xref: /linux/block/blk-core.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep = NULL;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 	int nr;
69 
70 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 	if (nr > q->nr_requests)
72 		nr = q->nr_requests;
73 	q->nr_congestion_on = nr;
74 
75 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 	if (nr < 1)
77 		nr = 1;
78 	q->nr_congestion_off = nr;
79 }
80 
81 /**
82  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83  * @bdev:	device
84  *
85  * Locates the passed device's request queue and returns the address of its
86  * backing_dev_info.  This function can only be called if @bdev is opened
87  * and the return value is never NULL.
88  */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 	struct request_queue *q = bdev_get_queue(bdev);
92 
93 	return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96 
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 	memset(rq, 0, sizeof(*rq));
100 
101 	INIT_LIST_HEAD(&rq->queuelist);
102 	INIT_LIST_HEAD(&rq->timeout_list);
103 	rq->cpu = -1;
104 	rq->q = q;
105 	rq->__sector = (sector_t) -1;
106 	INIT_HLIST_NODE(&rq->hash);
107 	RB_CLEAR_NODE(&rq->rb_node);
108 	rq->cmd = rq->__cmd;
109 	rq->cmd_len = BLK_MAX_CDB;
110 	rq->tag = -1;
111 	rq->start_time = jiffies;
112 	set_start_time_ns(rq);
113 	rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116 
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 			  unsigned int nbytes, int error)
119 {
120 	if (error)
121 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 		error = -EIO;
124 
125 	if (unlikely(rq->cmd_flags & REQ_QUIET))
126 		set_bit(BIO_QUIET, &bio->bi_flags);
127 
128 	bio_advance(bio, nbytes);
129 
130 	/* don't actually finish bio if it's part of flush sequence */
131 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132 		bio_endio(bio, error);
133 }
134 
135 void blk_dump_rq_flags(struct request *rq, char *msg)
136 {
137 	int bit;
138 
139 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141 		(unsigned long long) rq->cmd_flags);
142 
143 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
144 	       (unsigned long long)blk_rq_pos(rq),
145 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
147 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
148 
149 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150 		printk(KERN_INFO "  cdb: ");
151 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
152 			printk("%02x ", rq->cmd[bit]);
153 		printk("\n");
154 	}
155 }
156 EXPORT_SYMBOL(blk_dump_rq_flags);
157 
158 static void blk_delay_work(struct work_struct *work)
159 {
160 	struct request_queue *q;
161 
162 	q = container_of(work, struct request_queue, delay_work.work);
163 	spin_lock_irq(q->queue_lock);
164 	__blk_run_queue(q);
165 	spin_unlock_irq(q->queue_lock);
166 }
167 
168 /**
169  * blk_delay_queue - restart queueing after defined interval
170  * @q:		The &struct request_queue in question
171  * @msecs:	Delay in msecs
172  *
173  * Description:
174  *   Sometimes queueing needs to be postponed for a little while, to allow
175  *   resources to come back. This function will make sure that queueing is
176  *   restarted around the specified time. Queue lock must be held.
177  */
178 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
179 {
180 	if (likely(!blk_queue_dead(q)))
181 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 				   msecs_to_jiffies(msecs));
183 }
184 EXPORT_SYMBOL(blk_delay_queue);
185 
186 /**
187  * blk_start_queue - restart a previously stopped queue
188  * @q:    The &struct request_queue in question
189  *
190  * Description:
191  *   blk_start_queue() will clear the stop flag on the queue, and call
192  *   the request_fn for the queue if it was in a stopped state when
193  *   entered. Also see blk_stop_queue(). Queue lock must be held.
194  **/
195 void blk_start_queue(struct request_queue *q)
196 {
197 	WARN_ON(!irqs_disabled());
198 
199 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200 	__blk_run_queue(q);
201 }
202 EXPORT_SYMBOL(blk_start_queue);
203 
204 /**
205  * blk_stop_queue - stop a queue
206  * @q:    The &struct request_queue in question
207  *
208  * Description:
209  *   The Linux block layer assumes that a block driver will consume all
210  *   entries on the request queue when the request_fn strategy is called.
211  *   Often this will not happen, because of hardware limitations (queue
212  *   depth settings). If a device driver gets a 'queue full' response,
213  *   or if it simply chooses not to queue more I/O at one point, it can
214  *   call this function to prevent the request_fn from being called until
215  *   the driver has signalled it's ready to go again. This happens by calling
216  *   blk_start_queue() to restart queue operations. Queue lock must be held.
217  **/
218 void blk_stop_queue(struct request_queue *q)
219 {
220 	cancel_delayed_work(&q->delay_work);
221 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
222 }
223 EXPORT_SYMBOL(blk_stop_queue);
224 
225 /**
226  * blk_sync_queue - cancel any pending callbacks on a queue
227  * @q: the queue
228  *
229  * Description:
230  *     The block layer may perform asynchronous callback activity
231  *     on a queue, such as calling the unplug function after a timeout.
232  *     A block device may call blk_sync_queue to ensure that any
233  *     such activity is cancelled, thus allowing it to release resources
234  *     that the callbacks might use. The caller must already have made sure
235  *     that its ->make_request_fn will not re-add plugging prior to calling
236  *     this function.
237  *
238  *     This function does not cancel any asynchronous activity arising
239  *     out of elevator or throttling code. That would require elevator_exit()
240  *     and blkcg_exit_queue() to be called with queue lock initialized.
241  *
242  */
243 void blk_sync_queue(struct request_queue *q)
244 {
245 	del_timer_sync(&q->timeout);
246 
247 	if (q->mq_ops) {
248 		struct blk_mq_hw_ctx *hctx;
249 		int i;
250 
251 		queue_for_each_hw_ctx(q, hctx, i) {
252 			cancel_delayed_work_sync(&hctx->run_work);
253 			cancel_delayed_work_sync(&hctx->delay_work);
254 		}
255 	} else {
256 		cancel_delayed_work_sync(&q->delay_work);
257 	}
258 }
259 EXPORT_SYMBOL(blk_sync_queue);
260 
261 /**
262  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263  * @q:	The queue to run
264  *
265  * Description:
266  *    Invoke request handling on a queue if there are any pending requests.
267  *    May be used to restart request handling after a request has completed.
268  *    This variant runs the queue whether or not the queue has been
269  *    stopped. Must be called with the queue lock held and interrupts
270  *    disabled. See also @blk_run_queue.
271  */
272 inline void __blk_run_queue_uncond(struct request_queue *q)
273 {
274 	if (unlikely(blk_queue_dead(q)))
275 		return;
276 
277 	/*
278 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 	 * the queue lock internally. As a result multiple threads may be
280 	 * running such a request function concurrently. Keep track of the
281 	 * number of active request_fn invocations such that blk_drain_queue()
282 	 * can wait until all these request_fn calls have finished.
283 	 */
284 	q->request_fn_active++;
285 	q->request_fn(q);
286 	q->request_fn_active--;
287 }
288 
289 /**
290  * __blk_run_queue - run a single device queue
291  * @q:	The queue to run
292  *
293  * Description:
294  *    See @blk_run_queue. This variant must be called with the queue lock
295  *    held and interrupts disabled.
296  */
297 void __blk_run_queue(struct request_queue *q)
298 {
299 	if (unlikely(blk_queue_stopped(q)))
300 		return;
301 
302 	__blk_run_queue_uncond(q);
303 }
304 EXPORT_SYMBOL(__blk_run_queue);
305 
306 /**
307  * blk_run_queue_async - run a single device queue in workqueue context
308  * @q:	The queue to run
309  *
310  * Description:
311  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
312  *    of us. The caller must hold the queue lock.
313  */
314 void blk_run_queue_async(struct request_queue *q)
315 {
316 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
317 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
318 }
319 EXPORT_SYMBOL(blk_run_queue_async);
320 
321 /**
322  * blk_run_queue - run a single device queue
323  * @q: The queue to run
324  *
325  * Description:
326  *    Invoke request handling on this queue, if it has pending work to do.
327  *    May be used to restart queueing when a request has completed.
328  */
329 void blk_run_queue(struct request_queue *q)
330 {
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(q->queue_lock, flags);
334 	__blk_run_queue(q);
335 	spin_unlock_irqrestore(q->queue_lock, flags);
336 }
337 EXPORT_SYMBOL(blk_run_queue);
338 
339 void blk_put_queue(struct request_queue *q)
340 {
341 	kobject_put(&q->kobj);
342 }
343 EXPORT_SYMBOL(blk_put_queue);
344 
345 /**
346  * __blk_drain_queue - drain requests from request_queue
347  * @q: queue to drain
348  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
349  *
350  * Drain requests from @q.  If @drain_all is set, all requests are drained.
351  * If not, only ELVPRIV requests are drained.  The caller is responsible
352  * for ensuring that no new requests which need to be drained are queued.
353  */
354 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 	__releases(q->queue_lock)
356 	__acquires(q->queue_lock)
357 {
358 	int i;
359 
360 	lockdep_assert_held(q->queue_lock);
361 
362 	while (true) {
363 		bool drain = false;
364 
365 		/*
366 		 * The caller might be trying to drain @q before its
367 		 * elevator is initialized.
368 		 */
369 		if (q->elevator)
370 			elv_drain_elevator(q);
371 
372 		blkcg_drain_queue(q);
373 
374 		/*
375 		 * This function might be called on a queue which failed
376 		 * driver init after queue creation or is not yet fully
377 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
378 		 * in such cases.  Kick queue iff dispatch queue has
379 		 * something on it and @q has request_fn set.
380 		 */
381 		if (!list_empty(&q->queue_head) && q->request_fn)
382 			__blk_run_queue(q);
383 
384 		drain |= q->nr_rqs_elvpriv;
385 		drain |= q->request_fn_active;
386 
387 		/*
388 		 * Unfortunately, requests are queued at and tracked from
389 		 * multiple places and there's no single counter which can
390 		 * be drained.  Check all the queues and counters.
391 		 */
392 		if (drain_all) {
393 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
394 			drain |= !list_empty(&q->queue_head);
395 			for (i = 0; i < 2; i++) {
396 				drain |= q->nr_rqs[i];
397 				drain |= q->in_flight[i];
398 				if (fq)
399 				    drain |= !list_empty(&fq->flush_queue[i]);
400 			}
401 		}
402 
403 		if (!drain)
404 			break;
405 
406 		spin_unlock_irq(q->queue_lock);
407 
408 		msleep(10);
409 
410 		spin_lock_irq(q->queue_lock);
411 	}
412 
413 	/*
414 	 * With queue marked dead, any woken up waiter will fail the
415 	 * allocation path, so the wakeup chaining is lost and we're
416 	 * left with hung waiters. We need to wake up those waiters.
417 	 */
418 	if (q->request_fn) {
419 		struct request_list *rl;
420 
421 		blk_queue_for_each_rl(rl, q)
422 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 				wake_up_all(&rl->wait[i]);
424 	}
425 }
426 
427 /**
428  * blk_queue_bypass_start - enter queue bypass mode
429  * @q: queue of interest
430  *
431  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
432  * function makes @q enter bypass mode and drains all requests which were
433  * throttled or issued before.  On return, it's guaranteed that no request
434  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435  * inside queue or RCU read lock.
436  */
437 void blk_queue_bypass_start(struct request_queue *q)
438 {
439 	spin_lock_irq(q->queue_lock);
440 	q->bypass_depth++;
441 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 	spin_unlock_irq(q->queue_lock);
443 
444 	/*
445 	 * Queues start drained.  Skip actual draining till init is
446 	 * complete.  This avoids lenghty delays during queue init which
447 	 * can happen many times during boot.
448 	 */
449 	if (blk_queue_init_done(q)) {
450 		spin_lock_irq(q->queue_lock);
451 		__blk_drain_queue(q, false);
452 		spin_unlock_irq(q->queue_lock);
453 
454 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
455 		synchronize_rcu();
456 	}
457 }
458 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459 
460 /**
461  * blk_queue_bypass_end - leave queue bypass mode
462  * @q: queue of interest
463  *
464  * Leave bypass mode and restore the normal queueing behavior.
