1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 seqcount_init(&rq->gstate_seq); 130 u64_stats_init(&rq->aborted_gstate_sync); 131 } 132 EXPORT_SYMBOL(blk_rq_init); 133 134 static const struct { 135 int errno; 136 const char *name; 137 } blk_errors[] = { 138 [BLK_STS_OK] = { 0, "" }, 139 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 140 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 141 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 142 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 143 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 144 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 145 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 146 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 147 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 148 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 149 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 150 151 /* device mapper special case, should not leak out: */ 152 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 153 154 /* everything else not covered above: */ 155 [BLK_STS_IOERR] = { -EIO, "I/O" }, 156 }; 157 158 blk_status_t errno_to_blk_status(int errno) 159 { 160 int i; 161 162 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 163 if (blk_errors[i].errno == errno) 164 return (__force blk_status_t)i; 165 } 166 167 return BLK_STS_IOERR; 168 } 169 EXPORT_SYMBOL_GPL(errno_to_blk_status); 170 171 int blk_status_to_errno(blk_status_t status) 172 { 173 int idx = (__force int)status; 174 175 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 176 return -EIO; 177 return blk_errors[idx].errno; 178 } 179 EXPORT_SYMBOL_GPL(blk_status_to_errno); 180 181 static void print_req_error(struct request *req, blk_status_t status) 182 { 183 int idx = (__force int)status; 184 185 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 186 return; 187 188 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 189 __func__, blk_errors[idx].name, req->rq_disk ? 190 req->rq_disk->disk_name : "?", 191 (unsigned long long)blk_rq_pos(req)); 192 } 193 194 static void req_bio_endio(struct request *rq, struct bio *bio, 195 unsigned int nbytes, blk_status_t error) 196 { 197 if (error) 198 bio->bi_status = error; 199 200 if (unlikely(rq->rq_flags & RQF_QUIET)) 201 bio_set_flag(bio, BIO_QUIET); 202 203 bio_advance(bio, nbytes); 204 205 /* don't actually finish bio if it's part of flush sequence */ 206 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 207 bio_endio(bio); 208 } 209 210 void blk_dump_rq_flags(struct request *rq, char *msg) 211 { 212 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 213 rq->rq_disk ? rq->rq_disk->disk_name : "?", 214 (unsigned long long) rq->cmd_flags); 215 216 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 217 (unsigned long long)blk_rq_pos(rq), 218 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 219 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 220 rq->bio, rq->biotail, blk_rq_bytes(rq)); 221 } 222 EXPORT_SYMBOL(blk_dump_rq_flags); 223 224 static void blk_delay_work(struct work_struct *work) 225 { 226 struct request_queue *q; 227 228 q = container_of(work, struct request_queue, delay_work.work); 229 spin_lock_irq(q->queue_lock); 230 __blk_run_queue(q); 231 spin_unlock_irq(q->queue_lock); 232 } 233 234 /** 235 * blk_delay_queue - restart queueing after defined interval 236 * @q: The &struct request_queue in question 237 * @msecs: Delay in msecs 238 * 239 * Description: 240 * Sometimes queueing needs to be postponed for a little while, to allow 241 * resources to come back. This function will make sure that queueing is 242 * restarted around the specified time. 243 */ 244 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 245 { 246 lockdep_assert_held(q->queue_lock); 247 WARN_ON_ONCE(q->mq_ops); 248 249 if (likely(!blk_queue_dead(q))) 250 queue_delayed_work(kblockd_workqueue, &q->delay_work, 251 msecs_to_jiffies(msecs)); 252 } 253 EXPORT_SYMBOL(blk_delay_queue); 254 255 /** 256 * blk_start_queue_async - asynchronously restart a previously stopped queue 257 * @q: The &struct request_queue in question 258 * 259 * Description: 260 * blk_start_queue_async() will clear the stop flag on the queue, and 261 * ensure that the request_fn for the queue is run from an async 262 * context. 263 **/ 264 void blk_start_queue_async(struct request_queue *q) 265 { 266 lockdep_assert_held(q->queue_lock); 267 WARN_ON_ONCE(q->mq_ops); 268 269 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 270 blk_run_queue_async(q); 271 } 272 EXPORT_SYMBOL(blk_start_queue_async); 273 274 /** 275 * blk_start_queue - restart a previously stopped queue 276 * @q: The &struct request_queue in question 277 * 278 * Description: 279 * blk_start_queue() will clear the stop flag on the queue, and call 280 * the request_fn for the queue if it was in a stopped state when 281 * entered. Also see blk_stop_queue(). 282 **/ 283 void blk_start_queue(struct request_queue *q) 284 { 285 lockdep_assert_held(q->queue_lock); 286 WARN_ON(!in_interrupt() && !irqs_disabled()); 287 WARN_ON_ONCE(q->mq_ops); 288 289 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 290 __blk_run_queue(q); 291 } 292 EXPORT_SYMBOL(blk_start_queue); 293 294 /** 295 * blk_stop_queue - stop a queue 296 * @q: The &struct request_queue in question 297 * 298 * Description: 299 * The Linux block layer assumes that a block driver will consume all 300 * entries on the request queue when the request_fn strategy is called. 301 * Often this will not happen, because of hardware limitations (queue 302 * depth settings). If a device driver gets a 'queue full' response, 303 * or if it simply chooses not to queue more I/O at one point, it can 304 * call this function to prevent the request_fn from being called until 305 * the driver has signalled it's ready to go again. This happens by calling 306 * blk_start_queue() to restart queue operations. 307 **/ 308 void blk_stop_queue(struct request_queue *q) 309 { 310 lockdep_assert_held(q->queue_lock); 311 WARN_ON_ONCE(q->mq_ops); 312 313 cancel_delayed_work(&q->delay_work); 314 queue_flag_set(QUEUE_FLAG_STOPPED, q); 315 } 316 EXPORT_SYMBOL(blk_stop_queue); 317 318 /** 319 * blk_sync_queue - cancel any pending callbacks on a queue 320 * @q: the queue 321 * 322 * Description: 323 * The block layer may perform asynchronous callback activity 324 * on a queue, such as calling the unplug function after a timeout. 325 * A block device may call blk_sync_queue to ensure that any 326 * such activity is cancelled, thus allowing it to release resources 327 * that the callbacks might use. The caller must already have made sure 328 * that its ->make_request_fn will not re-add plugging prior to calling 329 * this function. 330 * 331 * This function does not cancel any asynchronous activity arising 332 * out of elevator or throttling code. That would require elevator_exit() 333 * and blkcg_exit_queue() to be called with queue lock initialized. 334 * 335 */ 336 void blk_sync_queue(struct request_queue *q) 337 { 338 del_timer_sync(&q->timeout); 339 cancel_work_sync(&q->timeout_work); 340 341 if (q->mq_ops) { 342 struct blk_mq_hw_ctx *hctx; 343 int i; 344 345 cancel_delayed_work_sync(&q->requeue_work); 346 queue_for_each_hw_ctx(q, hctx, i) 347 cancel_delayed_work_sync(&hctx->run_work); 348 } else { 349 cancel_delayed_work_sync(&q->delay_work); 350 } 351 } 352 EXPORT_SYMBOL(blk_sync_queue); 353 354 /** 355 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY 356 * @q: request queue pointer 357 * 358 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not 359 * set and 1 if the flag was already set. 360 */ 361 int blk_set_preempt_only(struct request_queue *q) 362 { 363 unsigned long flags; 364 int res; 365 366 spin_lock_irqsave(q->queue_lock, flags); 367 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q); 368 spin_unlock_irqrestore(q->queue_lock, flags); 369 370 return res; 371 } 372 EXPORT_SYMBOL_GPL(blk_set_preempt_only); 373 374 void blk_clear_preempt_only(struct request_queue *q) 375 { 376 unsigned long flags; 377 378 spin_lock_irqsave(q->queue_lock, flags); 379 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q); 380 wake_up_all(&q->mq_freeze_wq); 381 spin_unlock_irqrestore(q->queue_lock, flags); 382 } 383 EXPORT_SYMBOL_GPL(blk_clear_preempt_only); 384 385 /** 386 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 387 * @q: The queue to run 388 * 389 * Description: 390 * Invoke request handling on a queue if there are any pending requests. 391 * May be used to restart request handling after a request has completed. 392 * This variant runs the queue whether or not the queue has been 393 * stopped. Must be called with the queue lock held and interrupts 394 * disabled. See also @blk_run_queue. 395 */ 396 inline void __blk_run_queue_uncond(struct request_queue *q) 397 { 398 lockdep_assert_held(q->queue_lock); 399 WARN_ON_ONCE(q->mq_ops); 400 401 if (unlikely(blk_queue_dead(q))) 402 return; 403 404 /* 405 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 406 * the queue lock internally. As a result multiple threads may be 407 * running such a request function concurrently. Keep track of the 408 * number of active request_fn invocations such that blk_drain_queue() 409 * can wait until all these request_fn calls have finished. 410 */ 411 q->request_fn_active++; 412 q->request_fn(q); 413 q->request_fn_active--; 414 } 415 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 416 417 /** 418 * __blk_run_queue - run a single device queue 419 * @q: The queue to run 420 * 421 * Description: 422 * See @blk_run_queue. 423 */ 424 void __blk_run_queue(struct request_queue *q) 425 { 426 lockdep_assert_held(q->queue_lock); 427 WARN_ON_ONCE(q->mq_ops); 428 429 if (unlikely(blk_queue_stopped(q))) 430 return; 431 432 __blk_run_queue_uncond(q); 433 } 434 EXPORT_SYMBOL(__blk_run_queue); 435 436 /** 437 * blk_run_queue_async - run a single device queue in workqueue context 438 * @q: The queue to run 439 * 440 * Description: 441 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 442 * of us. 443 * 444 * Note: 445 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 446 * has canceled q->delay_work, callers must hold the queue lock to avoid 447 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 448 */ 449 void blk_run_queue_async(struct request_queue *q) 450 { 451 lockdep_assert_held(q->queue_lock); 452 WARN_ON_ONCE(q->mq_ops); 453 454 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 455 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 456 } 457 EXPORT_SYMBOL(blk_run_queue_async); 458 459 /** 460 * blk_run_queue - run a single device queue 461 * @q: The queue to run 462 * 463 * Description: 464 * Invoke request handling on this queue, if it has pending work to do. 465 * May be used to restart queueing when a request has completed. 466 */ 467 void blk_run_queue(struct request_queue *q) 468 { 469 unsigned long flags; 470 471 WARN_ON_ONCE(q->mq_ops); 472 473 spin_lock_irqsave(q->queue_lock, flags); 474 __blk_run_queue(q); 475 spin_unlock_irqrestore(q->queue_lock, flags); 476 } 477 EXPORT_SYMBOL(blk_run_queue); 478 479 void blk_put_queue(struct request_queue *q) 480 { 481 kobject_put(&q->kobj); 482 } 483 EXPORT_SYMBOL(blk_put_queue); 484 485 /** 486 * __blk_drain_queue - drain requests from request_queue 487 * @q: queue to drain 488 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 489 * 490 * Drain requests from @q. If @drain_all is set, all requests are drained. 491 * If not, only ELVPRIV requests are drained. The caller is responsible 492 * for ensuring that no new requests which need to be drained are queued. 493 */ 494 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 495 __releases(q->queue_lock) 496 __acquires(q->queue_lock) 497 { 498 int i; 499 500 lockdep_assert_held(q->queue_lock); 501 WARN_ON_ONCE(q->mq_ops); 502 503 while (true) { 504 bool drain = false; 505 506 /* 507 * The caller might be trying to drain @q before its 508 * elevator is initialized. 509 */ 510 if (q->elevator) 511 elv_drain_elevator(q); 512 513 blkcg_drain_queue(q); 514 515 /* 516 * This function might be called on a queue which failed 517 * driver init after queue creation or is not yet fully 518 * active yet. Some drivers (e.g. fd and loop) get unhappy 519 * in such cases. Kick queue iff dispatch queue has 520 * something on it and @q has request_fn set. 521 */ 522 if (!list_empty(&q->queue_head) && q->request_fn) 523 __blk_run_queue(q); 524 525 drain |= q->nr_rqs_elvpriv; 526 drain |= q->request_fn_active; 527 528 /* 529 * Unfortunately, requests are queued at and tracked from 530 * multiple places and there's no single counter which can 531 * be drained. Check all the queues and counters. 532 */ 533 if (drain_all) { 534 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 535 drain |= !list_empty(&q->queue_head); 536 for (i = 0; i < 2; i++) { 537 drain |= q->nr_rqs[i]; 538 drain |= q->in_flight[i]; 539 if (fq) 540 drain |= !list_empty(&fq->flush_queue[i]); 541 } 542 } 543 544 if (!drain) 545 break; 546 547 spin_unlock_irq(q->queue_lock); 548 549 msleep(10); 550 551 spin_lock_irq(q->queue_lock); 552 } 553 554 /* 555 * With queue marked dead, any woken up waiter will fail the 556 * allocation path, so the wakeup chaining is lost and we're 557 * left with hung waiters. We need to wake up those waiters. 