xref: /linux/block/blk-core.c (revision 4ab5a5d2a4a2289c2af07accbec7170ca5671f41)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-pm.h"
46 #include "blk-rq-qos.h"
47 
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry *blk_debugfs_root;
50 #endif
51 
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57 
58 DEFINE_IDA(blk_queue_ida);
59 
60 /*
61  * For the allocated request tables
62  */
63 struct kmem_cache *request_cachep;
64 
65 /*
66  * For queue allocation
67  */
68 struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	unsigned long flags;
83 
84 	spin_lock_irqsave(q->queue_lock, flags);
85 	queue_flag_set(flag, q);
86 	spin_unlock_irqrestore(q->queue_lock, flags);
87 }
88 EXPORT_SYMBOL(blk_queue_flag_set);
89 
90 /**
91  * blk_queue_flag_clear - atomically clear a queue flag
92  * @flag: flag to be cleared
93  * @q: request queue
94  */
95 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
96 {
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(q->queue_lock, flags);
100 	queue_flag_clear(flag, q);
101 	spin_unlock_irqrestore(q->queue_lock, flags);
102 }
103 EXPORT_SYMBOL(blk_queue_flag_clear);
104 
105 /**
106  * blk_queue_flag_test_and_set - atomically test and set a queue flag
107  * @flag: flag to be set
108  * @q: request queue
109  *
110  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
111  * the flag was already set.
112  */
113 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
114 {
115 	unsigned long flags;
116 	bool res;
117 
118 	spin_lock_irqsave(q->queue_lock, flags);
119 	res = queue_flag_test_and_set(flag, q);
120 	spin_unlock_irqrestore(q->queue_lock, flags);
121 
122 	return res;
123 }
124 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
125 
126 /**
127  * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
128  * @flag: flag to be cleared
129  * @q: request queue
130  *
131  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
132  * the flag was set.
133  */
134 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
135 {
136 	unsigned long flags;
137 	bool res;
138 
139 	spin_lock_irqsave(q->queue_lock, flags);
140 	res = queue_flag_test_and_clear(flag, q);
141 	spin_unlock_irqrestore(q->queue_lock, flags);
142 
143 	return res;
144 }
145 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
146 
147 static void blk_clear_congested(struct request_list *rl, int sync)
148 {
149 #ifdef CONFIG_CGROUP_WRITEBACK
150 	clear_wb_congested(rl->blkg->wb_congested, sync);
151 #else
152 	/*
153 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
154 	 * flip its congestion state for events on other blkcgs.
155 	 */
156 	if (rl == &rl->q->root_rl)
157 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
158 #endif
159 }
160 
161 static void blk_set_congested(struct request_list *rl, int sync)
162 {
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 	set_wb_congested(rl->blkg->wb_congested, sync);
165 #else
166 	/* see blk_clear_congested() */
167 	if (rl == &rl->q->root_rl)
168 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
169 #endif
170 }
171 
172 void blk_queue_congestion_threshold(struct request_queue *q)
173 {
174 	int nr;
175 
176 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
177 	if (nr > q->nr_requests)
178 		nr = q->nr_requests;
179 	q->nr_congestion_on = nr;
180 
181 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
182 	if (nr < 1)
183 		nr = 1;
184 	q->nr_congestion_off = nr;
185 }
186 
187 void blk_rq_init(struct request_queue *q, struct request *rq)
188 {
189 	memset(rq, 0, sizeof(*rq));
190 
191 	INIT_LIST_HEAD(&rq->queuelist);
192 	INIT_LIST_HEAD(&rq->timeout_list);
193 	rq->cpu = -1;
194 	rq->q = q;
195 	rq->__sector = (sector_t) -1;
196 	INIT_HLIST_NODE(&rq->hash);
197 	RB_CLEAR_NODE(&rq->rb_node);
198 	rq->tag = -1;
199 	rq->internal_tag = -1;
200 	rq->start_time_ns = ktime_get_ns();
201 	rq->part = NULL;
202 }
203 EXPORT_SYMBOL(blk_rq_init);
204 
205 static const struct {
206 	int		errno;
207 	const char	*name;
208 } blk_errors[] = {
209 	[BLK_STS_OK]		= { 0,		"" },
210 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
211 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
212 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
213 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
214 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
215 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
216 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
217 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
218 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
219 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
220 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
221 
222 	/* device mapper special case, should not leak out: */
223 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
224 
225 	/* everything else not covered above: */
226 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
227 };
228 
229 blk_status_t errno_to_blk_status(int errno)
230 {
231 	int i;
232 
233 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
234 		if (blk_errors[i].errno == errno)
235 			return (__force blk_status_t)i;
236 	}
237 
238 	return BLK_STS_IOERR;
239 }
240 EXPORT_SYMBOL_GPL(errno_to_blk_status);
241 
242 int blk_status_to_errno(blk_status_t status)
243 {
244 	int idx = (__force int)status;
245 
246 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
247 		return -EIO;
248 	return blk_errors[idx].errno;
249 }
250 EXPORT_SYMBOL_GPL(blk_status_to_errno);
251 
252 static void print_req_error(struct request *req, blk_status_t status)
253 {
254 	int idx = (__force int)status;
255 
256 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
257 		return;
258 
259 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
260 			   __func__, blk_errors[idx].name, req->rq_disk ?
261 			   req->rq_disk->disk_name : "?",
262 			   (unsigned long long)blk_rq_pos(req));
263 }
264 
265 static void req_bio_endio(struct request *rq, struct bio *bio,
266 			  unsigned int nbytes, blk_status_t error)
267 {
268 	if (error)
269 		bio->bi_status = error;
270 
271 	if (unlikely(rq->rq_flags & RQF_QUIET))
272 		bio_set_flag(bio, BIO_QUIET);
273 
274 	bio_advance(bio, nbytes);
275 
276 	/* don't actually finish bio if it's part of flush sequence */
277 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
278 		bio_endio(bio);
279 }
280 
281 void blk_dump_rq_flags(struct request *rq, char *msg)
282 {
283 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
284 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
285 		(unsigned long long) rq->cmd_flags);
286 
287 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
288 	       (unsigned long long)blk_rq_pos(rq),
289 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
290 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
291 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
292 }
293 EXPORT_SYMBOL(blk_dump_rq_flags);
294 
295 static void blk_delay_work(struct work_struct *work)
296 {
297 	struct request_queue *q;
298 
299 	q = container_of(work, struct request_queue, delay_work.work);
300 	spin_lock_irq(q->queue_lock);
301 	__blk_run_queue(q);
302 	spin_unlock_irq(q->queue_lock);
303 }
304 
305 /**
306  * blk_delay_queue - restart queueing after defined interval
307  * @q:		The &struct request_queue in question
308  * @msecs:	Delay in msecs
309  *
310  * Description:
311  *   Sometimes queueing needs to be postponed for a little while, to allow
312  *   resources to come back. This function will make sure that queueing is
313  *   restarted around the specified time.
314  */
315 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
316 {
317 	lockdep_assert_held(q->queue_lock);
318 	WARN_ON_ONCE(q->mq_ops);
319 
320 	if (likely(!blk_queue_dead(q)))
321 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
322 				   msecs_to_jiffies(msecs));
323 }
324 EXPORT_SYMBOL(blk_delay_queue);
325 
326 /**
327  * blk_start_queue_async - asynchronously restart a previously stopped queue
328  * @q:    The &struct request_queue in question
329  *
330  * Description:
331  *   blk_start_queue_async() will clear the stop flag on the queue, and
332  *   ensure that the request_fn for the queue is run from an async
333  *   context.
334  **/
335 void blk_start_queue_async(struct request_queue *q)
336 {
337 	lockdep_assert_held(q->queue_lock);
338 	WARN_ON_ONCE(q->mq_ops);
339 
340 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 	blk_run_queue_async(q);
342 }
343 EXPORT_SYMBOL(blk_start_queue_async);
344 
345 /**
346  * blk_start_queue - restart a previously stopped queue
347  * @q:    The &struct request_queue in question
348  *
349  * Description:
350  *   blk_start_queue() will clear the stop flag on the queue, and call
351  *   the request_fn for the queue if it was in a stopped state when
352  *   entered. Also see blk_stop_queue().
353  **/
354 void blk_start_queue(struct request_queue *q)
355 {
356 	lockdep_assert_held(q->queue_lock);
357 	WARN_ON_ONCE(q->mq_ops);
358 
359 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
360 	__blk_run_queue(q);
361 }
362 EXPORT_SYMBOL(blk_start_queue);
363 
364 /**
365  * blk_stop_queue - stop a queue
366  * @q:    The &struct request_queue in question
367  *
368  * Description:
369  *   The Linux block layer assumes that a block driver will consume all
370  *   entries on the request queue when the request_fn strategy is called.
371  *   Often this will not happen, because of hardware limitations (queue
372  *   depth settings). If a device driver gets a 'queue full' response,
373  *   or if it simply chooses not to queue more I/O at one point, it can
374  *   call this function to prevent the request_fn from being called until
375  *   the driver has signalled it's ready to go again. This happens by calling
376  *   blk_start_queue() to restart queue operations.
377  **/
378 void blk_stop_queue(struct request_queue *q)
379 {
380 	lockdep_assert_held(q->queue_lock);
381 	WARN_ON_ONCE(q->mq_ops);
382 
383 	cancel_delayed_work(&q->delay_work);
384 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
385 }
386 EXPORT_SYMBOL(blk_stop_queue);
387 
388 /**
389  * blk_sync_queue - cancel any pending callbacks on a queue
390  * @q: the queue
391  *
392  * Description:
393  *     The block layer may perform asynchronous callback activity
394  *     on a queue, such as calling the unplug function after a timeout.
395  *     A block device may call blk_sync_queue to ensure that any
396  *     such activity is cancelled, thus allowing it to release resources
397  *     that the callbacks might use. The caller must already have made sure
398  *     that its ->make_request_fn will not re-add plugging prior to calling
399  *     this function.
400  *
401  *     This function does not cancel any asynchronous activity arising
402  *     out of elevator or throttling code. That would require elevator_exit()
403  *     and blkcg_exit_queue() to be called with queue lock initialized.
404  *
405  */
406 void blk_sync_queue(struct request_queue *q)
407 {
408 	del_timer_sync(&q->timeout);
409 	cancel_work_sync(&q->timeout_work);
410 
411 	if (q->mq_ops) {
412 		struct blk_mq_hw_ctx *hctx;
413 		int i;
414 
415 		cancel_delayed_work_sync(&q->requeue_work);
416 		queue_for_each_hw_ctx(q, hctx, i)
417 			cancel_delayed_work_sync(&hctx->run_work);
418 	} else {
419 		cancel_delayed_work_sync(&q->delay_work);
420 	}
421 }
422 EXPORT_SYMBOL(blk_sync_queue);
423 
424 /**
425  * blk_set_pm_only - increment pm_only counter
426  * @q: request queue pointer
427  */
428 void blk_set_pm_only(struct request_queue *q)
429 {
430 	atomic_inc(&q->pm_only);
431 }
432 EXPORT_SYMBOL_GPL(blk_set_pm_only);
433 
434 void blk_clear_pm_only(struct request_queue *q)
435 {
436 	int pm_only;
437 
438 	pm_only = atomic_dec_return(&q->pm_only);
439 	WARN_ON_ONCE(pm_only < 0);
440 	if (pm_only == 0)
441 		wake_up_all(&q->mq_freeze_wq);
442 }
443 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
444 
445 /**
446  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
447  * @q:	The queue to run
448  *
449  * Description:
450  *    Invoke request handling on a queue if there are any pending requests.
451  *    May be used to restart request handling after a request has completed.
452  *    This variant runs the queue whether or not the queue has been
453  *    stopped. Must be called with the queue lock held and interrupts
454  *    disabled. See also @blk_run_queue.
455  */
456 inline void __blk_run_queue_uncond(struct request_queue *q)
457 {
458 	lockdep_assert_held(q->queue_lock);
459 	WARN_ON_ONCE(q->mq_ops);
460 
461 	if (unlikely(blk_queue_dead(q)))
462 		return;
463 
464 	/*
465 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
466 	 * the queue lock internally. As a result multiple threads may be
467 	 * running such a request function concurrently. Keep track of the
468 	 * number of active request_fn invocations such that blk_drain_queue()
469 	 * can wait until all these request_fn calls have finished.
470 	 */
471 	q->request_fn_active++;
472 	q->request_fn(q);
473 	q->request_fn_active--;
474 }
475 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
476 
477 /**
478  * __blk_run_queue - run a single device queue
479  * @q:	The queue to run
480  *
481  * Description:
482  *    See @blk_run_queue.
483  */
484 void __blk_run_queue(struct request_queue *q)
485 {
486 	lockdep_assert_held(q->queue_lock);
487 	WARN_ON_ONCE(q->mq_ops);
488 
489 	if (unlikely(blk_queue_stopped(q)))
490 		return;
491 
492 	__blk_run_queue_uncond(q);
493 }
494 EXPORT_SYMBOL(__blk_run_queue);
495 
496 /**
497  * blk_run_queue_async - run a single device queue in workqueue context
498  * @q:	The queue to run
499  *
500  * Description:
501  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
502  *    of us.
503  *
504  * Note:
505  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
506  *    has canceled q->delay_work, callers must hold the queue lock to avoid
507  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
508  */
509 void blk_run_queue_async(struct request_queue *q)
510 {
511 	lockdep_assert_held(q->queue_lock);
512 	WARN_ON_ONCE(q->mq_ops);
513 
514 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
515 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
516 }
517 EXPORT_SYMBOL(blk_run_queue_async);
518 
519 /**
520  * blk_run_queue - run a single device queue
521  * @q: The queue to run
522  *
523  * Description:
524  *    Invoke request handling on this queue, if it has pending work to do.
525  *    May be used to restart queueing when a request has completed.
526  */
527 void blk_run_queue(struct request_queue *q)
528 {
529 	unsigned long flags;
530 
531 	WARN_ON_ONCE(q->mq_ops);
532 
533 	spin_lock_irqsave(q->queue_lock, flags);
534 	__blk_run_queue(q);
535 	spin_unlock_irqrestore(q->queue_lock, flags);
536 }
537 EXPORT_SYMBOL(blk_run_queue);
538 
539 void blk_put_queue(struct request_queue *q)
540 {
541 	kobject_put(&q->kobj);
542 }
543 EXPORT_SYMBOL(blk_put_queue);
544 
545 /**
546  * __blk_drain_queue - drain requests from request_queue
547  * @q: queue to drain
548  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
549  *
550  * Drain requests from @q.  If @drain_all is set, all requests are drained.
551  * If not, only ELVPRIV requests are drained.  The caller is responsible
552  * for ensuring that no new requests which need to be drained are queued.