465  */
466 void blk_queue_bypass_end(struct request_queue *q)
467 {
468 	spin_lock_irq(q->queue_lock);
469 	if (!--q->bypass_depth)
470 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 	WARN_ON_ONCE(q->bypass_depth < 0);
472 	spin_unlock_irq(q->queue_lock);
473 }
474 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475 
476 void blk_set_queue_dying(struct request_queue *q)
477 {
478 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
479 
480 	if (q->mq_ops)
481 		blk_mq_wake_waiters(q);
482 	else {
483 		struct request_list *rl;
484 
485 		blk_queue_for_each_rl(rl, q) {
486 			if (rl->rq_pool) {
487 				wake_up(&rl->wait[BLK_RW_SYNC]);
488 				wake_up(&rl->wait[BLK_RW_ASYNC]);
489 			}
490 		}
491 	}
492 }
493 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
494 
495 /**
496  * blk_cleanup_queue - shutdown a request queue
497  * @q: request queue to shutdown
498  *
499  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500  * put it.  All future requests will be failed immediately with -ENODEV.
501  */
502 void blk_cleanup_queue(struct request_queue *q)
503 {
504 	spinlock_t *lock = q->queue_lock;
505 
506 	/* mark @q DYING, no new request or merges will be allowed afterwards */
507 	mutex_lock(&q->sysfs_lock);
508 	blk_set_queue_dying(q);
509 	spin_lock_irq(lock);
510 
511 	/*
512 	 * A dying queue is permanently in bypass mode till released.  Note
513 	 * that, unlike blk_queue_bypass_start(), we aren't performing
514 	 * synchronize_rcu() after entering bypass mode to avoid the delay
515 	 * as some drivers create and destroy a lot of queues while
516 	 * probing.  This is still safe because blk_release_queue() will be
517 	 * called only after the queue refcnt drops to zero and nothing,
518 	 * RCU or not, would be traversing the queue by then.
519 	 */
520 	q->bypass_depth++;
521 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
522 
523 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
525 	queue_flag_set(QUEUE_FLAG_DYING, q);
526 	spin_unlock_irq(lock);
527 	mutex_unlock(&q->sysfs_lock);
528 
529 	/*
530 	 * Drain all requests queued before DYING marking. Set DEAD flag to
531 	 * prevent that q->request_fn() gets invoked after draining finished.
532 	 */
533 	if (q->mq_ops) {
534 		blk_mq_freeze_queue(q);
535 		spin_lock_irq(lock);
536 	} else {
537 		spin_lock_irq(lock);
538 		__blk_drain_queue(q, true);
539 	}
540 	queue_flag_set(QUEUE_FLAG_DEAD, q);
541 	spin_unlock_irq(lock);
542 
543 	/* @q won't process any more request, flush async actions */
544 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 	blk_sync_queue(q);
546 
547 	if (q->mq_ops)
548 		blk_mq_free_queue(q);
549 
550 	spin_lock_irq(lock);
551 	if (q->queue_lock != &q->__queue_lock)
552 		q->queue_lock = &q->__queue_lock;
553 	spin_unlock_irq(lock);
554 
555 	bdi_destroy(&q->backing_dev_info);
556 
557 	/* @q is and will stay empty, shutdown and put */
558 	blk_put_queue(q);
559 }
560 EXPORT_SYMBOL(blk_cleanup_queue);
561 
562 /* Allocate memory local to the request queue */
563 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
564 {
565 	int nid = (int)(long)data;
566 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
567 }
568 
569 static void free_request_struct(void *element, void *unused)
570 {
571 	kmem_cache_free(request_cachep, element);
572 }
573 
574 int blk_init_rl(struct request_list *rl, struct request_queue *q,
575 		gfp_t gfp_mask)
576 {
577 	if (unlikely(rl->rq_pool))
578 		return 0;
579 
580 	rl->q = q;
581 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
582 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
583 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
584 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
585 
586 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
587 					  free_request_struct,
588 					  (void *)(long)q->node, gfp_mask,
589 					  q->node);
590 	if (!rl->rq_pool)
591 		return -ENOMEM;
592 
593 	return 0;
594 }
595 
596 void blk_exit_rl(struct request_list *rl)
597 {
598 	if (rl->rq_pool)
599 		mempool_destroy(rl->rq_pool);
600 }
601 
602 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
603 {
604 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
605 }
606 EXPORT_SYMBOL(blk_alloc_queue);
607 
608 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
609 {
610 	struct request_queue *q;
611 	int err;
612 
613 	q = kmem_cache_alloc_node(blk_requestq_cachep,
614 				gfp_mask | __GFP_ZERO, node_id);
615 	if (!q)
616 		return NULL;
617 
618 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
619 	if (q->id < 0)
620 		goto fail_q;
621 
622 	q->backing_dev_info.ra_pages =
623 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
624 	q->backing_dev_info.state = 0;
625 	q->backing_dev_info.capabilities = 0;
626 	q->backing_dev_info.name = "block";
627 	q->node = node_id;
628 
629 	err = bdi_init(&q->backing_dev_info);
630 	if (err)
631 		goto fail_id;
632 
633 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
634 		    laptop_mode_timer_fn, (unsigned long) q);
635 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
636 	INIT_LIST_HEAD(&q->queue_head);
637 	INIT_LIST_HEAD(&q->timeout_list);
638 	INIT_LIST_HEAD(&q->icq_list);
639 #ifdef CONFIG_BLK_CGROUP
640 	INIT_LIST_HEAD(&q->blkg_list);
641 #endif
642 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
643 
644 	kobject_init(&q->kobj, &blk_queue_ktype);
645 
646 	mutex_init(&q->sysfs_lock);
647 	spin_lock_init(&q->__queue_lock);
648 
649 	/*
650 	 * By default initialize queue_lock to internal lock and driver can
651 	 * override it later if need be.
652 	 */
653 	q->queue_lock = &q->__queue_lock;
654 
655 	/*
656 	 * A queue starts its life with bypass turned on to avoid
657 	 * unnecessary bypass on/off overhead and nasty surprises during
658 	 * init.  The initial bypass will be finished when the queue is
659 	 * registered by blk_register_queue().
660 	 */
661 	q->bypass_depth = 1;
662 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
663 
664 	init_waitqueue_head(&q->mq_freeze_wq);
665 
666 	if (blkcg_init_queue(q))
667 		goto fail_bdi;
668 
669 	return q;
670 
671 fail_bdi:
672 	bdi_destroy(&q->backing_dev_info);
673 fail_id:
674 	ida_simple_remove(&blk_queue_ida, q->id);
675 fail_q:
676 	kmem_cache_free(blk_requestq_cachep, q);
677 	return NULL;
678 }
679 EXPORT_SYMBOL(blk_alloc_queue_node);
680 
681 /**
682  * blk_init_queue  - prepare a request queue for use with a block device
683  * @rfn:  The function to be called to process requests that have been
684  *        placed on the queue.
685  * @lock: Request queue spin lock
686  *
687  * Description:
688  *    If a block device wishes to use the standard request handling procedures,
689  *    which sorts requests and coalesces adjacent requests, then it must
690  *    call blk_init_queue().  The function @rfn will be called when there
691  *    are requests on the queue that need to be processed.  If the device
692  *    supports plugging, then @rfn may not be called immediately when requests
693  *    are available on the queue, but may be called at some time later instead.
694  *    Plugged queues are generally unplugged when a buffer belonging to one
695  *    of the requests on the queue is needed, or due to memory pressure.
696  *
697  *    @rfn is not required, or even expected, to remove all requests off the
698  *    queue, but only as many as it can handle at a time.  If it does leave
699  *    requests on the queue, it is responsible for arranging that the requests
700  *    get dealt with eventually.
701  *
702  *    The queue spin lock must be held while manipulating the requests on the
703  *    request queue; this lock will be taken also from interrupt context, so irq
704  *    disabling is needed for it.
705  *
706  *    Function returns a pointer to the initialized request queue, or %NULL if
707  *    it didn't succeed.
708  *
709  * Note:
710  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
711  *    when the block device is deactivated (such as at module unload).
712  **/
713 
714 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
715 {
716 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
717 }
718 EXPORT_SYMBOL(blk_init_queue);
719 
720 struct request_queue *
721 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
722 {
723 	struct request_queue *uninit_q, *q;
724 
725 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
726 	if (!uninit_q)
727 		return NULL;
728 
729 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
730 	if (!q)
731 		blk_cleanup_queue(uninit_q);
732 
733 	return q;
734 }
735 EXPORT_SYMBOL(blk_init_queue_node);
736 
737 static void blk_queue_bio(struct request_queue *q, struct bio *bio);
738 
739 struct request_queue *
740 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
741 			 spinlock_t *lock)
742 {
743 	if (!q)
744 		return NULL;
745 
746 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
747 	if (!q->fq)
748 		return NULL;
749 
750 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
751 		goto fail;
752 
753 	q->request_fn		= rfn;
754 	q->prep_rq_fn		= NULL;
755 	q->unprep_rq_fn		= NULL;
756 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
757 
758 	/* Override internal queue lock with supplied lock pointer */
759 	if (lock)
760 		q->queue_lock		= lock;
761 
762 	/*
763 	 * This also sets hw/phys segments, boundary and size
764 	 */
765 	blk_queue_make_request(q, blk_queue_bio);
766 
767 	q->sg_reserved_size = INT_MAX;
768 
769 	/* Protect q->elevator from elevator_change */
770 	mutex_lock(&q->sysfs_lock);
771 
772 	/* init elevator */
773 	if (elevator_init(q, NULL)) {
774 		mutex_unlock(&q->sysfs_lock);
775 		goto fail;
776 	}
777 
778 	mutex_unlock(&q->sysfs_lock);
779 
780 	return q;
781 
782 fail:
783 	blk_free_flush_queue(q->fq);
784 	return NULL;
785 }
786 EXPORT_SYMBOL(blk_init_allocated_queue);
787 
788 bool blk_get_queue(struct request_queue *q)
789 {
790 	if (likely(!blk_queue_dying(q))) {
791 		__blk_get_queue(q);
792 		return true;
793 	}
794 
795 	return false;
796 }
797 EXPORT_SYMBOL(blk_get_queue);
798 
799 static inline void blk_free_request(struct request_list *rl, struct request *rq)
800 {
801 	if (rq->cmd_flags & REQ_ELVPRIV) {
802 		elv_put_request(rl->q, rq);
803 		if (rq->elv.icq)
804 			put_io_context(rq->elv.icq->ioc);
805 	}
806 
807 	mempool_free(rq, rl->rq_pool);
808 }
809 
810 /*
811  * ioc_batching returns true if the ioc is a valid batching request and
812  * should be given priority access to a request.
813  */
814 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
815 {
816 	if (!ioc)
817 		return 0;
818 
819 	/*
820 	 * Make sure the process is able to allocate at least 1 request
821 	 * even if the batch times out, otherwise we could theoretically
822 	 * lose wakeups.
823 	 */
824 	return ioc->nr_batch_requests == q->nr_batching ||
825 		(ioc->nr_batch_requests > 0
826 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
827 }
828 
829 /*
830  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
831  * will cause the process to be a "batcher" on all queues in the system. This
832  * is the behaviour we want though - once it gets a wakeup it should be given
833  * a nice run.
834  */
835 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
836 {
837 	if (!ioc || ioc_batching(q, ioc))
838 		return;
839 
840 	ioc->nr_batch_requests = q->nr_batching;
841 	ioc->last_waited = jiffies;
842 }
843 
844 static void __freed_request(struct request_list *rl, int sync)
845 {
846 	struct request_queue *q = rl->q;
847 
848 	/*
849 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
850 	 * blkcg anyway, just use root blkcg state.
851 	 */
852 	if (rl == &q->root_rl &&
853 	    rl->count[sync] < queue_congestion_off_threshold(q))
854 		blk_clear_queue_congested(q, sync);
855 
856 	if (rl->count[sync] + 1 <= q->nr_requests) {
857 		if (waitqueue_active(&rl->wait[sync]))
858 			wake_up(&rl->wait[sync]);
859 
860 		blk_clear_rl_full(rl, sync);
861 	}
862 }
863 
864 /*
865  * A request has just been released.  Account for it, update the full and
866  * congestion status, wake up any waiters.   Called under q->queue_lock.