558 */ 559 if (q->request_fn) { 560 struct request_list *rl; 561 562 blk_queue_for_each_rl(rl, q) 563 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 564 wake_up_all(&rl->wait[i]); 565 } 566 } 567 568 void blk_drain_queue(struct request_queue *q) 569 { 570 spin_lock_irq(q->queue_lock); 571 __blk_drain_queue(q, true); 572 spin_unlock_irq(q->queue_lock); 573 } 574 575 /** 576 * blk_queue_bypass_start - enter queue bypass mode 577 * @q: queue of interest 578 * 579 * In bypass mode, only the dispatch FIFO queue of @q is used. This 580 * function makes @q enter bypass mode and drains all requests which were 581 * throttled or issued before. On return, it's guaranteed that no request 582 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 583 * inside queue or RCU read lock. 584 */ 585 void blk_queue_bypass_start(struct request_queue *q) 586 { 587 WARN_ON_ONCE(q->mq_ops); 588 589 spin_lock_irq(q->queue_lock); 590 q->bypass_depth++; 591 queue_flag_set(QUEUE_FLAG_BYPASS, q); 592 spin_unlock_irq(q->queue_lock); 593 594 /* 595 * Queues start drained. Skip actual draining till init is 596 * complete. This avoids lenghty delays during queue init which 597 * can happen many times during boot. 598 */ 599 if (blk_queue_init_done(q)) { 600 spin_lock_irq(q->queue_lock); 601 __blk_drain_queue(q, false); 602 spin_unlock_irq(q->queue_lock); 603 604 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 605 synchronize_rcu(); 606 } 607 } 608 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 609 610 /** 611 * blk_queue_bypass_end - leave queue bypass mode 612 * @q: queue of interest 613 * 614 * Leave bypass mode and restore the normal queueing behavior. 615 * 616 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 617 * this function is called for both blk-sq and blk-mq queues. 618 */ 619 void blk_queue_bypass_end(struct request_queue *q) 620 { 621 spin_lock_irq(q->queue_lock); 622 if (!--q->bypass_depth) 623 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 624 WARN_ON_ONCE(q->bypass_depth < 0); 625 spin_unlock_irq(q->queue_lock); 626 } 627 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 628 629 void blk_set_queue_dying(struct request_queue *q) 630 { 631 spin_lock_irq(q->queue_lock); 632 queue_flag_set(QUEUE_FLAG_DYING, q); 633 spin_unlock_irq(q->queue_lock); 634 635 /* 636 * When queue DYING flag is set, we need to block new req 637 * entering queue, so we call blk_freeze_queue_start() to 638 * prevent I/O from crossing blk_queue_enter(). 639 */ 640 blk_freeze_queue_start(q); 641 642 if (q->mq_ops) 643 blk_mq_wake_waiters(q); 644 else { 645 struct request_list *rl; 646 647 spin_lock_irq(q->queue_lock); 648 blk_queue_for_each_rl(rl, q) { 649 if (rl->rq_pool) { 650 wake_up_all(&rl->wait[BLK_RW_SYNC]); 651 wake_up_all(&rl->wait[BLK_RW_ASYNC]); 652 } 653 } 654 spin_unlock_irq(q->queue_lock); 655 } 656 657 /* Make blk_queue_enter() reexamine the DYING flag. */ 658 wake_up_all(&q->mq_freeze_wq); 659 } 660 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 661 662 /** 663 * blk_cleanup_queue - shutdown a request queue 664 * @q: request queue to shutdown 665 * 666 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 667 * put it. All future requests will be failed immediately with -ENODEV. 668 */ 669 void blk_cleanup_queue(struct request_queue *q) 670 { 671 spinlock_t *lock = q->queue_lock; 672 673 /* mark @q DYING, no new request or merges will be allowed afterwards */ 674 mutex_lock(&q->sysfs_lock); 675 blk_set_queue_dying(q); 676 spin_lock_irq(lock); 677 678 /* 679 * A dying queue is permanently in bypass mode till released. Note 680 * that, unlike blk_queue_bypass_start(), we aren't performing 681 * synchronize_rcu() after entering bypass mode to avoid the delay 682 * as some drivers create and destroy a lot of queues while 683 * probing. This is still safe because blk_release_queue() will be 684 * called only after the queue refcnt drops to zero and nothing, 685 * RCU or not, would be traversing the queue by then. 686 */ 687 q->bypass_depth++; 688 queue_flag_set(QUEUE_FLAG_BYPASS, q); 689 690 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 691 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 692 queue_flag_set(QUEUE_FLAG_DYING, q); 693 spin_unlock_irq(lock); 694 mutex_unlock(&q->sysfs_lock); 695 696 /* 697 * Drain all requests queued before DYING marking. Set DEAD flag to 698 * prevent that q->request_fn() gets invoked after draining finished. 699 */ 700 blk_freeze_queue(q); 701 spin_lock_irq(lock); 702 queue_flag_set(QUEUE_FLAG_DEAD, q); 703 spin_unlock_irq(lock); 704 705 /* 706 * make sure all in-progress dispatch are completed because 707 * blk_freeze_queue() can only complete all requests, and 708 * dispatch may still be in-progress since we dispatch requests 709 * from more than one contexts 710 */ 711 if (q->mq_ops) 712 blk_mq_quiesce_queue(q); 713 714 /* for synchronous bio-based driver finish in-flight integrity i/o */ 715 blk_flush_integrity(); 716 717 /* @q won't process any more request, flush async actions */ 718 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 719 blk_sync_queue(q); 720 721 if (q->mq_ops) 722 blk_mq_free_queue(q); 723 percpu_ref_exit(&q->q_usage_counter); 724 725 spin_lock_irq(lock); 726 if (q->queue_lock != &q->__queue_lock) 727 q->queue_lock = &q->__queue_lock; 728 spin_unlock_irq(lock); 729 730 /* @q is and will stay empty, shutdown and put */ 731 blk_put_queue(q); 732 } 733 EXPORT_SYMBOL(blk_cleanup_queue); 734 735 /* Allocate memory local to the request queue */ 736 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 737 { 738 struct request_queue *q = data; 739 740 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 741 } 742 743 static void free_request_simple(void *element, void *data) 744 { 745 kmem_cache_free(request_cachep, element); 746 } 747 748 static void *alloc_request_size(gfp_t gfp_mask, void *data) 749 { 750 struct request_queue *q = data; 751 struct request *rq; 752 753 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 754 q->node); 755 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 756 kfree(rq); 757 rq = NULL; 758 } 759 return rq; 760 } 761 762 static void free_request_size(void *element, void *data) 763 { 764 struct request_queue *q = data; 765 766 if (q->exit_rq_fn) 767 q->exit_rq_fn(q, element); 768 kfree(element); 769 } 770 771 int blk_init_rl(struct request_list *rl, struct request_queue *q, 772 gfp_t gfp_mask) 773 { 774 if (unlikely(rl->rq_pool) || q->mq_ops) 775 return 0; 776 777 rl->q = q; 778 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 779 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 780 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 781 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 782 783 if (q->cmd_size) { 784 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 785 alloc_request_size, free_request_size, 786 q, gfp_mask, q->node); 787 } else { 788 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 789 alloc_request_simple, free_request_simple, 790 q, gfp_mask, q->node); 791 } 792 if (!rl->rq_pool) 793 return -ENOMEM; 794 795 if (rl != &q->root_rl) 796 WARN_ON_ONCE(!blk_get_queue(q)); 797 798 return 0; 799 } 800 801 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 802 { 803 if (rl->rq_pool) { 804 mempool_destroy(rl->rq_pool); 805 if (rl != &q->root_rl) 806 blk_put_queue(q); 807 } 808 } 809 810 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 811 { 812 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 813 } 814 EXPORT_SYMBOL(blk_alloc_queue); 815 816 /** 817 * blk_queue_enter() - try to increase q->q_usage_counter 818 * @q: request queue pointer 819 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 820 */ 821 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 822 { 823 const bool preempt = flags & BLK_MQ_REQ_PREEMPT; 824 825 while (true) { 826 bool success = false; 827 int ret; 828 829 rcu_read_lock_sched(); 830 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 831 /* 832 * The code that sets the PREEMPT_ONLY flag is 833 * responsible for ensuring that that flag is globally 834 * visible before the queue is unfrozen. 835 */ 836 if (preempt || !blk_queue_preempt_only(q)) { 837 success = true; 838 } else { 839 percpu_ref_put(&q->q_usage_counter); 840 } 841 } 842 rcu_read_unlock_sched(); 843 844 if (success) 845 return 0; 846 847 if (flags & BLK_MQ_REQ_NOWAIT) 848 return -EBUSY; 849 850 /* 851 * read pair of barrier in blk_freeze_queue_start(), 852 * we need to order reading __PERCPU_REF_DEAD flag of 853 * .q_usage_counter and reading .mq_freeze_depth or 854 * queue dying flag, otherwise the following wait may 855 * never return if the two reads are reordered. 856 */ 857 smp_rmb(); 858 859 ret = wait_event_interruptible(q->mq_freeze_wq, 860 (atomic_read(&q->mq_freeze_depth) == 0 && 861 (preempt || !blk_queue_preempt_only(q))) || 862 blk_queue_dying(q)); 863 if (blk_queue_dying(q)) 864 return -ENODEV; 865 if (ret) 866 return ret; 867 } 868 } 869 870 void blk_queue_exit(struct request_queue *q) 871 { 872 percpu_ref_put(&q->q_usage_counter); 873 } 874 875 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 876 { 877 struct request_queue *q = 878 container_of(ref, struct request_queue, q_usage_counter); 879 880 wake_up_all(&q->mq_freeze_wq); 881 } 882 883 static void blk_rq_timed_out_timer(struct timer_list *t) 884 { 885 struct request_queue *q = from_timer(q, t, timeout); 886 887 kblockd_schedule_work(&q->timeout_work); 888 } 889 890 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 891 { 892 struct request_queue *q; 893 894 q = kmem_cache_alloc_node(blk_requestq_cachep, 895 gfp_mask | __GFP_ZERO, node_id); 896 if (!q) 897 return NULL; 898 899 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 900 if (q->id < 0) 901 goto fail_q; 902 903 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 904 if (!q->bio_split) 905 goto fail_id; 906 907 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 908 if (!q->backing_dev_info) 909 goto fail_split; 910 911 q->stats = blk_alloc_queue_stats(); 912 if (!q->stats) 913 goto fail_stats; 914 915 q->backing_dev_info->ra_pages = 916 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 917 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 918 q->backing_dev_info->name = "block"; 919 q->node = node_id; 920 921 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 922 laptop_mode_timer_fn, 0); 923 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 924 INIT_WORK(&q->timeout_work, NULL); 925 INIT_LIST_HEAD(&q->queue_head); 926 INIT_LIST_HEAD(&q->timeout_list); 927 INIT_LIST_HEAD(&q->icq_list); 928 #ifdef CONFIG_BLK_CGROUP 929 INIT_LIST_HEAD(&q->blkg_list); 930 #endif 931 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 932 933 kobject_init(&q->kobj, &blk_queue_ktype); 934 935 #ifdef CONFIG_BLK_DEV_IO_TRACE 936 mutex_init(&q->blk_trace_mutex); 937 #endif 938 mutex_init(&q->sysfs_lock); 939 spin_lock_init(&q->__queue_lock); 940 941 /* 942 * By default initialize queue_lock to internal lock and driver can 943 * override it later if need be. 944 */ 945 q->queue_lock = &q->__queue_lock; 946 947 /* 948 * A queue starts its life with bypass turned on to avoid 949 * unnecessary bypass on/off overhead and nasty surprises during 950 * init. The initial bypass will be finished when the queue is 951 * registered by blk_register_queue(). 952 */ 953 q->bypass_depth = 1; 954 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 955 956 init_waitqueue_head(&q->mq_freeze_wq); 957 958 /* 959 * Init percpu_ref in atomic mode so that it's faster to shutdown. 960 * See blk_register_queue() for details. 961 */ 962 if (percpu_ref_init(&q->q_usage_counter, 963 blk_queue_usage_counter_release, 964 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 965 goto fail_bdi; 966 967 if (blkcg_init_queue(q)) 968 goto fail_ref; 969 970 return q; 971 972 fail_ref: 973 percpu_ref_exit(&q->q_usage_counter); 974 fail_bdi: 975 blk_free_queue_stats(q->stats); 976 fail_stats: 977 bdi_put(q->backing_dev_info); 978 fail_split: 979 bioset_free(q->bio_split); 980 fail_id: 981 ida_simple_remove(&blk_queue_ida, q->id); 982 fail_q: 983 kmem_cache_free(blk_requestq_cachep, q); 984 return NULL; 985 } 986 EXPORT_SYMBOL(blk_alloc_queue_node); 987 988 /** 989 * blk_init_queue - prepare a request queue for use with a block device 990 * @rfn: The function to be called to process requests that have been 991 * placed on the queue. 992 * @lock: Request queue spin lock 993 * 994 * Description: 995 * If a block device wishes to use the standard request handling procedures, 996 * which sorts requests and coalesces adjacent requests, then it must 997 * call blk_init_queue(). The function @rfn will be called when there 998 * are requests on the queue that need to be processed. If the device 999 * supports plugging, then @rfn may not be called immediately when requests 1000 * are available on the queue, but may be called at some time later instead. 1001 * Plugged queues are generally unplugged when a buffer belonging to one 1002 * of the requests on the queue is needed, or due to memory pressure. 1003 * 1004 * @rfn is not required, or even expected, to remove all requests off the 1005 * queue, but only as many as it can handle at a time. If it does leave 1006 * requests on the queue, it is responsible for arranging that the requests 1007 * get dealt with eventually. 1008 * 1009 * The queue spin lock must be held while manipulating the requests on the 1010 * request queue; this lock will be taken also from interrupt context, so irq 1011 * disabling is needed for it. 1012 * 1013 * Function returns a pointer to the initialized request queue, or %NULL if 1014 * it didn't succeed. 1015 * 1016 * Note: 1017 * blk_init_queue() must be paired with a blk_cleanup_queue() call 1018 * when the block device is deactivated (such as at module unload). 