553  */
554 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
555 	__releases(q->queue_lock)
556 	__acquires(q->queue_lock)
557 {
558 	int i;
559 
560 	lockdep_assert_held(q->queue_lock);
561 	WARN_ON_ONCE(q->mq_ops);
562 
563 	while (true) {
564 		bool drain = false;
565 
566 		/*
567 		 * The caller might be trying to drain @q before its
568 		 * elevator is initialized.
569 		 */
570 		if (q->elevator)
571 			elv_drain_elevator(q);
572 
573 		blkcg_drain_queue(q);
574 
575 		/*
576 		 * This function might be called on a queue which failed
577 		 * driver init after queue creation or is not yet fully
578 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
579 		 * in such cases.  Kick queue iff dispatch queue has
580 		 * something on it and @q has request_fn set.
581 		 */
582 		if (!list_empty(&q->queue_head) && q->request_fn)
583 			__blk_run_queue(q);
584 
585 		drain |= q->nr_rqs_elvpriv;
586 		drain |= q->request_fn_active;
587 
588 		/*
589 		 * Unfortunately, requests are queued at and tracked from
590 		 * multiple places and there's no single counter which can
591 		 * be drained.  Check all the queues and counters.
592 		 */
593 		if (drain_all) {
594 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
595 			drain |= !list_empty(&q->queue_head);
596 			for (i = 0; i < 2; i++) {
597 				drain |= q->nr_rqs[i];
598 				drain |= q->in_flight[i];
599 				if (fq)
600 				    drain |= !list_empty(&fq->flush_queue[i]);
601 			}
602 		}
603 
604 		if (!drain)
605 			break;
606 
607 		spin_unlock_irq(q->queue_lock);
608 
609 		msleep(10);
610 
611 		spin_lock_irq(q->queue_lock);
612 	}
613 
614 	/*
615 	 * With queue marked dead, any woken up waiter will fail the
616 	 * allocation path, so the wakeup chaining is lost and we're
617 	 * left with hung waiters. We need to wake up those waiters.
618 	 */
619 	if (q->request_fn) {
620 		struct request_list *rl;
621 
622 		blk_queue_for_each_rl(rl, q)
623 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
624 				wake_up_all(&rl->wait[i]);
625 	}
626 }
627 
628 void blk_drain_queue(struct request_queue *q)
629 {
630 	spin_lock_irq(q->queue_lock);
631 	__blk_drain_queue(q, true);
632 	spin_unlock_irq(q->queue_lock);
633 }
634 
635 /**
636  * blk_queue_bypass_start - enter queue bypass mode
637  * @q: queue of interest
638  *
639  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
640  * function makes @q enter bypass mode and drains all requests which were
641  * throttled or issued before.  On return, it's guaranteed that no request
642  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
643  * inside queue or RCU read lock.
644  */
645 void blk_queue_bypass_start(struct request_queue *q)
646 {
647 	WARN_ON_ONCE(q->mq_ops);
648 
649 	spin_lock_irq(q->queue_lock);
650 	q->bypass_depth++;
651 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
652 	spin_unlock_irq(q->queue_lock);
653 
654 	/*
655 	 * Queues start drained.  Skip actual draining till init is
656 	 * complete.  This avoids lenghty delays during queue init which
657 	 * can happen many times during boot.
658 	 */
659 	if (blk_queue_init_done(q)) {
660 		spin_lock_irq(q->queue_lock);
661 		__blk_drain_queue(q, false);
662 		spin_unlock_irq(q->queue_lock);
663 
664 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
665 		synchronize_rcu();
666 	}
667 }
668 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
669 
670 /**
671  * blk_queue_bypass_end - leave queue bypass mode
672  * @q: queue of interest
673  *
674  * Leave bypass mode and restore the normal queueing behavior.
675  *
676  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
677  * this function is called for both blk-sq and blk-mq queues.
678  */
679 void blk_queue_bypass_end(struct request_queue *q)
680 {
681 	spin_lock_irq(q->queue_lock);
682 	if (!--q->bypass_depth)
683 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
684 	WARN_ON_ONCE(q->bypass_depth < 0);
685 	spin_unlock_irq(q->queue_lock);
686 }
687 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
688 
689 void blk_set_queue_dying(struct request_queue *q)
690 {
691 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
692 
693 	/*
694 	 * When queue DYING flag is set, we need to block new req
695 	 * entering queue, so we call blk_freeze_queue_start() to
696 	 * prevent I/O from crossing blk_queue_enter().
697 	 */
698 	blk_freeze_queue_start(q);
699 
700 	if (q->mq_ops)
701 		blk_mq_wake_waiters(q);
702 	else {
703 		struct request_list *rl;
704 
705 		spin_lock_irq(q->queue_lock);
706 		blk_queue_for_each_rl(rl, q) {
707 			if (rl->rq_pool) {
708 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
709 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
710 			}
711 		}
712 		spin_unlock_irq(q->queue_lock);
713 	}
714 
715 	/* Make blk_queue_enter() reexamine the DYING flag. */
716 	wake_up_all(&q->mq_freeze_wq);
717 }
718 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
719 
720 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
721 void blk_exit_queue(struct request_queue *q)
722 {
723 	/*
724 	 * Since the I/O scheduler exit code may access cgroup information,
725 	 * perform I/O scheduler exit before disassociating from the block
726 	 * cgroup controller.
727 	 */
728 	if (q->elevator) {
729 		ioc_clear_queue(q);
730 		elevator_exit(q, q->elevator);
731 		q->elevator = NULL;
732 	}
733 
734 	/*
735 	 * Remove all references to @q from the block cgroup controller before
736 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
737 	 * e.g. blkcg_print_blkgs() to crash.
738 	 */
739 	blkcg_exit_queue(q);
740 
741 	/*
742 	 * Since the cgroup code may dereference the @q->backing_dev_info
743 	 * pointer, only decrease its reference count after having removed the
744 	 * association with the block cgroup controller.
745 	 */
746 	bdi_put(q->backing_dev_info);
747 }
748 
749 /**
750  * blk_cleanup_queue - shutdown a request queue
751  * @q: request queue to shutdown
752  *
753  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
754  * put it.  All future requests will be failed immediately with -ENODEV.
755  */
756 void blk_cleanup_queue(struct request_queue *q)
757 {
758 	spinlock_t *lock = q->queue_lock;
759 
760 	/* mark @q DYING, no new request or merges will be allowed afterwards */
761 	mutex_lock(&q->sysfs_lock);
762 	blk_set_queue_dying(q);
763 	spin_lock_irq(lock);
764 
765 	/*
766 	 * A dying queue is permanently in bypass mode till released.  Note
767 	 * that, unlike blk_queue_bypass_start(), we aren't performing
768 	 * synchronize_rcu() after entering bypass mode to avoid the delay
769 	 * as some drivers create and destroy a lot of queues while
770 	 * probing.  This is still safe because blk_release_queue() will be
771 	 * called only after the queue refcnt drops to zero and nothing,
772 	 * RCU or not, would be traversing the queue by then.
773 	 */
774 	q->bypass_depth++;
775 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
776 
777 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
778 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
779 	queue_flag_set(QUEUE_FLAG_DYING, q);
780 	spin_unlock_irq(lock);
781 	mutex_unlock(&q->sysfs_lock);
782 
783 	/*
784 	 * Drain all requests queued before DYING marking. Set DEAD flag to
785 	 * prevent that q->request_fn() gets invoked after draining finished.
786 	 */
787 	blk_freeze_queue(q);
788 
789 	rq_qos_exit(q);
790 
791 	spin_lock_irq(lock);
792 	queue_flag_set(QUEUE_FLAG_DEAD, q);
793 	spin_unlock_irq(lock);
794 
795 	/*
796 	 * make sure all in-progress dispatch are completed because
797 	 * blk_freeze_queue() can only complete all requests, and
798 	 * dispatch may still be in-progress since we dispatch requests
799 	 * from more than one contexts.
800 	 *
801 	 * We rely on driver to deal with the race in case that queue
802 	 * initialization isn't done.
803 	 */
804 	if (q->mq_ops && blk_queue_init_done(q))
805 		blk_mq_quiesce_queue(q);
806 
807 	/* for synchronous bio-based driver finish in-flight integrity i/o */
808 	blk_flush_integrity();
809 
810 	/* @q won't process any more request, flush async actions */
811 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
812 	blk_sync_queue(q);
813 
814 	/*
815 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
816 	 * has been removed.
817 	 */
818 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
819 
820 	blk_exit_queue(q);
821 
822 	if (q->mq_ops)
823 		blk_mq_free_queue(q);
824 	percpu_ref_exit(&q->q_usage_counter);
825 
826 	spin_lock_irq(lock);
827 	if (q->queue_lock != &q->__queue_lock)
828 		q->queue_lock = &q->__queue_lock;
829 	spin_unlock_irq(lock);
830 
831 	/* @q is and will stay empty, shutdown and put */
832 	blk_put_queue(q);
833 }
834 EXPORT_SYMBOL(blk_cleanup_queue);
835 
836 /* Allocate memory local to the request queue */
837 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
838 {
839 	struct request_queue *q = data;
840 
841 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
842 }
843 
844 static void free_request_simple(void *element, void *data)
845 {
846 	kmem_cache_free(request_cachep, element);
847 }
848 
849 static void *alloc_request_size(gfp_t gfp_mask, void *data)
850 {
851 	struct request_queue *q = data;
852 	struct request *rq;
853 
854 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
855 			q->node);
856 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
857 		kfree(rq);
858 		rq = NULL;
859 	}
860 	return rq;
861 }
862 
863 static void free_request_size(void *element, void *data)
864 {
865 	struct request_queue *q = data;
866 
867 	if (q->exit_rq_fn)
868 		q->exit_rq_fn(q, element);
869 	kfree(element);
870 }
871 
872 int blk_init_rl(struct request_list *rl, struct request_queue *q,
873 		gfp_t gfp_mask)
874 {
875 	if (unlikely(rl->rq_pool) || q->mq_ops)
876 		return 0;
877 
878 	rl->q = q;
879 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
880 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
881 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
882 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
883 
884 	if (q->cmd_size) {
885 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 				alloc_request_size, free_request_size,
887 				q, gfp_mask, q->node);
888 	} else {
889 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
890 				alloc_request_simple, free_request_simple,
891 				q, gfp_mask, q->node);
892 	}
893 	if (!rl->rq_pool)
894 		return -ENOMEM;
895 
896 	if (rl != &q->root_rl)
897 		WARN_ON_ONCE(!blk_get_queue(q));
898 
899 	return 0;
900 }
901 
902 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
903 {
904 	if (rl->rq_pool) {
905 		mempool_destroy(rl->rq_pool);
906 		if (rl != &q->root_rl)
907 			blk_put_queue(q);
908 	}
909 }
910 
911 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
912 {
913 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
914 }
915 EXPORT_SYMBOL(blk_alloc_queue);
916 
917 /**
918  * blk_queue_enter() - try to increase q->q_usage_counter
919  * @q: request queue pointer
920  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
921  */
922 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
923 {
924 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
925 
926 	while (true) {
927 		bool success = false;
928 
929 		rcu_read_lock();
930 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
931 			/*
932 			 * The code that increments the pm_only counter is
933 			 * responsible for ensuring that that counter is
934 			 * globally visible before the queue is unfrozen.
935 			 */
936 			if (pm || !blk_queue_pm_only(q)) {
937 				success = true;
938 			} else {
939 				percpu_ref_put(&q->q_usage_counter);
940 			}
941 		}
942 		rcu_read_unlock();
943 
944 		if (success)
945 			return 0;
946 
947 		if (flags & BLK_MQ_REQ_NOWAIT)
948 			return -EBUSY;
949 
950 		/*
951 		 * read pair of barrier in blk_freeze_queue_start(),
952 		 * we need to order reading __PERCPU_REF_DEAD flag of
953 		 * .q_usage_counter and reading .mq_freeze_depth or
954 		 * queue dying flag, otherwise the following wait may
955 		 * never return if the two reads are reordered.
956 		 */
957 		smp_rmb();
958 
959 		wait_event(q->mq_freeze_wq,
960 			   (atomic_read(&q->mq_freeze_depth) == 0 &&
961 			    (pm || (blk_pm_request_resume(q),
962 				    !blk_queue_pm_only(q)))) ||
963 			   blk_queue_dying(q));
964 		if (blk_queue_dying(q))
965 			return -ENODEV;
966 	}
967 }
968 
969 void blk_queue_exit(struct request_queue *q)
970 {
971 	percpu_ref_put(&q->q_usage_counter);
972 }
973 
974 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
975 {
976 	struct request_queue *q =
977 		container_of(ref, struct request_queue, q_usage_counter);
978 
979 	wake_up_all(&q->mq_freeze_wq);
980 }
981 
982 static void blk_rq_timed_out_timer(struct timer_list *t)
983 {
984 	struct request_queue *q = from_timer(q, t, timeout);
985 
986 	kblockd_schedule_work(&q->timeout_work);
987 }
988 
989 /**
990  * blk_alloc_queue_node - allocate a request queue
991  * @gfp_mask: memory allocation flags
992  * @node_id: NUMA node to allocate memory from
993  * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
994  *        serialize calls to the legacy .request_fn() callback. Ignored for
995  *	  blk-mq request queues.
996  *
997  * Note: pass the queue lock as the third argument to this function instead of
998  * setting the queue lock pointer explicitly to avoid triggering a sporadic
999  * crash in the blkcg code. This function namely calls blkcg_init_queue() and
1000  * the queue lock pointer must be set before blkcg_init_queue() is called.
1001  */
1002 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1003 					   spinlock_t *lock)
1004 {
1005 	struct request_queue *q;
1006 	int ret;
1007 
1008 	q = kmem_cache_alloc_node(blk_requestq_cachep,
1009 				gfp_mask | __GFP_ZERO, node_id);
1010 	if (!q)
1011 		return NULL;
1012 
1013 	INIT_LIST_HEAD(&q->queue_head);
1014 	q->last_merge = NULL;
1015 	q->end_sector = 0;
1016 	q->boundary_rq = NULL;
1017 
1018 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1019 	if (q->id < 0)
1020 		goto fail_q;
1021 
1022 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1023 	if (ret)
1024 		goto fail_id;
1025 
1026 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1027 	if (!q->backing_dev_info)
1028 		goto fail_split;
1029 
1030 	q->stats = blk_alloc_queue_stats();
1031 	if (!q->stats)
1032 		goto fail_stats;
1033 
1034 	q->backing_dev_info->ra_pages =
1035 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1036 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1037 	q->backing_dev_info->name = "block";
1038 	q->node = node_id;
1039 
1040 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1041 		    laptop_mode_timer_fn, 0);
1042 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1043 	INIT_WORK(&q->timeout_work, NULL);
1044 	INIT_LIST_HEAD(&q->timeout_list);
1045 	INIT_LIST_HEAD(&q->icq_list);
1046 #ifdef CONFIG_BLK_CGROUP
1047 	INIT_LIST_HEAD(&q->blkg_list);
1048 #endif
1049 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1050 
1051 	kobject_init(&q->kobj, &blk_queue_ktype);
1052 
1053 #ifdef CONFIG_BLK_DEV_IO_TRACE
1054 	mutex_init(&q->blk_trace_mutex);
1055 #endif
1056 	mutex_init(&q->sysfs_lock);
1057 	spin_lock_init(&q->__queue_lock);
1058 
1059 	q->queue_lock = lock ? : &q->__queue_lock;
1060 
1061 	/*
1062 	 * A queue starts its life with bypass turned on to avoid
1063 	 * unnecessary bypass on/off overhead and nasty surprises during
1064 	 * init.  The initial bypass will be finished when the queue is
1065 	 * registered by blk_register_queue().