867  */
868 static void freed_request(struct request_list *rl, unsigned int flags)
869 {
870 	struct request_queue *q = rl->q;
871 	int sync = rw_is_sync(flags);
872 
873 	q->nr_rqs[sync]--;
874 	rl->count[sync]--;
875 	if (flags & REQ_ELVPRIV)
876 		q->nr_rqs_elvpriv--;
877 
878 	__freed_request(rl, sync);
879 
880 	if (unlikely(rl->starved[sync ^ 1]))
881 		__freed_request(rl, sync ^ 1);
882 }
883 
884 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
885 {
886 	struct request_list *rl;
887 
888 	spin_lock_irq(q->queue_lock);
889 	q->nr_requests = nr;
890 	blk_queue_congestion_threshold(q);
891 
892 	/* congestion isn't cgroup aware and follows root blkcg for now */
893 	rl = &q->root_rl;
894 
895 	if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
896 		blk_set_queue_congested(q, BLK_RW_SYNC);
897 	else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
898 		blk_clear_queue_congested(q, BLK_RW_SYNC);
899 
900 	if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
901 		blk_set_queue_congested(q, BLK_RW_ASYNC);
902 	else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
903 		blk_clear_queue_congested(q, BLK_RW_ASYNC);
904 
905 	blk_queue_for_each_rl(rl, q) {
906 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
907 			blk_set_rl_full(rl, BLK_RW_SYNC);
908 		} else {
909 			blk_clear_rl_full(rl, BLK_RW_SYNC);
910 			wake_up(&rl->wait[BLK_RW_SYNC]);
911 		}
912 
913 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
914 			blk_set_rl_full(rl, BLK_RW_ASYNC);
915 		} else {
916 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
917 			wake_up(&rl->wait[BLK_RW_ASYNC]);
918 		}
919 	}
920 
921 	spin_unlock_irq(q->queue_lock);
922 	return 0;
923 }
924 
925 /*
926  * Determine if elevator data should be initialized when allocating the
927  * request associated with @bio.
928  */
929 static bool blk_rq_should_init_elevator(struct bio *bio)
930 {
931 	if (!bio)
932 		return true;
933 
934 	/*
935 	 * Flush requests do not use the elevator so skip initialization.
936 	 * This allows a request to share the flush and elevator data.
937 	 */
938 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
939 		return false;
940 
941 	return true;
942 }
943 
944 /**
945  * rq_ioc - determine io_context for request allocation
946  * @bio: request being allocated is for this bio (can be %NULL)
947  *
948  * Determine io_context to use for request allocation for @bio.  May return
949  * %NULL if %current->io_context doesn't exist.
950  */
951 static struct io_context *rq_ioc(struct bio *bio)
952 {
953 #ifdef CONFIG_BLK_CGROUP
954 	if (bio && bio->bi_ioc)
955 		return bio->bi_ioc;
956 #endif
957 	return current->io_context;
958 }
959 
960 /**
961  * __get_request - get a free request
962  * @rl: request list to allocate from
963  * @rw_flags: RW and SYNC flags
964  * @bio: bio to allocate request for (can be %NULL)
965  * @gfp_mask: allocation mask
966  *
967  * Get a free request from @q.  This function may fail under memory
968  * pressure or if @q is dead.
969  *
970  * Must be called with @q->queue_lock held and,
971  * Returns ERR_PTR on failure, with @q->queue_lock held.
972  * Returns request pointer on success, with @q->queue_lock *not held*.
973  */
974 static struct request *__get_request(struct request_list *rl, int rw_flags,
975 				     struct bio *bio, gfp_t gfp_mask)
976 {
977 	struct request_queue *q = rl->q;
978 	struct request *rq;
979 	struct elevator_type *et = q->elevator->type;
980 	struct io_context *ioc = rq_ioc(bio);
981 	struct io_cq *icq = NULL;
982 	const bool is_sync = rw_is_sync(rw_flags) != 0;
983 	int may_queue;
984 
985 	if (unlikely(blk_queue_dying(q)))
986 		return ERR_PTR(-ENODEV);
987 
988 	may_queue = elv_may_queue(q, rw_flags);
989 	if (may_queue == ELV_MQUEUE_NO)
990 		goto rq_starved;
991 
992 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
993 		if (rl->count[is_sync]+1 >= q->nr_requests) {
994 			/*
995 			 * The queue will fill after this allocation, so set
996 			 * it as full, and mark this process as "batching".
997 			 * This process will be allowed to complete a batch of
998 			 * requests, others will be blocked.
999 			 */
1000 			if (!blk_rl_full(rl, is_sync)) {
1001 				ioc_set_batching(q, ioc);
1002 				blk_set_rl_full(rl, is_sync);
1003 			} else {
1004 				if (may_queue != ELV_MQUEUE_MUST
1005 						&& !ioc_batching(q, ioc)) {
1006 					/*
1007 					 * The queue is full and the allocating
1008 					 * process is not a "batcher", and not
1009 					 * exempted by the IO scheduler
1010 					 */
1011 					return ERR_PTR(-ENOMEM);
1012 				}
1013 			}
1014 		}
1015 		/*
1016 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
1017 		 * root blkcg anyway, just use root blkcg state.
1018 		 */
1019 		if (rl == &q->root_rl)
1020 			blk_set_queue_congested(q, is_sync);
1021 	}
1022 
1023 	/*
1024 	 * Only allow batching queuers to allocate up to 50% over the defined
1025 	 * limit of requests, otherwise we could have thousands of requests
1026 	 * allocated with any setting of ->nr_requests
1027 	 */
1028 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1029 		return ERR_PTR(-ENOMEM);
1030 
1031 	q->nr_rqs[is_sync]++;
1032 	rl->count[is_sync]++;
1033 	rl->starved[is_sync] = 0;
1034 
1035 	/*
1036 	 * Decide whether the new request will be managed by elevator.  If
1037 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1038 	 * prevent the current elevator from being destroyed until the new
1039 	 * request is freed.  This guarantees icq's won't be destroyed and
1040 	 * makes creating new ones safe.
1041 	 *
1042 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1043 	 * it will be created after releasing queue_lock.
1044 	 */
1045 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1046 		rw_flags |= REQ_ELVPRIV;
1047 		q->nr_rqs_elvpriv++;
1048 		if (et->icq_cache && ioc)
1049 			icq = ioc_lookup_icq(ioc, q);
1050 	}
1051 
1052 	if (blk_queue_io_stat(q))
1053 		rw_flags |= REQ_IO_STAT;
1054 	spin_unlock_irq(q->queue_lock);
1055 
1056 	/* allocate and init request */
1057 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1058 	if (!rq)
1059 		goto fail_alloc;
1060 
1061 	blk_rq_init(q, rq);
1062 	blk_rq_set_rl(rq, rl);
1063 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1064 
1065 	/* init elvpriv */
1066 	if (rw_flags & REQ_ELVPRIV) {
1067 		if (unlikely(et->icq_cache && !icq)) {
1068 			if (ioc)
1069 				icq = ioc_create_icq(ioc, q, gfp_mask);
1070 			if (!icq)
1071 				goto fail_elvpriv;
1072 		}
1073 
1074 		rq->elv.icq = icq;
1075 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1076 			goto fail_elvpriv;
1077 
1078 		/* @rq->elv.icq holds io_context until @rq is freed */
1079 		if (icq)
1080 			get_io_context(icq->ioc);
1081 	}
1082 out:
1083 	/*
1084 	 * ioc may be NULL here, and ioc_batching will be false. That's
1085 	 * OK, if the queue is under the request limit then requests need
1086 	 * not count toward the nr_batch_requests limit. There will always
1087 	 * be some limit enforced by BLK_BATCH_TIME.
1088 	 */
1089 	if (ioc_batching(q, ioc))
1090 		ioc->nr_batch_requests--;
1091 
1092 	trace_block_getrq(q, bio, rw_flags & 1);
1093 	return rq;
1094 
1095 fail_elvpriv:
1096 	/*
1097 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1098 	 * and may fail indefinitely under memory pressure and thus
1099 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1100 	 * disturb iosched and blkcg but weird is bettern than dead.
1101 	 */
1102 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1103 			   __func__, dev_name(q->backing_dev_info.dev));
1104 
1105 	rq->cmd_flags &= ~REQ_ELVPRIV;
1106 	rq->elv.icq = NULL;
1107 
1108 	spin_lock_irq(q->queue_lock);
1109 	q->nr_rqs_elvpriv--;
1110 	spin_unlock_irq(q->queue_lock);
1111 	goto out;
1112 
1113 fail_alloc:
1114 	/*
1115 	 * Allocation failed presumably due to memory. Undo anything we
1116 	 * might have messed up.
1117 	 *
1118 	 * Allocating task should really be put onto the front of the wait
1119 	 * queue, but this is pretty rare.
1120 	 */
1121 	spin_lock_irq(q->queue_lock);
1122 	freed_request(rl, rw_flags);
1123 
1124 	/*
1125 	 * in the very unlikely event that allocation failed and no
1126 	 * requests for this direction was pending, mark us starved so that
1127 	 * freeing of a request in the other direction will notice
1128 	 * us. another possible fix would be to split the rq mempool into
1129 	 * READ and WRITE
1130 	 */
1131 rq_starved:
1132 	if (unlikely(rl->count[is_sync] == 0))
1133 		rl->starved[is_sync] = 1;
1134 	return ERR_PTR(-ENOMEM);
1135 }
1136 
1137 /**
1138  * get_request - get a free request
1139  * @q: request_queue to allocate request from
1140  * @rw_flags: RW and SYNC flags
1141  * @bio: bio to allocate request for (can be %NULL)
1142  * @gfp_mask: allocation mask
1143  *
1144  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1145  * function keeps retrying under memory pressure and fails iff @q is dead.
1146  *
1147  * Must be called with @q->queue_lock held and,
1148  * Returns ERR_PTR on failure, with @q->queue_lock held.
1149  * Returns request pointer on success, with @q->queue_lock *not held*.
1150  */
1151 static struct request *get_request(struct request_queue *q, int rw_flags,
1152 				   struct bio *bio, gfp_t gfp_mask)
1153 {
1154 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1155 	DEFINE_WAIT(wait);
1156 	struct request_list *rl;
1157 	struct request *rq;
1158 
1159 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1160 retry:
1161 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1162 	if (!IS_ERR(rq))
1163 		return rq;
1164 
1165 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1166 		blk_put_rl(rl);
1167 		return rq;
1168 	}
1169 
1170 	/* wait on @rl and retry */
1171 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1172 				  TASK_UNINTERRUPTIBLE);
1173 
1174 	trace_block_sleeprq(q, bio, rw_flags & 1);
1175 
1176 	spin_unlock_irq(q->queue_lock);
1177 	io_schedule();
1178 
1179 	/*
1180 	 * After sleeping, we become a "batching" process and will be able
1181 	 * to allocate at least one request, and up to a big batch of them
1182 	 * for a small period time.  See ioc_batching, ioc_set_batching
1183 	 */
1184 	ioc_set_batching(q, current->io_context);
1185 
1186 	spin_lock_irq(q->queue_lock);
1187 	finish_wait(&rl->wait[is_sync], &wait);
1188 
1189 	goto retry;
1190 }
1191 
1192 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1193 		gfp_t gfp_mask)
1194 {
1195 	struct request *rq;
1196 
1197 	BUG_ON(rw != READ && rw != WRITE);
1198 
1199 	/* create ioc upfront */
1200 	create_io_context(gfp_mask, q->node);
1201 
1202 	spin_lock_irq(q->queue_lock);
1203 	rq = get_request(q, rw, NULL, gfp_mask);
1204 	if (IS_ERR(rq))
1205 		spin_unlock_irq(q->queue_lock);
1206 	/* q->queue_lock is unlocked at this point */
1207 
1208 	return rq;
1209 }
1210 
1211 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1212 {
1213 	if (q->mq_ops)
1214 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1215 	else
1216 		return blk_old_get_request(q, rw, gfp_mask);
1217 }
1218 EXPORT_SYMBOL(blk_get_request);
1219 
1220 /**
1221  * blk_make_request - given a bio, allocate a corresponding struct request.
1222  * @q: target request queue
1223  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1224  *        It may be a chained-bio properly constructed by block/bio layer.
1225  * @gfp_mask: gfp flags to be used for memory allocation
1226  *
1227  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1228  * type commands. Where the struct request needs to be farther initialized by
1229  * the caller. It is passed a &struct bio, which describes the memory info of
1230  * the I/O transfer.
1231  *
1232  * The caller of blk_make_request must make sure that bi_io_vec
1233  * are set to describe the memory buffers. That bio_data_dir() will return
1234  * the needed direction of the request. (And all bio's in the passed bio-chain
1235  * are properly set accordingly)
1236  *
1237  * If called under none-sleepable conditions, mapped bio buffers must not
1238  * need bouncing, by calling the appropriate masked or flagged allocator,
1239  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1240  * BUG.