1019 **/ 1020 1021 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 1022 { 1023 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 1024 } 1025 EXPORT_SYMBOL(blk_init_queue); 1026 1027 struct request_queue * 1028 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 1029 { 1030 struct request_queue *q; 1031 1032 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 1033 if (!q) 1034 return NULL; 1035 1036 q->request_fn = rfn; 1037 if (lock) 1038 q->queue_lock = lock; 1039 if (blk_init_allocated_queue(q) < 0) { 1040 blk_cleanup_queue(q); 1041 return NULL; 1042 } 1043 1044 return q; 1045 } 1046 EXPORT_SYMBOL(blk_init_queue_node); 1047 1048 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 1049 1050 1051 int blk_init_allocated_queue(struct request_queue *q) 1052 { 1053 WARN_ON_ONCE(q->mq_ops); 1054 1055 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 1056 if (!q->fq) 1057 return -ENOMEM; 1058 1059 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 1060 goto out_free_flush_queue; 1061 1062 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 1063 goto out_exit_flush_rq; 1064 1065 INIT_WORK(&q->timeout_work, blk_timeout_work); 1066 q->queue_flags |= QUEUE_FLAG_DEFAULT; 1067 1068 /* 1069 * This also sets hw/phys segments, boundary and size 1070 */ 1071 blk_queue_make_request(q, blk_queue_bio); 1072 1073 q->sg_reserved_size = INT_MAX; 1074 1075 /* Protect q->elevator from elevator_change */ 1076 mutex_lock(&q->sysfs_lock); 1077 1078 /* init elevator */ 1079 if (elevator_init(q, NULL)) { 1080 mutex_unlock(&q->sysfs_lock); 1081 goto out_exit_flush_rq; 1082 } 1083 1084 mutex_unlock(&q->sysfs_lock); 1085 return 0; 1086 1087 out_exit_flush_rq: 1088 if (q->exit_rq_fn) 1089 q->exit_rq_fn(q, q->fq->flush_rq); 1090 out_free_flush_queue: 1091 blk_free_flush_queue(q->fq); 1092 return -ENOMEM; 1093 } 1094 EXPORT_SYMBOL(blk_init_allocated_queue); 1095 1096 bool blk_get_queue(struct request_queue *q) 1097 { 1098 if (likely(!blk_queue_dying(q))) { 1099 __blk_get_queue(q); 1100 return true; 1101 } 1102 1103 return false; 1104 } 1105 EXPORT_SYMBOL(blk_get_queue); 1106 1107 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1108 { 1109 if (rq->rq_flags & RQF_ELVPRIV) { 1110 elv_put_request(rl->q, rq); 1111 if (rq->elv.icq) 1112 put_io_context(rq->elv.icq->ioc); 1113 } 1114 1115 mempool_free(rq, rl->rq_pool); 1116 } 1117 1118 /* 1119 * ioc_batching returns true if the ioc is a valid batching request and 1120 * should be given priority access to a request. 1121 */ 1122 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1123 { 1124 if (!ioc) 1125 return 0; 1126 1127 /* 1128 * Make sure the process is able to allocate at least 1 request 1129 * even if the batch times out, otherwise we could theoretically 1130 * lose wakeups. 1131 */ 1132 return ioc->nr_batch_requests == q->nr_batching || 1133 (ioc->nr_batch_requests > 0 1134 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1135 } 1136 1137 /* 1138 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1139 * will cause the process to be a "batcher" on all queues in the system. This 1140 * is the behaviour we want though - once it gets a wakeup it should be given 1141 * a nice run. 1142 */ 1143 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1144 { 1145 if (!ioc || ioc_batching(q, ioc)) 1146 return; 1147 1148 ioc->nr_batch_requests = q->nr_batching; 1149 ioc->last_waited = jiffies; 1150 } 1151 1152 static void __freed_request(struct request_list *rl, int sync) 1153 { 1154 struct request_queue *q = rl->q; 1155 1156 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1157 blk_clear_congested(rl, sync); 1158 1159 if (rl->count[sync] + 1 <= q->nr_requests) { 1160 if (waitqueue_active(&rl->wait[sync])) 1161 wake_up(&rl->wait[sync]); 1162 1163 blk_clear_rl_full(rl, sync); 1164 } 1165 } 1166 1167 /* 1168 * A request has just been released. Account for it, update the full and 1169 * congestion status, wake up any waiters. Called under q->queue_lock. 1170 */ 1171 static void freed_request(struct request_list *rl, bool sync, 1172 req_flags_t rq_flags) 1173 { 1174 struct request_queue *q = rl->q; 1175 1176 q->nr_rqs[sync]--; 1177 rl->count[sync]--; 1178 if (rq_flags & RQF_ELVPRIV) 1179 q->nr_rqs_elvpriv--; 1180 1181 __freed_request(rl, sync); 1182 1183 if (unlikely(rl->starved[sync ^ 1])) 1184 __freed_request(rl, sync ^ 1); 1185 } 1186 1187 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1188 { 1189 struct request_list *rl; 1190 int on_thresh, off_thresh; 1191 1192 WARN_ON_ONCE(q->mq_ops); 1193 1194 spin_lock_irq(q->queue_lock); 1195 q->nr_requests = nr; 1196 blk_queue_congestion_threshold(q); 1197 on_thresh = queue_congestion_on_threshold(q); 1198 off_thresh = queue_congestion_off_threshold(q); 1199 1200 blk_queue_for_each_rl(rl, q) { 1201 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1202 blk_set_congested(rl, BLK_RW_SYNC); 1203 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1204 blk_clear_congested(rl, BLK_RW_SYNC); 1205 1206 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1207 blk_set_congested(rl, BLK_RW_ASYNC); 1208 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1209 blk_clear_congested(rl, BLK_RW_ASYNC); 1210 1211 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1212 blk_set_rl_full(rl, BLK_RW_SYNC); 1213 } else { 1214 blk_clear_rl_full(rl, BLK_RW_SYNC); 1215 wake_up(&rl->wait[BLK_RW_SYNC]); 1216 } 1217 1218 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1219 blk_set_rl_full(rl, BLK_RW_ASYNC); 1220 } else { 1221 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1222 wake_up(&rl->wait[BLK_RW_ASYNC]); 1223 } 1224 } 1225 1226 spin_unlock_irq(q->queue_lock); 1227 return 0; 1228 } 1229 1230 /** 1231 * __get_request - get a free request 1232 * @rl: request list to allocate from 1233 * @op: operation and flags 1234 * @bio: bio to allocate request for (can be %NULL) 1235 * @flags: BLQ_MQ_REQ_* flags 1236 * 1237 * Get a free request from @q. This function may fail under memory 1238 * pressure or if @q is dead. 1239 * 1240 * Must be called with @q->queue_lock held and, 1241 * Returns ERR_PTR on failure, with @q->queue_lock held. 1242 * Returns request pointer on success, with @q->queue_lock *not held*. 1243 */ 1244 static struct request *__get_request(struct request_list *rl, unsigned int op, 1245 struct bio *bio, blk_mq_req_flags_t flags) 1246 { 1247 struct request_queue *q = rl->q; 1248 struct request *rq; 1249 struct elevator_type *et = q->elevator->type; 1250 struct io_context *ioc = rq_ioc(bio); 1251 struct io_cq *icq = NULL; 1252 const bool is_sync = op_is_sync(op); 1253 int may_queue; 1254 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : 1255 __GFP_DIRECT_RECLAIM; 1256 req_flags_t rq_flags = RQF_ALLOCED; 1257 1258 lockdep_assert_held(q->queue_lock); 1259 1260 if (unlikely(blk_queue_dying(q))) 1261 return ERR_PTR(-ENODEV); 1262 1263 may_queue = elv_may_queue(q, op); 1264 if (may_queue == ELV_MQUEUE_NO) 1265 goto rq_starved; 1266 1267 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1268 if (rl->count[is_sync]+1 >= q->nr_requests) { 1269 /* 1270 * The queue will fill after this allocation, so set 1271 * it as full, and mark this process as "batching". 1272 * This process will be allowed to complete a batch of 1273 * requests, others will be blocked. 1274 */ 1275 if (!blk_rl_full(rl, is_sync)) { 1276 ioc_set_batching(q, ioc); 1277 blk_set_rl_full(rl, is_sync); 1278 } else { 1279 if (may_queue != ELV_MQUEUE_MUST 1280 && !ioc_batching(q, ioc)) { 1281 /* 1282 * The queue is full and the allocating 1283 * process is not a "batcher", and not 1284 * exempted by the IO scheduler 1285 */ 1286 return ERR_PTR(-ENOMEM); 1287 } 1288 } 1289 } 1290 blk_set_congested(rl, is_sync); 1291 } 1292 1293 /* 1294 * Only allow batching queuers to allocate up to 50% over the defined 1295 * limit of requests, otherwise we could have thousands of requests 1296 * allocated with any setting of ->nr_requests 1297 */ 1298 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1299 return ERR_PTR(-ENOMEM); 1300 1301 q->nr_rqs[is_sync]++; 1302 rl->count[is_sync]++; 1303 rl->starved[is_sync] = 0; 1304 1305 /* 1306 * Decide whether the new request will be managed by elevator. If 1307 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1308 * prevent the current elevator from being destroyed until the new 1309 * request is freed. This guarantees icq's won't be destroyed and 1310 * makes creating new ones safe. 1311 * 1312 * Flush requests do not use the elevator so skip initialization. 1313 * This allows a request to share the flush and elevator data. 1314 * 1315 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1316 * it will be created after releasing queue_lock. 1317 */ 1318 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1319 rq_flags |= RQF_ELVPRIV; 1320 q->nr_rqs_elvpriv++; 1321 if (et->icq_cache && ioc) 1322 icq = ioc_lookup_icq(ioc, q); 1323 } 1324 1325 if (blk_queue_io_stat(q)) 1326 rq_flags |= RQF_IO_STAT; 1327 spin_unlock_irq(q->queue_lock); 1328 1329 /* allocate and init request */ 1330 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1331 if (!rq) 1332 goto fail_alloc; 1333 1334 blk_rq_init(q, rq); 1335 blk_rq_set_rl(rq, rl); 1336 rq->cmd_flags = op; 1337 rq->rq_flags = rq_flags; 1338 if (flags & BLK_MQ_REQ_PREEMPT) 1339 rq->rq_flags |= RQF_PREEMPT; 1340 1341 /* init elvpriv */ 1342 if (rq_flags & RQF_ELVPRIV) { 1343 if (unlikely(et->icq_cache && !icq)) { 1344 if (ioc) 1345 icq = ioc_create_icq(ioc, q, gfp_mask); 1346 if (!icq) 1347 goto fail_elvpriv; 1348 } 1349 1350 rq->elv.icq = icq; 1351 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1352 goto fail_elvpriv; 1353 1354 /* @rq->elv.icq holds io_context until @rq is freed */ 1355 if (icq) 1356 get_io_context(icq->ioc); 1357 } 1358 out: 1359 /* 1360 * ioc may be NULL here, and ioc_batching will be false. That's 1361 * OK, if the queue is under the request limit then requests need 1362 * not count toward the nr_batch_requests limit. There will always 1363 * be some limit enforced by BLK_BATCH_TIME. 1364 */ 1365 if (ioc_batching(q, ioc)) 1366 ioc->nr_batch_requests--; 1367 1368 trace_block_getrq(q, bio, op); 1369 return rq; 1370 1371 fail_elvpriv: 1372 /* 1373 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1374 * and may fail indefinitely under memory pressure and thus 1375 * shouldn't stall IO. Treat this request as !elvpriv. This will 1376 * disturb iosched and blkcg but weird is bettern than dead. 1377 */ 1378 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1379 __func__, dev_name(q->backing_dev_info->dev)); 1380 1381 rq->rq_flags &= ~RQF_ELVPRIV; 1382 rq->elv.icq = NULL; 1383 1384 spin_lock_irq(q->queue_lock); 1385 q->nr_rqs_elvpriv--; 1386 spin_unlock_irq(q->queue_lock); 1387 goto out; 1388 1389 fail_alloc: 1390 /* 1391 * Allocation failed presumably due to memory. Undo anything we 1392 * might have messed up. 1393 * 1394 * Allocating task should really be put onto the front of the wait 1395 * queue, but this is pretty rare. 1396 */ 1397 spin_lock_irq(q->queue_lock); 1398 freed_request(rl, is_sync, rq_flags); 1399 1400 /* 1401 * in the very unlikely event that allocation failed and no 1402 * requests for this direction was pending, mark us starved so that 1403 * freeing of a request in the other direction will notice 1404 * us. another possible fix would be to split the rq mempool into 1405 * READ and WRITE 1406 */ 1407 rq_starved: 1408 if (unlikely(rl->count[is_sync] == 0)) 1409 rl->starved[is_sync] = 1; 1410 return ERR_PTR(-ENOMEM); 1411 } 1412 1413 /** 1414 * get_request - get a free request 1415 * @q: request_queue to allocate request from 1416 * @op: operation and flags 1417 * @bio: bio to allocate request for (can be %NULL) 1418 * @flags: BLK_MQ_REQ_* flags. 1419 * 1420 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1421 * this function keeps retrying under memory pressure and fails iff @q is dead. 1422 * 1423 * Must be called with @q->queue_lock held and, 1424 * Returns ERR_PTR on failure, with @q->queue_lock held. 1425 * Returns request pointer on success, with @q->queue_lock *not held*. 1426 */ 1427 static struct request *get_request(struct request_queue *q, unsigned int op, 1428 struct bio *bio, blk_mq_req_flags_t flags) 1429 { 1430 const bool is_sync = op_is_sync(op); 1431 DEFINE_WAIT(wait); 1432 struct request_list *rl; 1433 struct request *rq; 1434 1435 lockdep_assert_held(q->queue_lock); 1436 WARN_ON_ONCE(q->mq_ops); 1437 1438 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1439 retry: 1440 rq = __get_request(rl, op, bio, flags); 1441 if (!IS_ERR(rq)) 1442 return rq; 1443 1444 if (op & REQ_NOWAIT) { 1445 blk_put_rl(rl); 1446 return ERR_PTR(-EAGAIN); 1447 } 1448 1449 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) { 1450 blk_put_rl(rl); 1451 return rq; 1452 } 1453 1454 /* wait on @rl and retry */ 1455 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1456 TASK_UNINTERRUPTIBLE); 1457 1458 trace_block_sleeprq(q, bio, op); 1459 1460 spin_unlock_irq(q->queue_lock); 1461 io_schedule(); 1462 1463 /* 1464 * After sleeping, we become a "batching" process and will be able 1465 * to allocate at least one request, and up to a big batch of them 1466 * for a small period time. See ioc_batching, ioc_set_batching 1467 */ 1468 ioc_set_batching(q, current->io_context); 1469 1470 spin_lock_irq(q->queue_lock); 1471 finish_wait(&rl->wait[is_sync], &wait); 1472 1473 goto retry; 1474 } 1475 1476 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */ 1477 static struct request *blk_old_get_request(struct request_queue *q, 1478 unsigned int op, blk_mq_req_flags_t flags) 1479 { 1480 struct request *rq; 1481 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : 1482 __GFP_DIRECT_RECLAIM; 1483 int ret = 0; 1484 1485 WARN_ON_ONCE(q->mq_ops); 1486 1487 /* create ioc upfront */ 1488 create_io_context(gfp_mask, q->node); 1489 1490 ret = blk_queue_enter(q, flags); 1491 if (ret) 1492 return ERR_PTR(ret); 1493 spin_lock_irq(q->queue_lock); 1494 rq = get_request(q, op, NULL, flags); 1495 if (IS_ERR(rq)) { 1496 spin_unlock_irq(q->queue_lock); 1497 blk_queue_exit(q); 1498 return rq; 1499 } 1500 1501 /* q->queue_lock is unlocked at this point */ 1502 rq->__data_len = 0; 1503 rq->__sector = (sector_t) -1; 1504 rq->bio = rq->biotail = NULL; 1505 return rq; 1506 } 1507 1508 /** 1509 * blk_get_request_flags - allocate a request 1510 * @q: request queue to allocate a request for 1511 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 1512 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 1513 */ 1514 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op, 1515 blk_mq_req_flags_t flags) 1516 { 1517 struct request *req; 1518 1519 WARN_ON_ONCE(op & REQ_NOWAIT); 1520 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 1521 1522 if (q->mq_ops) { 1523 req = blk_mq_alloc_request(q, op, flags); 1524 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1525 q->mq_ops->initialize_rq_fn(req); 1526 } else { 1527 req = blk_old_get_request(q, op, flags); 1528 if (!IS_ERR(req) && q->initialize_rq_fn) 1529 q->initialize_rq_fn(req); 1530 } 1531 1532 return req; 1533 } 1534 EXPORT_SYMBOL(blk_get_request_flags); 1535 1536 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1537 gfp_t gfp_mask) 1538 { 1539 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ? 