1066 	 */
1067 	q->bypass_depth = 1;
1068 	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1069 
1070 	init_waitqueue_head(&q->mq_freeze_wq);
1071 
1072 	/*
1073 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1074 	 * See blk_register_queue() for details.
1075 	 */
1076 	if (percpu_ref_init(&q->q_usage_counter,
1077 				blk_queue_usage_counter_release,
1078 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1079 		goto fail_bdi;
1080 
1081 	if (blkcg_init_queue(q))
1082 		goto fail_ref;
1083 
1084 	return q;
1085 
1086 fail_ref:
1087 	percpu_ref_exit(&q->q_usage_counter);
1088 fail_bdi:
1089 	blk_free_queue_stats(q->stats);
1090 fail_stats:
1091 	bdi_put(q->backing_dev_info);
1092 fail_split:
1093 	bioset_exit(&q->bio_split);
1094 fail_id:
1095 	ida_simple_remove(&blk_queue_ida, q->id);
1096 fail_q:
1097 	kmem_cache_free(blk_requestq_cachep, q);
1098 	return NULL;
1099 }
1100 EXPORT_SYMBOL(blk_alloc_queue_node);
1101 
1102 /**
1103  * blk_init_queue  - prepare a request queue for use with a block device
1104  * @rfn:  The function to be called to process requests that have been
1105  *        placed on the queue.
1106  * @lock: Request queue spin lock
1107  *
1108  * Description:
1109  *    If a block device wishes to use the standard request handling procedures,
1110  *    which sorts requests and coalesces adjacent requests, then it must
1111  *    call blk_init_queue().  The function @rfn will be called when there
1112  *    are requests on the queue that need to be processed.  If the device
1113  *    supports plugging, then @rfn may not be called immediately when requests
1114  *    are available on the queue, but may be called at some time later instead.
1115  *    Plugged queues are generally unplugged when a buffer belonging to one
1116  *    of the requests on the queue is needed, or due to memory pressure.
1117  *
1118  *    @rfn is not required, or even expected, to remove all requests off the
1119  *    queue, but only as many as it can handle at a time.  If it does leave
1120  *    requests on the queue, it is responsible for arranging that the requests
1121  *    get dealt with eventually.
1122  *
1123  *    The queue spin lock must be held while manipulating the requests on the
1124  *    request queue; this lock will be taken also from interrupt context, so irq
1125  *    disabling is needed for it.
1126  *
1127  *    Function returns a pointer to the initialized request queue, or %NULL if
1128  *    it didn't succeed.
1129  *
1130  * Note:
1131  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1132  *    when the block device is deactivated (such as at module unload).
1133  **/
1134 
1135 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1136 {
1137 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1138 }
1139 EXPORT_SYMBOL(blk_init_queue);
1140 
1141 struct request_queue *
1142 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1143 {
1144 	struct request_queue *q;
1145 
1146 	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1147 	if (!q)
1148 		return NULL;
1149 
1150 	q->request_fn = rfn;
1151 	if (blk_init_allocated_queue(q) < 0) {
1152 		blk_cleanup_queue(q);
1153 		return NULL;
1154 	}
1155 
1156 	return q;
1157 }
1158 EXPORT_SYMBOL(blk_init_queue_node);
1159 
1160 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1161 
1162 
1163 int blk_init_allocated_queue(struct request_queue *q)
1164 {
1165 	WARN_ON_ONCE(q->mq_ops);
1166 
1167 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
1168 	if (!q->fq)
1169 		return -ENOMEM;
1170 
1171 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1172 		goto out_free_flush_queue;
1173 
1174 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1175 		goto out_exit_flush_rq;
1176 
1177 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1178 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1179 
1180 	/*
1181 	 * This also sets hw/phys segments, boundary and size
1182 	 */
1183 	blk_queue_make_request(q, blk_queue_bio);
1184 
1185 	q->sg_reserved_size = INT_MAX;
1186 
1187 	if (elevator_init(q))
1188 		goto out_exit_flush_rq;
1189 	return 0;
1190 
1191 out_exit_flush_rq:
1192 	if (q->exit_rq_fn)
1193 		q->exit_rq_fn(q, q->fq->flush_rq);
1194 out_free_flush_queue:
1195 	blk_free_flush_queue(q->fq);
1196 	q->fq = NULL;
1197 	return -ENOMEM;
1198 }
1199 EXPORT_SYMBOL(blk_init_allocated_queue);
1200 
1201 bool blk_get_queue(struct request_queue *q)
1202 {
1203 	if (likely(!blk_queue_dying(q))) {
1204 		__blk_get_queue(q);
1205 		return true;
1206 	}
1207 
1208 	return false;
1209 }
1210 EXPORT_SYMBOL(blk_get_queue);
1211 
1212 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1213 {
1214 	if (rq->rq_flags & RQF_ELVPRIV) {
1215 		elv_put_request(rl->q, rq);
1216 		if (rq->elv.icq)
1217 			put_io_context(rq->elv.icq->ioc);
1218 	}
1219 
1220 	mempool_free(rq, rl->rq_pool);
1221 }
1222 
1223 /*
1224  * ioc_batching returns true if the ioc is a valid batching request and
1225  * should be given priority access to a request.
1226  */
1227 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1228 {
1229 	if (!ioc)
1230 		return 0;
1231 
1232 	/*
1233 	 * Make sure the process is able to allocate at least 1 request
1234 	 * even if the batch times out, otherwise we could theoretically
1235 	 * lose wakeups.
1236 	 */
1237 	return ioc->nr_batch_requests == q->nr_batching ||
1238 		(ioc->nr_batch_requests > 0
1239 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1240 }
1241 
1242 /*
1243  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1244  * will cause the process to be a "batcher" on all queues in the system. This
1245  * is the behaviour we want though - once it gets a wakeup it should be given
1246  * a nice run.
1247  */
1248 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1249 {
1250 	if (!ioc || ioc_batching(q, ioc))
1251 		return;
1252 
1253 	ioc->nr_batch_requests = q->nr_batching;
1254 	ioc->last_waited = jiffies;
1255 }
1256 
1257 static void __freed_request(struct request_list *rl, int sync)
1258 {
1259 	struct request_queue *q = rl->q;
1260 
1261 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1262 		blk_clear_congested(rl, sync);
1263 
1264 	if (rl->count[sync] + 1 <= q->nr_requests) {
1265 		if (waitqueue_active(&rl->wait[sync]))
1266 			wake_up(&rl->wait[sync]);
1267 
1268 		blk_clear_rl_full(rl, sync);
1269 	}
1270 }
1271 
1272 /*
1273  * A request has just been released.  Account for it, update the full and
1274  * congestion status, wake up any waiters.   Called under q->queue_lock.
1275  */
1276 static void freed_request(struct request_list *rl, bool sync,
1277 		req_flags_t rq_flags)
1278 {
1279 	struct request_queue *q = rl->q;
1280 
1281 	q->nr_rqs[sync]--;
1282 	rl->count[sync]--;
1283 	if (rq_flags & RQF_ELVPRIV)
1284 		q->nr_rqs_elvpriv--;
1285 
1286 	__freed_request(rl, sync);
1287 
1288 	if (unlikely(rl->starved[sync ^ 1]))
1289 		__freed_request(rl, sync ^ 1);
1290 }
1291 
1292 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1293 {
1294 	struct request_list *rl;
1295 	int on_thresh, off_thresh;
1296 
1297 	WARN_ON_ONCE(q->mq_ops);
1298 
1299 	spin_lock_irq(q->queue_lock);
1300 	q->nr_requests = nr;
1301 	blk_queue_congestion_threshold(q);
1302 	on_thresh = queue_congestion_on_threshold(q);
1303 	off_thresh = queue_congestion_off_threshold(q);
1304 
1305 	blk_queue_for_each_rl(rl, q) {
1306 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1307 			blk_set_congested(rl, BLK_RW_SYNC);
1308 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1309 			blk_clear_congested(rl, BLK_RW_SYNC);
1310 
1311 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1312 			blk_set_congested(rl, BLK_RW_ASYNC);
1313 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1314 			blk_clear_congested(rl, BLK_RW_ASYNC);
1315 
1316 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1317 			blk_set_rl_full(rl, BLK_RW_SYNC);
1318 		} else {
1319 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1320 			wake_up(&rl->wait[BLK_RW_SYNC]);
1321 		}
1322 
1323 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1324 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1325 		} else {
1326 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1327 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1328 		}
1329 	}
1330 
1331 	spin_unlock_irq(q->queue_lock);
1332 	return 0;
1333 }
1334 
1335 /**
1336  * __get_request - get a free request
1337  * @rl: request list to allocate from
1338  * @op: operation and flags
1339  * @bio: bio to allocate request for (can be %NULL)
1340  * @flags: BLQ_MQ_REQ_* flags
1341  * @gfp_mask: allocator flags
1342  *
1343  * Get a free request from @q.  This function may fail under memory
1344  * pressure or if @q is dead.
1345  *
1346  * Must be called with @q->queue_lock held and,
1347  * Returns ERR_PTR on failure, with @q->queue_lock held.
1348  * Returns request pointer on success, with @q->queue_lock *not held*.
1349  */
1350 static struct request *__get_request(struct request_list *rl, unsigned int op,
1351 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1352 {
1353 	struct request_queue *q = rl->q;
1354 	struct request *rq;
1355 	struct elevator_type *et = q->elevator->type;
1356 	struct io_context *ioc = rq_ioc(bio);
1357 	struct io_cq *icq = NULL;
1358 	const bool is_sync = op_is_sync(op);
1359 	int may_queue;
1360 	req_flags_t rq_flags = RQF_ALLOCED;
1361 
1362 	lockdep_assert_held(q->queue_lock);
1363 
1364 	if (unlikely(blk_queue_dying(q)))
1365 		return ERR_PTR(-ENODEV);
1366 
1367 	may_queue = elv_may_queue(q, op);
1368 	if (may_queue == ELV_MQUEUE_NO)
1369 		goto rq_starved;
1370 
1371 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1372 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1373 			/*
1374 			 * The queue will fill after this allocation, so set
1375 			 * it as full, and mark this process as "batching".
1376 			 * This process will be allowed to complete a batch of
1377 			 * requests, others will be blocked.
1378 			 */
1379 			if (!blk_rl_full(rl, is_sync)) {
1380 				ioc_set_batching(q, ioc);
1381 				blk_set_rl_full(rl, is_sync);
1382 			} else {
1383 				if (may_queue != ELV_MQUEUE_MUST
1384 						&& !ioc_batching(q, ioc)) {
1385 					/*
1386 					 * The queue is full and the allocating
1387 					 * process is not a "batcher", and not
1388 					 * exempted by the IO scheduler
1389 					 */
1390 					return ERR_PTR(-ENOMEM);
1391 				}
1392 			}
1393 		}
1394 		blk_set_congested(rl, is_sync);
1395 	}
1396 
1397 	/*
1398 	 * Only allow batching queuers to allocate up to 50% over the defined
1399 	 * limit of requests, otherwise we could have thousands of requests
1400 	 * allocated with any setting of ->nr_requests
1401 	 */
1402 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1403 		return ERR_PTR(-ENOMEM);
1404 
1405 	q->nr_rqs[is_sync]++;
1406 	rl->count[is_sync]++;
1407 	rl->starved[is_sync] = 0;
1408 
1409 	/*
1410 	 * Decide whether the new request will be managed by elevator.  If
1411 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1412 	 * prevent the current elevator from being destroyed until the new
1413 	 * request is freed.  This guarantees icq's won't be destroyed and
1414 	 * makes creating new ones safe.
1415 	 *
1416 	 * Flush requests do not use the elevator so skip initialization.
1417 	 * This allows a request to share the flush and elevator data.
1418 	 *
1419 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1420 	 * it will be created after releasing queue_lock.
1421 	 */
1422 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1423 		rq_flags |= RQF_ELVPRIV;
1424 		q->nr_rqs_elvpriv++;
1425 		if (et->icq_cache && ioc)
1426 			icq = ioc_lookup_icq(ioc, q);
1427 	}
1428 
1429 	if (blk_queue_io_stat(q))
1430 		rq_flags |= RQF_IO_STAT;
1431 	spin_unlock_irq(q->queue_lock);
1432 
1433 	/* allocate and init request */
1434 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1435 	if (!rq)
1436 		goto fail_alloc;
1437 
1438 	blk_rq_init(q, rq);
1439 	blk_rq_set_rl(rq, rl);
1440 	rq->cmd_flags = op;
1441 	rq->rq_flags = rq_flags;
1442 	if (flags & BLK_MQ_REQ_PREEMPT)
1443 		rq->rq_flags |= RQF_PREEMPT;
1444 
1445 	/* init elvpriv */
1446 	if (rq_flags & RQF_ELVPRIV) {
1447 		if (unlikely(et->icq_cache && !icq)) {
1448 			if (ioc)
1449 				icq = ioc_create_icq(ioc, q, gfp_mask);
1450 			if (!icq)
1451 				goto fail_elvpriv;
1452 		}
1453 
1454 		rq->elv.icq = icq;
1455 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1456 			goto fail_elvpriv;
1457 
1458 		/* @rq->elv.icq holds io_context until @rq is freed */
1459 		if (icq)
1460 			get_io_context(icq->ioc);
1461 	}
1462 out:
1463 	/*
1464 	 * ioc may be NULL here, and ioc_batching will be false. That's
1465 	 * OK, if the queue is under the request limit then requests need
1466 	 * not count toward the nr_batch_requests limit. There will always
1467 	 * be some limit enforced by BLK_BATCH_TIME.
1468 	 */
1469 	if (ioc_batching(q, ioc))
1470 		ioc->nr_batch_requests--;
1471 
1472 	trace_block_getrq(q, bio, op);
1473 	return rq;
1474 
1475 fail_elvpriv:
1476 	/*
1477 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1478 	 * and may fail indefinitely under memory pressure and thus
1479 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1480 	 * disturb iosched and blkcg but weird is bettern than dead.