1241  *
1242  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1243  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1244  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1245  * completion of a bio that hasn't been submitted yet, thus resulting in a
1246  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1247  * of bio_alloc(), as that avoids the mempool deadlock.
1248  * If possible a big IO should be split into smaller parts when allocation
1249  * fails. Partial allocation should not be an error, or you risk a live-lock.
1250  */
1251 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1252 				 gfp_t gfp_mask)
1253 {
1254 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1255 
1256 	if (IS_ERR(rq))
1257 		return rq;
1258 
1259 	blk_rq_set_block_pc(rq);
1260 
1261 	for_each_bio(bio) {
1262 		struct bio *bounce_bio = bio;
1263 		int ret;
1264 
1265 		blk_queue_bounce(q, &bounce_bio);
1266 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1267 		if (unlikely(ret)) {
1268 			blk_put_request(rq);
1269 			return ERR_PTR(ret);
1270 		}
1271 	}
1272 
1273 	return rq;
1274 }
1275 EXPORT_SYMBOL(blk_make_request);
1276 
1277 /**
1278  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1279  * @rq:		request to be initialized
1280  *
1281  */
1282 void blk_rq_set_block_pc(struct request *rq)
1283 {
1284 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1285 	rq->__data_len = 0;
1286 	rq->__sector = (sector_t) -1;
1287 	rq->bio = rq->biotail = NULL;
1288 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1289 }
1290 EXPORT_SYMBOL(blk_rq_set_block_pc);
1291 
1292 /**
1293  * blk_requeue_request - put a request back on queue
1294  * @q:		request queue where request should be inserted
1295  * @rq:		request to be inserted
1296  *
1297  * Description:
1298  *    Drivers often keep queueing requests until the hardware cannot accept
1299  *    more, when that condition happens we need to put the request back
1300  *    on the queue. Must be called with queue lock held.
1301  */
1302 void blk_requeue_request(struct request_queue *q, struct request *rq)
1303 {
1304 	blk_delete_timer(rq);
1305 	blk_clear_rq_complete(rq);
1306 	trace_block_rq_requeue(q, rq);
1307 
1308 	if (rq->cmd_flags & REQ_QUEUED)
1309 		blk_queue_end_tag(q, rq);
1310 
1311 	BUG_ON(blk_queued_rq(rq));
1312 
1313 	elv_requeue_request(q, rq);
1314 }
1315 EXPORT_SYMBOL(blk_requeue_request);
1316 
1317 static void add_acct_request(struct request_queue *q, struct request *rq,
1318 			     int where)
1319 {
1320 	blk_account_io_start(rq, true);
1321 	__elv_add_request(q, rq, where);
1322 }
1323 
1324 static void part_round_stats_single(int cpu, struct hd_struct *part,
1325 				    unsigned long now)
1326 {
1327 	int inflight;
1328 
1329 	if (now == part->stamp)
1330 		return;
1331 
1332 	inflight = part_in_flight(part);
1333 	if (inflight) {
1334 		__part_stat_add(cpu, part, time_in_queue,
1335 				inflight * (now - part->stamp));
1336 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1337 	}
1338 	part->stamp = now;
1339 }
1340 
1341 /**
1342  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1343  * @cpu: cpu number for stats access
1344  * @part: target partition
1345  *
1346  * The average IO queue length and utilisation statistics are maintained
1347  * by observing the current state of the queue length and the amount of
1348  * time it has been in this state for.
1349  *
1350  * Normally, that accounting is done on IO completion, but that can result
1351  * in more than a second's worth of IO being accounted for within any one
1352  * second, leading to >100% utilisation.  To deal with that, we call this
1353  * function to do a round-off before returning the results when reading
1354  * /proc/diskstats.  This accounts immediately for all queue usage up to
1355  * the current jiffies and restarts the counters again.
1356  */
1357 void part_round_stats(int cpu, struct hd_struct *part)
1358 {
1359 	unsigned long now = jiffies;
1360 
1361 	if (part->partno)
1362 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1363 	part_round_stats_single(cpu, part, now);
1364 }
1365 EXPORT_SYMBOL_GPL(part_round_stats);
1366 
1367 #ifdef CONFIG_PM
1368 static void blk_pm_put_request(struct request *rq)
1369 {
1370 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1371 		pm_runtime_mark_last_busy(rq->q->dev);
1372 }
1373 #else
1374 static inline void blk_pm_put_request(struct request *rq) {}
1375 #endif
1376 
1377 /*
1378  * queue lock must be held
1379  */
1380 void __blk_put_request(struct request_queue *q, struct request *req)
1381 {
1382 	if (unlikely(!q))
1383 		return;
1384 
1385 	if (q->mq_ops) {
1386 		blk_mq_free_request(req);
1387 		return;
1388 	}
1389 
1390 	blk_pm_put_request(req);
1391 
1392 	elv_completed_request(q, req);
1393 
1394 	/* this is a bio leak */
1395 	WARN_ON(req->bio != NULL);
1396 
1397 	/*
1398 	 * Request may not have originated from ll_rw_blk. if not,
1399 	 * it didn't come out of our reserved rq pools
1400 	 */
1401 	if (req->cmd_flags & REQ_ALLOCED) {
1402 		unsigned int flags = req->cmd_flags;
1403 		struct request_list *rl = blk_rq_rl(req);
1404 
1405 		BUG_ON(!list_empty(&req->queuelist));
1406 		BUG_ON(ELV_ON_HASH(req));
1407 
1408 		blk_free_request(rl, req);
1409 		freed_request(rl, flags);
1410 		blk_put_rl(rl);
1411 	}
1412 }
1413 EXPORT_SYMBOL_GPL(__blk_put_request);
1414 
1415 void blk_put_request(struct request *req)
1416 {
1417 	struct request_queue *q = req->q;
1418 
1419 	if (q->mq_ops)
1420 		blk_mq_free_request(req);
1421 	else {
1422 		unsigned long flags;
1423 
1424 		spin_lock_irqsave(q->queue_lock, flags);
1425 		__blk_put_request(q, req);
1426 		spin_unlock_irqrestore(q->queue_lock, flags);
1427 	}
1428 }
1429 EXPORT_SYMBOL(blk_put_request);
1430 
1431 /**
1432  * blk_add_request_payload - add a payload to a request
1433  * @rq: request to update
1434  * @page: page backing the payload
1435  * @len: length of the payload.
1436  *
1437  * This allows to later add a payload to an already submitted request by
1438  * a block driver.  The driver needs to take care of freeing the payload
1439  * itself.
1440  *
1441  * Note that this is a quite horrible hack and nothing but handling of
1442  * discard requests should ever use it.
1443  */
1444 void blk_add_request_payload(struct request *rq, struct page *page,
1445 		unsigned int len)
1446 {
1447 	struct bio *bio = rq->bio;
1448 
1449 	bio->bi_io_vec->bv_page = page;
1450 	bio->bi_io_vec->bv_offset = 0;
1451 	bio->bi_io_vec->bv_len = len;
1452 
1453 	bio->bi_iter.bi_size = len;
1454 	bio->bi_vcnt = 1;
1455 	bio->bi_phys_segments = 1;
1456 
1457 	rq->__data_len = rq->resid_len = len;
1458 	rq->nr_phys_segments = 1;
1459 }
1460 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1461 
1462 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1463 			    struct bio *bio)
1464 {
1465 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1466 
1467 	if (!ll_back_merge_fn(q, req, bio))
1468 		return false;
1469 
1470 	trace_block_bio_backmerge(q, req, bio);
1471 
1472 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1473 		blk_rq_set_mixed_merge(req);
1474 
1475 	req->biotail->bi_next = bio;
1476 	req->biotail = bio;
1477 	req->__data_len += bio->bi_iter.bi_size;
1478 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1479 
1480 	blk_account_io_start(req, false);
1481 	return true;
1482 }
1483 
1484 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1485 			     struct bio *bio)
1486 {
1487 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1488 
1489 	if (!ll_front_merge_fn(q, req, bio))
1490 		return false;
1491 
1492 	trace_block_bio_frontmerge(q, req, bio);
1493 
1494 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1495 		blk_rq_set_mixed_merge(req);
1496 
1497 	bio->bi_next = req->bio;
1498 	req->bio = bio;
1499 
1500 	req->__sector = bio->bi_iter.bi_sector;
1501 	req->__data_len += bio->bi_iter.bi_size;
1502 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1503 
1504 	blk_account_io_start(req, false);
1505 	return true;
1506 }
1507 
1508 /**
1509  * blk_attempt_plug_merge - try to merge with %current's plugged list
1510  * @q: request_queue new bio is being queued at
1511  * @bio: new bio being queued
1512  * @request_count: out parameter for number of traversed plugged requests
1513  *
1514  * Determine whether @bio being queued on @q can be merged with a request
1515  * on %current's plugged list.  Returns %true if merge was successful,
1516  * otherwise %false.
1517  *
1518  * Plugging coalesces IOs from the same issuer for the same purpose without
1519  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1520  * than scheduling, and the request, while may have elvpriv data, is not
1521  * added on the elevator at this point.  In addition, we don't have
1522  * reliable access to the elevator outside queue lock.  Only check basic
1523  * merging parameters without querying the elevator.
1524  *
1525  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1526  */
1527 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1528 			    unsigned int *request_count)
1529 {
1530 	struct blk_plug *plug;
1531 	struct request *rq;
1532 	bool ret = false;
1533 	struct list_head *plug_list;
1534 
1535 	plug = current->plug;
1536 	if (!plug)
1537 		goto out;
1538 	*request_count = 0;
1539 
1540 	if (q->mq_ops)
1541 		plug_list = &plug->mq_list;
1542 	else
1543 		plug_list = &plug->list;
1544 
1545 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1546 		int el_ret;
1547 
1548 		if (rq->q == q)
1549 			(*request_count)++;
1550 
1551 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1552 			continue;
1553 
1554 		el_ret = blk_try_merge(rq, bio);
1555 		if (el_ret == ELEVATOR_BACK_MERGE) {
1556 			ret = bio_attempt_back_merge(q, rq, bio);
1557 			if (ret)
1558 				break;
1559 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1560 			ret = bio_attempt_front_merge(q, rq, bio);
1561 			if (ret)
1562 				break;
1563 		}
1564 	}
1565 out:
1566 	return ret;
1567 }
1568 
1569 void init_request_from_bio(struct request *req, struct bio *bio)
1570 {
1571 	req->cmd_type = REQ_TYPE_FS;
1572 
1573 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1574 	if (bio->bi_rw & REQ_RAHEAD)
1575 		req->cmd_flags |= REQ_FAILFAST_MASK;
1576 
1577 	req->errors = 0;
1578 	req->__sector = bio->bi_iter.bi_sector;
1579 	req->ioprio = bio_prio(bio);
1580 	blk_rq_bio_prep(req->q, req, bio);
1581 }
1582 
1583 static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1584 {
1585 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1586 	struct blk_plug *plug;
1587 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1588 	struct request *req;
1589 	unsigned int request_count = 0;
1590 
1591 	/*
1592 	 * low level driver can indicate that it wants pages above a
1593 	 * certain limit bounced to low memory (ie for highmem, or even
1594 	 * ISA dma in theory)
1595 	 */
1596 	blk_queue_bounce(q, &bio);
1597 
1598 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1599 		bio_endio(bio, -EIO);
1600 		return;
1601 	}
1602 
1603 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1604 		spin_lock_irq(q->queue_lock);
1605 		where = ELEVATOR_INSERT_FLUSH;
1606 		goto get_rq;
1607 	}
1608 
1609 	/*
1610 	 * Check if we can merge with the plugged list before grabbing
1611 	 * any locks.