1540 0 : BLK_MQ_REQ_NOWAIT); 1541 } 1542 EXPORT_SYMBOL(blk_get_request); 1543 1544 /** 1545 * blk_requeue_request - put a request back on queue 1546 * @q: request queue where request should be inserted 1547 * @rq: request to be inserted 1548 * 1549 * Description: 1550 * Drivers often keep queueing requests until the hardware cannot accept 1551 * more, when that condition happens we need to put the request back 1552 * on the queue. Must be called with queue lock held. 1553 */ 1554 void blk_requeue_request(struct request_queue *q, struct request *rq) 1555 { 1556 lockdep_assert_held(q->queue_lock); 1557 WARN_ON_ONCE(q->mq_ops); 1558 1559 blk_delete_timer(rq); 1560 blk_clear_rq_complete(rq); 1561 trace_block_rq_requeue(q, rq); 1562 wbt_requeue(q->rq_wb, &rq->issue_stat); 1563 1564 if (rq->rq_flags & RQF_QUEUED) 1565 blk_queue_end_tag(q, rq); 1566 1567 BUG_ON(blk_queued_rq(rq)); 1568 1569 elv_requeue_request(q, rq); 1570 } 1571 EXPORT_SYMBOL(blk_requeue_request); 1572 1573 static void add_acct_request(struct request_queue *q, struct request *rq, 1574 int where) 1575 { 1576 blk_account_io_start(rq, true); 1577 __elv_add_request(q, rq, where); 1578 } 1579 1580 static void part_round_stats_single(struct request_queue *q, int cpu, 1581 struct hd_struct *part, unsigned long now, 1582 unsigned int inflight) 1583 { 1584 if (inflight) { 1585 __part_stat_add(cpu, part, time_in_queue, 1586 inflight * (now - part->stamp)); 1587 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1588 } 1589 part->stamp = now; 1590 } 1591 1592 /** 1593 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1594 * @q: target block queue 1595 * @cpu: cpu number for stats access 1596 * @part: target partition 1597 * 1598 * The average IO queue length and utilisation statistics are maintained 1599 * by observing the current state of the queue length and the amount of 1600 * time it has been in this state for. 1601 * 1602 * Normally, that accounting is done on IO completion, but that can result 1603 * in more than a second's worth of IO being accounted for within any one 1604 * second, leading to >100% utilisation. To deal with that, we call this 1605 * function to do a round-off before returning the results when reading 1606 * /proc/diskstats. This accounts immediately for all queue usage up to 1607 * the current jiffies and restarts the counters again. 1608 */ 1609 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1610 { 1611 struct hd_struct *part2 = NULL; 1612 unsigned long now = jiffies; 1613 unsigned int inflight[2]; 1614 int stats = 0; 1615 1616 if (part->stamp != now) 1617 stats |= 1; 1618 1619 if (part->partno) { 1620 part2 = &part_to_disk(part)->part0; 1621 if (part2->stamp != now) 1622 stats |= 2; 1623 } 1624 1625 if (!stats) 1626 return; 1627 1628 part_in_flight(q, part, inflight); 1629 1630 if (stats & 2) 1631 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1632 if (stats & 1) 1633 part_round_stats_single(q, cpu, part, now, inflight[0]); 1634 } 1635 EXPORT_SYMBOL_GPL(part_round_stats); 1636 1637 #ifdef CONFIG_PM 1638 static void blk_pm_put_request(struct request *rq) 1639 { 1640 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1641 pm_runtime_mark_last_busy(rq->q->dev); 1642 } 1643 #else 1644 static inline void blk_pm_put_request(struct request *rq) {} 1645 #endif 1646 1647 void __blk_put_request(struct request_queue *q, struct request *req) 1648 { 1649 req_flags_t rq_flags = req->rq_flags; 1650 1651 if (unlikely(!q)) 1652 return; 1653 1654 if (q->mq_ops) { 1655 blk_mq_free_request(req); 1656 return; 1657 } 1658 1659 lockdep_assert_held(q->queue_lock); 1660 1661 blk_req_zone_write_unlock(req); 1662 blk_pm_put_request(req); 1663 1664 elv_completed_request(q, req); 1665 1666 /* this is a bio leak */ 1667 WARN_ON(req->bio != NULL); 1668 1669 wbt_done(q->rq_wb, &req->issue_stat); 1670 1671 /* 1672 * Request may not have originated from ll_rw_blk. if not, 1673 * it didn't come out of our reserved rq pools 1674 */ 1675 if (rq_flags & RQF_ALLOCED) { 1676 struct request_list *rl = blk_rq_rl(req); 1677 bool sync = op_is_sync(req->cmd_flags); 1678 1679 BUG_ON(!list_empty(&req->queuelist)); 1680 BUG_ON(ELV_ON_HASH(req)); 1681 1682 blk_free_request(rl, req); 1683 freed_request(rl, sync, rq_flags); 1684 blk_put_rl(rl); 1685 blk_queue_exit(q); 1686 } 1687 } 1688 EXPORT_SYMBOL_GPL(__blk_put_request); 1689 1690 void blk_put_request(struct request *req) 1691 { 1692 struct request_queue *q = req->q; 1693 1694 if (q->mq_ops) 1695 blk_mq_free_request(req); 1696 else { 1697 unsigned long flags; 1698 1699 spin_lock_irqsave(q->queue_lock, flags); 1700 __blk_put_request(q, req); 1701 spin_unlock_irqrestore(q->queue_lock, flags); 1702 } 1703 } 1704 EXPORT_SYMBOL(blk_put_request); 1705 1706 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1707 struct bio *bio) 1708 { 1709 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1710 1711 if (!ll_back_merge_fn(q, req, bio)) 1712 return false; 1713 1714 trace_block_bio_backmerge(q, req, bio); 1715 1716 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1717 blk_rq_set_mixed_merge(req); 1718 1719 req->biotail->bi_next = bio; 1720 req->biotail = bio; 1721 req->__data_len += bio->bi_iter.bi_size; 1722 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1723 1724 blk_account_io_start(req, false); 1725 return true; 1726 } 1727 1728 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1729 struct bio *bio) 1730 { 1731 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1732 1733 if (!ll_front_merge_fn(q, req, bio)) 1734 return false; 1735 1736 trace_block_bio_frontmerge(q, req, bio); 1737 1738 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1739 blk_rq_set_mixed_merge(req); 1740 1741 bio->bi_next = req->bio; 1742 req->bio = bio; 1743 1744 req->__sector = bio->bi_iter.bi_sector; 1745 req->__data_len += bio->bi_iter.bi_size; 1746 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1747 1748 blk_account_io_start(req, false); 1749 return true; 1750 } 1751 1752 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1753 struct bio *bio) 1754 { 1755 unsigned short segments = blk_rq_nr_discard_segments(req); 1756 1757 if (segments >= queue_max_discard_segments(q)) 1758 goto no_merge; 1759 if (blk_rq_sectors(req) + bio_sectors(bio) > 1760 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1761 goto no_merge; 1762 1763 req->biotail->bi_next = bio; 1764 req->biotail = bio; 1765 req->__data_len += bio->bi_iter.bi_size; 1766 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1767 req->nr_phys_segments = segments + 1; 1768 1769 blk_account_io_start(req, false); 1770 return true; 1771 no_merge: 1772 req_set_nomerge(q, req); 1773 return false; 1774 } 1775 1776 /** 1777 * blk_attempt_plug_merge - try to merge with %current's plugged list 1778 * @q: request_queue new bio is being queued at 1779 * @bio: new bio being queued 1780 * @request_count: out parameter for number of traversed plugged requests 1781 * @same_queue_rq: pointer to &struct request that gets filled in when 1782 * another request associated with @q is found on the plug list 1783 * (optional, may be %NULL) 1784 * 1785 * Determine whether @bio being queued on @q can be merged with a request 1786 * on %current's plugged list. Returns %true if merge was successful, 1787 * otherwise %false. 1788 * 1789 * Plugging coalesces IOs from the same issuer for the same purpose without 1790 * going through @q->queue_lock. As such it's more of an issuing mechanism 1791 * than scheduling, and the request, while may have elvpriv data, is not 1792 * added on the elevator at this point. In addition, we don't have 1793 * reliable access to the elevator outside queue lock. Only check basic 1794 * merging parameters without querying the elevator. 1795 * 1796 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1797 */ 1798 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1799 unsigned int *request_count, 1800 struct request **same_queue_rq) 1801 { 1802 struct blk_plug *plug; 1803 struct request *rq; 1804 struct list_head *plug_list; 1805 1806 plug = current->plug; 1807 if (!plug) 1808 return false; 1809 *request_count = 0; 1810 1811 if (q->mq_ops) 1812 plug_list = &plug->mq_list; 1813 else 1814 plug_list = &plug->list; 1815 1816 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1817 bool merged = false; 1818 1819 if (rq->q == q) { 1820 (*request_count)++; 1821 /* 1822 * Only blk-mq multiple hardware queues case checks the 1823 * rq in the same queue, there should be only one such 1824 * rq in a queue 1825 **/ 1826 if (same_queue_rq) 1827 *same_queue_rq = rq; 1828 } 1829 1830 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1831 continue; 1832 1833 switch (blk_try_merge(rq, bio)) { 1834 case ELEVATOR_BACK_MERGE: 1835 merged = bio_attempt_back_merge(q, rq, bio); 1836 break; 1837 case ELEVATOR_FRONT_MERGE: 1838 merged = bio_attempt_front_merge(q, rq, bio); 1839 break; 1840 case ELEVATOR_DISCARD_MERGE: 1841 merged = bio_attempt_discard_merge(q, rq, bio); 1842 break; 1843 default: 1844 break; 1845 } 1846 1847 if (merged) 1848 return true; 1849 } 1850 1851 return false; 1852 } 1853 1854 unsigned int blk_plug_queued_count(struct request_queue *q) 1855 { 1856 struct blk_plug *plug; 1857 struct request *rq; 1858 struct list_head *plug_list; 1859 unsigned int ret = 0; 1860 1861 plug = current->plug; 1862 if (!plug) 1863 goto out; 1864 1865 if (q->mq_ops) 1866 plug_list = &plug->mq_list; 1867 else 1868 plug_list = &plug->list; 1869 1870 list_for_each_entry(rq, plug_list, queuelist) { 1871 if (rq->q == q) 1872 ret++; 1873 } 1874 out: 1875 return ret; 1876 } 1877 1878 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1879 { 1880 struct io_context *ioc = rq_ioc(bio); 1881 1882 if (bio->bi_opf & REQ_RAHEAD) 1883 req->cmd_flags |= REQ_FAILFAST_MASK; 1884 1885 req->__sector = bio->bi_iter.bi_sector; 1886 if (ioprio_valid(bio_prio(bio))) 1887 req->ioprio = bio_prio(bio); 1888 else if (ioc) 1889 req->ioprio = ioc->ioprio; 1890 else 1891 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1892 req->write_hint = bio->bi_write_hint; 1893 blk_rq_bio_prep(req->q, req, bio); 1894 } 1895 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1896 1897 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1898 { 1899 struct blk_plug *plug; 1900 int where = ELEVATOR_INSERT_SORT; 1901 struct request *req, *free; 1902 unsigned int request_count = 0; 1903 unsigned int wb_acct; 1904 1905 /* 1906 * low level driver can indicate that it wants pages above a 1907 * certain limit bounced to low memory (ie for highmem, or even 1908 * ISA dma in theory) 1909 */ 1910 blk_queue_bounce(q, &bio); 1911 1912 blk_queue_split(q, &bio); 1913 1914 if (!bio_integrity_prep(bio)) 1915 return BLK_QC_T_NONE; 1916 1917 if (op_is_flush(bio->bi_opf)) { 1918 spin_lock_irq(q->queue_lock); 1919 where = ELEVATOR_INSERT_FLUSH; 1920 goto get_rq; 1921 } 1922 1923 /* 1924 * Check if we can merge with the plugged list before grabbing 1925 * any locks. 1926 */ 1927 if (!blk_queue_nomerges(q)) { 1928 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1929 return BLK_QC_T_NONE; 1930 } else 1931 request_count = blk_plug_queued_count(q); 1932 1933 spin_lock_irq(q->queue_lock); 1934 1935 switch (elv_merge(q, &req, bio)) { 1936 case ELEVATOR_BACK_MERGE: 1937 if (!bio_attempt_back_merge(q, req, bio)) 1938 break; 1939 elv_bio_merged(q, req, bio); 1940 free = attempt_back_merge(q, req); 1941 if (free) 1942 __blk_put_request(q, free); 1943 else 1944 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1945 goto out_unlock; 1946 case ELEVATOR_FRONT_MERGE: 1947 if (!bio_attempt_front_merge(q, req, bio)) 1948 break; 1949 elv_bio_merged(q, req, bio); 1950 free = attempt_front_merge(q, req); 1951 if (free) 1952 __blk_put_request(q, free); 1953 else 1954 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1955 goto out_unlock; 1956 default: 1957 break; 1958 } 1959 1960 get_rq: 1961 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1962 1963 /* 1964 * Grab a free request. This is might sleep but can not fail. 1965 * Returns with the queue unlocked. 1966 */ 1967 blk_queue_enter_live(q); 1968 req = get_request(q, bio->bi_opf, bio, 0); 1969 if (IS_ERR(req)) { 1970 blk_queue_exit(q); 1971 __wbt_done(q->rq_wb, wb_acct); 1972 if (PTR_ERR(req) == -ENOMEM) 1973 bio->bi_status = BLK_STS_RESOURCE; 1974 else 1975 bio->bi_status = BLK_STS_IOERR; 1976 bio_endio(bio); 1977 goto out_unlock; 1978 } 1979 1980 wbt_track(&req->issue_stat, wb_acct); 1981 1982 /* 1983 * After dropping the lock and possibly sleeping here, our request 1984 * may now be mergeable after it had proven unmergeable (above). 1985 * We don't worry about that case for efficiency. It won't happen 1986 * often, and the elevators are able to handle it. 1987 */ 1988 blk_init_request_from_bio(req, bio); 1989 1990 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1991 req->cpu = raw_smp_processor_id(); 1992 1993 plug = current->plug; 1994 if (plug) { 1995 /* 1996 * If this is the first request added after a plug, fire 1997 * of a plug trace. 1998 * 1999 * @request_count may become stale because of schedule 2000 * out, so check plug list again. 