || !queue_should_plug(q))
1276 		__generic_unplug_device(q);
1277 	spin_unlock_irq(q->queue_lock);
1278 	return 0;
1279 }
1280 
1281 /*
1282  * If bio->bi_dev is a partition, remap the location
1283  */
1284 static inline void blk_partition_remap(struct bio *bio)
1285 {
1286 	struct block_device *bdev = bio->bi_bdev;
1287 
1288 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1289 		struct hd_struct *p = bdev->bd_part;
1290 
1291 		bio->bi_sector += p->start_sect;
1292 		bio->bi_bdev = bdev->bd_contains;
1293 
1294 		trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1295 				    bdev->bd_dev,
1296 				    bio->bi_sector - p->start_sect);
1297 	}
1298 }
1299 
1300 static void handle_bad_sector(struct bio *bio)
1301 {
1302 	char b[BDEVNAME_SIZE];
1303 
1304 	printk(KERN_INFO "attempt to access beyond end of device\n");
1305 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1306 			bdevname(bio->bi_bdev, b),
1307 			bio->bi_rw,
1308 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1309 			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1310 
1311 	set_bit(BIO_EOF, &bio->bi_flags);
1312 }
1313 
1314 #ifdef CONFIG_FAIL_MAKE_REQUEST
1315 
1316 static DECLARE_FAULT_ATTR(fail_make_request);
1317 
1318 static int __init setup_fail_make_request(char *str)
1319 {
1320 	return setup_fault_attr(&fail_make_request, str);
1321 }
1322 __setup("fail_make_request=", setup_fail_make_request);
1323 
1324 static int should_fail_request(struct bio *bio)
1325 {
1326 	struct hd_struct *part = bio->bi_bdev->bd_part;
1327 
1328 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1329 		return should_fail(&fail_make_request, bio->bi_size);
1330 
1331 	return 0;
1332 }
1333 
1334 static int __init fail_make_request_debugfs(void)
1335 {
1336 	return init_fault_attr_dentries(&fail_make_request,
1337 					"fail_make_request");
1338 }
1339 
1340 late_initcall(fail_make_request_debugfs);
1341 
1342 #else /* CONFIG_FAIL_MAKE_REQUEST */
1343 
1344 static inline int should_fail_request(struct bio *bio)
1345 {
1346 	return 0;
1347 }
1348 
1349 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1350 
1351 /*
1352  * Check whether this bio extends beyond the end of the device.
1353  */
1354 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1355 {
1356 	sector_t maxsector;
1357 
1358 	if (!nr_sectors)
1359 		return 0;
1360 
1361 	/* Test device or partition size, when known. */
1362 	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1363 	if (maxsector) {
1364 		sector_t sector = bio->bi_sector;
1365 
1366 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1367 			/*
1368 			 * This may well happen - the kernel calls bread()
1369 			 * without checking the size of the device, e.g., when
1370 			 * mounting a device.
1371 			 */
1372 			handle_bad_sector(bio);
1373 			return 1;
1374 		}
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  * generic_make_request - hand a buffer to its device driver for I/O
1382  * @bio:  The bio describing the location in memory and on the device.
1383  *
1384  * generic_make_request() is used to make I/O requests of block
1385  * devices. It is passed a &struct bio, which describes the I/O that needs
1386  * to be done.
1387  *
1388  * generic_make_request() does not return any status.  The
1389  * success/failure status of the request, along with notification of
1390  * completion, is delivered asynchronously through the bio->bi_end_io
1391  * function described (one day) else where.
1392  *
1393  * The caller of generic_make_request must make sure that bi_io_vec
1394  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1395  * set to describe the device address, and the
1396  * bi_end_io and optionally bi_private are set to describe how
1397  * completion notification should be signaled.
1398  *
1399  * generic_make_request and the drivers it calls may use bi_next if this
1400  * bio happens to be merged with someone else, and may change bi_dev and
1401  * bi_sector for remaps as it sees fit.  So the values of these fields
1402  * should NOT be depended on after the call to generic_make_request.
1403  */
1404 static inline void __generic_make_request(struct bio *bio)
1405 {
1406 	struct request_queue *q;
1407 	sector_t old_sector;
1408 	int ret, nr_sectors = bio_sectors(bio);
1409 	dev_t old_dev;
1410 	int err = -EIO;
1411 
1412 	might_sleep();
1413 
1414 	if (bio_check_eod(bio, nr_sectors))
1415 		goto end_io;
1416 
1417 	/*
1418 	 * Resolve the mapping until finished. (drivers are
1419 	 * still free to implement/resolve their own stacking
1420 	 * by explicitly returning 0)
1421 	 *
1422 	 * NOTE: we don't repeat the blk_size check for each new device.