1481 	 */
1482 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1483 			   __func__, dev_name(q->backing_dev_info->dev));
1484 
1485 	rq->rq_flags &= ~RQF_ELVPRIV;
1486 	rq->elv.icq = NULL;
1487 
1488 	spin_lock_irq(q->queue_lock);
1489 	q->nr_rqs_elvpriv--;
1490 	spin_unlock_irq(q->queue_lock);
1491 	goto out;
1492 
1493 fail_alloc:
1494 	/*
1495 	 * Allocation failed presumably due to memory. Undo anything we
1496 	 * might have messed up.
1497 	 *
1498 	 * Allocating task should really be put onto the front of the wait
1499 	 * queue, but this is pretty rare.
1500 	 */
1501 	spin_lock_irq(q->queue_lock);
1502 	freed_request(rl, is_sync, rq_flags);
1503 
1504 	/*
1505 	 * in the very unlikely event that allocation failed and no
1506 	 * requests for this direction was pending, mark us starved so that
1507 	 * freeing of a request in the other direction will notice
1508 	 * us. another possible fix would be to split the rq mempool into
1509 	 * READ and WRITE
1510 	 */
1511 rq_starved:
1512 	if (unlikely(rl->count[is_sync] == 0))
1513 		rl->starved[is_sync] = 1;
1514 	return ERR_PTR(-ENOMEM);
1515 }
1516 
1517 /**
1518  * get_request - get a free request
1519  * @q: request_queue to allocate request from
1520  * @op: operation and flags
1521  * @bio: bio to allocate request for (can be %NULL)
1522  * @flags: BLK_MQ_REQ_* flags.
1523  * @gfp: allocator flags
1524  *
1525  * Get a free request from @q.  If %BLK_MQ_REQ_NOWAIT is set in @flags,
1526  * this function keeps retrying under memory pressure and fails iff @q is dead.
1527  *
1528  * Must be called with @q->queue_lock held and,
1529  * Returns ERR_PTR on failure, with @q->queue_lock held.
1530  * Returns request pointer on success, with @q->queue_lock *not held*.
1531  */
1532 static struct request *get_request(struct request_queue *q, unsigned int op,
1533 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1534 {
1535 	const bool is_sync = op_is_sync(op);
1536 	DEFINE_WAIT(wait);
1537 	struct request_list *rl;
1538 	struct request *rq;
1539 
1540 	lockdep_assert_held(q->queue_lock);
1541 	WARN_ON_ONCE(q->mq_ops);
1542 
1543 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1544 retry:
1545 	rq = __get_request(rl, op, bio, flags, gfp);
1546 	if (!IS_ERR(rq))
1547 		return rq;
1548 
1549 	if (op & REQ_NOWAIT) {
1550 		blk_put_rl(rl);
1551 		return ERR_PTR(-EAGAIN);
1552 	}
1553 
1554 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1555 		blk_put_rl(rl);
1556 		return rq;
1557 	}
1558 
1559 	/* wait on @rl and retry */
1560 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1561 				  TASK_UNINTERRUPTIBLE);
1562 
1563 	trace_block_sleeprq(q, bio, op);
1564 
1565 	spin_unlock_irq(q->queue_lock);
1566 	io_schedule();
1567 
1568 	/*
1569 	 * After sleeping, we become a "batching" process and will be able
1570 	 * to allocate at least one request, and up to a big batch of them
1571 	 * for a small period time.  See ioc_batching, ioc_set_batching
1572 	 */
1573 	ioc_set_batching(q, current->io_context);
1574 
1575 	spin_lock_irq(q->queue_lock);
1576 	finish_wait(&rl->wait[is_sync], &wait);
1577 
1578 	goto retry;
1579 }
1580 
1581 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1582 static struct request *blk_old_get_request(struct request_queue *q,
1583 				unsigned int op, blk_mq_req_flags_t flags)
1584 {
1585 	struct request *rq;
1586 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1587 	int ret = 0;
1588 
1589 	WARN_ON_ONCE(q->mq_ops);
1590 
1591 	/* create ioc upfront */
1592 	create_io_context(gfp_mask, q->node);
1593 
1594 	ret = blk_queue_enter(q, flags);
1595 	if (ret)
1596 		return ERR_PTR(ret);
1597 	spin_lock_irq(q->queue_lock);
1598 	rq = get_request(q, op, NULL, flags, gfp_mask);
1599 	if (IS_ERR(rq)) {
1600 		spin_unlock_irq(q->queue_lock);
1601 		blk_queue_exit(q);
1602 		return rq;
1603 	}
1604 
1605 	/* q->queue_lock is unlocked at this point */
1606 	rq->__data_len = 0;
1607 	rq->__sector = (sector_t) -1;
1608 	rq->bio = rq->biotail = NULL;
1609 	return rq;
1610 }
1611 
1612 /**
1613  * blk_get_request - allocate a request
1614  * @q: request queue to allocate a request for
1615  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1616  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1617  */
1618 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1619 				blk_mq_req_flags_t flags)
1620 {
1621 	struct request *req;
1622 
1623 	WARN_ON_ONCE(op & REQ_NOWAIT);
1624 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1625 
1626 	if (q->mq_ops) {
1627 		req = blk_mq_alloc_request(q, op, flags);
1628 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1629 			q->mq_ops->initialize_rq_fn(req);
1630 	} else {
1631 		req = blk_old_get_request(q, op, flags);
1632 		if (!IS_ERR(req) && q->initialize_rq_fn)
1633 			q->initialize_rq_fn(req);
1634 	}
1635 
1636 	return req;
1637 }
1638 EXPORT_SYMBOL(blk_get_request);
1639 
1640 /**
1641  * blk_requeue_request - put a request back on queue
1642  * @q:		request queue where request should be inserted
1643  * @rq:		request to be inserted
1644  *
1645  * Description:
1646  *    Drivers often keep queueing requests until the hardware cannot accept
1647  *    more, when that condition happens we need to put the request back
1648  *    on the queue. Must be called with queue lock held.
1649  */
1650 void blk_requeue_request(struct request_queue *q, struct request *rq)
1651 {
1652 	lockdep_assert_held(q->queue_lock);
1653 	WARN_ON_ONCE(q->mq_ops);
1654 
1655 	blk_delete_timer(rq);
1656 	blk_clear_rq_complete(rq);
1657 	trace_block_rq_requeue(q, rq);
1658 	rq_qos_requeue(q, rq);
1659 
1660 	if (rq->rq_flags & RQF_QUEUED)
1661 		blk_queue_end_tag(q, rq);
1662 
1663 	BUG_ON(blk_queued_rq(rq));
1664 
1665 	elv_requeue_request(q, rq);
1666 }
1667 EXPORT_SYMBOL(blk_requeue_request);
1668 
1669 static void add_acct_request(struct request_queue *q, struct request *rq,
1670 			     int where)
1671 {
1672 	blk_account_io_start(rq, true);
1673 	__elv_add_request(q, rq, where);
1674 }
1675 
1676 static void part_round_stats_single(struct request_queue *q, int cpu,
1677 				    struct hd_struct *part, unsigned long now,
1678 				    unsigned int inflight)
1679 {
1680 	if (inflight) {
1681 		__part_stat_add(cpu, part, time_in_queue,
1682 				inflight * (now - part->stamp));
1683 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1684 	}
1685 	part->stamp = now;
1686 }
1687 
1688 /**
1689  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1690  * @q: target block queue
1691  * @cpu: cpu number for stats access
1692  * @part: target partition
1693  *
1694  * The average IO queue length and utilisation statistics are maintained
1695  * by observing the current state of the queue length and the amount of
1696  * time it has been in this state for.
1697  *
1698  * Normally, that accounting is done on IO completion, but that can result
1699  * in more than a second's worth of IO being accounted for within any one
1700  * second, leading to >100% utilisation.  To deal with that, we call this
1701  * function to do a round-off before returning the results when reading
1702  * /proc/diskstats.  This accounts immediately for all queue usage up to
1703  * the current jiffies and restarts the counters again.
1704  */
1705 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1706 {
1707 	struct hd_struct *part2 = NULL;
1708 	unsigned long now = jiffies;
1709 	unsigned int inflight[2];
1710 	int stats = 0;
1711 
1712 	if (part->stamp != now)
1713 		stats |= 1;
1714 
1715 	if (part->partno) {
1716 		part2 = &part_to_disk(part)->part0;
1717 		if (part2->stamp != now)
1718 			stats |= 2;
1719 	}
1720 
1721 	if (!stats)
1722 		return;
1723 
1724 	part_in_flight(q, part, inflight);
1725 
1726 	if (stats & 2)
1727 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1728 	if (stats & 1)
1729 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1730 }
1731 EXPORT_SYMBOL_GPL(part_round_stats);
1732 
1733 void __blk_put_request(struct request_queue *q, struct request *req)
1734 {
1735 	req_flags_t rq_flags = req->rq_flags;
1736 
1737 	if (unlikely(!q))
1738 		return;
1739 
1740 	if (q->mq_ops) {
1741 		blk_mq_free_request(req);
1742 		return;
1743 	}
1744 
1745 	lockdep_assert_held(q->queue_lock);
1746 
1747 	blk_req_zone_write_unlock(req);
1748 	blk_pm_put_request(req);
1749 	blk_pm_mark_last_busy(req);
1750 
1751 	elv_completed_request(q, req);
1752 
1753 	/* this is a bio leak */
1754 	WARN_ON(req->bio != NULL);
1755 
1756 	rq_qos_done(q, req);
1757 
1758 	/*
1759 	 * Request may not have originated from ll_rw_blk. if not,
1760 	 * it didn't come out of our reserved rq pools
1761 	 */
1762 	if (rq_flags & RQF_ALLOCED) {
1763 		struct request_list *rl = blk_rq_rl(req);
1764 		bool sync = op_is_sync(req->cmd_flags);
1765 
1766 		BUG_ON(!list_empty(&req->queuelist));
1767 		BUG_ON(ELV_ON_HASH(req));
1768 
1769 		blk_free_request(rl, req);
1770 		freed_request(rl, sync, rq_flags);
1771 		blk_put_rl(rl);
1772 		blk_queue_exit(q);
1773 	}
1774 }
1775 EXPORT_SYMBOL_GPL(__blk_put_request);
1776 
1777 void blk_put_request(struct request *req)
1778 {
1779 	struct request_queue *q = req->q;
1780 
1781 	if (q->mq_ops)
1782 		blk_mq_free_request(req);
1783 	else {
1784 		unsigned long flags;
1785 
1786 		spin_lock_irqsave(q->queue_lock, flags);
1787 		__blk_put_request(q, req);
1788 		spin_unlock_irqrestore(q->queue_lock, flags);
1789 	}
1790 }
1791 EXPORT_SYMBOL(blk_put_request);
1792 
1793 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1794 			    struct bio *bio)
1795 {
1796 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1797 
1798 	if (!ll_back_merge_fn(q, req, bio))
1799 		return false;
1800 
1801 	trace_block_bio_backmerge(q, req, bio);
1802 
1803 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1804 		blk_rq_set_mixed_merge(req);
1805 
1806 	req->biotail->bi_next = bio;
1807 	req->biotail = bio;
1808 	req->__data_len += bio->bi_iter.bi_size;
1809 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1810 
1811 	blk_account_io_start(req, false);
1812 	return true;
1813 }
1814 
1815 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1816 			     struct bio *bio)
1817 {
1818 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1819 
1820 	if (!ll_front_merge_fn(q, req, bio))
1821 		return false;
1822 
1823 	trace_block_bio_frontmerge(q, req, bio);
1824 
1825 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1826 		blk_rq_set_mixed_merge(req);
1827 
1828 	bio->bi_next = req->bio;
1829 	req->bio = bio;
1830 
1831 	req->__sector = bio->bi_iter.bi_sector;
1832 	req->__data_len += bio->bi_iter.bi_size;
1833 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1834 
1835 	blk_account_io_start(req, false);
1836 	return true;
1837 }
1838 
1839 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1840 		struct bio *bio)
1841 {
1842 	unsigned short segments = blk_rq_nr_discard_segments(req);
1843 
1844 	if (segments >= queue_max_discard_segments(q))
1845 		goto no_merge;
1846 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1847 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1848 		goto no_merge;
1849 
1850 	req->biotail->bi_next = bio;
1851 	req->biotail = bio;
1852 	req->__data_len += bio->bi_iter.bi_size;
1853 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1854 	req->nr_phys_segments = segments + 1;
1855 
1856 	blk_account_io_start(req, false);
1857 	return true;
1858 no_merge:
1859 	req_set_nomerge(q, req);
1860 	return false;
1861 }
1862 
1863 /**
1864  * blk_attempt_plug_merge - try to merge with %current's plugged list
1865  * @q: request_queue new bio is being queued at
1866  * @bio: new bio being queued
1867  * @request_count: out parameter for number of traversed plugged requests
1868  * @same_queue_rq: pointer to &struct request that gets filled in when
1869  * another request associated with @q is found on the plug list
1870  * (optional, may be %NULL)
1871  *
1872  * Determine whether @bio being queued on @q can be merged with a request
1873  * on %current's plugged list.  Returns %true if merge was successful,
1874  * otherwise %false.
1875  *
1876  * Plugging coalesces IOs from the same issuer for the same purpose without
1877  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1878  * than scheduling, and the request, while may have elvpriv data, is not
1879  * added on the elevator at this point.  In addition, we don't have
1880  * reliable access to the elevator outside queue lock.  Only check basic
1881  * merging parameters without querying the elevator.