2001 */ 2002 if (!request_count || list_empty(&plug->list)) 2003 trace_block_plug(q); 2004 else { 2005 struct request *last = list_entry_rq(plug->list.prev); 2006 if (request_count >= BLK_MAX_REQUEST_COUNT || 2007 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 2008 blk_flush_plug_list(plug, false); 2009 trace_block_plug(q); 2010 } 2011 } 2012 list_add_tail(&req->queuelist, &plug->list); 2013 blk_account_io_start(req, true); 2014 } else { 2015 spin_lock_irq(q->queue_lock); 2016 add_acct_request(q, req, where); 2017 __blk_run_queue(q); 2018 out_unlock: 2019 spin_unlock_irq(q->queue_lock); 2020 } 2021 2022 return BLK_QC_T_NONE; 2023 } 2024 2025 static void handle_bad_sector(struct bio *bio) 2026 { 2027 char b[BDEVNAME_SIZE]; 2028 2029 printk(KERN_INFO "attempt to access beyond end of device\n"); 2030 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 2031 bio_devname(bio, b), bio->bi_opf, 2032 (unsigned long long)bio_end_sector(bio), 2033 (long long)get_capacity(bio->bi_disk)); 2034 } 2035 2036 #ifdef CONFIG_FAIL_MAKE_REQUEST 2037 2038 static DECLARE_FAULT_ATTR(fail_make_request); 2039 2040 static int __init setup_fail_make_request(char *str) 2041 { 2042 return setup_fault_attr(&fail_make_request, str); 2043 } 2044 __setup("fail_make_request=", setup_fail_make_request); 2045 2046 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 2047 { 2048 return part->make_it_fail && should_fail(&fail_make_request, bytes); 2049 } 2050 2051 static int __init fail_make_request_debugfs(void) 2052 { 2053 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 2054 NULL, &fail_make_request); 2055 2056 return PTR_ERR_OR_ZERO(dir); 2057 } 2058 2059 late_initcall(fail_make_request_debugfs); 2060 2061 #else /* CONFIG_FAIL_MAKE_REQUEST */ 2062 2063 static inline bool should_fail_request(struct hd_struct *part, 2064 unsigned int bytes) 2065 { 2066 return false; 2067 } 2068 2069 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 2070 2071 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 2072 { 2073 if (part->policy && op_is_write(bio_op(bio))) { 2074 char b[BDEVNAME_SIZE]; 2075 2076 printk(KERN_ERR 2077 "generic_make_request: Trying to write " 2078 "to read-only block-device %s (partno %d)\n", 2079 bio_devname(bio, b), part->partno); 2080 return true; 2081 } 2082 2083 return false; 2084 } 2085 2086 /* 2087 * Remap block n of partition p to block n+start(p) of the disk. 2088 */ 2089 static inline int blk_partition_remap(struct bio *bio) 2090 { 2091 struct hd_struct *p; 2092 int ret = 0; 2093 2094 rcu_read_lock(); 2095 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 2096 if (unlikely(!p || should_fail_request(p, bio->bi_iter.bi_size) || 2097 bio_check_ro(bio, p))) { 2098 ret = -EIO; 2099 goto out; 2100 } 2101 2102 /* 2103 * Zone reset does not include bi_size so bio_sectors() is always 0. 2104 * Include a test for the reset op code and perform the remap if needed. 2105 */ 2106 if (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET) 2107 goto out; 2108 2109 bio->bi_iter.bi_sector += p->start_sect; 2110 bio->bi_partno = 0; 2111 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 2112 bio->bi_iter.bi_sector - p->start_sect); 2113 2114 out: 2115 rcu_read_unlock(); 2116 return ret; 2117 } 2118 2119 /* 2120 * Check whether this bio extends beyond the end of the device. 2121 */ 2122 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 2123 { 2124 sector_t maxsector; 2125 2126 if (!nr_sectors) 2127 return 0; 2128 2129 /* Test device or partition size, when known. */ 2130 maxsector = get_capacity(bio->bi_disk); 2131 if (maxsector) { 2132 sector_t sector = bio->bi_iter.bi_sector; 2133 2134 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 2135 /* 2136 * This may well happen - the kernel calls bread() 2137 * without checking the size of the device, e.g., when 2138 * mounting a device. 2139 */ 2140 handle_bad_sector(bio); 2141 return 1; 2142 } 2143 } 2144 2145 return 0; 2146 } 2147 2148 static noinline_for_stack bool 2149 generic_make_request_checks(struct bio *bio) 2150 { 2151 struct request_queue *q; 2152 int nr_sectors = bio_sectors(bio); 2153 blk_status_t status = BLK_STS_IOERR; 2154 char b[BDEVNAME_SIZE]; 2155 2156 might_sleep(); 2157 2158 if (bio_check_eod(bio, nr_sectors)) 2159 goto end_io; 2160 2161 q = bio->bi_disk->queue; 2162 if (unlikely(!q)) { 2163 printk(KERN_ERR 2164 "generic_make_request: Trying to access " 2165 "nonexistent block-device %s (%Lu)\n", 2166 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2167 goto end_io; 2168 } 2169 2170 /* 2171 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2172 * if queue is not a request based queue. 2173 */ 2174 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2175 goto not_supported; 2176 2177 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2178 goto end_io; 2179 2180 if (!bio->bi_partno) { 2181 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 2182 goto end_io; 2183 } else { 2184 if (blk_partition_remap(bio)) 2185 goto end_io; 2186 } 2187 2188 if (bio_check_eod(bio, nr_sectors)) 2189 goto end_io; 2190 2191 /* 2192 * Filter flush bio's early so that make_request based 2193 * drivers without flush support don't have to worry 2194 * about them. 2195 */ 2196 if (op_is_flush(bio->bi_opf) && 2197 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2198 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2199 if (!nr_sectors) { 2200 status = BLK_STS_OK; 2201 goto end_io; 2202 } 2203 } 2204 2205 switch (bio_op(bio)) { 2206 case REQ_OP_DISCARD: 2207 if (!blk_queue_discard(q)) 2208 goto not_supported; 2209 break; 2210 case REQ_OP_SECURE_ERASE: 2211 if (!blk_queue_secure_erase(q)) 2212 goto not_supported; 2213 break; 2214 case REQ_OP_WRITE_SAME: 2215 if (!q->limits.max_write_same_sectors) 2216 goto not_supported; 2217 break; 2218 case REQ_OP_ZONE_REPORT: 2219 case REQ_OP_ZONE_RESET: 2220 if (!blk_queue_is_zoned(q)) 2221 goto not_supported; 2222 break; 2223 case REQ_OP_WRITE_ZEROES: 2224 if (!q->limits.max_write_zeroes_sectors) 2225 goto not_supported; 2226 break; 2227 default: 2228 break; 2229 } 2230 2231 /* 2232 * Various block parts want %current->io_context and lazy ioc 2233 * allocation ends up trading a lot of pain for a small amount of 2234 * memory. Just allocate it upfront. This may fail and block 2235 * layer knows how to live with it. 2236 */ 2237 create_io_context(GFP_ATOMIC, q->node); 2238 2239 if (!blkcg_bio_issue_check(q, bio)) 2240 return false; 2241 2242 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2243 trace_block_bio_queue(q, bio); 2244 /* Now that enqueuing has been traced, we need to trace 2245 * completion as well. 2246 */ 2247 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2248 } 2249 return true; 2250 2251 not_supported: 2252 status = BLK_STS_NOTSUPP; 2253 end_io: 2254 bio->bi_status = status; 2255 bio_endio(bio); 2256 return false; 2257 } 2258 2259 /** 2260 * generic_make_request - hand a buffer to its device driver for I/O 2261 * @bio: The bio describing the location in memory and on the device. 2262 * 2263 * generic_make_request() is used to make I/O requests of block 2264 * devices. It is passed a &struct bio, which describes the I/O that needs 2265 * to be done. 2266 * 2267 * generic_make_request() does not return any status. The 2268 * success/failure status of the request, along with notification of 2269 * completion, is delivered asynchronously through the bio->bi_end_io 2270 * function described (one day) else where. 2271 * 2272 * The caller of generic_make_request must make sure that bi_io_vec 2273 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2274 * set to describe the device address, and the 2275 * bi_end_io and optionally bi_private are set to describe how 2276 * completion notification should be signaled. 2277 * 2278 * generic_make_request and the drivers it calls may use bi_next if this 2279 * bio happens to be merged with someone else, and may resubmit the bio to 2280 * a lower device by calling into generic_make_request recursively, which 2281 * means the bio should NOT be touched after the call to ->make_request_fn. 2282 */ 2283 blk_qc_t generic_make_request(struct bio *bio) 2284 { 2285 /* 2286 * bio_list_on_stack[0] contains bios submitted by the current 2287 * make_request_fn. 2288 * bio_list_on_stack[1] contains bios that were submitted before 2289 * the current make_request_fn, but that haven't been processed 2290 * yet. 2291 */ 2292 struct bio_list bio_list_on_stack[2]; 2293 blk_qc_t ret = BLK_QC_T_NONE; 2294 2295 if (!generic_make_request_checks(bio)) 2296 goto out; 2297 2298 /* 2299 * We only want one ->make_request_fn to be active at a time, else 2300 * stack usage with stacked devices could be a problem. So use 2301 * current->bio_list to keep a list of requests submited by a 2302 * make_request_fn function. current->bio_list is also used as a 2303 * flag to say if generic_make_request is currently active in this 2304 * task or not. If it is NULL, then no make_request is active. If 2305 * it is non-NULL, then a make_request is active, and new requests 2306 * should be added at the tail 2307 */ 2308 if (current->bio_list) { 2309 bio_list_add(¤t->bio_list[0], bio); 2310 goto out; 2311 } 2312 2313 /* following loop may be a bit non-obvious, and so deserves some 2314 * explanation. 2315 * Before entering the loop, bio->bi_next is NULL (as all callers 2316 * ensure that) so we have a list with a single bio. 2317 * We pretend that we have just taken it off a longer list, so 2318 * we assign bio_list to a pointer to the bio_list_on_stack, 2319 * thus initialising the bio_list of new bios to be 2320 * added. ->make_request() may indeed add some more bios 2321 * through a recursive call to generic_make_request. If it 2322 * did, we find a non-NULL value in bio_list and re-enter the loop 2323 * from the top. In this case we really did just take the bio 2324 * of the top of the list (no pretending) and so remove it from 2325 * bio_list, and call into ->make_request() again. 2326 */ 2327 BUG_ON(bio->bi_next); 2328 bio_list_init(&bio_list_on_stack[0]); 2329 current->bio_list = bio_list_on_stack; 2330 do { 2331 struct request_queue *q = bio->bi_disk->queue; 2332 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ? 2333 BLK_MQ_REQ_NOWAIT : 0; 2334 2335 if (likely(blk_queue_enter(q, flags) == 0)) { 2336 struct bio_list lower, same; 2337 2338 /* Create a fresh bio_list for all subordinate requests */ 2339 bio_list_on_stack[1] = bio_list_on_stack[0]; 2340 bio_list_init(&bio_list_on_stack[0]); 2341 ret = q->make_request_fn(q, bio); 2342 2343 blk_queue_exit(q); 2344 2345 /* sort new bios into those for a lower level 2346 * and those for the same level 2347 */ 2348 bio_list_init(&lower); 2349 bio_list_init(&same); 2350 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2351 if (q == bio->bi_disk->queue) 2352 bio_list_add(&same, bio); 2353 else 2354 bio_list_add(&lower, bio); 2355 /* now assemble so we handle the lowest level first */ 2356 bio_list_merge(&bio_list_on_stack[0], &lower); 2357 bio_list_merge(&bio_list_on_stack[0], &same); 2358 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2359 } else { 2360 if (unlikely(!blk_queue_dying(q) && 2361 (bio->bi_opf & REQ_NOWAIT))) 2362 bio_wouldblock_error(bio); 2363 else 2364 bio_io_error(bio); 2365 } 2366 bio = bio_list_pop(&bio_list_on_stack[0]); 2367 } while (bio); 2368 current->bio_list = NULL; /* deactivate */ 2369 2370 out: 2371 return ret; 2372 } 2373 EXPORT_SYMBOL(generic_make_request); 2374 2375 /** 2376 * direct_make_request - hand a buffer directly to its device driver for I/O 2377 * @bio: The bio describing the location in memory and on the device. 2378 * 2379 * This function behaves like generic_make_request(), but does not protect 2380 * against recursion. Must only be used if the called driver is known 2381 * to not call generic_make_request (or direct_make_request) again from 2382 * its make_request function. (Calling direct_make_request again from 2383 * a workqueue is perfectly fine as that doesn't recurse). 2384 */ 2385 blk_qc_t direct_make_request(struct bio *bio) 2386 { 2387 struct request_queue *q = bio->bi_disk->queue; 2388 bool nowait = bio->bi_opf & REQ_NOWAIT; 2389 blk_qc_t ret; 2390 2391 if (!generic_make_request_checks(bio)) 2392 return BLK_QC_T_NONE; 2393 2394 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 2395 if (nowait && !blk_queue_dying(q)) 2396 bio->bi_status = BLK_STS_AGAIN; 2397 else 2398 bio->bi_status = BLK_STS_IOERR; 2399 bio_endio(bio); 2400 return BLK_QC_T_NONE; 2401 } 2402 2403 ret = q->make_request_fn(q, bio); 2404 blk_queue_exit(q); 2405 return ret; 2406 } 2407 EXPORT_SYMBOL_GPL(direct_make_request); 2408 2409 /** 2410 * submit_bio - submit a bio to the block device layer for I/O 2411 * @bio: The &struct bio which describes the I/O 2412 * 2413 * submit_bio() is very similar in purpose to generic_make_request(), and 2414 * uses that function to do most of the work. Both are fairly rough 2415 * interfaces; @bio must be presetup and ready for I/O. 2416 * 2417 */ 2418 blk_qc_t submit_bio(struct bio *bio) 2419 { 2420 /* 2421 * If it's a regular read/write or a barrier with data attached, 2422 * go through the normal accounting stuff before submission. 2423 */ 2424 if (bio_has_data(bio)) { 2425 unsigned int count; 2426 2427 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2428 count = queue_logical_block_size(bio->bi_disk->queue); 2429 else 2430 count = bio_sectors(bio); 2431 2432 if (op_is_write(bio_op(bio))) { 2433 count_vm_events(PGPGOUT, count); 2434 } else { 2435 task_io_account_read(bio->bi_iter.bi_size); 2436 count_vm_events(PGPGIN, count); 2437 } 2438 2439 if (unlikely(block_dump)) { 2440 char b[BDEVNAME_SIZE]; 2441 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2442 current->comm, task_pid_nr(current), 2443 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2444 (unsigned long long)bio->bi_iter.bi_sector, 2445 bio_devname(bio, b), count); 2446 } 2447 } 2448 2449 return generic_make_request(bio); 2450 } 2451 EXPORT_SYMBOL(submit_bio); 2452 2453 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 2454 { 2455 if (!q->poll_fn || !blk_qc_t_valid(cookie)) 2456 return false; 2457 2458 if (current->plug) 2459 blk_flush_plug_list(current->plug, false); 2460 return q->poll_fn(q, cookie); 2461 } 2462 EXPORT_SYMBOL_GPL(blk_poll); 2463 2464 /** 2465 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2466 * for new the queue limits 2467 * @q: the queue 2468 * @rq: the request being checked 2469 * 2470 * Description: 2471 * @rq may have been made based on weaker limitations of upper-level queues 2472 * in request stacking drivers, and it may violate the limitation of @q. 2473 * Since the block layer and the underlying device driver trust @rq 2474 * after it is inserted to @q, it should be checked against @q before 2475 * the insertion using this generic function. 