1423 	 * Stacking drivers are expected to know what they are doing.
1424 	 */
1425 	old_sector = -1;
1426 	old_dev = 0;
1427 	do {
1428 		char b[BDEVNAME_SIZE];
1429 
1430 		q = bdev_get_queue(bio->bi_bdev);
1431 		if (unlikely(!q)) {
1432 			printk(KERN_ERR
1433 			       "generic_make_request: Trying to access "
1434 				"nonexistent block-device %s (%Lu)\n",
1435 				bdevname(bio->bi_bdev, b),
1436 				(long long) bio->bi_sector);
1437 			goto end_io;
1438 		}
1439 
1440 		if (unlikely(nr_sectors > queue_max_hw_sectors(q))) {
1441 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1442 			       bdevname(bio->bi_bdev, b),
1443 			       bio_sectors(bio),
1444 			       queue_max_hw_sectors(q));
1445 			goto end_io;
1446 		}
1447 
1448 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1449 			goto end_io;
1450 
1451 		if (should_fail_request(bio))
1452 			goto end_io;
1453 
1454 		/*
1455 		 * If this device has partitions, remap block n
1456 		 * of partition p to block n+start(p) of the disk.
1457 		 */
1458 		blk_partition_remap(bio);
1459 
1460 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1461 			goto end_io;
1462 
1463 		if (old_sector != -1)
1464 			trace_block_remap(q, bio, old_dev, old_sector);
1465 
1466 		trace_block_bio_queue(q, bio);
1467 
1468 		old_sector = bio->bi_sector;
1469 		old_dev = bio->bi_bdev->bd_dev;
1470 
1471 		if (bio_check_eod(bio, nr_sectors))
1472 			goto end_io;
1473 
1474 		if (bio_discard(bio) && !q->prepare_discard_fn) {
1475 			err = -EOPNOTSUPP;
1476 			goto end_io;
1477 		}
1478 
1479 		ret = q->make_request_fn(q, bio);
1480 	} while (ret);
1481 
1482 	return;
1483 
1484 end_io:
1485 	bio_endio(bio, err);
1486 }
1487 
1488 /*
1489  * We only want one ->make_request_fn to be active at a time,
1490  * else stack usage with stacked devices could be a problem.
1491  * So use current->bio_{list,tail} to keep a list of requests
1492  * submited by a make_request_fn function.
1493  * current->bio_tail is also used as a flag to say if
1494  * generic_make_request is currently active in this task or not.
1495  * If it is NULL, then no make_request is active.  If it is non-NULL,
1496  * then a make_request is active, and new requests should be added
1497  * at the tail
1498  */
1499 void generic_make_request(struct bio *bio)
1500 {
1501 	if (current->bio_tail) {
1502 		/* make_request is active */
1503 		*(current->bio_tail) = bio;
1504 		bio->bi_next = NULL;
1505 		current->bio_tail = &bio->bi_next;
1506 		return;
1507 	}
1508 	/* following loop may be a bit non-obvious, and so deserves some
1509 	 * explanation.
1510 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1511 	 * ensure that) so we have a list with a single bio.
1512 	 * We pretend that we have just taken it off a longer list, so
1513 	 * we assign bio_list to the next (which is NULL) and bio_tail
1514 	 * to &bio_list, thus initialising the bio_list of new bios to be
1515 	 * added.  __generic_make_request may indeed add some more bios
1516 	 * through a recursive call to generic_make_request.  If it
1517 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1518 	 * from the top.  In this case we really did just take the bio
1519 	 * of the top of the list (no pretending) and so fixup bio_list and
1520 	 * bio_tail or bi_next, and call into __generic_make_request again.
1521 	 *
1522 	 * The loop was structured like this to make only one call to
1523 	 * __generic_make_request (which is important as it is large and
1524 	 * inlined) and to keep the structure simple.
1525 	 */
1526 	BUG_ON(bio->bi_next);
1527 	do {
1528 		current->bio_list = bio->bi_next;
1529 		if (bio->bi_next == NULL)
1530 			current->bio_tail = &current->bio_list;
1531 		else
1532 			bio->bi_next = NULL;
1533 		__generic_make_request(bio);
1534 		bio = current->bio_list;
1535 	} while (bio);
1536 	current->bio_tail = NULL; /* deactivate */
1537 }
1538 EXPORT_SYMBOL(generic_make_request);
1539 
1540 /**
1541  * submit_bio - submit a bio to the block device layer for I/O
1542  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1543  * @bio: The &struct bio which describes the I/O
1544  *
1545  * submit_bio() is very similar in purpose to generic_make_request(), and
1546  * uses that function to do most of the work. Both are fairly rough
1547  * interfaces; @bio must be presetup and ready for I/O.