1882  *
1883  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1884  */
1885 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1886 			    unsigned int *request_count,
1887 			    struct request **same_queue_rq)
1888 {
1889 	struct blk_plug *plug;
1890 	struct request *rq;
1891 	struct list_head *plug_list;
1892 
1893 	plug = current->plug;
1894 	if (!plug)
1895 		return false;
1896 	*request_count = 0;
1897 
1898 	if (q->mq_ops)
1899 		plug_list = &plug->mq_list;
1900 	else
1901 		plug_list = &plug->list;
1902 
1903 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1904 		bool merged = false;
1905 
1906 		if (rq->q == q) {
1907 			(*request_count)++;
1908 			/*
1909 			 * Only blk-mq multiple hardware queues case checks the
1910 			 * rq in the same queue, there should be only one such
1911 			 * rq in a queue
1912 			 **/
1913 			if (same_queue_rq)
1914 				*same_queue_rq = rq;
1915 		}
1916 
1917 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1918 			continue;
1919 
1920 		switch (blk_try_merge(rq, bio)) {
1921 		case ELEVATOR_BACK_MERGE:
1922 			merged = bio_attempt_back_merge(q, rq, bio);
1923 			break;
1924 		case ELEVATOR_FRONT_MERGE:
1925 			merged = bio_attempt_front_merge(q, rq, bio);
1926 			break;
1927 		case ELEVATOR_DISCARD_MERGE:
1928 			merged = bio_attempt_discard_merge(q, rq, bio);
1929 			break;
1930 		default:
1931 			break;
1932 		}
1933 
1934 		if (merged)
1935 			return true;
1936 	}
1937 
1938 	return false;
1939 }
1940 
1941 unsigned int blk_plug_queued_count(struct request_queue *q)
1942 {
1943 	struct blk_plug *plug;
1944 	struct request *rq;
1945 	struct list_head *plug_list;
1946 	unsigned int ret = 0;
1947 
1948 	plug = current->plug;
1949 	if (!plug)
1950 		goto out;
1951 
1952 	if (q->mq_ops)
1953 		plug_list = &plug->mq_list;
1954 	else
1955 		plug_list = &plug->list;
1956 
1957 	list_for_each_entry(rq, plug_list, queuelist) {
1958 		if (rq->q == q)
1959 			ret++;
1960 	}
1961 out:
1962 	return ret;
1963 }
1964 
1965 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1966 {
1967 	struct io_context *ioc = rq_ioc(bio);
1968 
1969 	if (bio->bi_opf & REQ_RAHEAD)
1970 		req->cmd_flags |= REQ_FAILFAST_MASK;
1971 
1972 	req->__sector = bio->bi_iter.bi_sector;
1973 	if (ioprio_valid(bio_prio(bio)))
1974 		req->ioprio = bio_prio(bio);
1975 	else if (ioc)
1976 		req->ioprio = ioc->ioprio;
1977 	else
1978 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1979 	req->write_hint = bio->bi_write_hint;
1980 	blk_rq_bio_prep(req->q, req, bio);
1981 }
1982 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1983 
1984 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1985 {
1986 	struct blk_plug *plug;
1987 	int where = ELEVATOR_INSERT_SORT;
1988 	struct request *req, *free;
1989 	unsigned int request_count = 0;
1990 
1991 	/*
1992 	 * low level driver can indicate that it wants pages above a
1993 	 * certain limit bounced to low memory (ie for highmem, or even
1994 	 * ISA dma in theory)
1995 	 */
1996 	blk_queue_bounce(q, &bio);
1997 
1998 	blk_queue_split(q, &bio);
1999 
2000 	if (!bio_integrity_prep(bio))
2001 		return BLK_QC_T_NONE;
2002 
2003 	if (op_is_flush(bio->bi_opf)) {
2004 		spin_lock_irq(q->queue_lock);
2005 		where = ELEVATOR_INSERT_FLUSH;
2006 		goto get_rq;
2007 	}
2008 
2009 	/*
2010 	 * Check if we can merge with the plugged list before grabbing
2011 	 * any locks.
2012 	 */
2013 	if (!blk_queue_nomerges(q)) {
2014 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2015 			return BLK_QC_T_NONE;
2016 	} else
2017 		request_count = blk_plug_queued_count(q);
2018 
2019 	spin_lock_irq(q->queue_lock);
2020 
2021 	switch (elv_merge(q, &req, bio)) {
2022 	case ELEVATOR_BACK_MERGE:
2023 		if (!bio_attempt_back_merge(q, req, bio))
2024 			break;
2025 		elv_bio_merged(q, req, bio);
2026 		free = attempt_back_merge(q, req);
2027 		if (free)
2028 			__blk_put_request(q, free);
2029 		else
2030 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2031 		goto out_unlock;
2032 	case ELEVATOR_FRONT_MERGE:
2033 		if (!bio_attempt_front_merge(q, req, bio))
2034 			break;
2035 		elv_bio_merged(q, req, bio);
2036 		free = attempt_front_merge(q, req);
2037 		if (free)
2038 			__blk_put_request(q, free);
2039 		else
2040 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2041 		goto out_unlock;
2042 	default:
2043 		break;
2044 	}
2045 
2046 get_rq:
2047 	rq_qos_throttle(q, bio, q->queue_lock);
2048 
2049 	/*
2050 	 * Grab a free request. This is might sleep but can not fail.
2051 	 * Returns with the queue unlocked.
2052 	 */
2053 	blk_queue_enter_live(q);
2054 	req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2055 	if (IS_ERR(req)) {
2056 		blk_queue_exit(q);
2057 		rq_qos_cleanup(q, bio);
2058 		if (PTR_ERR(req) == -ENOMEM)
2059 			bio->bi_status = BLK_STS_RESOURCE;
2060 		else
2061 			bio->bi_status = BLK_STS_IOERR;
2062 		bio_endio(bio);
2063 		goto out_unlock;
2064 	}
2065 
2066 	rq_qos_track(q, req, bio);
2067 
2068 	/*
2069 	 * After dropping the lock and possibly sleeping here, our request
2070 	 * may now be mergeable after it had proven unmergeable (above).
2071 	 * We don't worry about that case for efficiency. It won't happen
2072 	 * often, and the elevators are able to handle it.
2073 	 */
2074 	blk_init_request_from_bio(req, bio);
2075 
2076 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2077 		req->cpu = raw_smp_processor_id();
2078 
2079 	plug = current->plug;
2080 	if (plug) {
2081 		/*
2082 		 * If this is the first request added after a plug, fire
2083 		 * of a plug trace.
2084 		 *
2085 		 * @request_count may become stale because of schedule
2086 		 * out, so check plug list again.
2087 		 */
2088 		if (!request_count || list_empty(&plug->list))
2089 			trace_block_plug(q);
2090 		else {
2091 			struct request *last = list_entry_rq(plug->list.prev);
2092 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2093 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2094 				blk_flush_plug_list(plug, false);
2095 				trace_block_plug(q);
2096 			}
2097 		}
2098 		list_add_tail(&req->queuelist, &plug->list);
2099 		blk_account_io_start(req, true);
2100 	} else {
2101 		spin_lock_irq(q->queue_lock);
2102 		add_acct_request(q, req, where);
2103 		__blk_run_queue(q);
2104 out_unlock:
2105 		spin_unlock_irq(q->queue_lock);
2106 	}
2107 
2108 	return BLK_QC_T_NONE;
2109 }
2110 
2111 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2112 {
2113 	char b[BDEVNAME_SIZE];
2114 
2115 	printk(KERN_INFO "attempt to access beyond end of device\n");
2116 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2117 			bio_devname(bio, b), bio->bi_opf,
2118 			(unsigned long long)bio_end_sector(bio),
2119 			(long long)maxsector);
2120 }
2121 
2122 #ifdef CONFIG_FAIL_MAKE_REQUEST
2123 
2124 static DECLARE_FAULT_ATTR(fail_make_request);
2125 
2126 static int __init setup_fail_make_request(char *str)
2127 {
2128 	return setup_fault_attr(&fail_make_request, str);
2129 }
2130 __setup("fail_make_request=", setup_fail_make_request);
2131 
2132 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2133 {
2134 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2135 }
2136 
2137 static int __init fail_make_request_debugfs(void)
2138 {
2139 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2140 						NULL, &fail_make_request);
2141 
2142 	return PTR_ERR_OR_ZERO(dir);
2143 }
2144 
2145 late_initcall(fail_make_request_debugfs);
2146 
2147 #else /* CONFIG_FAIL_MAKE_REQUEST */
2148 
2149 static inline bool should_fail_request(struct hd_struct *part,
2150 					unsigned int bytes)
2151 {
2152 	return false;
2153 }
2154 
2155 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2156 
2157 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2158 {
2159 	const int op = bio_op(bio);
2160 
2161 	if (part->policy && op_is_write(op)) {
2162 		char b[BDEVNAME_SIZE];
2163 
2164 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2165 			return false;
2166 
2167 		WARN_ONCE(1,
2168 		       "generic_make_request: Trying to write "
2169 			"to read-only block-device %s (partno %d)\n",
2170 			bio_devname(bio, b), part->partno);
2171 		/* Older lvm-tools actually trigger this */
2172 		return false;
2173 	}
2174 
2175 	return false;
2176 }
2177 
2178 static noinline int should_fail_bio(struct bio *bio)
2179 {
2180 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2181 		return -EIO;
2182 	return 0;
2183 }
2184 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2185 
2186 /*
2187  * Check whether this bio extends beyond the end of the device or partition.
2188  * This may well happen - the kernel calls bread() without checking the size of
2189  * the device, e.g., when mounting a file system.
2190  */
2191 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2192 {
2193 	unsigned int nr_sectors = bio_sectors(bio);
2194 
2195 	if (nr_sectors && maxsector &&
2196 	    (nr_sectors > maxsector ||
2197 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2198 		handle_bad_sector(bio, maxsector);
2199 		return -EIO;
2200 	}
2201 	return 0;
2202 }
2203 
2204 /*
2205  * Remap block n of partition p to block n+start(p) of the disk.
2206  */
2207 static inline int blk_partition_remap(struct bio *bio)
2208 {
2209 	struct hd_struct *p;
2210 	int ret = -EIO;
2211 
2212 	rcu_read_lock();
2213 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2214 	if (unlikely(!p))
2215 		goto out;
2216 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2217 		goto out;
2218 	if (unlikely(bio_check_ro(bio, p)))
2219 		goto out;
2220 
2221 	/*
2222 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2223 	 * Include a test for the reset op code and perform the remap if needed.
2224 	 */
2225 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2226 		if (bio_check_eod(bio, part_nr_sects_read(p)))
2227 			goto out;
2228 		bio->bi_iter.bi_sector += p->start_sect;
2229 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2230 				      bio->bi_iter.bi_sector - p->start_sect);
2231 	}
2232 	bio->bi_partno = 0;
2233 	ret = 0;
2234 out:
2235 	rcu_read_unlock();
2236 	return ret;
2237 }
2238 
2239 static noinline_for_stack bool
2240 generic_make_request_checks(struct bio *bio)
2241 {
2242 	struct request_queue *q;
2243 	int nr_sectors = bio_sectors(bio);
2244 	blk_status_t status = BLK_STS_IOERR;
2245 	char b[BDEVNAME_SIZE];
2246 
2247 	might_sleep();
2248 
2249 	q = bio->bi_disk->queue;
2250 	if (unlikely(!q)) {
2251 		printk(KERN_ERR
2252 		       "generic_make_request: Trying to access "
2253 			"nonexistent block-device %s (%Lu)\n",
2254 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2255 		goto end_io;
2256 	}
2257 
2258 	/*
2259 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2260 	 * if queue is not a request based queue.
2261 	 */
2262 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2263 		goto not_supported;
2264 
2265 	if (should_fail_bio(bio))
2266 		goto end_io;
2267 
2268 	if (bio->bi_partno) {
2269 		if (unlikely(blk_partition_remap(bio)))
2270 			goto end_io;
2271 	} else {
2272 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2273 			goto end_io;
2274 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2275 			goto end_io;
2276 	}
2277 
2278 	/*
2279 	 * Filter flush bio's early so that make_request based
2280 	 * drivers without flush support don't have to worry
2281 	 * about them.
2282 	 */
2283 	if (op_is_flush(bio->bi_opf) &&
2284 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2285 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2286 		if (!nr_sectors) {
2287 			status = BLK_STS_OK;
2288 			goto end_io;
2289 		}
2290 	}
2291 
2292 	switch (bio_op(bio)) {
2293 	case REQ_OP_DISCARD:
2294 		if (!blk_queue_discard(q))
2295 			goto not_supported;
2296 		break;
2297 	case REQ_OP_SECURE_ERASE:
2298 		if (!blk_queue_secure_erase(q))
2299 			goto not_supported;
2300 		break;
2301 	case REQ_OP_WRITE_SAME:
2302 		if (!q->limits.max_write_same_sectors)
2303 			goto not_supported;
2304 		break;
2305 	case REQ_OP_ZONE_RESET:
2306 		if (!blk_queue_is_zoned(q))
2307 			goto not_supported;
2308 		break;
2309 	case REQ_OP_WRITE_ZEROES:
2310 		if (!q->limits.max_write_zeroes_sectors)
2311 			goto not_supported;
2312 		break;
2313 	default:
2314 		break;
2315 	}
2316 
2317 	/*
2318 	 * Various block parts want %current->io_context and lazy ioc
2319 	 * allocation ends up trading a lot of pain for a small amount of
2320 	 * memory.  Just allocate it upfront.  This may fail and block
2321 	 * layer knows how to live with it.
2322 	 */
2323 	create_io_context(GFP_ATOMIC, q->node);
2324 
2325 	if (!blkcg_bio_issue_check(q, bio))
2326 		return false;
2327 
2328 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2329 		trace_block_bio_queue(q, bio);
2330 		/* Now that enqueuing has been traced, we need to trace
2331 		 * completion as well.
2332 		 */
2333 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2334 	}
2335 	return true;
2336 
2337 not_supported:
2338 	status = BLK_STS_NOTSUPP;
2339 end_io:
2340 	bio->bi_status = status;
2341 	bio_endio(bio);
2342 	return false;
2343 }
2344 
2345 /**
2346  * generic_make_request - hand a buffer to its device driver for I/O
2347  * @bio:  The bio describing the location in memory and on the device.
2348  *
2349  * generic_make_request() is used to make I/O requests of block
2350  * devices. It is passed a &struct bio, which describes the I/O that needs
2351  * to be done.
2352  *
2353  * generic_make_request() does not return any status.  The
2354  * success/failure status of the request, along with notification of
2355  * completion, is delivered asynchronously through the bio->bi_end_io
2356  * function described (one day) else where.
2357  *
2358  * The caller of generic_make_request must make sure that bi_io_vec
2359  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2360  * set to describe the device address, and the
2361  * bi_end_io and optionally bi_private are set to describe how
2362  * completion notification should be signaled.
2363  *
2364  * generic_make_request and the drivers it calls may use bi_next if this
2365  * bio happens to be merged with someone else, and may resubmit the bio to
2366  * a lower device by calling into generic_make_request recursively, which
2367  * means the bio should NOT be touched after the call to ->make_request_fn.
2368  */
2369 blk_qc_t generic_make_request(struct bio *bio)
2370 {
2371 	/*
2372 	 * bio_list_on_stack[0] contains bios submitted by the current
2373 	 * make_request_fn.
2374 	 * bio_list_on_stack[1] contains bios that were submitted before
2375 	 * the current make_request_fn, but that haven't been processed
2376 	 * yet.