2476 * 2477 * Request stacking drivers like request-based dm may change the queue 2478 * limits when retrying requests on other queues. Those requests need 2479 * to be checked against the new queue limits again during dispatch. 2480 */ 2481 static int blk_cloned_rq_check_limits(struct request_queue *q, 2482 struct request *rq) 2483 { 2484 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2485 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2486 return -EIO; 2487 } 2488 2489 /* 2490 * queue's settings related to segment counting like q->bounce_pfn 2491 * may differ from that of other stacking queues. 2492 * Recalculate it to check the request correctly on this queue's 2493 * limitation. 2494 */ 2495 blk_recalc_rq_segments(rq); 2496 if (rq->nr_phys_segments > queue_max_segments(q)) { 2497 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2498 return -EIO; 2499 } 2500 2501 return 0; 2502 } 2503 2504 /** 2505 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2506 * @q: the queue to submit the request 2507 * @rq: the request being queued 2508 */ 2509 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2510 { 2511 unsigned long flags; 2512 int where = ELEVATOR_INSERT_BACK; 2513 2514 if (blk_cloned_rq_check_limits(q, rq)) 2515 return BLK_STS_IOERR; 2516 2517 if (rq->rq_disk && 2518 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2519 return BLK_STS_IOERR; 2520 2521 if (q->mq_ops) { 2522 if (blk_queue_io_stat(q)) 2523 blk_account_io_start(rq, true); 2524 /* 2525 * Since we have a scheduler attached on the top device, 2526 * bypass a potential scheduler on the bottom device for 2527 * insert. 2528 */ 2529 return blk_mq_request_issue_directly(rq); 2530 } 2531 2532 spin_lock_irqsave(q->queue_lock, flags); 2533 if (unlikely(blk_queue_dying(q))) { 2534 spin_unlock_irqrestore(q->queue_lock, flags); 2535 return BLK_STS_IOERR; 2536 } 2537 2538 /* 2539 * Submitting request must be dequeued before calling this function 2540 * because it will be linked to another request_queue 2541 */ 2542 BUG_ON(blk_queued_rq(rq)); 2543 2544 if (op_is_flush(rq->cmd_flags)) 2545 where = ELEVATOR_INSERT_FLUSH; 2546 2547 add_acct_request(q, rq, where); 2548 if (where == ELEVATOR_INSERT_FLUSH) 2549 __blk_run_queue(q); 2550 spin_unlock_irqrestore(q->queue_lock, flags); 2551 2552 return BLK_STS_OK; 2553 } 2554 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2555 2556 /** 2557 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2558 * @rq: request to examine 2559 * 2560 * Description: 2561 * A request could be merge of IOs which require different failure 2562 * handling. This function determines the number of bytes which 2563 * can be failed from the beginning of the request without 2564 * crossing into area which need to be retried further. 2565 * 2566 * Return: 2567 * The number of bytes to fail. 2568 */ 2569 unsigned int blk_rq_err_bytes(const struct request *rq) 2570 { 2571 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2572 unsigned int bytes = 0; 2573 struct bio *bio; 2574 2575 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2576 return blk_rq_bytes(rq); 2577 2578 /* 2579 * Currently the only 'mixing' which can happen is between 2580 * different fastfail types. We can safely fail portions 2581 * which have all the failfast bits that the first one has - 2582 * the ones which are at least as eager to fail as the first 2583 * one. 2584 */ 2585 for (bio = rq->bio; bio; bio = bio->bi_next) { 2586 if ((bio->bi_opf & ff) != ff) 2587 break; 2588 bytes += bio->bi_iter.bi_size; 2589 } 2590 2591 /* this could lead to infinite loop */ 2592 BUG_ON(blk_rq_bytes(rq) && !bytes); 2593 return bytes; 2594 } 2595 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2596 2597 void blk_account_io_completion(struct request *req, unsigned int bytes) 2598 { 2599 if (blk_do_io_stat(req)) { 2600 const int rw = rq_data_dir(req); 2601 struct hd_struct *part; 2602 int cpu; 2603 2604 cpu = part_stat_lock(); 2605 part = req->part; 2606 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2607 part_stat_unlock(); 2608 } 2609 } 2610 2611 void blk_account_io_done(struct request *req) 2612 { 2613 /* 2614 * Account IO completion. flush_rq isn't accounted as a 2615 * normal IO on queueing nor completion. Accounting the 2616 * containing request is enough. 2617 */ 2618 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2619 unsigned long duration = jiffies - req->start_time; 2620 const int rw = rq_data_dir(req); 2621 struct hd_struct *part; 2622 int cpu; 2623 2624 cpu = part_stat_lock(); 2625 part = req->part; 2626 2627 part_stat_inc(cpu, part, ios[rw]); 2628 part_stat_add(cpu, part, ticks[rw], duration); 2629 part_round_stats(req->q, cpu, part); 2630 part_dec_in_flight(req->q, part, rw); 2631 2632 hd_struct_put(part); 2633 part_stat_unlock(); 2634 } 2635 } 2636 2637 #ifdef CONFIG_PM 2638 /* 2639 * Don't process normal requests when queue is suspended 2640 * or in the process of suspending/resuming 2641 */ 2642 static bool blk_pm_allow_request(struct request *rq) 2643 { 2644 switch (rq->q->rpm_status) { 2645 case RPM_RESUMING: 2646 case RPM_SUSPENDING: 2647 return rq->rq_flags & RQF_PM; 2648 case RPM_SUSPENDED: 2649 return false; 2650 } 2651 2652 return true; 2653 } 2654 #else 2655 static bool blk_pm_allow_request(struct request *rq) 2656 { 2657 return true; 2658 } 2659 #endif 2660 2661 void blk_account_io_start(struct request *rq, bool new_io) 2662 { 2663 struct hd_struct *part; 2664 int rw = rq_data_dir(rq); 2665 int cpu; 2666 2667 if (!blk_do_io_stat(rq)) 2668 return; 2669 2670 cpu = part_stat_lock(); 2671 2672 if (!new_io) { 2673 part = rq->part; 2674 part_stat_inc(cpu, part, merges[rw]); 2675 } else { 2676 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2677 if (!hd_struct_try_get(part)) { 2678 /* 2679 * The partition is already being removed, 2680 * the request will be accounted on the disk only 2681 * 2682 * We take a reference on disk->part0 although that 2683 * partition will never be deleted, so we can treat 2684 * it as any other partition. 2685 */ 2686 part = &rq->rq_disk->part0; 2687 hd_struct_get(part); 2688 } 2689 part_round_stats(rq->q, cpu, part); 2690 part_inc_in_flight(rq->q, part, rw); 2691 rq->part = part; 2692 } 2693 2694 part_stat_unlock(); 2695 } 2696 2697 static struct request *elv_next_request(struct request_queue *q) 2698 { 2699 struct request *rq; 2700 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 2701 2702 WARN_ON_ONCE(q->mq_ops); 2703 2704 while (1) { 2705 list_for_each_entry(rq, &q->queue_head, queuelist) { 2706 if (blk_pm_allow_request(rq)) 2707 return rq; 2708 2709 if (rq->rq_flags & RQF_SOFTBARRIER) 2710 break; 2711 } 2712 2713 /* 2714 * Flush request is running and flush request isn't queueable 2715 * in the drive, we can hold the queue till flush request is 2716 * finished. Even we don't do this, driver can't dispatch next 2717 * requests and will requeue them. And this can improve 2718 * throughput too. For example, we have request flush1, write1, 2719 * flush 2. flush1 is dispatched, then queue is hold, write1 2720 * isn't inserted to queue. After flush1 is finished, flush2 2721 * will be dispatched. Since disk cache is already clean, 2722 * flush2 will be finished very soon, so looks like flush2 is 2723 * folded to flush1. 2724 * Since the queue is hold, a flag is set to indicate the queue 2725 * should be restarted later. Please see flush_end_io() for 2726 * details. 2727 */ 2728 if (fq->flush_pending_idx != fq->flush_running_idx && 2729 !queue_flush_queueable(q)) { 2730 fq->flush_queue_delayed = 1; 2731 return NULL; 2732 } 2733 if (unlikely(blk_queue_bypass(q)) || 2734 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0)) 2735 return NULL; 2736 } 2737 } 2738 2739 /** 2740 * blk_peek_request - peek at the top of a request queue 2741 * @q: request queue to peek at 2742 * 2743 * Description: 2744 * Return the request at the top of @q. The returned request 2745 * should be started using blk_start_request() before LLD starts 2746 * processing it. 2747 * 2748 * Return: 2749 * Pointer to the request at the top of @q if available. Null 2750 * otherwise. 2751 */ 2752 struct request *blk_peek_request(struct request_queue *q) 2753 { 2754 struct request *rq; 2755 int ret; 2756 2757 lockdep_assert_held(q->queue_lock); 2758 WARN_ON_ONCE(q->mq_ops); 2759 2760 while ((rq = elv_next_request(q)) != NULL) { 2761 if (!(rq->rq_flags & RQF_STARTED)) { 2762 /* 2763 * This is the first time the device driver 2764 * sees this request (possibly after 2765 * requeueing). Notify IO scheduler. 2766 */ 2767 if (rq->rq_flags & RQF_SORTED) 2768 elv_activate_rq(q, rq); 2769 2770 /* 2771 * just mark as started even if we don't start 2772 * it, a request that has been delayed should 2773 * not be passed by new incoming requests 2774 */ 2775 rq->rq_flags |= RQF_STARTED; 2776 trace_block_rq_issue(q, rq); 2777 } 2778 2779 if (!q->boundary_rq || q->boundary_rq == rq) { 2780 q->end_sector = rq_end_sector(rq); 2781 q->boundary_rq = NULL; 2782 } 2783 2784 if (rq->rq_flags & RQF_DONTPREP) 2785 break; 2786 2787 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2788 /* 2789 * make sure space for the drain appears we 2790 * know we can do this because max_hw_segments 2791 * has been adjusted to be one fewer than the 2792 * device can handle 2793 */ 2794 rq->nr_phys_segments++; 2795 } 2796 2797 if (!q->prep_rq_fn) 2798 break; 2799 2800 ret = q->prep_rq_fn(q, rq); 2801 if (ret == BLKPREP_OK) { 2802 break; 2803 } else if (ret == BLKPREP_DEFER) { 2804 /* 2805 * the request may have been (partially) prepped. 2806 * we need to keep this request in the front to 2807 * avoid resource deadlock. RQF_STARTED will 2808 * prevent other fs requests from passing this one. 2809 */ 2810 if (q->dma_drain_size && blk_rq_bytes(rq) && 2811 !(rq->rq_flags & RQF_DONTPREP)) { 2812 /* 2813 * remove the space for the drain we added 2814 * so that we don't add it again 2815 */ 2816 --rq->nr_phys_segments; 2817 } 2818 2819 rq = NULL; 2820 break; 2821 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2822 rq->rq_flags |= RQF_QUIET; 2823 /* 2824 * Mark this request as started so we don't trigger 2825 * any debug logic in the end I/O path. 2826 */ 2827 blk_start_request(rq); 2828 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2829 BLK_STS_TARGET : BLK_STS_IOERR); 2830 } else { 2831 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2832 break; 2833 } 2834 } 2835 2836 return rq; 2837 } 2838 EXPORT_SYMBOL(blk_peek_request); 2839 2840 static void blk_dequeue_request(struct request *rq) 2841 { 2842 struct request_queue *q = rq->q; 2843 2844 BUG_ON(list_empty(&rq->queuelist)); 2845 BUG_ON(ELV_ON_HASH(rq)); 2846 2847 list_del_init(&rq->queuelist); 2848 2849 /* 2850 * the time frame between a request being removed from the lists 2851 * and to it is freed is accounted as io that is in progress at 2852 * the driver side. 2853 */ 2854 if (blk_account_rq(rq)) { 2855 q->in_flight[rq_is_sync(rq)]++; 2856 set_io_start_time_ns(rq); 2857 } 2858 } 2859 2860 /** 2861 * blk_start_request - start request processing on the driver 2862 * @req: request to dequeue 2863 * 2864 * Description: 2865 * Dequeue @req and start timeout timer on it. This hands off the 2866 * request to the driver. 2867 */ 2868 void blk_start_request(struct request *req) 2869 { 2870 lockdep_assert_held(req->q->queue_lock); 2871 WARN_ON_ONCE(req->q->mq_ops); 2872 2873 blk_dequeue_request(req); 2874 2875 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2876 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2877 req->rq_flags |= RQF_STATS; 2878 wbt_issue(req->q->rq_wb, &req->issue_stat); 2879 } 2880 2881 BUG_ON(blk_rq_is_complete(req)); 2882 blk_add_timer(req); 2883 } 2884 EXPORT_SYMBOL(blk_start_request); 2885 2886 /** 2887 * blk_fetch_request - fetch a request from a request queue 2888 * @q: request queue to fetch a request from 2889 * 2890 * Description: 2891 * Return the request at the top of @q. The request is started on 2892 * return and LLD can start processing it immediately. 2893 * 2894 * Return: 2895 * Pointer to the request at the top of @q if available. Null 2896 * otherwise. 2897 */ 2898 struct request *blk_fetch_request(struct request_queue *q) 2899 { 2900 struct request *rq; 2901 2902 lockdep_assert_held(q->queue_lock); 2903 WARN_ON_ONCE(q->mq_ops); 2904 2905 rq = blk_peek_request(q); 2906 if (rq) 2907 blk_start_request(rq); 2908 return rq; 2909 } 2910 EXPORT_SYMBOL(blk_fetch_request); 2911 2912 /* 2913 * Steal bios from a request and add them to a bio list. 2914 * The request must not have been partially completed before. 2915 */ 2916 void blk_steal_bios(struct bio_list *list, struct request *rq) 2917 { 2918 if (rq->bio) { 2919 if (list->tail) 2920 list->tail->bi_next = rq->bio; 2921 else 2922 list->head = rq->bio; 2923 list->tail = rq->biotail; 2924 2925 rq->bio = NULL; 2926 rq->biotail = NULL; 2927 } 2928 2929 rq->__data_len = 0; 2930 } 2931 EXPORT_SYMBOL_GPL(blk_steal_bios); 2932 2933 /** 2934 * blk_update_request - Special helper function for request stacking drivers 2935 * @req: the request being processed 2936 * @error: block status code 2937 * @nr_bytes: number of bytes to complete @req 2938 * 2939 * Description: 2940 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2941 * the request structure even if @req doesn't have leftover. 