1548  *
1549  */
1550 void submit_bio(int rw, struct bio *bio)
1551 {
1552 	int count = bio_sectors(bio);
1553 
1554 	bio->bi_rw |= rw;
1555 
1556 	/*
1557 	 * If it's a regular read/write or a barrier with data attached,
1558 	 * go through the normal accounting stuff before submission.
1559 	 */
1560 	if (bio_has_data(bio)) {
1561 		if (rw & WRITE) {
1562 			count_vm_events(PGPGOUT, count);
1563 		} else {
1564 			task_io_account_read(bio->bi_size);
1565 			count_vm_events(PGPGIN, count);
1566 		}
1567 
1568 		if (unlikely(block_dump)) {
1569 			char b[BDEVNAME_SIZE];
1570 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1571 			current->comm, task_pid_nr(current),
1572 				(rw & WRITE) ? "WRITE" : "READ",
1573 				(unsigned long long)bio->bi_sector,
1574 				bdevname(bio->bi_bdev, b));
1575 		}
1576 	}
1577 
1578 	generic_make_request(bio);
1579 }
1580 EXPORT_SYMBOL(submit_bio);
1581 
1582 /**
1583  * blk_rq_check_limits - Helper function to check a request for the queue limit
1584  * @q:  the queue
1585  * @rq: the request being checked
1586  *
1587  * Description:
1588  *    @rq may have been made based on weaker limitations of upper-level queues
1589  *    in request stacking drivers, and it may violate the limitation of @q.
1590  *    Since the block layer and the underlying device driver trust @rq
1591  *    after it is inserted to @q, it should be checked against @q before
1592  *    the insertion using this generic function.
1593  *
1594  *    This function should also be useful for request stacking drivers
1595  *    in some cases below, so export this fuction.
1596  *    Request stacking drivers like request-based dm may change the queue
1597  *    limits while requests are in the queue (e.g. dm's table swapping).
1598  *    Such request stacking drivers should check those requests agaist
1599  *    the new queue limits again when they dispatch those requests,
1600  *    although such checkings are also done against the old queue limits
1601  *    when submitting requests.
1602  */
1603 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1604 {
1605 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1606 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1607 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1608 		return -EIO;
1609 	}
1610 
1611 	/*
1612 	 * queue's settings related to segment counting like q->bounce_pfn
1613 	 * may differ from that of other stacking queues.
1614 	 * Recalculate it to check the request correctly on this queue's
1615 	 * limitation.
1616 	 */
1617 	blk_recalc_rq_segments(rq);
1618 	if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1619 	    rq->nr_phys_segments > queue_max_hw_segments(q)) {
1620 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1621 		return -EIO;
1622 	}
1623 
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1627 
1628 /**
1629  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1630  * @q:  the queue to submit the request
1631  * @rq: the request being queued
1632  */
1633 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1634 {
1635 	unsigned long flags;
1636 
1637 	if (blk_rq_check_limits(q, rq))
1638 		return -EIO;
1639 
1640 #ifdef CONFIG_FAIL_MAKE_REQUEST
1641 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1642 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1643 		return -EIO;
1644 #endif
1645 
1646 	spin_lock_irqsave(q->queue_lock, flags);
1647 
1648 	/*
1649 	 * Submitting request must be dequeued before calling this function
1650 	 * because it will be linked to another request_queue
1651 	 */
1652 	BUG_ON(blk_queued_rq(rq));
1653 
1654 	drive_stat_acct(rq, 1);
1655 	__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1656 
1657 	spin_unlock_irqrestore(q->queue_lock, flags);
1658 
1659 	return 0;
1660 }
1661 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1662 
1663 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1664 {
1665 	if (blk_do_io_stat(req)) {
1666 		const int rw = rq_data_dir(req);
1667 		struct hd_struct *part;
1668 		int cpu;
1669 
1670 		cpu = part_stat_lock();
1671 		part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1672 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1673 		part_stat_unlock();
1674 	}
1675 }
1676 
1677 static void blk_account_io_done(struct request *req)
1678 {
1679 	/*
1680 	 * Account IO completion.  bar_rq isn't accounted as a normal
1681 	 * IO on queueing nor completion.  Accounting the containing
1682 	 * request is enough.