2377 	 */
2378 	struct bio_list bio_list_on_stack[2];
2379 	blk_mq_req_flags_t flags = 0;
2380 	struct request_queue *q = bio->bi_disk->queue;
2381 	blk_qc_t ret = BLK_QC_T_NONE;
2382 
2383 	if (bio->bi_opf & REQ_NOWAIT)
2384 		flags = BLK_MQ_REQ_NOWAIT;
2385 	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2386 		blk_queue_enter_live(q);
2387 	else if (blk_queue_enter(q, flags) < 0) {
2388 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2389 			bio_wouldblock_error(bio);
2390 		else
2391 			bio_io_error(bio);
2392 		return ret;
2393 	}
2394 
2395 	if (!generic_make_request_checks(bio))
2396 		goto out;
2397 
2398 	/*
2399 	 * We only want one ->make_request_fn to be active at a time, else
2400 	 * stack usage with stacked devices could be a problem.  So use
2401 	 * current->bio_list to keep a list of requests submited by a
2402 	 * make_request_fn function.  current->bio_list is also used as a
2403 	 * flag to say if generic_make_request is currently active in this
2404 	 * task or not.  If it is NULL, then no make_request is active.  If
2405 	 * it is non-NULL, then a make_request is active, and new requests
2406 	 * should be added at the tail
2407 	 */
2408 	if (current->bio_list) {
2409 		bio_list_add(&current->bio_list[0], bio);
2410 		goto out;
2411 	}
2412 
2413 	/* following loop may be a bit non-obvious, and so deserves some
2414 	 * explanation.
2415 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2416 	 * ensure that) so we have a list with a single bio.
2417 	 * We pretend that we have just taken it off a longer list, so
2418 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2419 	 * thus initialising the bio_list of new bios to be
2420 	 * added.  ->make_request() may indeed add some more bios
2421 	 * through a recursive call to generic_make_request.  If it
2422 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2423 	 * from the top.  In this case we really did just take the bio
2424 	 * of the top of the list (no pretending) and so remove it from
2425 	 * bio_list, and call into ->make_request() again.
2426 	 */
2427 	BUG_ON(bio->bi_next);
2428 	bio_list_init(&bio_list_on_stack[0]);
2429 	current->bio_list = bio_list_on_stack;
2430 	do {
2431 		bool enter_succeeded = true;
2432 
2433 		if (unlikely(q != bio->bi_disk->queue)) {
2434 			if (q)
2435 				blk_queue_exit(q);
2436 			q = bio->bi_disk->queue;
2437 			flags = 0;
2438 			if (bio->bi_opf & REQ_NOWAIT)
2439 				flags = BLK_MQ_REQ_NOWAIT;
2440 			if (blk_queue_enter(q, flags) < 0) {
2441 				enter_succeeded = false;
2442 				q = NULL;
2443 			}
2444 		}
2445 
2446 		if (enter_succeeded) {
2447 			struct bio_list lower, same;
2448 
2449 			/* Create a fresh bio_list for all subordinate requests */
2450 			bio_list_on_stack[1] = bio_list_on_stack[0];
2451 			bio_list_init(&bio_list_on_stack[0]);
2452 			ret = q->make_request_fn(q, bio);
2453 
2454 			/* sort new bios into those for a lower level
2455 			 * and those for the same level
2456 			 */
2457 			bio_list_init(&lower);
2458 			bio_list_init(&same);
2459 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2460 				if (q == bio->bi_disk->queue)
2461 					bio_list_add(&same, bio);
2462 				else
2463 					bio_list_add(&lower, bio);
2464 			/* now assemble so we handle the lowest level first */
2465 			bio_list_merge(&bio_list_on_stack[0], &lower);
2466 			bio_list_merge(&bio_list_on_stack[0], &same);
2467 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2468 		} else {
2469 			if (unlikely(!blk_queue_dying(q) &&
2470 					(bio->bi_opf & REQ_NOWAIT)))
2471 				bio_wouldblock_error(bio);
2472 			else
2473 				bio_io_error(bio);
2474 		}
2475 		bio = bio_list_pop(&bio_list_on_stack[0]);
2476 	} while (bio);
2477 	current->bio_list = NULL; /* deactivate */
2478 
2479 out:
2480 	if (q)
2481 		blk_queue_exit(q);
2482 	return ret;
2483 }
2484 EXPORT_SYMBOL(generic_make_request);
2485 
2486 /**
2487  * direct_make_request - hand a buffer directly to its device driver for I/O
2488  * @bio:  The bio describing the location in memory and on the device.
2489  *
2490  * This function behaves like generic_make_request(), but does not protect
2491  * against recursion.  Must only be used if the called driver is known
2492  * to not call generic_make_request (or direct_make_request) again from
2493  * its make_request function.  (Calling direct_make_request again from
2494  * a workqueue is perfectly fine as that doesn't recurse).
2495  */
2496 blk_qc_t direct_make_request(struct bio *bio)
2497 {
2498 	struct request_queue *q = bio->bi_disk->queue;
2499 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2500 	blk_qc_t ret;
2501 
2502 	if (!generic_make_request_checks(bio))
2503 		return BLK_QC_T_NONE;
2504 
2505 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2506 		if (nowait && !blk_queue_dying(q))
2507 			bio->bi_status = BLK_STS_AGAIN;
2508 		else
2509 			bio->bi_status = BLK_STS_IOERR;
2510 		bio_endio(bio);
2511 		return BLK_QC_T_NONE;
2512 	}
2513 
2514 	ret = q->make_request_fn(q, bio);
2515 	blk_queue_exit(q);
2516 	return ret;
2517 }
2518 EXPORT_SYMBOL_GPL(direct_make_request);
2519 
2520 /**
2521  * submit_bio - submit a bio to the block device layer for I/O
2522  * @bio: The &struct bio which describes the I/O
2523  *
2524  * submit_bio() is very similar in purpose to generic_make_request(), and
2525  * uses that function to do most of the work. Both are fairly rough
2526  * interfaces; @bio must be presetup and ready for I/O.
2527  *
2528  */
2529 blk_qc_t submit_bio(struct bio *bio)
2530 {
2531 	/*
2532 	 * If it's a regular read/write or a barrier with data attached,
2533 	 * go through the normal accounting stuff before submission.
2534 	 */
2535 	if (bio_has_data(bio)) {
2536 		unsigned int count;
2537 
2538 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2539 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2540 		else
2541 			count = bio_sectors(bio);
2542 
2543 		if (op_is_write(bio_op(bio))) {
2544 			count_vm_events(PGPGOUT, count);
2545 		} else {
2546 			task_io_account_read(bio->bi_iter.bi_size);
2547 			count_vm_events(PGPGIN, count);
2548 		}
2549 
2550 		if (unlikely(block_dump)) {
2551 			char b[BDEVNAME_SIZE];
2552 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2553 			current->comm, task_pid_nr(current),
2554 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2555 				(unsigned long long)bio->bi_iter.bi_sector,
2556 				bio_devname(bio, b), count);
2557 		}
2558 	}
2559 
2560 	return generic_make_request(bio);
2561 }
2562 EXPORT_SYMBOL(submit_bio);
2563 
2564 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2565 {
2566 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2567 		return false;
2568 
2569 	if (current->plug)
2570 		blk_flush_plug_list(current->plug, false);
2571 	return q->poll_fn(q, cookie);
2572 }
2573 EXPORT_SYMBOL_GPL(blk_poll);
2574 
2575 /**
2576  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2577  *                              for new the queue limits
2578  * @q:  the queue
2579  * @rq: the request being checked
2580  *
2581  * Description:
2582  *    @rq may have been made based on weaker limitations of upper-level queues
2583  *    in request stacking drivers, and it may violate the limitation of @q.
2584  *    Since the block layer and the underlying device driver trust @rq
2585  *    after it is inserted to @q, it should be checked against @q before
2586  *    the insertion using this generic function.
2587  *
2588  *    Request stacking drivers like request-based dm may change the queue
2589  *    limits when retrying requests on other queues. Those requests need
2590  *    to be checked against the new queue limits again during dispatch.
2591  */
2592 static int blk_cloned_rq_check_limits(struct request_queue *q,
2593 				      struct request *rq)
2594 {
2595 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2596 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2597 		return -EIO;
2598 	}
2599 
2600 	/*
2601 	 * queue's settings related to segment counting like q->bounce_pfn
2602 	 * may differ from that of other stacking queues.
2603 	 * Recalculate it to check the request correctly on this queue's
2604 	 * limitation.
2605 	 */
2606 	blk_recalc_rq_segments(rq);
2607 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2608 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2609 		return -EIO;
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 /**
2616  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2617  * @q:  the queue to submit the request
2618  * @rq: the request being queued
2619  */
2620 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2621 {
2622 	unsigned long flags;
2623 	int where = ELEVATOR_INSERT_BACK;
2624 
2625 	if (blk_cloned_rq_check_limits(q, rq))
2626 		return BLK_STS_IOERR;
2627 
2628 	if (rq->rq_disk &&
2629 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2630 		return BLK_STS_IOERR;
2631 
2632 	if (q->mq_ops) {
2633 		if (blk_queue_io_stat(q))
2634 			blk_account_io_start(rq, true);
2635 		/*
2636 		 * Since we have a scheduler attached on the top device,
2637 		 * bypass a potential scheduler on the bottom device for
2638 		 * insert.
2639 		 */
2640 		return blk_mq_request_issue_directly(rq);
2641 	}
2642 
2643 	spin_lock_irqsave(q->queue_lock, flags);
2644 	if (unlikely(blk_queue_dying(q))) {
2645 		spin_unlock_irqrestore(q->queue_lock, flags);
2646 		return BLK_STS_IOERR;
2647 	}
2648 
2649 	/*
2650 	 * Submitting request must be dequeued before calling this function
2651 	 * because it will be linked to another request_queue
2652 	 */
2653 	BUG_ON(blk_queued_rq(rq));
2654 
2655 	if (op_is_flush(rq->cmd_flags))
2656 		where = ELEVATOR_INSERT_FLUSH;
2657 
2658 	add_acct_request(q, rq, where);
2659 	if (where == ELEVATOR_INSERT_FLUSH)
2660 		__blk_run_queue(q);
2661 	spin_unlock_irqrestore(q->queue_lock, flags);
2662 
2663 	return BLK_STS_OK;
2664 }
2665 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2666 
2667 /**
2668  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2669  * @rq: request to examine
2670  *
2671  * Description:
2672  *     A request could be merge of IOs which require different failure
2673  *     handling.  This function determines the number of bytes which
2674  *     can be failed from the beginning of the request without
2675  *     crossing into area which need to be retried further.
2676  *
2677  * Return:
2678  *     The number of bytes to fail.
2679  */
2680 unsigned int blk_rq_err_bytes(const struct request *rq)
2681 {
2682 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2683 	unsigned int bytes = 0;
2684 	struct bio *bio;
2685 
2686 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2687 		return blk_rq_bytes(rq);
2688 
2689 	/*
2690 	 * Currently the only 'mixing' which can happen is between
2691 	 * different fastfail types.  We can safely fail portions
2692 	 * which have all the failfast bits that the first one has -
2693 	 * the ones which are at least as eager to fail as the first
2694 	 * one.
2695 	 */
2696 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2697 		if ((bio->bi_opf & ff) != ff)
2698 			break;
2699 		bytes += bio->bi_iter.bi_size;
2700 	}
2701 
2702 	/* this could lead to infinite loop */
2703 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2704 	return bytes;
2705 }
2706 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2707 
2708 void blk_account_io_completion(struct request *req, unsigned int bytes)
2709 {
2710 	if (blk_do_io_stat(req)) {
2711 		const int sgrp = op_stat_group(req_op(req));
2712 		struct hd_struct *part;
2713 		int cpu;
2714 
2715 		cpu = part_stat_lock();
2716 		part = req->part;
2717 		part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2718 		part_stat_unlock();
2719 	}
2720 }
2721 
2722 void blk_account_io_done(struct request *req, u64 now)
2723 {
2724 	/*
2725 	 * Account IO completion.  flush_rq isn't accounted as a
2726 	 * normal IO on queueing nor completion.  Accounting the
2727 	 * containing request is enough.
2728 	 */
2729 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2730 		const int sgrp = op_stat_group(req_op(req));
2731 		struct hd_struct *part;
2732 		int cpu;
2733 
2734 		cpu = part_stat_lock();
2735 		part = req->part;
2736 
2737 		part_stat_inc(cpu, part, ios[sgrp]);
2738 		part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
2739 		part_round_stats(req->q, cpu, part);
2740 		part_dec_in_flight(req->q, part, rq_data_dir(req));
2741 
2742 		hd_struct_put(part);
2743 		part_stat_unlock();
2744 	}
2745 }
2746 
2747 void blk_account_io_start(struct request *rq, bool new_io)
2748 {
2749 	struct hd_struct *part;
2750 	int rw = rq_data_dir(rq);
2751 	int cpu;
2752 
2753 	if (!blk_do_io_stat(rq))
2754 		return;
2755 
2756 	cpu = part_stat_lock();
2757 
2758 	if (!new_io) {
2759 		part = rq->part;
2760 		part_stat_inc(cpu, part, merges[rw]);
2761 	} else {
2762 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2763 		if (!hd_struct_try_get(part)) {
2764 			/*
2765 			 * The partition is already being removed,
2766 			 * the request will be accounted on the disk only
2767 			 *
2768 			 * We take a reference on disk->part0 although that
2769 			 * partition will never be deleted, so we can treat
2770 			 * it as any other partition.
2771 			 */
2772 			part = &rq->rq_disk->part0;
2773 			hd_struct_get(part);
2774 		}
2775 		part_round_stats(rq->q, cpu, part);
2776 		part_inc_in_flight(rq->q, part, rw);
2777 		rq->part = part;
2778 	}
2779 
2780 	part_stat_unlock();
2781 }
2782 
2783 static struct request *elv_next_request(struct request_queue *q)
2784 {
2785 	struct request *rq;
2786 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2787 
2788 	WARN_ON_ONCE(q->mq_ops);
2789 
2790 	while (1) {
2791 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2792 #ifdef CONFIG_PM
2793 			/*
2794 			 * If a request gets queued in state RPM_SUSPENDED
2795 			 * then that's a kernel bug.
2796 			 */
2797 			WARN_ON_ONCE(q->rpm_status == RPM_SUSPENDED);
2798 #endif
2799 			return rq;
2800 		}
2801 
2802 		/*
2803 		 * Flush request is running and flush request isn't queueable
2804 		 * in the drive, we can hold the queue till flush request is
2805 		 * finished. Even we don't do this, driver can't dispatch next
2806 		 * requests and will requeue them. And this can improve
2807 		 * throughput too. For example, we have request flush1, write1,
2808 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2809 		 * isn't inserted to queue. After flush1 is finished, flush2
2810 		 * will be dispatched. Since disk cache is already clean,
2811 		 * flush2 will be finished very soon, so looks like flush2 is
2812 		 * folded to flush1.