2942 * If @req has leftover, sets it up for the next range of segments. 2943 * 2944 * This special helper function is only for request stacking drivers 2945 * (e.g. request-based dm) so that they can handle partial completion. 2946 * Actual device drivers should use blk_end_request instead. 2947 * 2948 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2949 * %false return from this function. 2950 * 2951 * Return: 2952 * %false - this request doesn't have any more data 2953 * %true - this request has more data 2954 **/ 2955 bool blk_update_request(struct request *req, blk_status_t error, 2956 unsigned int nr_bytes) 2957 { 2958 int total_bytes; 2959 2960 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 2961 2962 if (!req->bio) 2963 return false; 2964 2965 if (unlikely(error && !blk_rq_is_passthrough(req) && 2966 !(req->rq_flags & RQF_QUIET))) 2967 print_req_error(req, error); 2968 2969 blk_account_io_completion(req, nr_bytes); 2970 2971 total_bytes = 0; 2972 while (req->bio) { 2973 struct bio *bio = req->bio; 2974 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2975 2976 if (bio_bytes == bio->bi_iter.bi_size) 2977 req->bio = bio->bi_next; 2978 2979 /* Completion has already been traced */ 2980 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 2981 req_bio_endio(req, bio, bio_bytes, error); 2982 2983 total_bytes += bio_bytes; 2984 nr_bytes -= bio_bytes; 2985 2986 if (!nr_bytes) 2987 break; 2988 } 2989 2990 /* 2991 * completely done 2992 */ 2993 if (!req->bio) { 2994 /* 2995 * Reset counters so that the request stacking driver 2996 * can find how many bytes remain in the request 2997 * later. 2998 */ 2999 req->__data_len = 0; 3000 return false; 3001 } 3002 3003 req->__data_len -= total_bytes; 3004 3005 /* update sector only for requests with clear definition of sector */ 3006 if (!blk_rq_is_passthrough(req)) 3007 req->__sector += total_bytes >> 9; 3008 3009 /* mixed attributes always follow the first bio */ 3010 if (req->rq_flags & RQF_MIXED_MERGE) { 3011 req->cmd_flags &= ~REQ_FAILFAST_MASK; 3012 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 3013 } 3014 3015 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 3016 /* 3017 * If total number of sectors is less than the first segment 3018 * size, something has gone terribly wrong. 3019 */ 3020 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 3021 blk_dump_rq_flags(req, "request botched"); 3022 req->__data_len = blk_rq_cur_bytes(req); 3023 } 3024 3025 /* recalculate the number of segments */ 3026 blk_recalc_rq_segments(req); 3027 } 3028 3029 return true; 3030 } 3031 EXPORT_SYMBOL_GPL(blk_update_request); 3032 3033 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 3034 unsigned int nr_bytes, 3035 unsigned int bidi_bytes) 3036 { 3037 if (blk_update_request(rq, error, nr_bytes)) 3038 return true; 3039 3040 /* Bidi request must be completed as a whole */ 3041 if (unlikely(blk_bidi_rq(rq)) && 3042 blk_update_request(rq->next_rq, error, bidi_bytes)) 3043 return true; 3044 3045 if (blk_queue_add_random(rq->q)) 3046 add_disk_randomness(rq->rq_disk); 3047 3048 return false; 3049 } 3050 3051 /** 3052 * blk_unprep_request - unprepare a request 3053 * @req: the request 3054 * 3055 * This function makes a request ready for complete resubmission (or 3056 * completion). It happens only after all error handling is complete, 3057 * so represents the appropriate moment to deallocate any resources 3058 * that were allocated to the request in the prep_rq_fn. The queue 3059 * lock is held when calling this. 3060 */ 3061 void blk_unprep_request(struct request *req) 3062 { 3063 struct request_queue *q = req->q; 3064 3065 req->rq_flags &= ~RQF_DONTPREP; 3066 if (q->unprep_rq_fn) 3067 q->unprep_rq_fn(q, req); 3068 } 3069 EXPORT_SYMBOL_GPL(blk_unprep_request); 3070 3071 void blk_finish_request(struct request *req, blk_status_t error) 3072 { 3073 struct request_queue *q = req->q; 3074 3075 lockdep_assert_held(req->q->queue_lock); 3076 WARN_ON_ONCE(q->mq_ops); 3077 3078 if (req->rq_flags & RQF_STATS) 3079 blk_stat_add(req); 3080 3081 if (req->rq_flags & RQF_QUEUED) 3082 blk_queue_end_tag(q, req); 3083 3084 BUG_ON(blk_queued_rq(req)); 3085 3086 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 3087 laptop_io_completion(req->q->backing_dev_info); 3088 3089 blk_delete_timer(req); 3090 3091 if (req->rq_flags & RQF_DONTPREP) 3092 blk_unprep_request(req); 3093 3094 blk_account_io_done(req); 3095 3096 if (req->end_io) { 3097 wbt_done(req->q->rq_wb, &req->issue_stat); 3098 req->end_io(req, error); 3099 } else { 3100 if (blk_bidi_rq(req)) 3101 __blk_put_request(req->next_rq->q, req->next_rq); 3102 3103 __blk_put_request(q, req); 3104 } 3105 } 3106 EXPORT_SYMBOL(blk_finish_request); 3107 3108 /** 3109 * blk_end_bidi_request - Complete a bidi request 3110 * @rq: the request to complete 3111 * @error: block status code 3112 * @nr_bytes: number of bytes to complete @rq 3113 * @bidi_bytes: number of bytes to complete @rq->next_rq 3114 * 3115 * Description: 3116 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 3117 * Drivers that supports bidi can safely call this member for any 3118 * type of request, bidi or uni. In the later case @bidi_bytes is 3119 * just ignored. 3120 * 3121 * Return: 3122 * %false - we are done with this request 3123 * %true - still buffers pending for this request 3124 **/ 3125 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 3126 unsigned int nr_bytes, unsigned int bidi_bytes) 3127 { 3128 struct request_queue *q = rq->q; 3129 unsigned long flags; 3130 3131 WARN_ON_ONCE(q->mq_ops); 3132 3133 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3134 return true; 3135 3136 spin_lock_irqsave(q->queue_lock, flags); 3137 blk_finish_request(rq, error); 3138 spin_unlock_irqrestore(q->queue_lock, flags); 3139 3140 return false; 3141 } 3142 3143 /** 3144 * __blk_end_bidi_request - Complete a bidi request with queue lock held 3145 * @rq: the request to complete 3146 * @error: block status code 3147 * @nr_bytes: number of bytes to complete @rq 3148 * @bidi_bytes: number of bytes to complete @rq->next_rq 3149 * 3150 * Description: 3151 * Identical to blk_end_bidi_request() except that queue lock is 3152 * assumed to be locked on entry and remains so on return. 3153 * 3154 * Return: 3155 * %false - we are done with this request 3156 * %true - still buffers pending for this request 3157 **/ 3158 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 3159 unsigned int nr_bytes, unsigned int bidi_bytes) 3160 { 3161 lockdep_assert_held(rq->q->queue_lock); 3162 WARN_ON_ONCE(rq->q->mq_ops); 3163 3164 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3165 return true; 3166 3167 blk_finish_request(rq, error); 3168 3169 return false; 3170 } 3171 3172 /** 3173 * blk_end_request - Helper function for drivers to complete the request. 3174 * @rq: the request being processed 3175 * @error: block status code 3176 * @nr_bytes: number of bytes to complete 3177 * 3178 * Description: 3179 * Ends I/O on a number of bytes attached to @rq. 3180 * If @rq has leftover, sets it up for the next range of segments. 3181 * 3182 * Return: 3183 * %false - we are done with this request 3184 * %true - still buffers pending for this request 3185 **/ 3186 bool blk_end_request(struct request *rq, blk_status_t error, 3187 unsigned int nr_bytes) 3188 { 3189 WARN_ON_ONCE(rq->q->mq_ops); 3190 return blk_end_bidi_request(rq, error, nr_bytes, 0); 3191 } 3192 EXPORT_SYMBOL(blk_end_request); 3193 3194 /** 3195 * blk_end_request_all - Helper function for drives to finish the request. 3196 * @rq: the request to finish 3197 * @error: block status code 3198 * 3199 * Description: 3200 * Completely finish @rq. 3201 */ 3202 void blk_end_request_all(struct request *rq, blk_status_t error) 3203 { 3204 bool pending; 3205 unsigned int bidi_bytes = 0; 3206 3207 if (unlikely(blk_bidi_rq(rq))) 3208 bidi_bytes = blk_rq_bytes(rq->next_rq); 3209 3210 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3211 BUG_ON(pending); 3212 } 3213 EXPORT_SYMBOL(blk_end_request_all); 3214 3215 /** 3216 * __blk_end_request - Helper function for drivers to complete the request. 3217 * @rq: the request being processed 3218 * @error: block status code 3219 * @nr_bytes: number of bytes to complete 3220 * 3221 * Description: 3222 * Must be called with queue lock held unlike blk_end_request(). 3223 * 3224 * Return: 3225 * %false - we are done with this request 3226 * %true - still buffers pending for this request 3227 **/ 3228 bool __blk_end_request(struct request *rq, blk_status_t error, 3229 unsigned int nr_bytes) 3230 { 3231 lockdep_assert_held(rq->q->queue_lock); 3232 WARN_ON_ONCE(rq->q->mq_ops); 3233 3234 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3235 } 3236 EXPORT_SYMBOL(__blk_end_request); 3237 3238 /** 3239 * __blk_end_request_all - Helper function for drives to finish the request. 3240 * @rq: the request to finish 3241 * @error: block status code 3242 * 3243 * Description: 3244 * Completely finish @rq. Must be called with queue lock held. 3245 */ 3246 void __blk_end_request_all(struct request *rq, blk_status_t error) 3247 { 3248 bool pending; 3249 unsigned int bidi_bytes = 0; 3250 3251 lockdep_assert_held(rq->q->queue_lock); 3252 WARN_ON_ONCE(rq->q->mq_ops); 3253 3254 if (unlikely(blk_bidi_rq(rq))) 3255 bidi_bytes = blk_rq_bytes(rq->next_rq); 3256 3257 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3258 BUG_ON(pending); 3259 } 3260 EXPORT_SYMBOL(__blk_end_request_all); 3261 3262 /** 3263 * __blk_end_request_cur - Helper function to finish the current request chunk. 3264 * @rq: the request to finish the current chunk for 3265 * @error: block status code 3266 * 3267 * Description: 3268 * Complete the current consecutively mapped chunk from @rq. Must 3269 * be called with queue lock held. 3270 * 3271 * Return: 3272 * %false - we are done with this request 3273 * %true - still buffers pending for this request 3274 */ 3275 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3276 { 3277 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3278 } 3279 EXPORT_SYMBOL(__blk_end_request_cur); 3280 3281 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3282 struct bio *bio) 3283 { 3284 if (bio_has_data(bio)) 3285 rq->nr_phys_segments = bio_phys_segments(q, bio); 3286 else if (bio_op(bio) == REQ_OP_DISCARD) 3287 rq->nr_phys_segments = 1; 3288 3289 rq->__data_len = bio->bi_iter.bi_size; 3290 rq->bio = rq->biotail = bio; 3291 3292 if (bio->bi_disk) 3293 rq->rq_disk = bio->bi_disk; 3294 } 3295 3296 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3297 /** 3298 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3299 * @rq: the request to be flushed 3300 * 3301 * Description: 3302 * Flush all pages in @rq. 3303 */ 3304 void rq_flush_dcache_pages(struct request *rq) 3305 { 3306 struct req_iterator iter; 3307 struct bio_vec bvec; 3308 3309 rq_for_each_segment(bvec, rq, iter) 3310 flush_dcache_page(bvec.bv_page); 3311 } 3312 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3313 #endif 3314 3315 /** 3316 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3317 * @q : the queue of the device being checked 3318 * 3319 * Description: 3320 * Check if underlying low-level drivers of a device are busy. 3321 * If the drivers want to export their busy state, they must set own 3322 * exporting function using blk_queue_lld_busy() first. 3323 * 3324 * Basically, this function is used only by request stacking drivers 3325 * to stop dispatching requests to underlying devices when underlying 3326 * devices are busy. This behavior helps more I/O merging on the queue 3327 * of the request stacking driver and prevents I/O throughput regression 3328 * on burst I/O load. 3329 * 3330 * Return: 3331 * 0 - Not busy (The request stacking driver should dispatch request) 3332 * 1 - Busy (The request stacking driver should stop dispatching request) 3333 */ 3334 int blk_lld_busy(struct request_queue *q) 3335 { 3336 if (q->lld_busy_fn) 3337 return q->lld_busy_fn(q); 3338 3339 return 0; 3340 } 3341 EXPORT_SYMBOL_GPL(blk_lld_busy); 3342 3343 /** 3344 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3345 * @rq: the clone request to be cleaned up 3346 * 3347 * Description: 3348 * Free all bios in @rq for a cloned request. 3349 */ 3350 void blk_rq_unprep_clone(struct request *rq) 3351 { 3352 struct bio *bio; 3353 3354 while ((bio = rq->bio) != NULL) { 3355 rq->bio = bio->bi_next; 3356 3357 bio_put(bio); 3358 } 3359 } 3360 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3361 3362 /* 3363 * Copy attributes of the original request to the clone request. 3364 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3365 */ 3366 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3367 { 3368 dst->cpu = src->cpu; 3369 dst->__sector = blk_rq_pos(src); 3370 dst->__data_len = blk_rq_bytes(src); 3371 dst->nr_phys_segments = src->nr_phys_segments; 3372 dst->ioprio = src->ioprio; 3373 dst->extra_len = src->extra_len; 3374 } 3375 3376 /** 3377 * blk_rq_prep_clone - Helper function to setup clone request 3378 * @rq: the request to be setup 3379 * @rq_src: original request to be cloned 3380 * @bs: bio_set that bios for clone are allocated from 3381 * @gfp_mask: memory allocation mask for bio 3382 * @bio_ctr: setup function to be called for each clone bio. 3383 * Returns %0 for success, non %0 for failure. 3384 * @data: private data to be passed to @bio_ctr 3385 * 3386 * Description: 3387 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3388 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3389 * are not copied, and copying such parts is the caller's responsibility. 3390 * Also, pages which the original bios are pointing to are not copied 3391 * and the cloned bios just point same pages. 