1683 	 */
1684 	if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1685 		unsigned long duration = jiffies - req->start_time;
1686 		const int rw = rq_data_dir(req);
1687 		struct hd_struct *part;
1688 		int cpu;
1689 
1690 		cpu = part_stat_lock();
1691 		part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1692 
1693 		part_stat_inc(cpu, part, ios[rw]);
1694 		part_stat_add(cpu, part, ticks[rw], duration);
1695 		part_round_stats(cpu, part);
1696 		part_dec_in_flight(part);
1697 
1698 		part_stat_unlock();
1699 	}
1700 }
1701 
1702 /**
1703  * blk_peek_request - peek at the top of a request queue
1704  * @q: request queue to peek at
1705  *
1706  * Description:
1707  *     Return the request at the top of @q.  The returned request
1708  *     should be started using blk_start_request() before LLD starts
1709  *     processing it.
1710  *
1711  * Return:
1712  *     Pointer to the request at the top of @q if available.  Null
1713  *     otherwise.
1714  *
1715  * Context:
1716  *     queue_lock must be held.
1717  */
1718 struct request *blk_peek_request(struct request_queue *q)
1719 {
1720 	struct request *rq;
1721 	int ret;
1722 
1723 	while ((rq = __elv_next_request(q)) != NULL) {
1724 		if (!(rq->cmd_flags & REQ_STARTED)) {
1725 			/*
1726 			 * This is the first time the device driver
1727 			 * sees this request (possibly after
1728 			 * requeueing).  Notify IO scheduler.
1729 			 */
1730 			if (blk_sorted_rq(rq))
1731 				elv_activate_rq(q, rq);
1732 
1733 			/*
1734 			 * just mark as started even if we don't start
1735 			 * it, a request that has been delayed should
1736 			 * not be passed by new incoming requests
1737 			 */
1738 			rq->cmd_flags |= REQ_STARTED;
1739 			trace_block_rq_issue(q, rq);
1740 		}
1741 
1742 		if (!q->boundary_rq || q->boundary_rq == rq) {
1743 			q->end_sector = rq_end_sector(rq);
1744 			q->boundary_rq = NULL;
1745 		}
1746 
1747 		if (rq->cmd_flags & REQ_DONTPREP)
1748 			break;
1749 
1750 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1751 			/*
1752 			 * make sure space for the drain appears we
1753 			 * know we can do this because max_hw_segments
1754 			 * has been adjusted to be one fewer than the
1755 			 * device can handle
1756 			 */
1757 			rq->nr_phys_segments++;
1758 		}
1759 
1760 		if (!q->prep_rq_fn)
1761 			break;
1762 
1763 		ret = q->prep_rq_fn(q, rq);
1764 		if (ret == BLKPREP_OK) {
1765 			break;
1766 		} else if (ret == BLKPREP_DEFER) {
1767 			/*
1768 			 * the request may have been (partially) prepped.
1769 			 * we need to keep this request in the front to
1770 			 * avoid resource deadlock.  REQ_STARTED will
1771 			 * prevent other fs requests from passing this one.
1772 			 */
1773 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1774 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1775 				/*
1776 				 * remove the space for the drain we added
1777 				 * so that we don't add it again
1778 				 */
1779 				--rq->nr_phys_segments;
1780 			}
1781 
1782 			rq = NULL;
1783 			break;
1784 		} else if (ret == BLKPREP_KILL) {
1785 			rq->cmd_flags |= REQ_QUIET;
1786 			/*
1787 			 * Mark this request as started so we don't trigger
1788 			 * any debug logic in the end I/O path.
1789 			 */
1790 			blk_start_request(rq);
1791 			__blk_end_request_all(rq, -EIO);
1792 		} else {
1793 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1794 			break;
1795 		}
1796 	}
1797 
1798 	return rq;
1799 }
1800 EXPORT_SYMBOL(blk_peek_request);
1801 
1802 void blk_dequeue_request(struct request *rq)
1803 {
1804 	struct request_queue *q = rq->q;
1805 
1806 	BUG_ON(list_empty(&rq->queuelist));
1807 	BUG_ON(ELV_ON_HASH(rq));
1808 
1809 	list_del_init(&rq->queuelist);
1810 
1811 	/*
1812 	 * the time frame between a request being removed from the lists
1813 	 * and to it is freed is accounted as io that is in progress at
1814 	 * the driver side.
1815 	 */
1816 	if (blk_account_rq(rq))
1817 		q->in_flight[rq_is_sync(rq)]++;
1818 }
1819 
1820 /**
1821  * blk_start_request - start request processing on the driver
1822  * @req: request to dequeue
1823  *
1824  * Description:
1825  *     Dequeue @req and start timeout timer on it.  This hands off the
1826  *     request to the driver.
1827  *
1828  *     Block internal functions which don't want to start timer should
1829  *     call blk_dequeue_request().
1830  *
1831  * Context:
1832  *     queue_lock must be held.