1612 	 */
1613 	if (!blk_queue_nomerges(q) &&
1614 	    blk_attempt_plug_merge(q, bio, &request_count))
1615 		return;
1616 
1617 	spin_lock_irq(q->queue_lock);
1618 
1619 	el_ret = elv_merge(q, &req, bio);
1620 	if (el_ret == ELEVATOR_BACK_MERGE) {
1621 		if (bio_attempt_back_merge(q, req, bio)) {
1622 			elv_bio_merged(q, req, bio);
1623 			if (!attempt_back_merge(q, req))
1624 				elv_merged_request(q, req, el_ret);
1625 			goto out_unlock;
1626 		}
1627 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1628 		if (bio_attempt_front_merge(q, req, bio)) {
1629 			elv_bio_merged(q, req, bio);
1630 			if (!attempt_front_merge(q, req))
1631 				elv_merged_request(q, req, el_ret);
1632 			goto out_unlock;
1633 		}
1634 	}
1635 
1636 get_rq:
1637 	/*
1638 	 * This sync check and mask will be re-done in init_request_from_bio(),
1639 	 * but we need to set it earlier to expose the sync flag to the
1640 	 * rq allocator and io schedulers.
1641 	 */
1642 	rw_flags = bio_data_dir(bio);
1643 	if (sync)
1644 		rw_flags |= REQ_SYNC;
1645 
1646 	/*
1647 	 * Grab a free request. This is might sleep but can not fail.
1648 	 * Returns with the queue unlocked.
1649 	 */
1650 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1651 	if (IS_ERR(req)) {
1652 		bio_endio(bio, PTR_ERR(req));	/* @q is dead */
1653 		goto out_unlock;
1654 	}
1655 
1656 	/*
1657 	 * After dropping the lock and possibly sleeping here, our request
1658 	 * may now be mergeable after it had proven unmergeable (above).
1659 	 * We don't worry about that case for efficiency. It won't happen
1660 	 * often, and the elevators are able to handle it.
1661 	 */
1662 	init_request_from_bio(req, bio);
1663 
1664 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1665 		req->cpu = raw_smp_processor_id();
1666 
1667 	plug = current->plug;
1668 	if (plug) {
1669 		/*
1670 		 * If this is the first request added after a plug, fire
1671 		 * of a plug trace.
1672 		 */
1673 		if (!request_count)
1674 			trace_block_plug(q);
1675 		else {
1676 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1677 				blk_flush_plug_list(plug, false);
1678 				trace_block_plug(q);
1679 			}
1680 		}
1681 		list_add_tail(&req->queuelist, &plug->list);
1682 		blk_account_io_start(req, true);
1683 	} else {
1684 		spin_lock_irq(q->queue_lock);
1685 		add_acct_request(q, req, where);
1686 		__blk_run_queue(q);
1687 out_unlock:
1688 		spin_unlock_irq(q->queue_lock);
1689 	}
1690 }
1691 
1692 /*
1693  * If bio->bi_dev is a partition, remap the location
1694  */
1695 static inline void blk_partition_remap(struct bio *bio)
1696 {
1697 	struct block_device *bdev = bio->bi_bdev;
1698 
1699 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1700 		struct hd_struct *p = bdev->bd_part;
1701 
1702 		bio->bi_iter.bi_sector += p->start_sect;
1703 		bio->bi_bdev = bdev->bd_contains;
1704 
1705 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1706 				      bdev->bd_dev,
1707 				      bio->bi_iter.bi_sector - p->start_sect);
1708 	}
1709 }
1710 
1711 static void handle_bad_sector(struct bio *bio)
1712 {
1713 	char b[BDEVNAME_SIZE];
1714 
1715 	printk(KERN_INFO "attempt to access beyond end of device\n");
1716 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1717 			bdevname(bio->bi_bdev, b),
1718 			bio->bi_rw,
1719 			(unsigned long long)bio_end_sector(bio),
1720 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1721 
1722 	set_bit(BIO_EOF, &bio->bi_flags);
1723 }
1724 
1725 #ifdef CONFIG_FAIL_MAKE_REQUEST
1726 
1727 static DECLARE_FAULT_ATTR(fail_make_request);
1728 
1729 static int __init setup_fail_make_request(char *str)
1730 {
1731 	return setup_fault_attr(&fail_make_request, str);
1732 }
1733 __setup("fail_make_request=", setup_fail_make_request);
1734 
1735 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1736 {
1737 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1738 }
1739 
1740 static int __init fail_make_request_debugfs(void)
1741 {
1742 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1743 						NULL, &fail_make_request);
1744 
1745 	return PTR_ERR_OR_ZERO(dir);
1746 }
1747 
1748 late_initcall(fail_make_request_debugfs);
1749 
1750 #else /* CONFIG_FAIL_MAKE_REQUEST */
1751 
1752 static inline bool should_fail_request(struct hd_struct *part,
1753 					unsigned int bytes)
1754 {
1755 	return false;
1756 }
1757 
1758 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1759 
1760 /*
1761  * Check whether this bio extends beyond the end of the device.
1762  */
1763 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1764 {
1765 	sector_t maxsector;
1766 
1767 	if (!nr_sectors)
1768 		return 0;
1769 
1770 	/* Test device or partition size, when known. */
1771 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1772 	if (maxsector) {
1773 		sector_t sector = bio->bi_iter.bi_sector;
1774 
1775 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1776 			/*
1777 			 * This may well happen - the kernel calls bread()
1778 			 * without checking the size of the device, e.g., when
1779 			 * mounting a device.
1780 			 */
1781 			handle_bad_sector(bio);
1782 			return 1;
1783 		}
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 static noinline_for_stack bool
1790 generic_make_request_checks(struct bio *bio)
1791 {
1792 	struct request_queue *q;
1793 	int nr_sectors = bio_sectors(bio);
1794 	int err = -EIO;
1795 	char b[BDEVNAME_SIZE];
1796 	struct hd_struct *part;
1797 
1798 	might_sleep();
1799 
1800 	if (bio_check_eod(bio, nr_sectors))
1801 		goto end_io;
1802 
1803 	q = bdev_get_queue(bio->bi_bdev);
1804 	if (unlikely(!q)) {
1805 		printk(KERN_ERR
1806 		       "generic_make_request: Trying to access "
1807 			"nonexistent block-device %s (%Lu)\n",
1808 			bdevname(bio->bi_bdev, b),
1809 			(long long) bio->bi_iter.bi_sector);
1810 		goto end_io;
1811 	}
1812 
1813 	if (likely(bio_is_rw(bio) &&
1814 		   nr_sectors > queue_max_hw_sectors(q))) {
1815 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1816 		       bdevname(bio->bi_bdev, b),
1817 		       bio_sectors(bio),
1818 		       queue_max_hw_sectors(q));
1819 		goto end_io;
1820 	}
1821 
1822 	part = bio->bi_bdev->bd_part;
1823 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1824 	    should_fail_request(&part_to_disk(part)->part0,
1825 				bio->bi_iter.bi_size))
1826 		goto end_io;
1827 
1828 	/*
1829 	 * If this device has partitions, remap block n
1830 	 * of partition p to block n+start(p) of the disk.
1831 	 */
1832 	blk_partition_remap(bio);
1833 
1834 	if (bio_check_eod(bio, nr_sectors))
1835 		goto end_io;
1836 
1837 	/*
1838 	 * Filter flush bio's early so that make_request based
1839 	 * drivers without flush support don't have to worry
1840 	 * about them.
1841 	 */
1842 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1843 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1844 		if (!nr_sectors) {
1845 			err = 0;
1846 			goto end_io;
1847 		}
1848 	}
1849 
1850 	if ((bio->bi_rw & REQ_DISCARD) &&
1851 	    (!blk_queue_discard(q) ||
1852 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1853 		err = -EOPNOTSUPP;
1854 		goto end_io;
1855 	}
1856 
1857 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1858 		err = -EOPNOTSUPP;
1859 		goto end_io;
1860 	}
1861 
1862 	/*
1863 	 * Various block parts want %current->io_context and lazy ioc
1864 	 * allocation ends up trading a lot of pain for a small amount of
1865 	 * memory.  Just allocate it upfront.  This may fail and block
1866 	 * layer knows how to live with it.
1867 	 */
1868 	create_io_context(GFP_ATOMIC, q->node);
1869 
1870 	if (blk_throtl_bio(q, bio))
1871 		return false;	/* throttled, will be resubmitted later */
1872 
1873 	trace_block_bio_queue(q, bio);
1874 	return true;
1875 
1876 end_io:
1877 	bio_endio(bio, err);
1878 	return false;
1879 }
1880 
1881 /**
1882  * generic_make_request - hand a buffer to its device driver for I/O
1883  * @bio:  The bio describing the location in memory and on the device.
1884  *
1885  * generic_make_request() is used to make I/O requests of block
1886  * devices. It is passed a &struct bio, which describes the I/O that needs
1887  * to be done.
1888  *
1889  * generic_make_request() does not return any status.  The
1890  * success/failure status of the request, along with notification of
1891  * completion, is delivered asynchronously through the bio->bi_end_io
1892  * function described (one day) else where.
1893  *
1894  * The caller of generic_make_request must make sure that bi_io_vec
1895  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1896  * set to describe the device address, and the
1897  * bi_end_io and optionally bi_private are set to describe how
1898  * completion notification should be signaled.
1899  *
1900  * generic_make_request and the drivers it calls may use bi_next if this
1901  * bio happens to be merged with someone else, and may resubmit the bio to
1902  * a lower device by calling into generic_make_request recursively, which
1903  * means the bio should NOT be touched after the call to ->make_request_fn.
1904  */
1905 void generic_make_request(struct bio *bio)
1906 {
1907 	struct bio_list bio_list_on_stack;
1908 
1909 	if (!generic_make_request_checks(bio))
1910 		return;
1911 
1912 	/*
1913 	 * We only want one ->make_request_fn to be active at a time, else
1914 	 * stack usage with stacked devices could be a problem.  So use
1915 	 * current->bio_list to keep a list of requests submited by a
1916 	 * make_request_fn function.  current->bio_list is also used as a
1917 	 * flag to say if generic_make_request is currently active in this
1918 	 * task or not.  If it is NULL, then no make_request is active.  If
1919 	 * it is non-NULL, then a make_request is active, and new requests
1920 	 * should be added at the tail
1921 	 */
1922 	if (current->bio_list) {
1923 		bio_list_add(current->bio_list, bio);
1924 		return;
1925 	}
1926 
1927 	/* following loop may be a bit non-obvious, and so deserves some
1928 	 * explanation.
1929 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1930 	 * ensure that) so we have a list with a single bio.
1931 	 * We pretend that we have just taken it off a longer list, so
1932 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1933 	 * thus initialising the bio_list of new bios to be
1934 	 * added.  ->make_request() may indeed add some more bios
1935 	 * through a recursive call to generic_make_request.  If it
1936 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1937 	 * from the top.  In this case we really did just take the bio
1938 	 * of the top of the list (no pretending) and so remove it from
1939 	 * bio_list, and call into ->make_request() again.
1940 	 */
1941 	BUG_ON(bio->bi_next);
1942 	bio_list_init(&bio_list_on_stack);
1943 	current->bio_list = &bio_list_on_stack;
1944 	do {
1945 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1946 
1947 		q->make_request_fn(q, bio);
1948 
1949 		bio = bio_list_pop(current->bio_list);
1950 	} while (bio);
1951 	current->bio_list = NULL; /* deactivate */
1952 }
1953 EXPORT_SYMBOL(generic_make_request);
1954 
1955 /**
1956  * submit_bio - submit a bio to the block device layer for I/O
1957  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1958  * @bio: The &struct bio which describes the I/O
1959  *
1960  * submit_bio() is very similar in purpose to generic_make_request(), and
1961  * uses that function to do most of the work. Both are fairly rough
1962  * interfaces; @bio must be presetup and ready for I/O.
1963  *
1964  */
1965 void submit_bio(int rw, struct bio *bio)
1966 {
1967 	bio->bi_rw |= rw;
1968 
1969 	/*
1970 	 * If it's a regular read/write or a barrier with data attached,
1971 	 * go through the normal accounting stuff before submission.
1972 	 */
1973 	if (bio_has_data(bio)) {
1974 		unsigned int count;
1975 
1976 		if (unlikely(rw & REQ_WRITE_SAME))
1977 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1978 		else
1979 			count = bio_sectors(bio);
1980 
1981 		if (rw & WRITE) {
1982 			count_vm_events(PGPGOUT, count);
1983 		} else {
1984 			task_io_account_read(bio->bi_iter.bi_size);
1985 			count_vm_events(PGPGIN, count);
1986 		}
1987 
1988 		if (unlikely(block_dump)) {
1989 			char b[BDEVNAME_SIZE];
1990 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1991 			current->comm, task_pid_nr(current),
1992 				(rw & WRITE) ? "WRITE" : "READ",
1993 				(unsigned long long)bio->bi_iter.bi_sector,
1994 				bdevname(bio->bi_bdev, b),
1995 				count);
1996 		}
1997 	}
1998 
1999 	generic_make_request(bio);
2000 }
2001 EXPORT_SYMBOL(submit_bio);
2002 
2003 /**
2004  * blk_rq_check_limits - Helper function to check a request for the queue limit
2005  * @q:  the queue
2006  * @rq: the request being checked
2007  *
2008  * Description:
2009  *    @rq may have been made based on weaker limitations of upper-level queues
2010  *    in request stacking drivers, and it may violate the limitation of @q.