3392 * So cloned bios must be completed before original bios, which means 3393 * the caller must complete @rq before @rq_src. 3394 */ 3395 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3396 struct bio_set *bs, gfp_t gfp_mask, 3397 int (*bio_ctr)(struct bio *, struct bio *, void *), 3398 void *data) 3399 { 3400 struct bio *bio, *bio_src; 3401 3402 if (!bs) 3403 bs = fs_bio_set; 3404 3405 __rq_for_each_bio(bio_src, rq_src) { 3406 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3407 if (!bio) 3408 goto free_and_out; 3409 3410 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3411 goto free_and_out; 3412 3413 if (rq->bio) { 3414 rq->biotail->bi_next = bio; 3415 rq->biotail = bio; 3416 } else 3417 rq->bio = rq->biotail = bio; 3418 } 3419 3420 __blk_rq_prep_clone(rq, rq_src); 3421 3422 return 0; 3423 3424 free_and_out: 3425 if (bio) 3426 bio_put(bio); 3427 blk_rq_unprep_clone(rq); 3428 3429 return -ENOMEM; 3430 } 3431 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3432 3433 int kblockd_schedule_work(struct work_struct *work) 3434 { 3435 return queue_work(kblockd_workqueue, work); 3436 } 3437 EXPORT_SYMBOL(kblockd_schedule_work); 3438 3439 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3440 { 3441 return queue_work_on(cpu, kblockd_workqueue, work); 3442 } 3443 EXPORT_SYMBOL(kblockd_schedule_work_on); 3444 3445 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3446 unsigned long delay) 3447 { 3448 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3449 } 3450 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3451 3452 /** 3453 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3454 * @plug: The &struct blk_plug that needs to be initialized 3455 * 3456 * Description: 3457 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3458 * pending I/O should the task end up blocking between blk_start_plug() and 3459 * blk_finish_plug(). This is important from a performance perspective, but 3460 * also ensures that we don't deadlock. For instance, if the task is blocking 3461 * for a memory allocation, memory reclaim could end up wanting to free a 3462 * page belonging to that request that is currently residing in our private 3463 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3464 * this kind of deadlock. 3465 */ 3466 void blk_start_plug(struct blk_plug *plug) 3467 { 3468 struct task_struct *tsk = current; 3469 3470 /* 3471 * If this is a nested plug, don't actually assign it. 3472 */ 3473 if (tsk->plug) 3474 return; 3475 3476 INIT_LIST_HEAD(&plug->list); 3477 INIT_LIST_HEAD(&plug->mq_list); 3478 INIT_LIST_HEAD(&plug->cb_list); 3479 /* 3480 * Store ordering should not be needed here, since a potential 3481 * preempt will imply a full memory barrier 3482 */ 3483 tsk->plug = plug; 3484 } 3485 EXPORT_SYMBOL(blk_start_plug); 3486 3487 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3488 { 3489 struct request *rqa = container_of(a, struct request, queuelist); 3490 struct request *rqb = container_of(b, struct request, queuelist); 3491 3492 return !(rqa->q < rqb->q || 3493 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3494 } 3495 3496 /* 3497 * If 'from_schedule' is true, then postpone the dispatch of requests 3498 * until a safe kblockd context. We due this to avoid accidental big 3499 * additional stack usage in driver dispatch, in places where the originally 3500 * plugger did not intend it. 3501 */ 3502 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3503 bool from_schedule) 3504 __releases(q->queue_lock) 3505 { 3506 lockdep_assert_held(q->queue_lock); 3507 3508 trace_block_unplug(q, depth, !from_schedule); 3509 3510 if (from_schedule) 3511 blk_run_queue_async(q); 3512 else 3513 __blk_run_queue(q); 3514 spin_unlock(q->queue_lock); 3515 } 3516 3517 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3518 { 3519 LIST_HEAD(callbacks); 3520 3521 while (!list_empty(&plug->cb_list)) { 3522 list_splice_init(&plug->cb_list, &callbacks); 3523 3524 while (!list_empty(&callbacks)) { 3525 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3526 struct blk_plug_cb, 3527 list); 3528 list_del(&cb->list); 3529 cb->callback(cb, from_schedule); 3530 } 3531 } 3532 } 3533 3534 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3535 int size) 3536 { 3537 struct blk_plug *plug = current->plug; 3538 struct blk_plug_cb *cb; 3539 3540 if (!plug) 3541 return NULL; 3542 3543 list_for_each_entry(cb, &plug->cb_list, list) 3544 if (cb->callback == unplug && cb->data == data) 3545 return cb; 3546 3547 /* Not currently on the callback list */ 3548 BUG_ON(size < sizeof(*cb)); 3549 cb = kzalloc(size, GFP_ATOMIC); 3550 if (cb) { 3551 cb->data = data; 3552 cb->callback = unplug; 3553 list_add(&cb->list, &plug->cb_list); 3554 } 3555 return cb; 3556 } 3557 EXPORT_SYMBOL(blk_check_plugged); 3558 3559 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3560 { 3561 struct request_queue *q; 3562 unsigned long flags; 3563 struct request *rq; 3564 LIST_HEAD(list); 3565 unsigned int depth; 3566 3567 flush_plug_callbacks(plug, from_schedule); 3568 3569 if (!list_empty(&plug->mq_list)) 3570 blk_mq_flush_plug_list(plug, from_schedule); 3571 3572 if (list_empty(&plug->list)) 3573 return; 3574 3575 list_splice_init(&plug->list, &list); 3576 3577 list_sort(NULL, &list, plug_rq_cmp); 3578 3579 q = NULL; 3580 depth = 0; 3581 3582 /* 3583 * Save and disable interrupts here, to avoid doing it for every 3584 * queue lock we have to take. 3585 */ 3586 local_irq_save(flags); 3587 while (!list_empty(&list)) { 3588 rq = list_entry_rq(list.next); 3589 list_del_init(&rq->queuelist); 3590 BUG_ON(!rq->q); 3591 if (rq->q != q) { 3592 /* 3593 * This drops the queue lock 3594 */ 3595 if (q) 3596 queue_unplugged(q, depth, from_schedule); 3597 q = rq->q; 3598 depth = 0; 3599 spin_lock(q->queue_lock); 3600 } 3601 3602 /* 3603 * Short-circuit if @q is dead 3604 */ 3605 if (unlikely(blk_queue_dying(q))) { 3606 __blk_end_request_all(rq, BLK_STS_IOERR); 3607 continue; 3608 } 3609 3610 /* 3611 * rq is already accounted, so use raw insert 3612 */ 3613 if (op_is_flush(rq->cmd_flags)) 3614 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3615 else 3616 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3617 3618 depth++; 3619 } 3620 3621 /* 3622 * This drops the queue lock 3623 */ 3624 if (q) 3625 queue_unplugged(q, depth, from_schedule); 3626 3627 local_irq_restore(flags); 3628 } 3629 3630 void blk_finish_plug(struct blk_plug *plug) 3631 { 3632 if (plug != current->plug) 3633 return; 3634 blk_flush_plug_list(plug, false); 3635 3636 current->plug = NULL; 3637 } 3638 EXPORT_SYMBOL(blk_finish_plug); 3639 3640 #ifdef CONFIG_PM 3641 /** 3642 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3643 * @q: the queue of the device 3644 * @dev: the device the queue belongs to 3645 * 3646 * Description: 3647 * Initialize runtime-PM-related fields for @q and start auto suspend for 3648 * @dev. Drivers that want to take advantage of request-based runtime PM 3649 * should call this function after @dev has been initialized, and its 3650 * request queue @q has been allocated, and runtime PM for it can not happen 3651 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3652 * cases, driver should call this function before any I/O has taken place. 3653 * 3654 * This function takes care of setting up using auto suspend for the device, 3655 * the autosuspend delay is set to -1 to make runtime suspend impossible 3656 * until an updated value is either set by user or by driver. Drivers do 3657 * not need to touch other autosuspend settings. 3658 * 3659 * The block layer runtime PM is request based, so only works for drivers 3660 * that use request as their IO unit instead of those directly use bio's. 3661 */ 3662 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3663 { 3664 /* not support for RQF_PM and ->rpm_status in blk-mq yet */ 3665 if (q->mq_ops) 3666 return; 3667 3668 q->dev = dev; 3669 q->rpm_status = RPM_ACTIVE; 3670 pm_runtime_set_autosuspend_delay(q->dev, -1); 3671 pm_runtime_use_autosuspend(q->dev); 3672 } 3673 EXPORT_SYMBOL(blk_pm_runtime_init); 3674 3675 /** 3676 * blk_pre_runtime_suspend - Pre runtime suspend check 3677 * @q: the queue of the device 3678 * 3679 * Description: 3680 * This function will check if runtime suspend is allowed for the device 3681 * by examining if there are any requests pending in the queue. If there 3682 * are requests pending, the device can not be runtime suspended; otherwise, 3683 * the queue's status will be updated to SUSPENDING and the driver can 3684 * proceed to suspend the device. 3685 * 3686 * For the not allowed case, we mark last busy for the device so that 3687 * runtime PM core will try to autosuspend it some time later. 3688 * 3689 * This function should be called near the start of the device's 3690 * runtime_suspend callback. 3691 * 3692 * Return: 3693 * 0 - OK to runtime suspend the device 3694 * -EBUSY - Device should not be runtime suspended 3695 */ 3696 int blk_pre_runtime_suspend(struct request_queue *q) 3697 { 3698 int ret = 0; 3699 3700 if (!q->dev) 3701 return ret; 3702 3703 spin_lock_irq(q->queue_lock); 3704 if (q->nr_pending) { 3705 ret = -EBUSY; 3706 pm_runtime_mark_last_busy(q->dev); 3707 } else { 3708 q->rpm_status = RPM_SUSPENDING; 3709 } 3710 spin_unlock_irq(q->queue_lock); 3711 return ret; 3712 } 3713 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3714 3715 /** 3716 * blk_post_runtime_suspend - Post runtime suspend processing 3717 * @q: the queue of the device 3718 * @err: return value of the device's runtime_suspend function 3719 * 3720 * Description: 3721 * Update the queue's runtime status according to the return value of the 3722 * device's runtime suspend function and mark last busy for the device so 3723 * that PM core will try to auto suspend the device at a later time. 3724 * 3725 * This function should be called near the end of the device's 3726 * runtime_suspend callback. 3727 */ 3728 void blk_post_runtime_suspend(struct request_queue *q, int err) 3729 { 3730 if (!q->dev) 3731 return; 3732 3733 spin_lock_irq(q->queue_lock); 3734 if (!err) { 3735 q->rpm_status = RPM_SUSPENDED; 3736 } else { 3737 q->rpm_status = RPM_ACTIVE; 3738 pm_runtime_mark_last_busy(q->dev); 3739 } 3740 spin_unlock_irq(q->queue_lock); 3741 } 3742 EXPORT_SYMBOL(blk_post_runtime_suspend); 3743 3744 /** 3745 * blk_pre_runtime_resume - Pre runtime resume processing 3746 * @q: the queue of the device 3747 * 3748 * Description: 3749 * Update the queue's runtime status to RESUMING in preparation for the 3750 * runtime resume of the device. 3751 * 3752 * This function should be called near the start of the device's 3753 * runtime_resume callback. 3754 */ 3755 void blk_pre_runtime_resume(struct request_queue *q) 3756 { 3757 if (!q->dev) 3758 return; 3759 3760 spin_lock_irq(q->queue_lock); 3761 q->rpm_status = RPM_RESUMING; 3762 spin_unlock_irq(q->queue_lock); 3763 } 3764 EXPORT_SYMBOL(blk_pre_runtime_resume); 3765 3766 /** 3767 * blk_post_runtime_resume - Post runtime resume processing 3768 * @q: the queue of the device 3769 * @err: return value of the device's runtime_resume function 3770 * 3771 * Description: 3772 * Update the queue's runtime status according to the return value of the 3773 * device's runtime_resume function. If it is successfully resumed, process 3774 * the requests that are queued into the device's queue when it is resuming 3775 * and then mark last busy and initiate autosuspend for it. 3776 * 3777 * This function should be called near the end of the device's 3778 * runtime_resume callback. 3779 */ 3780 void blk_post_runtime_resume(struct request_queue *q, int err) 3781 { 3782 if (!q->dev) 3783 return; 3784 3785 spin_lock_irq(q->queue_lock); 3786 if (!err) { 3787 q->rpm_status = RPM_ACTIVE; 3788 __blk_run_queue(q); 3789 pm_runtime_mark_last_busy(q->dev); 3790 pm_request_autosuspend(q->dev); 3791 } else { 3792 q->rpm_status = RPM_SUSPENDED; 3793 } 3794 spin_unlock_irq(q->queue_lock); 3795 } 3796 EXPORT_SYMBOL(blk_post_runtime_resume); 3797 3798 /** 3799 * blk_set_runtime_active - Force runtime status of the queue to be active 3800 * @q: the queue of the device 3801 * 3802 * If the device is left runtime suspended during system suspend the resume 3803 * hook typically resumes the device and corrects runtime status 3804 * accordingly. However, that does not affect the queue runtime PM status 3805 * which is still "suspended". This prevents processing requests from the 3806 * queue. 3807 * 3808 * This function can be used in driver's resume hook to correct queue 3809 * runtime PM status and re-enable peeking requests from the queue. It 3810 * should be called before first request is added to the queue. 3811 */ 3812 void blk_set_runtime_active(struct request_queue *q) 3813 { 3814 spin_lock_irq(q->queue_lock); 3815 q->rpm_status = RPM_ACTIVE; 3816 pm_runtime_mark_last_busy(q->dev); 3817 pm_request_autosuspend(q->dev); 3818 spin_unlock_irq(q->queue_lock); 3819 } 3820 EXPORT_SYMBOL(blk_set_runtime_active); 3821 #endif 3822 3823 int __init blk_dev_init(void) 3824 { 3825 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3826 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3827 FIELD_SIZEOF(struct request, cmd_flags)); 3828 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3829 FIELD_SIZEOF(struct bio, bi_opf)); 3830 3831 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3832 kblockd_workqueue = alloc_workqueue("kblockd", 3833 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3834 if (!kblockd_workqueue) 3835 panic("Failed to create kblockd\n"); 3836 3837 request_cachep = kmem_cache_create("blkdev_requests", 3838 sizeof(struct request), 0, SLAB_PANIC, NULL); 3839 3840 blk_requestq_cachep = kmem_cache_create("request_queue", 3841 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3842 3843 #ifdef CONFIG_DEBUG_FS 3844 blk_debugfs_root = debugfs_create_dir("block", NULL); 3845 #endif 3846 3847 return 0; 3848 } 3849