1833  */
1834 void blk_start_request(struct request *req)
1835 {
1836 	blk_dequeue_request(req);
1837 
1838 	/*
1839 	 * We are now handing the request to the hardware, initialize
1840 	 * resid_len to full count and add the timeout handler.
1841 	 */
1842 	req->resid_len = blk_rq_bytes(req);
1843 	if (unlikely(blk_bidi_rq(req)))
1844 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1845 
1846 	blk_add_timer(req);
1847 }
1848 EXPORT_SYMBOL(blk_start_request);
1849 
1850 /**
1851  * blk_fetch_request - fetch a request from a request queue
1852  * @q: request queue to fetch a request from
1853  *
1854  * Description:
1855  *     Return the request at the top of @q.  The request is started on
1856  *     return and LLD can start processing it immediately.
1857  *
1858  * Return:
1859  *     Pointer to the request at the top of @q if available.  Null
1860  *     otherwise.
1861  *
1862  * Context:
1863  *     queue_lock must be held.
1864  */
1865 struct request *blk_fetch_request(struct request_queue *q)
1866 {
1867 	struct request *rq;
1868 
1869 	rq = blk_peek_request(q);
1870 	if (rq)
1871 		blk_start_request(rq);
1872 	return rq;
1873 }
1874 EXPORT_SYMBOL(blk_fetch_request);
1875 
1876 /**
1877  * blk_update_request - Special helper function for request stacking drivers
1878  * @req:      the request being processed
1879  * @error:    %0 for success, < %0 for error
1880  * @nr_bytes: number of bytes to complete @req
1881  *
1882  * Description:
1883  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1884  *     the request structure even if @req doesn't have leftover.
1885  *     If @req has leftover, sets it up for the next range of segments.
1886  *
1887  *     This special helper function is only for request stacking drivers
1888  *     (e.g. request-based dm) so that they can handle partial completion.
1889  *     Actual device drivers should use blk_end_request instead.
1890  *
1891  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1892  *     %false return from this function.
1893  *
1894  * Return:
1895  *     %false - this request doesn't have any more data
1896  *     %true  - this request has more data
1897  **/
1898 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1899 {
1900 	int total_bytes, bio_nbytes, next_idx = 0;
1901 	struct bio *bio;
1902 
1903 	if (!req->bio)
1904 		return false;
1905 
1906 	trace_block_rq_complete(req->q, req);
1907 
1908 	/*
1909 	 * For fs requests, rq is just carrier of independent bio's
1910 	 * and each partial completion should be handled separately.
1911 	 * Reset per-request error on each partial completion.
1912 	 *
1913 	 * TODO: tj: This is too subtle.  It would be better to let
1914 	 * low level drivers do what they see fit.
1915 	 */
1916 	if (blk_fs_request(req))
1917 		req->errors = 0;
1918 
1919 	if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1920 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1921 				req->rq_disk ? req->rq_disk->disk_name : "?",
1922 				(unsigned long long)blk_rq_pos(req));
1923 	}
1924 
1925 	blk_account_io_completion(req, nr_bytes);
1926 
1927 	total_bytes = bio_nbytes = 0;
1928 	while ((bio = req->bio) != NULL) {
1929 		int nbytes;
1930 
1931 		if (nr_bytes >= bio->bi_size) {
1932 			req->bio = bio->bi_next;
1933 			nbytes = bio->bi_size;
1934 			req_bio_endio(req, bio, nbytes, error);
1935 			next_idx = 0;
1936 			bio_nbytes = 0;
1937 		} else {
1938 			int idx = bio->bi_idx + next_idx;
1939 
1940 			if (unlikely(idx >= bio->bi_vcnt)) {
1941 				blk_dump_rq_flags(req, "__end_that");
1942 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1943 				       __func__, idx, bio->bi_vcnt);
1944 				break;
1945 			}
1946 
1947 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
1948 			BIO_BUG_ON(nbytes > bio->bi_size);
1949 
1950 			/*
1951 			 * not a complete bvec done
1952 			 */
1953 			if (unlikely(nbytes > nr_bytes)) {
1954 				bio_nbytes += nr_bytes;
1955 				total_bytes += nr_bytes;
1956 				break;
1957 			}
1958 
1959 			/*
1960 			 * advance to the next vector
1961 			 */
1962 			next_idx++;
1963 			bio_nbytes += nbytes;
1964 		}
1965 
1966 		total_bytes += nbytes;
1967 		nr_bytes -= nbytes;
1968 
1969 		bio = req->bio;
1970 		if (bio) {
1971 			/*
1972 			 * end more in this run, or just return 'not-done'
1973 			 */
1974 			if (unlikely(nr_bytes <= 0))
1975 				break;
1976 		}
1977 	}
1978 
1979 	/*
1980 	 * completely done
1981 	 */
1982 	if (!req->bio) {
1983 		/*
1984 		 * Reset counters so that the request stacking driver
1985 		 * can find how many bytes remain in the request
1986 		 * later.