2011  *    Since the block layer and the underlying device driver trust @rq
2012  *    after it is inserted to @q, it should be checked against @q before
2013  *    the insertion using this generic function.
2014  *
2015  *    This function should also be useful for request stacking drivers
2016  *    in some cases below, so export this function.
2017  *    Request stacking drivers like request-based dm may change the queue
2018  *    limits while requests are in the queue (e.g. dm's table swapping).
2019  *    Such request stacking drivers should check those requests against
2020  *    the new queue limits again when they dispatch those requests,
2021  *    although such checkings are also done against the old queue limits
2022  *    when submitting requests.
2023  */
2024 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2025 {
2026 	if (!rq_mergeable(rq))
2027 		return 0;
2028 
2029 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2030 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2031 		return -EIO;
2032 	}
2033 
2034 	/*
2035 	 * queue's settings related to segment counting like q->bounce_pfn
2036 	 * may differ from that of other stacking queues.
2037 	 * Recalculate it to check the request correctly on this queue's
2038 	 * limitation.
2039 	 */
2040 	blk_recalc_rq_segments(rq);
2041 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2042 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2043 		return -EIO;
2044 	}
2045 
2046 	return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2049 
2050 /**
2051  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2052  * @q:  the queue to submit the request
2053  * @rq: the request being queued
2054  */
2055 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2056 {
2057 	unsigned long flags;
2058 	int where = ELEVATOR_INSERT_BACK;
2059 
2060 	if (blk_rq_check_limits(q, rq))
2061 		return -EIO;
2062 
2063 	if (rq->rq_disk &&
2064 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2065 		return -EIO;
2066 
2067 	if (q->mq_ops) {
2068 		if (blk_queue_io_stat(q))
2069 			blk_account_io_start(rq, true);
2070 		blk_mq_insert_request(rq, false, true, true);
2071 		return 0;
2072 	}
2073 
2074 	spin_lock_irqsave(q->queue_lock, flags);
2075 	if (unlikely(blk_queue_dying(q))) {
2076 		spin_unlock_irqrestore(q->queue_lock, flags);
2077 		return -ENODEV;
2078 	}
2079 
2080 	/*
2081 	 * Submitting request must be dequeued before calling this function
2082 	 * because it will be linked to another request_queue
2083 	 */
2084 	BUG_ON(blk_queued_rq(rq));
2085 
2086 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2087 		where = ELEVATOR_INSERT_FLUSH;
2088 
2089 	add_acct_request(q, rq, where);
2090 	if (where == ELEVATOR_INSERT_FLUSH)
2091 		__blk_run_queue(q);
2092 	spin_unlock_irqrestore(q->queue_lock, flags);
2093 
2094 	return 0;
2095 }
2096 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2097 
2098 /**
2099  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2100  * @rq: request to examine
2101  *
2102  * Description:
2103  *     A request could be merge of IOs which require different failure
2104  *     handling.  This function determines the number of bytes which
2105  *     can be failed from the beginning of the request without
2106  *     crossing into area which need to be retried further.
2107  *
2108  * Return:
2109  *     The number of bytes to fail.
2110  *
2111  * Context:
2112  *     queue_lock must be held.
2113  */
2114 unsigned int blk_rq_err_bytes(const struct request *rq)
2115 {
2116 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2117 	unsigned int bytes = 0;
2118 	struct bio *bio;
2119 
2120 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2121 		return blk_rq_bytes(rq);
2122 
2123 	/*
2124 	 * Currently the only 'mixing' which can happen is between
2125 	 * different fastfail types.  We can safely fail portions
2126 	 * which have all the failfast bits that the first one has -
2127 	 * the ones which are at least as eager to fail as the first
2128 	 * one.
2129 	 */
2130 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2131 		if ((bio->bi_rw & ff) != ff)
2132 			break;
2133 		bytes += bio->bi_iter.bi_size;
2134 	}
2135 
2136 	/* this could lead to infinite loop */
2137 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2138 	return bytes;
2139 }
2140 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2141 
2142 void blk_account_io_completion(struct request *req, unsigned int bytes)
2143 {
2144 	if (blk_do_io_stat(req)) {
2145 		const int rw = rq_data_dir(req);
2146 		struct hd_struct *part;
2147 		int cpu;
2148 
2149 		cpu = part_stat_lock();
2150 		part = req->part;
2151 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2152 		part_stat_unlock();
2153 	}
2154 }
2155 
2156 void blk_account_io_done(struct request *req)
2157 {
2158 	/*
2159 	 * Account IO completion.  flush_rq isn't accounted as a
2160 	 * normal IO on queueing nor completion.  Accounting the
2161 	 * containing request is enough.
2162 	 */
2163 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2164 		unsigned long duration = jiffies - req->start_time;
2165 		const int rw = rq_data_dir(req);
2166 		struct hd_struct *part;
2167 		int cpu;
2168 
2169 		cpu = part_stat_lock();
2170 		part = req->part;
2171 
2172 		part_stat_inc(cpu, part, ios[rw]);
2173 		part_stat_add(cpu, part, ticks[rw], duration);
2174 		part_round_stats(cpu, part);
2175 		part_dec_in_flight(part, rw);
2176 
2177 		hd_struct_put(part);
2178 		part_stat_unlock();
2179 	}
2180 }
2181 
2182 #ifdef CONFIG_PM
2183 /*
2184  * Don't process normal requests when queue is suspended
2185  * or in the process of suspending/resuming
2186  */
2187 static struct request *blk_pm_peek_request(struct request_queue *q,
2188 					   struct request *rq)
2189 {
2190 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2191 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2192 		return NULL;
2193 	else
2194 		return rq;
2195 }
2196 #else
2197 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2198 						  struct request *rq)
2199 {
2200 	return rq;
2201 }
2202 #endif
2203 
2204 void blk_account_io_start(struct request *rq, bool new_io)
2205 {
2206 	struct hd_struct *part;
2207 	int rw = rq_data_dir(rq);
2208 	int cpu;
2209 
2210 	if (!blk_do_io_stat(rq))
2211 		return;
2212 
2213 	cpu = part_stat_lock();
2214 
2215 	if (!new_io) {
2216 		part = rq->part;
2217 		part_stat_inc(cpu, part, merges[rw]);
2218 	} else {
2219 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2220 		if (!hd_struct_try_get(part)) {
2221 			/*
2222 			 * The partition is already being removed,
2223 			 * the request will be accounted on the disk only
2224 			 *
2225 			 * We take a reference on disk->part0 although that
2226 			 * partition will never be deleted, so we can treat
2227 			 * it as any other partition.
2228 			 */
2229 			part = &rq->rq_disk->part0;
2230 			hd_struct_get(part);
2231 		}
2232 		part_round_stats(cpu, part);
2233 		part_inc_in_flight(part, rw);
2234 		rq->part = part;
2235 	}
2236 
2237 	part_stat_unlock();
2238 }
2239 
2240 /**
2241  * blk_peek_request - peek at the top of a request queue
2242  * @q: request queue to peek at
2243  *
2244  * Description:
2245  *     Return the request at the top of @q.  The returned request
2246  *     should be started using blk_start_request() before LLD starts
2247  *     processing it.
2248  *
2249  * Return:
2250  *     Pointer to the request at the top of @q if available.  Null
2251  *     otherwise.
2252  *
2253  * Context:
2254  *     queue_lock must be held.
2255  */
2256 struct request *blk_peek_request(struct request_queue *q)
2257 {
2258 	struct request *rq;
2259 	int ret;
2260 
2261 	while ((rq = __elv_next_request(q)) != NULL) {
2262 
2263 		rq = blk_pm_peek_request(q, rq);
2264 		if (!rq)
2265 			break;
2266 
2267 		if (!(rq->cmd_flags & REQ_STARTED)) {
2268 			/*
2269 			 * This is the first time the device driver
2270 			 * sees this request (possibly after
2271 			 * requeueing).  Notify IO scheduler.
2272 			 */
2273 			if (rq->cmd_flags & REQ_SORTED)
2274 				elv_activate_rq(q, rq);
2275 
2276 			/*
2277 			 * just mark as started even if we don't start
2278 			 * it, a request that has been delayed should
2279 			 * not be passed by new incoming requests
2280 			 */
2281 			rq->cmd_flags |= REQ_STARTED;
2282 			trace_block_rq_issue(q, rq);
2283 		}
2284 
2285 		if (!q->boundary_rq || q->boundary_rq == rq) {
2286 			q->end_sector = rq_end_sector(rq);
2287 			q->boundary_rq = NULL;
2288 		}
2289 
2290 		if (rq->cmd_flags & REQ_DONTPREP)
2291 			break;
2292 
2293 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2294 			/*
2295 			 * make sure space for the drain appears we
2296 			 * know we can do this because max_hw_segments
2297 			 * has been adjusted to be one fewer than the
2298 			 * device can handle
2299 			 */
2300 			rq->nr_phys_segments++;
2301 		}
2302 
2303 		if (!q->prep_rq_fn)
2304 			break;
2305 
2306 		ret = q->prep_rq_fn(q, rq);
2307 		if (ret == BLKPREP_OK) {
2308 			break;
2309 		} else if (ret == BLKPREP_DEFER) {
2310 			/*
2311 			 * the request may have been (partially) prepped.
2312 			 * we need to keep this request in the front to
2313 			 * avoid resource deadlock.  REQ_STARTED will
2314 			 * prevent other fs requests from passing this one.
2315 			 */
2316 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2317 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2318 				/*
2319 				 * remove the space for the drain we added
2320 				 * so that we don't add it again
2321 				 */
2322 				--rq->nr_phys_segments;
2323 			}
2324 
2325 			rq = NULL;
2326 			break;
2327 		} else if (ret == BLKPREP_KILL) {
2328 			rq->cmd_flags |= REQ_QUIET;
2329 			/*
2330 			 * Mark this request as started so we don't trigger
2331 			 * any debug logic in the end I/O path.
2332 			 */
2333 			blk_start_request(rq);
2334 			__blk_end_request_all(rq, -EIO);
2335 		} else {
2336 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2337 			break;
2338 		}
2339 	}
2340 
2341 	return rq;
2342 }
2343 EXPORT_SYMBOL(blk_peek_request);
2344 
2345 void blk_dequeue_request(struct request *rq)
2346 {
2347 	struct request_queue *q = rq->q;
2348 
2349 	BUG_ON(list_empty(&rq->queuelist));
2350 	BUG_ON(ELV_ON_HASH(rq));
2351 
2352 	list_del_init(&rq->queuelist);
2353 
2354 	/*
2355 	 * the time frame between a request being removed from the lists
2356 	 * and to it is freed is accounted as io that is in progress at
2357 	 * the driver side.
2358 	 */
2359 	if (blk_account_rq(rq)) {
2360 		q->in_flight[rq_is_sync(rq)]++;
2361 		set_io_start_time_ns(rq);
2362 	}
2363 }
2364 
2365 /**
2366  * blk_start_request - start request processing on the driver
2367  * @req: request to dequeue
2368  *
2369  * Description:
2370  *     Dequeue @req and start timeout timer on it.  This hands off the
2371  *     request to the driver.
2372  *
2373  *     Block internal functions which don't want to start timer should
2374  *     call blk_dequeue_request().
2375  *
2376  * Context:
2377  *     queue_lock must be held.
2378  */
2379 void blk_start_request(struct request *req)
2380 {
2381 	blk_dequeue_request(req);
2382 
2383 	/*
2384 	 * We are now handing the request to the hardware, initialize
2385 	 * resid_len to full count and add the timeout handler.