2813 		 * Since the queue is hold, a flag is set to indicate the queue
2814 		 * should be restarted later. Please see flush_end_io() for
2815 		 * details.
2816 		 */
2817 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2818 				!queue_flush_queueable(q)) {
2819 			fq->flush_queue_delayed = 1;
2820 			return NULL;
2821 		}
2822 		if (unlikely(blk_queue_bypass(q)) ||
2823 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2824 			return NULL;
2825 	}
2826 }
2827 
2828 /**
2829  * blk_peek_request - peek at the top of a request queue
2830  * @q: request queue to peek at
2831  *
2832  * Description:
2833  *     Return the request at the top of @q.  The returned request
2834  *     should be started using blk_start_request() before LLD starts
2835  *     processing it.
2836  *
2837  * Return:
2838  *     Pointer to the request at the top of @q if available.  Null
2839  *     otherwise.
2840  */
2841 struct request *blk_peek_request(struct request_queue *q)
2842 {
2843 	struct request *rq;
2844 	int ret;
2845 
2846 	lockdep_assert_held(q->queue_lock);
2847 	WARN_ON_ONCE(q->mq_ops);
2848 
2849 	while ((rq = elv_next_request(q)) != NULL) {
2850 		if (!(rq->rq_flags & RQF_STARTED)) {
2851 			/*
2852 			 * This is the first time the device driver
2853 			 * sees this request (possibly after
2854 			 * requeueing).  Notify IO scheduler.
2855 			 */
2856 			if (rq->rq_flags & RQF_SORTED)
2857 				elv_activate_rq(q, rq);
2858 
2859 			/*
2860 			 * just mark as started even if we don't start
2861 			 * it, a request that has been delayed should
2862 			 * not be passed by new incoming requests
2863 			 */
2864 			rq->rq_flags |= RQF_STARTED;
2865 			trace_block_rq_issue(q, rq);
2866 		}
2867 
2868 		if (!q->boundary_rq || q->boundary_rq == rq) {
2869 			q->end_sector = rq_end_sector(rq);
2870 			q->boundary_rq = NULL;
2871 		}
2872 
2873 		if (rq->rq_flags & RQF_DONTPREP)
2874 			break;
2875 
2876 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2877 			/*
2878 			 * make sure space for the drain appears we
2879 			 * know we can do this because max_hw_segments
2880 			 * has been adjusted to be one fewer than the
2881 			 * device can handle
2882 			 */
2883 			rq->nr_phys_segments++;
2884 		}
2885 
2886 		if (!q->prep_rq_fn)
2887 			break;
2888 
2889 		ret = q->prep_rq_fn(q, rq);
2890 		if (ret == BLKPREP_OK) {
2891 			break;
2892 		} else if (ret == BLKPREP_DEFER) {
2893 			/*
2894 			 * the request may have been (partially) prepped.
2895 			 * we need to keep this request in the front to
2896 			 * avoid resource deadlock.  RQF_STARTED will
2897 			 * prevent other fs requests from passing this one.
2898 			 */
2899 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2900 			    !(rq->rq_flags & RQF_DONTPREP)) {
2901 				/*
2902 				 * remove the space for the drain we added
2903 				 * so that we don't add it again
2904 				 */
2905 				--rq->nr_phys_segments;
2906 			}
2907 
2908 			rq = NULL;
2909 			break;
2910 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2911 			rq->rq_flags |= RQF_QUIET;
2912 			/*
2913 			 * Mark this request as started so we don't trigger
2914 			 * any debug logic in the end I/O path.
2915 			 */
2916 			blk_start_request(rq);
2917 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2918 					BLK_STS_TARGET : BLK_STS_IOERR);
2919 		} else {
2920 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2921 			break;
2922 		}
2923 	}
2924 
2925 	return rq;
2926 }
2927 EXPORT_SYMBOL(blk_peek_request);
2928 
2929 static void blk_dequeue_request(struct request *rq)
2930 {
2931 	struct request_queue *q = rq->q;
2932 
2933 	BUG_ON(list_empty(&rq->queuelist));
2934 	BUG_ON(ELV_ON_HASH(rq));
2935 
2936 	list_del_init(&rq->queuelist);
2937 
2938 	/*
2939 	 * the time frame between a request being removed from the lists
2940 	 * and to it is freed is accounted as io that is in progress at
2941 	 * the driver side.
2942 	 */
2943 	if (blk_account_rq(rq))
2944 		q->in_flight[rq_is_sync(rq)]++;
2945 }
2946 
2947 /**
2948  * blk_start_request - start request processing on the driver
2949  * @req: request to dequeue
2950  *
2951  * Description:
2952  *     Dequeue @req and start timeout timer on it.  This hands off the
2953  *     request to the driver.
2954  */
2955 void blk_start_request(struct request *req)
2956 {
2957 	lockdep_assert_held(req->q->queue_lock);
2958 	WARN_ON_ONCE(req->q->mq_ops);
2959 
2960 	blk_dequeue_request(req);
2961 
2962 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2963 		req->io_start_time_ns = ktime_get_ns();
2964 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2965 		req->throtl_size = blk_rq_sectors(req);
2966 #endif
2967 		req->rq_flags |= RQF_STATS;
2968 		rq_qos_issue(req->q, req);
2969 	}
2970 
2971 	BUG_ON(blk_rq_is_complete(req));
2972 	blk_add_timer(req);
2973 }
2974 EXPORT_SYMBOL(blk_start_request);
2975 
2976 /**
2977  * blk_fetch_request - fetch a request from a request queue
2978  * @q: request queue to fetch a request from
2979  *
2980  * Description:
2981  *     Return the request at the top of @q.  The request is started on
2982  *     return and LLD can start processing it immediately.
2983  *
2984  * Return:
2985  *     Pointer to the request at the top of @q if available.  Null
2986  *     otherwise.
2987  */
2988 struct request *blk_fetch_request(struct request_queue *q)
2989 {
2990 	struct request *rq;
2991 
2992 	lockdep_assert_held(q->queue_lock);
2993 	WARN_ON_ONCE(q->mq_ops);
2994 
2995 	rq = blk_peek_request(q);
2996 	if (rq)
2997 		blk_start_request(rq);
2998 	return rq;
2999 }
3000 EXPORT_SYMBOL(blk_fetch_request);
3001 
3002 /*
3003  * Steal bios from a request and add them to a bio list.
3004  * The request must not have been partially completed before.
3005  */
3006 void blk_steal_bios(struct bio_list *list, struct request *rq)
3007 {
3008 	if (rq->bio) {
3009 		if (list->tail)
3010 			list->tail->bi_next = rq->bio;
3011 		else
3012 			list->head = rq->bio;
3013 		list->tail = rq->biotail;
3014 
3015 		rq->bio = NULL;
3016 		rq->biotail = NULL;
3017 	}
3018 
3019 	rq->__data_len = 0;
3020 }
3021 EXPORT_SYMBOL_GPL(blk_steal_bios);
3022 
3023 /**
3024  * blk_update_request - Special helper function for request stacking drivers
3025  * @req:      the request being processed
3026  * @error:    block status code
3027  * @nr_bytes: number of bytes to complete @req
3028  *
3029  * Description:
3030  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3031  *     the request structure even if @req doesn't have leftover.
3032  *     If @req has leftover, sets it up for the next range of segments.
3033  *
3034  *     This special helper function is only for request stacking drivers
3035  *     (e.g. request-based dm) so that they can handle partial completion.
3036  *     Actual device drivers should use blk_end_request instead.
3037  *
3038  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3039  *     %false return from this function.
3040  *
3041  * Note:
3042  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3043  *	blk_rq_bytes() and in blk_update_request().
3044  *
3045  * Return:
3046  *     %false - this request doesn't have any more data
3047  *     %true  - this request has more data
3048  **/
3049 bool blk_update_request(struct request *req, blk_status_t error,
3050 		unsigned int nr_bytes)
3051 {
3052 	int total_bytes;
3053 
3054 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3055 
3056 	if (!req->bio)
3057 		return false;
3058 
3059 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3060 		     !(req->rq_flags & RQF_QUIET)))
3061 		print_req_error(req, error);
3062 
3063 	blk_account_io_completion(req, nr_bytes);
3064 
3065 	total_bytes = 0;
3066 	while (req->bio) {
3067 		struct bio *bio = req->bio;
3068 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3069 
3070 		if (bio_bytes == bio->bi_iter.bi_size)
3071 			req->bio = bio->bi_next;
3072 
3073 		/* Completion has already been traced */
3074 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3075 		req_bio_endio(req, bio, bio_bytes, error);
3076 
3077 		total_bytes += bio_bytes;
3078 		nr_bytes -= bio_bytes;
3079 
3080 		if (!nr_bytes)
3081 			break;
3082 	}
3083 
3084 	/*
3085 	 * completely done
3086 	 */
3087 	if (!req->bio) {
3088 		/*
3089 		 * Reset counters so that the request stacking driver
3090 		 * can find how many bytes remain in the request
3091 		 * later.
3092 		 */
3093 		req->__data_len = 0;
3094 		return false;
3095 	}
3096 
3097 	req->__data_len -= total_bytes;
3098 
3099 	/* update sector only for requests with clear definition of sector */
3100 	if (!blk_rq_is_passthrough(req))
3101 		req->__sector += total_bytes >> 9;
3102 
3103 	/* mixed attributes always follow the first bio */
3104 	if (req->rq_flags & RQF_MIXED_MERGE) {
3105 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3106 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3107 	}
3108 
3109 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3110 		/*
3111 		 * If total number of sectors is less than the first segment
3112 		 * size, something has gone terribly wrong.
3113 		 */
3114 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3115 			blk_dump_rq_flags(req, "request botched");
3116 			req->__data_len = blk_rq_cur_bytes(req);
3117 		}
3118 
3119 		/* recalculate the number of segments */
3120 		blk_recalc_rq_segments(req);
3121 	}
3122 
3123 	return true;
3124 }
3125 EXPORT_SYMBOL_GPL(blk_update_request);
3126 
3127 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3128 				    unsigned int nr_bytes,
3129 				    unsigned int bidi_bytes)
3130 {
3131 	if (blk_update_request(rq, error, nr_bytes))
3132 		return true;
3133 
3134 	/* Bidi request must be completed as a whole */
3135 	if (unlikely(blk_bidi_rq(rq)) &&
3136 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3137 		return true;
3138 
3139 	if (blk_queue_add_random(rq->q))
3140 		add_disk_randomness(rq->rq_disk);
3141 
3142 	return false;
3143 }
3144 
3145 /**
3146  * blk_unprep_request - unprepare a request
3147  * @req:	the request
3148  *
3149  * This function makes a request ready for complete resubmission (or
3150  * completion).  It happens only after all error handling is complete,
3151  * so represents the appropriate moment to deallocate any resources
3152  * that were allocated to the request in the prep_rq_fn.  The queue
3153  * lock is held when calling this.
3154  */
3155 void blk_unprep_request(struct request *req)
3156 {
3157 	struct request_queue *q = req->q;
3158 
3159 	req->rq_flags &= ~RQF_DONTPREP;
3160 	if (q->unprep_rq_fn)
3161 		q->unprep_rq_fn(q, req);
3162 }
3163 EXPORT_SYMBOL_GPL(blk_unprep_request);
3164 
3165 void blk_finish_request(struct request *req, blk_status_t error)
3166 {
3167 	struct request_queue *q = req->q;
3168 	u64 now = ktime_get_ns();
3169 
3170 	lockdep_assert_held(req->q->queue_lock);
3171 	WARN_ON_ONCE(q->mq_ops);
3172 
3173 	if (req->rq_flags & RQF_STATS)
3174 		blk_stat_add(req, now);
3175 
3176 	if (req->rq_flags & RQF_QUEUED)
3177 		blk_queue_end_tag(q, req);
3178 
3179 	BUG_ON(blk_queued_rq(req));
3180 
3181 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3182 		laptop_io_completion(req->q->backing_dev_info);
3183 
3184 	blk_delete_timer(req);
3185 
3186 	if (req->rq_flags & RQF_DONTPREP)
3187 		blk_unprep_request(req);
3188 
3189 	blk_account_io_done(req, now);
3190 
3191 	if (req->end_io) {
3192 		rq_qos_done(q, req);
3193 		req->end_io(req, error);
3194 	} else {
3195 		if (blk_bidi_rq(req))
3196 			__blk_put_request(req->next_rq->q, req->next_rq);
3197 
3198 		__blk_put_request(q, req);
3199 	}
3200 }
3201 EXPORT_SYMBOL(blk_finish_request);
3202 
3203 /**
3204  * blk_end_bidi_request - Complete a bidi request
3205  * @rq:         the request to complete
3206  * @error:      block status code
3207  * @nr_bytes:   number of bytes to complete @rq
3208  * @bidi_bytes: number of bytes to complete @rq->next_rq
3209  *
3210  * Description:
3211  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3212  *     Drivers that supports bidi can safely call this member for any
3213  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3214  *     just ignored.
3215  *
3216  * Return:
3217  *     %false - we are done with this request
3218  *     %true  - still buffers pending for this request
3219  **/
3220 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3221 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3222 {
3223 	struct request_queue *q = rq->q;
3224 	unsigned long flags;
3225 
3226 	WARN_ON_ONCE(q->mq_ops);
3227 
3228 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3229 		return true;
3230 
3231 	spin_lock_irqsave(q->queue_lock, flags);
3232 	blk_finish_request(rq, error);
3233 	spin_unlock_irqrestore(q->queue_lock, flags);
3234 
3235 	return false;
3236 }
3237 
3238 /**
3239  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3240  * @rq:         the request to complete
3241  * @error:      block status code
3242  * @nr_bytes:   number of bytes to complete @rq
3243  * @bidi_bytes: number of bytes to complete @rq->next_rq
3244  *
3245  * Description:
3246  *     Identical to blk_end_bidi_request() except that queue lock is
3247  *     assumed to be locked on entry and remains so on return.
3248  *
3249  * Return:
3250  *     %false - we are done with this request
3251  *     %true  - still buffers pending for this request
3252  **/
3253 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3254 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3255 {
3256 	lockdep_assert_held(rq->q->queue_lock);
3257 	WARN_ON_ONCE(rq->q->mq_ops);
3258 
3259 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3260 		return true;
3261 
3262 	blk_finish_request(rq, error);
3263 
3264 	return false;
3265 }
3266 
3267 /**
3268  * blk_end_request - Helper function for drivers to complete the request.
3269  * @rq:       the request being processed
3270  * @error:    block status code
3271  * @nr_bytes: number of bytes to complete
3272  *
3273  * Description:
3274  *     Ends I/O on a number of bytes attached to @rq.
3275  *     If @rq has leftover, sets it up for the next range of segments.