1987 		 */
1988 		req->__data_len = 0;
1989 		return false;
1990 	}
1991 
1992 	/*
1993 	 * if the request wasn't completed, update state
1994 	 */
1995 	if (bio_nbytes) {
1996 		req_bio_endio(req, bio, bio_nbytes, error);
1997 		bio->bi_idx += next_idx;
1998 		bio_iovec(bio)->bv_offset += nr_bytes;
1999 		bio_iovec(bio)->bv_len -= nr_bytes;
2000 	}
2001 
2002 	req->__data_len -= total_bytes;
2003 	req->buffer = bio_data(req->bio);
2004 
2005 	/* update sector only for requests with clear definition of sector */
2006 	if (blk_fs_request(req) || blk_discard_rq(req))
2007 		req->__sector += total_bytes >> 9;
2008 
2009 	/*
2010 	 * If total number of sectors is less than the first segment
2011 	 * size, something has gone terribly wrong.
2012 	 */
2013 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2014 		printk(KERN_ERR "blk: request botched\n");
2015 		req->__data_len = blk_rq_cur_bytes(req);
2016 	}
2017 
2018 	/* recalculate the number of segments */
2019 	blk_recalc_rq_segments(req);
2020 
2021 	return true;
2022 }
2023 EXPORT_SYMBOL_GPL(blk_update_request);
2024 
2025 static bool blk_update_bidi_request(struct request *rq, int error,
2026 				    unsigned int nr_bytes,
2027 				    unsigned int bidi_bytes)
2028 {
2029 	if (blk_update_request(rq, error, nr_bytes))
2030 		return true;
2031 
2032 	/* Bidi request must be completed as a whole */
2033 	if (unlikely(blk_bidi_rq(rq)) &&
2034 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2035 		return true;
2036 
2037 	add_disk_randomness(rq->rq_disk);
2038 
2039 	return false;
2040 }
2041 
2042 /*
2043  * queue lock must be held
2044  */
2045 static void blk_finish_request(struct request *req, int error)
2046 {
2047 	if (blk_rq_tagged(req))
2048 		blk_queue_end_tag(req->q, req);
2049 
2050 	BUG_ON(blk_queued_rq(req));
2051 
2052 	if (unlikely(laptop_mode) && blk_fs_request(req))
2053 		laptop_io_completion();
2054 
2055 	blk_delete_timer(req);
2056 
2057 	blk_account_io_done(req);
2058 
2059 	if (req->end_io)
2060 		req->end_io(req, error);
2061 	else {
2062 		if (blk_bidi_rq(req))
2063 			__blk_put_request(req->next_rq->q, req->next_rq);
2064 
2065 		__blk_put_request(req->q, req);
2066 	}
2067 }
2068 
2069 /**
2070  * blk_end_bidi_request - Complete a bidi request
2071  * @rq:         the request to complete
2072  * @error:      %0 for success, < %0 for error
2073  * @nr_bytes:   number of bytes to complete @rq
2074  * @bidi_bytes: number of bytes to complete @rq->next_rq
2075  *
2076  * Description:
2077  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2078  *     Drivers that supports bidi can safely call this member for any
2079  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2080  *     just ignored.
2081  *
2082  * Return:
2083  *     %false - we are done with this request
2084  *     %true  - still buffers pending for this request
2085  **/
2086 static bool blk_end_bidi_request(struct request *rq, int error,
2087 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2088 {
2089 	struct request_queue *q = rq->q;
2090 	unsigned long flags;
2091 
2092 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2093 		return true;
2094 
2095 	spin_lock_irqsave(q->queue_lock, flags);
2096 	blk_finish_request(rq, error);
2097 	spin_unlock_irqrestore(q->queue_lock, flags);
2098 
2099 	return false;
2100 }
2101 
2102 /**
2103  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2104  * @rq:         the request to complete
2105  * @error:      %0 for success, < %0 for error
2106  * @nr_bytes:   number of bytes to complete @rq
2107  * @bidi_bytes: number of bytes to complete @rq->next_rq
2108  *
2109  * Description:
2110  *     Identical to blk_end_bidi_request() except that queue lock is
2111  *     assumed to be locked on entry and remains so on return.
2112  *
2113  * Return:
2114  *     %false - we are done with this request
2115  *     %true  - still buffers pending for this request
2116  **/
2117 static bool __blk_end_bidi_request(struct request *rq, int error,
2118 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2119 {
2120 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2121 		return true;
2122 
2123 	blk_finish_request(rq, error);
2124 
2125 	return false;
2126 }
2127 
2128 /**
2129  * blk_end_request - Helper function for drivers to complete the request.