2386 	 */
2387 	req->resid_len = blk_rq_bytes(req);
2388 	if (unlikely(blk_bidi_rq(req)))
2389 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2390 
2391 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2392 	blk_add_timer(req);
2393 }
2394 EXPORT_SYMBOL(blk_start_request);
2395 
2396 /**
2397  * blk_fetch_request - fetch a request from a request queue
2398  * @q: request queue to fetch a request from
2399  *
2400  * Description:
2401  *     Return the request at the top of @q.  The request is started on
2402  *     return and LLD can start processing it immediately.
2403  *
2404  * Return:
2405  *     Pointer to the request at the top of @q if available.  Null
2406  *     otherwise.
2407  *
2408  * Context:
2409  *     queue_lock must be held.
2410  */
2411 struct request *blk_fetch_request(struct request_queue *q)
2412 {
2413 	struct request *rq;
2414 
2415 	rq = blk_peek_request(q);
2416 	if (rq)
2417 		blk_start_request(rq);
2418 	return rq;
2419 }
2420 EXPORT_SYMBOL(blk_fetch_request);
2421 
2422 /**
2423  * blk_update_request - Special helper function for request stacking drivers
2424  * @req:      the request being processed
2425  * @error:    %0 for success, < %0 for error
2426  * @nr_bytes: number of bytes to complete @req
2427  *
2428  * Description:
2429  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2430  *     the request structure even if @req doesn't have leftover.
2431  *     If @req has leftover, sets it up for the next range of segments.
2432  *
2433  *     This special helper function is only for request stacking drivers
2434  *     (e.g. request-based dm) so that they can handle partial completion.
2435  *     Actual device drivers should use blk_end_request instead.
2436  *
2437  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2438  *     %false return from this function.
2439  *
2440  * Return:
2441  *     %false - this request doesn't have any more data
2442  *     %true  - this request has more data
2443  **/
2444 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2445 {
2446 	int total_bytes;
2447 
2448 	trace_block_rq_complete(req->q, req, nr_bytes);
2449 
2450 	if (!req->bio)
2451 		return false;
2452 
2453 	/*
2454 	 * For fs requests, rq is just carrier of independent bio's
2455 	 * and each partial completion should be handled separately.
2456 	 * Reset per-request error on each partial completion.
2457 	 *
2458 	 * TODO: tj: This is too subtle.  It would be better to let
2459 	 * low level drivers do what they see fit.
2460 	 */
2461 	if (req->cmd_type == REQ_TYPE_FS)
2462 		req->errors = 0;
2463 
2464 	if (error && req->cmd_type == REQ_TYPE_FS &&
2465 	    !(req->cmd_flags & REQ_QUIET)) {
2466 		char *error_type;
2467 
2468 		switch (error) {
2469 		case -ENOLINK:
2470 			error_type = "recoverable transport";
2471 			break;
2472 		case -EREMOTEIO:
2473 			error_type = "critical target";
2474 			break;
2475 		case -EBADE:
2476 			error_type = "critical nexus";
2477 			break;
2478 		case -ETIMEDOUT:
2479 			error_type = "timeout";
2480 			break;
2481 		case -ENOSPC:
2482 			error_type = "critical space allocation";
2483 			break;
2484 		case -ENODATA:
2485 			error_type = "critical medium";
2486 			break;
2487 		case -EIO:
2488 		default:
2489 			error_type = "I/O";
2490 			break;
2491 		}
2492 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2493 				   __func__, error_type, req->rq_disk ?
2494 				   req->rq_disk->disk_name : "?",
2495 				   (unsigned long long)blk_rq_pos(req));
2496 
2497 	}
2498 
2499 	blk_account_io_completion(req, nr_bytes);
2500 
2501 	total_bytes = 0;
2502 	while (req->bio) {
2503 		struct bio *bio = req->bio;
2504 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2505 
2506 		if (bio_bytes == bio->bi_iter.bi_size)
2507 			req->bio = bio->bi_next;
2508 
2509 		req_bio_endio(req, bio, bio_bytes, error);
2510 
2511 		total_bytes += bio_bytes;
2512 		nr_bytes -= bio_bytes;
2513 
2514 		if (!nr_bytes)
2515 			break;
2516 	}
2517 
2518 	/*
2519 	 * completely done
2520 	 */
2521 	if (!req->bio) {
2522 		/*
2523 		 * Reset counters so that the request stacking driver
2524 		 * can find how many bytes remain in the request
2525 		 * later.
2526 		 */
2527 		req->__data_len = 0;
2528 		return false;
2529 	}
2530 
2531 	req->__data_len -= total_bytes;
2532 
2533 	/* update sector only for requests with clear definition of sector */
2534 	if (req->cmd_type == REQ_TYPE_FS)
2535 		req->__sector += total_bytes >> 9;
2536 
2537 	/* mixed attributes always follow the first bio */
2538 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2539 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2540 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2541 	}
2542 
2543 	/*
2544 	 * If total number of sectors is less than the first segment
2545 	 * size, something has gone terribly wrong.
2546 	 */
2547 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2548 		blk_dump_rq_flags(req, "request botched");
2549 		req->__data_len = blk_rq_cur_bytes(req);
2550 	}
2551 
2552 	/* recalculate the number of segments */
2553 	blk_recalc_rq_segments(req);
2554 
2555 	return true;
2556 }
2557 EXPORT_SYMBOL_GPL(blk_update_request);
2558 
2559 static bool blk_update_bidi_request(struct request *rq, int error,
2560 				    unsigned int nr_bytes,
2561 				    unsigned int bidi_bytes)
2562 {
2563 	if (blk_update_request(rq, error, nr_bytes))
2564 		return true;
2565 
2566 	/* Bidi request must be completed as a whole */
2567 	if (unlikely(blk_bidi_rq(rq)) &&
2568 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2569 		return true;
2570 
2571 	if (blk_queue_add_random(rq->q))
2572 		add_disk_randomness(rq->rq_disk);
2573 
2574 	return false;
2575 }
2576 
2577 /**
2578  * blk_unprep_request - unprepare a request
2579  * @req:	the request
2580  *
2581  * This function makes a request ready for complete resubmission (or
2582  * completion).  It happens only after all error handling is complete,
2583  * so represents the appropriate moment to deallocate any resources
2584  * that were allocated to the request in the prep_rq_fn.  The queue
2585  * lock is held when calling this.
2586  */
2587 void blk_unprep_request(struct request *req)
2588 {
2589 	struct request_queue *q = req->q;
2590 
2591 	req->cmd_flags &= ~REQ_DONTPREP;
2592 	if (q->unprep_rq_fn)
2593 		q->unprep_rq_fn(q, req);
2594 }
2595 EXPORT_SYMBOL_GPL(blk_unprep_request);
2596 
2597 /*
2598  * queue lock must be held
2599  */
2600 void blk_finish_request(struct request *req, int error)
2601 {
2602 	if (req->cmd_flags & REQ_QUEUED)
2603 		blk_queue_end_tag(req->q, req);
2604 
2605 	BUG_ON(blk_queued_rq(req));
2606 
2607 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2608 		laptop_io_completion(&req->q->backing_dev_info);
2609 
2610 	blk_delete_timer(req);
2611 
2612 	if (req->cmd_flags & REQ_DONTPREP)
2613 		blk_unprep_request(req);
2614 
2615 	blk_account_io_done(req);
2616 
2617 	if (req->end_io)
2618 		req->end_io(req, error);
2619 	else {
2620 		if (blk_bidi_rq(req))
2621 			__blk_put_request(req->next_rq->q, req->next_rq);
2622 
2623 		__blk_put_request(req->q, req);
2624 	}
2625 }
2626 EXPORT_SYMBOL(blk_finish_request);
2627 
2628 /**
2629  * blk_end_bidi_request - Complete a bidi request
2630  * @rq:         the request to complete
2631  * @error:      %0 for success, < %0 for error
2632  * @nr_bytes:   number of bytes to complete @rq
2633  * @bidi_bytes: number of bytes to complete @rq->next_rq
2634  *
2635  * Description:
2636  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2637  *     Drivers that supports bidi can safely call this member for any
2638  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2639  *     just ignored.
2640  *
2641  * Return:
2642  *     %false - we are done with this request
2643  *     %true  - still buffers pending for this request
2644  **/
2645 static bool blk_end_bidi_request(struct request *rq, int error,
2646 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2647 {
2648 	struct request_queue *q = rq->q;
2649 	unsigned long flags;
2650 
2651 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2652 		return true;
2653 
2654 	spin_lock_irqsave(q->queue_lock, flags);
2655 	blk_finish_request(rq, error);
2656 	spin_unlock_irqrestore(q->queue_lock, flags);
2657 
2658 	return false;
2659 }
2660 
2661 /**
2662  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2663  * @rq:         the request to complete
2664  * @error:      %0 for success, < %0 for error
2665  * @nr_bytes:   number of bytes to complete @rq
2666  * @bidi_bytes: number of bytes to complete @rq->next_rq
2667  *
2668  * Description:
2669  *     Identical to blk_end_bidi_request() except that queue lock is
2670  *     assumed to be locked on entry and remains so on return.
2671  *
2672  * Return:
2673  *     %false - we are done with this request
2674  *     %true  - still buffers pending for this request
2675  **/
2676 bool __blk_end_bidi_request(struct request *rq, int error,
2677 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2678 {
2679 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2680 		return true;
2681 
2682 	blk_finish_request(rq, error);
2683 
2684 	return false;
2685 }
2686 
2687 /**
2688  * blk_end_request - Helper function for drivers to complete the request.
2689  * @rq:       the request being processed
2690  * @error:    %0 for success, < %0 for error
2691  * @nr_bytes: number of bytes to complete
2692  *
2693  * Description:
2694  *     Ends I/O on a number of bytes attached to @rq.
2695  *     If @rq has leftover, sets it up for the next range of segments.
2696  *
2697  * Return:
2698  *     %false - we are done with this request
2699  *     %true  - still buffers pending for this request
2700  **/
2701 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2702 {
2703 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2704 }
2705 EXPORT_SYMBOL(blk_end_request);
2706 
2707 /**
2708  * blk_end_request_all - Helper function for drives to finish the request.
2709  * @rq: the request to finish
2710  * @error: %0 for success, < %0 for error
2711  *
2712  * Description:
2713  *     Completely finish @rq.
2714  */
2715 void blk_end_request_all(struct request *rq, int error)
2716 {
2717 	bool pending;
2718 	unsigned int bidi_bytes = 0;
2719 
2720 	if (unlikely(blk_bidi_rq(rq)))
2721 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2722 
2723 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2724 	BUG_ON(pending);
2725 }
2726 EXPORT_SYMBOL(blk_end_request_all);
2727 
2728 /**
2729  * blk_end_request_cur - Helper function to finish the current request chunk.
2730  * @rq: the request to finish the current chunk for
2731  * @error: %0 for success, < %0 for error
2732  *
2733  * Description:
2734  *     Complete the current consecutively mapped chunk from @rq.
2735  *
2736  * Return:
2737  *     %false - we are done with this request
2738  *     %true  - still buffers pending for this request
2739  */
2740 bool blk_end_request_cur(struct request *rq, int error)
2741 {
2742 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2743 }
2744 EXPORT_SYMBOL(blk_end_request_cur);
2745 
2746 /**
2747  * blk_end_request_err - Finish a request till the next failure boundary.
2748  * @rq: the request to finish till the next failure boundary for
2749  * @error: must be negative errno
2750  *
2751  * Description:
2752  *     Complete @rq till the next failure boundary.
2753  *
2754  * Return:
2755  *     %false - we are done with this request
2756  *     %true  - still buffers pending for this request
2757  */
2758 bool blk_end_request_err(struct request *rq, int error)
2759 {
2760 	WARN_ON(error >= 0);
2761 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2762 }
2763 EXPORT_SYMBOL_GPL(blk_end_request_err);
2764 
2765 /**
2766  * __blk_end_request - Helper function for drivers to complete the request.
2767  * @rq:       the request being processed
2768  * @error:    %0 for success, < %0 for error
2769  * @nr_bytes: number of bytes to complete
2770  *
2771  * Description:
2772  *     Must be called with queue lock held unlike blk_end_request().
2773  *
2774  * Return:
2775  *     %false - we are done with this request
2776  *     %true  - still buffers pending for this request
2777  **/
2778 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2779 {
2780 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2781 }
2782 EXPORT_SYMBOL(__blk_end_request);
2783 
2784 /**
2785  * __blk_end_request_all - Helper function for drives to finish the request.
2786  * @rq: the request to finish
2787  * @error: %0 for success, < %0 for error
2788  *
2789  * Description:
2790  *     Completely finish @rq.  Must be called with queue lock held.