3276  *
3277  * Return:
3278  *     %false - we are done with this request
3279  *     %true  - still buffers pending for this request
3280  **/
3281 bool blk_end_request(struct request *rq, blk_status_t error,
3282 		unsigned int nr_bytes)
3283 {
3284 	WARN_ON_ONCE(rq->q->mq_ops);
3285 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3286 }
3287 EXPORT_SYMBOL(blk_end_request);
3288 
3289 /**
3290  * blk_end_request_all - Helper function for drives to finish the request.
3291  * @rq: the request to finish
3292  * @error: block status code
3293  *
3294  * Description:
3295  *     Completely finish @rq.
3296  */
3297 void blk_end_request_all(struct request *rq, blk_status_t error)
3298 {
3299 	bool pending;
3300 	unsigned int bidi_bytes = 0;
3301 
3302 	if (unlikely(blk_bidi_rq(rq)))
3303 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3304 
3305 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3306 	BUG_ON(pending);
3307 }
3308 EXPORT_SYMBOL(blk_end_request_all);
3309 
3310 /**
3311  * __blk_end_request - Helper function for drivers to complete the request.
3312  * @rq:       the request being processed
3313  * @error:    block status code
3314  * @nr_bytes: number of bytes to complete
3315  *
3316  * Description:
3317  *     Must be called with queue lock held unlike blk_end_request().
3318  *
3319  * Return:
3320  *     %false - we are done with this request
3321  *     %true  - still buffers pending for this request
3322  **/
3323 bool __blk_end_request(struct request *rq, blk_status_t error,
3324 		unsigned int nr_bytes)
3325 {
3326 	lockdep_assert_held(rq->q->queue_lock);
3327 	WARN_ON_ONCE(rq->q->mq_ops);
3328 
3329 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3330 }
3331 EXPORT_SYMBOL(__blk_end_request);
3332 
3333 /**
3334  * __blk_end_request_all - Helper function for drives to finish the request.
3335  * @rq: the request to finish
3336  * @error:    block status code
3337  *
3338  * Description:
3339  *     Completely finish @rq.  Must be called with queue lock held.
3340  */
3341 void __blk_end_request_all(struct request *rq, blk_status_t error)
3342 {
3343 	bool pending;
3344 	unsigned int bidi_bytes = 0;
3345 
3346 	lockdep_assert_held(rq->q->queue_lock);
3347 	WARN_ON_ONCE(rq->q->mq_ops);
3348 
3349 	if (unlikely(blk_bidi_rq(rq)))
3350 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3351 
3352 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3353 	BUG_ON(pending);
3354 }
3355 EXPORT_SYMBOL(__blk_end_request_all);
3356 
3357 /**
3358  * __blk_end_request_cur - Helper function to finish the current request chunk.
3359  * @rq: the request to finish the current chunk for
3360  * @error:    block status code
3361  *
3362  * Description:
3363  *     Complete the current consecutively mapped chunk from @rq.  Must
3364  *     be called with queue lock held.
3365  *
3366  * Return:
3367  *     %false - we are done with this request
3368  *     %true  - still buffers pending for this request
3369  */
3370 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3371 {
3372 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3373 }
3374 EXPORT_SYMBOL(__blk_end_request_cur);
3375 
3376 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3377 		     struct bio *bio)
3378 {
3379 	if (bio_has_data(bio))
3380 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3381 	else if (bio_op(bio) == REQ_OP_DISCARD)
3382 		rq->nr_phys_segments = 1;
3383 
3384 	rq->__data_len = bio->bi_iter.bi_size;
3385 	rq->bio = rq->biotail = bio;
3386 
3387 	if (bio->bi_disk)
3388 		rq->rq_disk = bio->bi_disk;
3389 }
3390 
3391 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3392 /**
3393  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3394  * @rq: the request to be flushed
3395  *
3396  * Description:
3397  *     Flush all pages in @rq.
3398  */
3399 void rq_flush_dcache_pages(struct request *rq)
3400 {
3401 	struct req_iterator iter;
3402 	struct bio_vec bvec;
3403 
3404 	rq_for_each_segment(bvec, rq, iter)
3405 		flush_dcache_page(bvec.bv_page);
3406 }
3407 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3408 #endif
3409 
3410 /**
3411  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3412  * @q : the queue of the device being checked
3413  *
3414  * Description:
3415  *    Check if underlying low-level drivers of a device are busy.
3416  *    If the drivers want to export their busy state, they must set own
3417  *    exporting function using blk_queue_lld_busy() first.
3418  *
3419  *    Basically, this function is used only by request stacking drivers
3420  *    to stop dispatching requests to underlying devices when underlying
3421  *    devices are busy.  This behavior helps more I/O merging on the queue
3422  *    of the request stacking driver and prevents I/O throughput regression
3423  *    on burst I/O load.
3424  *
3425  * Return:
3426  *    0 - Not busy (The request stacking driver should dispatch request)
3427  *    1 - Busy (The request stacking driver should stop dispatching request)
3428  */
3429 int blk_lld_busy(struct request_queue *q)
3430 {
3431 	if (q->lld_busy_fn)
3432 		return q->lld_busy_fn(q);
3433 
3434 	return 0;
3435 }
3436 EXPORT_SYMBOL_GPL(blk_lld_busy);
3437 
3438 /**
3439  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3440  * @rq: the clone request to be cleaned up
3441  *
3442  * Description:
3443  *     Free all bios in @rq for a cloned request.
3444  */
3445 void blk_rq_unprep_clone(struct request *rq)
3446 {
3447 	struct bio *bio;
3448 
3449 	while ((bio = rq->bio) != NULL) {
3450 		rq->bio = bio->bi_next;
3451 
3452 		bio_put(bio);
3453 	}
3454 }
3455 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3456 
3457 /*
3458  * Copy attributes of the original request to the clone request.
3459  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3460  */
3461 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3462 {
3463 	dst->cpu = src->cpu;
3464 	dst->__sector = blk_rq_pos(src);
3465 	dst->__data_len = blk_rq_bytes(src);
3466 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3467 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3468 		dst->special_vec = src->special_vec;
3469 	}
3470 	dst->nr_phys_segments = src->nr_phys_segments;
3471 	dst->ioprio = src->ioprio;
3472 	dst->extra_len = src->extra_len;
3473 }
3474 
3475 /**
3476  * blk_rq_prep_clone - Helper function to setup clone request
3477  * @rq: the request to be setup
3478  * @rq_src: original request to be cloned
3479  * @bs: bio_set that bios for clone are allocated from
3480  * @gfp_mask: memory allocation mask for bio
3481  * @bio_ctr: setup function to be called for each clone bio.
3482  *           Returns %0 for success, non %0 for failure.
3483  * @data: private data to be passed to @bio_ctr
3484  *
3485  * Description:
3486  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3487  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3488  *     are not copied, and copying such parts is the caller's responsibility.
3489  *     Also, pages which the original bios are pointing to are not copied
3490  *     and the cloned bios just point same pages.
3491  *     So cloned bios must be completed before original bios, which means
3492  *     the caller must complete @rq before @rq_src.
3493  */
3494 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3495 		      struct bio_set *bs, gfp_t gfp_mask,
3496 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3497 		      void *data)
3498 {
3499 	struct bio *bio, *bio_src;
3500 
3501 	if (!bs)
3502 		bs = &fs_bio_set;
3503 
3504 	__rq_for_each_bio(bio_src, rq_src) {
3505 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3506 		if (!bio)
3507 			goto free_and_out;
3508 
3509 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3510 			goto free_and_out;
3511 
3512 		if (rq->bio) {
3513 			rq->biotail->bi_next = bio;
3514 			rq->biotail = bio;
3515 		} else
3516 			rq->bio = rq->biotail = bio;
3517 	}
3518 
3519 	__blk_rq_prep_clone(rq, rq_src);
3520 
3521 	return 0;
3522 
3523 free_and_out:
3524 	if (bio)
3525 		bio_put(bio);
3526 	blk_rq_unprep_clone(rq);
3527 
3528 	return -ENOMEM;
3529 }
3530 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3531 
3532 int kblockd_schedule_work(struct work_struct *work)
3533 {
3534 	return queue_work(kblockd_workqueue, work);
3535 }
3536 EXPORT_SYMBOL(kblockd_schedule_work);
3537 
3538 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3539 {
3540 	return queue_work_on(cpu, kblockd_workqueue, work);
3541 }
3542 EXPORT_SYMBOL(kblockd_schedule_work_on);
3543 
3544 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3545 				unsigned long delay)
3546 {
3547 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3548 }
3549 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3550 
3551 /**
3552  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3553  * @plug:	The &struct blk_plug that needs to be initialized
3554  *
3555  * Description:
3556  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3557  *   pending I/O should the task end up blocking between blk_start_plug() and
3558  *   blk_finish_plug(). This is important from a performance perspective, but
3559  *   also ensures that we don't deadlock. For instance, if the task is blocking
3560  *   for a memory allocation, memory reclaim could end up wanting to free a
3561  *   page belonging to that request that is currently residing in our private
3562  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3563  *   this kind of deadlock.
3564  */
3565 void blk_start_plug(struct blk_plug *plug)
3566 {
3567 	struct task_struct *tsk = current;
3568 
3569 	/*
3570 	 * If this is a nested plug, don't actually assign it.
3571 	 */
3572 	if (tsk->plug)
3573 		return;
3574 
3575 	INIT_LIST_HEAD(&plug->list);
3576 	INIT_LIST_HEAD(&plug->mq_list);
3577 	INIT_LIST_HEAD(&plug->cb_list);
3578 	/*
3579 	 * Store ordering should not be needed here, since a potential
3580 	 * preempt will imply a full memory barrier
3581 	 */
3582 	tsk->plug = plug;
3583 }
3584 EXPORT_SYMBOL(blk_start_plug);
3585 
3586 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3587 {
3588 	struct request *rqa = container_of(a, struct request, queuelist);
3589 	struct request *rqb = container_of(b, struct request, queuelist);
3590 
3591 	return !(rqa->q < rqb->q ||
3592 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3593 }
3594 
3595 /*
3596  * If 'from_schedule' is true, then postpone the dispatch of requests
3597  * until a safe kblockd context. We due this to avoid accidental big
3598  * additional stack usage in driver dispatch, in places where the originally
3599  * plugger did not intend it.
3600  */
3601 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3602 			    bool from_schedule)
3603 	__releases(q->queue_lock)
3604 {
3605 	lockdep_assert_held(q->queue_lock);
3606 
3607 	trace_block_unplug(q, depth, !from_schedule);
3608 
3609 	if (from_schedule)
3610 		blk_run_queue_async(q);
3611 	else
3612 		__blk_run_queue(q);
3613 	spin_unlock_irq(q->queue_lock);
3614 }
3615 
3616 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3617 {
3618 	LIST_HEAD(callbacks);
3619 
3620 	while (!list_empty(&plug->cb_list)) {
3621 		list_splice_init(&plug->cb_list, &callbacks);
3622 
3623 		while (!list_empty(&callbacks)) {
3624 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3625 							  struct blk_plug_cb,
3626 							  list);
3627 			list_del(&cb->list);
3628 			cb->callback(cb, from_schedule);
3629 		}
3630 	}
3631 }
3632 
3633 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3634 				      int size)
3635 {
3636 	struct blk_plug *plug = current->plug;
3637 	struct blk_plug_cb *cb;
3638 
3639 	if (!plug)
3640 		return NULL;
3641 
3642 	list_for_each_entry(cb, &plug->cb_list, list)
3643 		if (cb->callback == unplug && cb->data == data)
3644 			return cb;
3645 
3646 	/* Not currently on the callback list */
3647 	BUG_ON(size < sizeof(*cb));
3648 	cb = kzalloc(size, GFP_ATOMIC);
3649 	if (cb) {
3650 		cb->data = data;
3651 		cb->callback = unplug;
3652 		list_add(&cb->list, &plug->cb_list);
3653 	}
3654 	return cb;
3655 }
3656 EXPORT_SYMBOL(blk_check_plugged);
3657 
3658 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3659 {
3660 	struct request_queue *q;
3661 	struct request *rq;
3662 	LIST_HEAD(list);
3663 	unsigned int depth;
3664 
3665 	flush_plug_callbacks(plug, from_schedule);
3666 
3667 	if (!list_empty(&plug->mq_list))
3668 		blk_mq_flush_plug_list(plug, from_schedule);
3669 
3670 	if (list_empty(&plug->list))
3671 		return;
3672 
3673 	list_splice_init(&plug->list, &list);
3674 
3675 	list_sort(NULL, &list, plug_rq_cmp);
3676 
3677 	q = NULL;
3678 	depth = 0;
3679 
3680 	while (!list_empty(&list)) {
3681 		rq = list_entry_rq(list.next);
3682 		list_del_init(&rq->queuelist);
3683 		BUG_ON(!rq->q);
3684 		if (rq->q != q) {
3685 			/*
3686 			 * This drops the queue lock
3687 			 */
3688 			if (q)
3689 				queue_unplugged(q, depth, from_schedule);
3690 			q = rq->q;
3691 			depth = 0;
3692 			spin_lock_irq(q->queue_lock);
3693 		}
3694 
3695 		/*
3696 		 * Short-circuit if @q is dead
3697 		 */
3698 		if (unlikely(blk_queue_dying(q))) {
3699 			__blk_end_request_all(rq, BLK_STS_IOERR);
3700 			continue;
3701 		}
3702 
3703 		/*
3704 		 * rq is already accounted, so use raw insert
3705 		 */
3706 		if (op_is_flush(rq->cmd_flags))
3707 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3708 		else
3709 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3710 
3711 		depth++;
3712 	}
3713 
3714 	/*
3715 	 * This drops the queue lock
3716 	 */
3717 	if (q)
3718 		queue_unplugged(q, depth, from_schedule);
3719 }
3720 
3721 void blk_finish_plug(struct blk_plug *plug)
3722 {
3723 	if (plug != current->plug)
3724 		return;
3725 	blk_flush_plug_list(plug, false);
3726 
3727 	current->plug = NULL;
3728 }
3729 EXPORT_SYMBOL(blk_finish_plug);
3730 
3731 int __init blk_dev_init(void)
3732 {
3733 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3734 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3735 			FIELD_SIZEOF(struct request, cmd_flags));
3736 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3737 			FIELD_SIZEOF(struct bio, bi_opf));
3738 
3739 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3740 	kblockd_workqueue = alloc_workqueue("kblockd",
3741 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3742 	if (!kblockd_workqueue)
3743 		panic("Failed to create kblockd\n");
3744 
3745 	request_cachep = kmem_cache_create("blkdev_requests",
3746 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3747 
3748 	blk_requestq_cachep = kmem_cache_create("request_queue",
3749 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3750 
3751 #ifdef CONFIG_DEBUG_FS
3752 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3753 #endif
3754 
3755 	return 0;
3756 }
3757