2130  * @rq:       the request being processed
2131  * @error:    %0 for success, < %0 for error
2132  * @nr_bytes: number of bytes to complete
2133  *
2134  * Description:
2135  *     Ends I/O on a number of bytes attached to @rq.
2136  *     If @rq has leftover, sets it up for the next range of segments.
2137  *
2138  * Return:
2139  *     %false - we are done with this request
2140  *     %true  - still buffers pending for this request
2141  **/
2142 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2143 {
2144 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2145 }
2146 EXPORT_SYMBOL_GPL(blk_end_request);
2147 
2148 /**
2149  * blk_end_request_all - Helper function for drives to finish the request.
2150  * @rq: the request to finish
2151  * @error: %0 for success, < %0 for error
2152  *
2153  * Description:
2154  *     Completely finish @rq.
2155  */
2156 void blk_end_request_all(struct request *rq, int error)
2157 {
2158 	bool pending;
2159 	unsigned int bidi_bytes = 0;
2160 
2161 	if (unlikely(blk_bidi_rq(rq)))
2162 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2163 
2164 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2165 	BUG_ON(pending);
2166 }
2167 EXPORT_SYMBOL_GPL(blk_end_request_all);
2168 
2169 /**
2170  * blk_end_request_cur - Helper function to finish the current request chunk.
2171  * @rq: the request to finish the current chunk for
2172  * @error: %0 for success, < %0 for error
2173  *
2174  * Description:
2175  *     Complete the current consecutively mapped chunk from @rq.
2176  *
2177  * Return:
2178  *     %false - we are done with this request
2179  *     %true  - still buffers pending for this request
2180  */
2181 bool blk_end_request_cur(struct request *rq, int error)
2182 {
2183 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2184 }
2185 EXPORT_SYMBOL_GPL(blk_end_request_cur);
2186 
2187 /**
2188  * __blk_end_request - Helper function for drivers to complete the request.
2189  * @rq:       the request being processed
2190  * @error:    %0 for success, < %0 for error
2191  * @nr_bytes: number of bytes to complete
2192  *
2193  * Description:
2194  *     Must be called with queue lock held unlike blk_end_request().
2195  *
2196  * Return:
2197  *     %false - we are done with this request
2198  *     %true  - still buffers pending for this request
2199  **/
2200 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2201 {
2202 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2203 }
2204 EXPORT_SYMBOL_GPL(__blk_end_request);
2205 
2206 /**
2207  * __blk_end_request_all - Helper function for drives to finish the request.
2208  * @rq: the request to finish
2209  * @error: %0 for success, < %0 for error
2210  *
2211  * Description:
2212  *     Completely finish @rq.  Must be called with queue lock held.
2213  */
2214 void __blk_end_request_all(struct request *rq, int error)
2215 {
2216 	bool pending;
2217 	unsigned int bidi_bytes = 0;
2218 
2219 	if (unlikely(blk_bidi_rq(rq)))
2220 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2221 
2222 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2223 	BUG_ON(pending);
2224 }
2225 EXPORT_SYMBOL_GPL(__blk_end_request_all);
2226 
2227 /**
2228  * __blk_end_request_cur - Helper function to finish the current request chunk.
2229  * @rq: the request to finish the current chunk for
2230  * @error: %0 for success, < %0 for error
2231  *
2232  * Description:
2233  *     Complete the current consecutively mapped chunk from @rq.  Must
2234  *     be called with queue lock held.
2235  *
2236  * Return:
2237  *     %false - we are done with this request
2238  *     %true  - still buffers pending for this request
2239  */
2240 bool __blk_end_request_cur(struct request *rq, int error)
2241 {
2242 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2243 }
2244 EXPORT_SYMBOL_GPL(__blk_end_request_cur);
2245 
2246 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2247 		     struct bio *bio)
2248 {
2249 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2250 	   we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2251 	rq->cmd_flags |= (bio->bi_rw & 3);
2252 
2253 	if (bio_has_data(bio)) {
2254 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2255 		rq->buffer = bio_data(bio);
2256 	}
2257 	rq->__data_len = bio->bi_size;
2258 	rq->bio = rq->biotail = bio;
2259 
2260 	if (bio->bi_bdev)
2261 		rq->rq_disk = bio->bi_bdev->bd_disk;
2262 }
2263 
2264 /**
2265  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2266  * @q : the queue of the device being checked
2267  *
2268  * Description:
2269  *    Check if underlying low-level drivers of a device are busy.
2270  *    If the drivers want to export their busy state, they must set own
2271  *    exporting function using blk_queue_lld_busy() first.
2272  *
2273  *    Basically, this function is used only by request stacking drivers
2274  *    to stop dispatching requests to underlying devices when underlying
2275  *    devices are busy.  This behavior helps more I/O merging on the queue
2276  *    of the request stacking driver and prevents I/O throughput regression
2277  *    on burst I/O load.
2278  *
2279  * Return:
2280  *    0 - Not busy (The request stacking driver should dispatch request)
2281  *    1 - Busy (The request stacking driver should stop dispatching request)
2282  */
2283 int blk_lld_busy(struct request_queue *q)
2284 {
2285 	if (q->lld_busy_fn)
2286 		return q->lld_busy_fn(q);
2287 
2288 	return 0;
2289 }
2290 EXPORT_SYMBOL_GPL(blk_lld_busy);
2291 
2292 /**
2293  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2294  * @rq: the clone request to be cleaned up
2295  *
2296  * Description:
2297  *     Free all bios in @rq for a cloned request.
2298  */
2299 void blk_rq_unprep_clone(struct request *rq)
2300 {
2301 	struct bio *bio;
2302 
2303 	while ((bio = rq->bio) != NULL) {
2304 		rq->bio = bio->bi_next;
2305 
2306 		bio_put(bio);
2307 	}
2308 }
2309 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2310 
2311 /*
2312  * Copy attributes of the original request to the clone request.
2313  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2314  */
2315 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2316 {
2317 	dst->cpu = src->cpu;
2318 	dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2319 	dst->cmd_type = src->cmd_type;
2320 	dst->__sector = blk_rq_pos(src);
2321 	dst->__data_len = blk_rq_bytes(src);
2322 	dst->nr_phys_segments = src->nr_phys_segments;
2323 	dst->ioprio = src->ioprio;
2324 	dst->extra_len = src->extra_len;
2325 }
2326 
2327 /**
2328  * blk_rq_prep_clone - Helper function to setup clone request
2329  * @rq: the request to be setup
2330  * @rq_src: original request to be cloned
2331  * @bs: bio_set that bios for clone are allocated from
2332  * @gfp_mask: memory allocation mask for bio
2333  * @bio_ctr: setup function to be called for each clone bio.
2334  *           Returns %0 for success, non %0 for failure.
2335  * @data: private data to be passed to @bio_ctr
2336  *
2337  * Description:
2338  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2339  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2340  *     are not copied, and copying such parts is the caller's responsibility.
2341  *     Also, pages which the original bios are pointing to are not copied
2342  *     and the cloned bios just point same pages.
2343  *     So cloned bios must be completed before original bios, which means
2344  *     the caller must complete @rq before @rq_src.
2345  */
2346 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2347 		      struct bio_set *bs, gfp_t gfp_mask,
2348 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2349 		      void *data)
2350 {
2351 	struct bio *bio, *bio_src;
2352 
2353 	if (!bs)
2354 		bs = fs_bio_set;
2355 
2356 	blk_rq_init(NULL, rq);
2357 
2358 	__rq_for_each_bio(bio_src, rq_src) {
2359 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2360 		if (!bio)
2361 			goto free_and_out;
2362 
2363 		__bio_clone(bio, bio_src);
2364 
2365 		if (bio_integrity(bio_src) &&
2366 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2367 			goto free_and_out;
2368 
2369 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2370 			goto free_and_out;
2371 
2372 		if (rq->bio) {
2373 			rq->biotail->bi_next = bio;
2374 			rq->biotail = bio;
2375 		} else
2376 			rq->bio = rq->biotail = bio;
2377 	}
2378 
2379 	__blk_rq_prep_clone(rq, rq_src);
2380 
2381 	return 0;
2382 
2383 free_and_out:
2384 	if (bio)
2385 		bio_free(bio, bs);
2386 	blk_rq_unprep_clone(rq);
2387 
2388 	return -ENOMEM;
2389 }
2390 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2391 
2392 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2393 {
2394 	return queue_work(kblockd_workqueue, work);
2395 }
2396 EXPORT_SYMBOL(kblockd_schedule_work);
2397 
2398 int __init blk_dev_init(void)
2399 {
2400 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2401 			sizeof(((struct request *)0)->cmd_flags));
2402 
2403 	kblockd_workqueue = create_workqueue("kblockd");
2404 	if (!kblockd_workqueue)
2405 		panic("Failed to create kblockd\n");
2406 
2407 	request_cachep = kmem_cache_create("blkdev_requests",
2408 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2409 
2410 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2411 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2412 
2413 	return 0;
2414 }
2415 
2416