2791  */
2792 void __blk_end_request_all(struct request *rq, int error)
2793 {
2794 	bool pending;
2795 	unsigned int bidi_bytes = 0;
2796 
2797 	if (unlikely(blk_bidi_rq(rq)))
2798 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2799 
2800 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2801 	BUG_ON(pending);
2802 }
2803 EXPORT_SYMBOL(__blk_end_request_all);
2804 
2805 /**
2806  * __blk_end_request_cur - Helper function to finish the current request chunk.
2807  * @rq: the request to finish the current chunk for
2808  * @error: %0 for success, < %0 for error
2809  *
2810  * Description:
2811  *     Complete the current consecutively mapped chunk from @rq.  Must
2812  *     be called with queue lock held.
2813  *
2814  * Return:
2815  *     %false - we are done with this request
2816  *     %true  - still buffers pending for this request
2817  */
2818 bool __blk_end_request_cur(struct request *rq, int error)
2819 {
2820 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2821 }
2822 EXPORT_SYMBOL(__blk_end_request_cur);
2823 
2824 /**
2825  * __blk_end_request_err - Finish a request till the next failure boundary.
2826  * @rq: the request to finish till the next failure boundary for
2827  * @error: must be negative errno
2828  *
2829  * Description:
2830  *     Complete @rq till the next failure boundary.  Must be called
2831  *     with queue lock held.
2832  *
2833  * Return:
2834  *     %false - we are done with this request
2835  *     %true  - still buffers pending for this request
2836  */
2837 bool __blk_end_request_err(struct request *rq, int error)
2838 {
2839 	WARN_ON(error >= 0);
2840 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2841 }
2842 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2843 
2844 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2845 		     struct bio *bio)
2846 {
2847 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2848 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2849 
2850 	if (bio_has_data(bio))
2851 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2852 
2853 	rq->__data_len = bio->bi_iter.bi_size;
2854 	rq->bio = rq->biotail = bio;
2855 
2856 	if (bio->bi_bdev)
2857 		rq->rq_disk = bio->bi_bdev->bd_disk;
2858 }
2859 
2860 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2861 /**
2862  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2863  * @rq: the request to be flushed
2864  *
2865  * Description:
2866  *     Flush all pages in @rq.
2867  */
2868 void rq_flush_dcache_pages(struct request *rq)
2869 {
2870 	struct req_iterator iter;
2871 	struct bio_vec bvec;
2872 
2873 	rq_for_each_segment(bvec, rq, iter)
2874 		flush_dcache_page(bvec.bv_page);
2875 }
2876 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2877 #endif
2878 
2879 /**
2880  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2881  * @q : the queue of the device being checked
2882  *
2883  * Description:
2884  *    Check if underlying low-level drivers of a device are busy.
2885  *    If the drivers want to export their busy state, they must set own
2886  *    exporting function using blk_queue_lld_busy() first.
2887  *
2888  *    Basically, this function is used only by request stacking drivers
2889  *    to stop dispatching requests to underlying devices when underlying
2890  *    devices are busy.  This behavior helps more I/O merging on the queue
2891  *    of the request stacking driver and prevents I/O throughput regression
2892  *    on burst I/O load.
2893  *
2894  * Return:
2895  *    0 - Not busy (The request stacking driver should dispatch request)
2896  *    1 - Busy (The request stacking driver should stop dispatching request)
2897  */
2898 int blk_lld_busy(struct request_queue *q)
2899 {
2900 	if (q->lld_busy_fn)
2901 		return q->lld_busy_fn(q);
2902 
2903 	return 0;
2904 }
2905 EXPORT_SYMBOL_GPL(blk_lld_busy);
2906 
2907 /**
2908  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2909  * @rq: the clone request to be cleaned up
2910  *
2911  * Description:
2912  *     Free all bios in @rq for a cloned request.
2913  */
2914 void blk_rq_unprep_clone(struct request *rq)
2915 {
2916 	struct bio *bio;
2917 
2918 	while ((bio = rq->bio) != NULL) {
2919 		rq->bio = bio->bi_next;
2920 
2921 		bio_put(bio);
2922 	}
2923 }
2924 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2925 
2926 /*
2927  * Copy attributes of the original request to the clone request.
2928  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2929  */
2930 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2931 {
2932 	dst->cpu = src->cpu;
2933 	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2934 	dst->cmd_type = src->cmd_type;
2935 	dst->__sector = blk_rq_pos(src);
2936 	dst->__data_len = blk_rq_bytes(src);
2937 	dst->nr_phys_segments = src->nr_phys_segments;
2938 	dst->ioprio = src->ioprio;
2939 	dst->extra_len = src->extra_len;
2940 }
2941 
2942 /**
2943  * blk_rq_prep_clone - Helper function to setup clone request
2944  * @rq: the request to be setup
2945  * @rq_src: original request to be cloned
2946  * @bs: bio_set that bios for clone are allocated from
2947  * @gfp_mask: memory allocation mask for bio
2948  * @bio_ctr: setup function to be called for each clone bio.
2949  *           Returns %0 for success, non %0 for failure.
2950  * @data: private data to be passed to @bio_ctr
2951  *
2952  * Description:
2953  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2954  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2955  *     are not copied, and copying such parts is the caller's responsibility.
2956  *     Also, pages which the original bios are pointing to are not copied
2957  *     and the cloned bios just point same pages.
2958  *     So cloned bios must be completed before original bios, which means
2959  *     the caller must complete @rq before @rq_src.
2960  */
2961 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2962 		      struct bio_set *bs, gfp_t gfp_mask,
2963 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2964 		      void *data)
2965 {
2966 	struct bio *bio, *bio_src;
2967 
2968 	if (!bs)
2969 		bs = fs_bio_set;
2970 
2971 	__rq_for_each_bio(bio_src, rq_src) {
2972 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
2973 		if (!bio)
2974 			goto free_and_out;
2975 
2976 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2977 			goto free_and_out;
2978 
2979 		if (rq->bio) {
2980 			rq->biotail->bi_next = bio;
2981 			rq->biotail = bio;
2982 		} else
2983 			rq->bio = rq->biotail = bio;
2984 	}
2985 
2986 	__blk_rq_prep_clone(rq, rq_src);
2987 
2988 	return 0;
2989 
2990 free_and_out:
2991 	if (bio)
2992 		bio_put(bio);
2993 	blk_rq_unprep_clone(rq);
2994 
2995 	return -ENOMEM;
2996 }
2997 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2998 
2999 int kblockd_schedule_work(struct work_struct *work)
3000 {
3001 	return queue_work(kblockd_workqueue, work);
3002 }
3003 EXPORT_SYMBOL(kblockd_schedule_work);
3004 
3005 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3006 				  unsigned long delay)
3007 {
3008 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3009 }
3010 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3011 
3012 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3013 				     unsigned long delay)
3014 {
3015 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3016 }
3017 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3018 
3019 /**
3020  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3021  * @plug:	The &struct blk_plug that needs to be initialized
3022  *
3023  * Description:
3024  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3025  *   pending I/O should the task end up blocking between blk_start_plug() and
3026  *   blk_finish_plug(). This is important from a performance perspective, but
3027  *   also ensures that we don't deadlock. For instance, if the task is blocking
3028  *   for a memory allocation, memory reclaim could end up wanting to free a
3029  *   page belonging to that request that is currently residing in our private
3030  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3031  *   this kind of deadlock.
3032  */
3033 void blk_start_plug(struct blk_plug *plug)
3034 {
3035 	struct task_struct *tsk = current;
3036 
3037 	INIT_LIST_HEAD(&plug->list);
3038 	INIT_LIST_HEAD(&plug->mq_list);
3039 	INIT_LIST_HEAD(&plug->cb_list);
3040 
3041 	/*
3042 	 * If this is a nested plug, don't actually assign it. It will be
3043 	 * flushed on its own.
3044 	 */
3045 	if (!tsk->plug) {
3046 		/*
3047 		 * Store ordering should not be needed here, since a potential
3048 		 * preempt will imply a full memory barrier
3049 		 */
3050 		tsk->plug = plug;
3051 	}
3052 }
3053 EXPORT_SYMBOL(blk_start_plug);
3054 
3055 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3056 {
3057 	struct request *rqa = container_of(a, struct request, queuelist);
3058 	struct request *rqb = container_of(b, struct request, queuelist);
3059 
3060 	return !(rqa->q < rqb->q ||
3061 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3062 }
3063 
3064 /*
3065  * If 'from_schedule' is true, then postpone the dispatch of requests
3066  * until a safe kblockd context. We due this to avoid accidental big
3067  * additional stack usage in driver dispatch, in places where the originally
3068  * plugger did not intend it.
3069  */
3070 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3071 			    bool from_schedule)
3072 	__releases(q->queue_lock)
3073 {
3074 	trace_block_unplug(q, depth, !from_schedule);
3075 
3076 	if (from_schedule)
3077 		blk_run_queue_async(q);
3078 	else
3079 		__blk_run_queue(q);
3080 	spin_unlock(q->queue_lock);
3081 }
3082 
3083 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3084 {
3085 	LIST_HEAD(callbacks);
3086 
3087 	while (!list_empty(&plug->cb_list)) {
3088 		list_splice_init(&plug->cb_list, &callbacks);
3089 
3090 		while (!list_empty(&callbacks)) {
3091 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3092 							  struct blk_plug_cb,
3093 							  list);
3094 			list_del(&cb->list);
3095 			cb->callback(cb, from_schedule);
3096 		}
3097 	}
3098 }
3099 
3100 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3101 				      int size)
3102 {
3103 	struct blk_plug *plug = current->plug;
3104 	struct blk_plug_cb *cb;
3105 
3106 	if (!plug)
3107 		return NULL;
3108 
3109 	list_for_each_entry(cb, &plug->cb_list, list)
3110 		if (cb->callback == unplug && cb->data == data)
3111 			return cb;
3112 
3113 	/* Not currently on the callback list */
3114 	BUG_ON(size < sizeof(*cb));
3115 	cb = kzalloc(size, GFP_ATOMIC);
3116 	if (cb) {
3117 		cb->data = data;
3118 		cb->callback = unplug;
3119 		list_add(&cb->list, &plug->cb_list);
3120 	}
3121 	return cb;
3122 }
3123 EXPORT_SYMBOL(blk_check_plugged);
3124 
3125 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3126 {
3127 	struct request_queue *q;
3128 	unsigned long flags;
3129 	struct request *rq;
3130 	LIST_HEAD(list);
3131 	unsigned int depth;
3132 
3133 	flush_plug_callbacks(plug, from_schedule);
3134 
3135 	if (!list_empty(&plug->mq_list))
3136 		blk_mq_flush_plug_list(plug, from_schedule);
3137 
3138 	if (list_empty(&plug->list))
3139 		return;
3140 
3141 	list_splice_init(&plug->list, &list);
3142 
3143 	list_sort(NULL, &list, plug_rq_cmp);
3144 
3145 	q = NULL;
3146 	depth = 0;
3147 
3148 	/*
3149 	 * Save and disable interrupts here, to avoid doing it for every
3150 	 * queue lock we have to take.
3151 	 */
3152 	local_irq_save(flags);
3153 	while (!list_empty(&list)) {
3154 		rq = list_entry_rq(list.next);
3155 		list_del_init(&rq->queuelist);
3156 		BUG_ON(!rq->q);
3157 		if (rq->q != q) {
3158 			/*
3159 			 * This drops the queue lock
3160 			 */
3161 			if (q)
3162 				queue_unplugged(q, depth, from_schedule);
3163 			q = rq->q;
3164 			depth = 0;
3165 			spin_lock(q->queue_lock);
3166 		}
3167 
3168 		/*
3169 		 * Short-circuit if @q is dead
3170 		 */
3171 		if (unlikely(blk_queue_dying(q))) {
3172 			__blk_end_request_all(rq, -ENODEV);
3173 			continue;
3174 		}
3175 
3176 		/*
3177 		 * rq is already accounted, so use raw insert
3178 		 */
3179 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3180 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3181 		else
3182 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3183 
3184 		depth++;
3185 	}
3186 
3187 	/*
3188 	 * This drops the queue lock
3189 	 */
3190 	if (q)
3191 		queue_unplugged(q, depth, from_schedule);
3192 
3193 	local_irq_restore(flags);
3194 }
3195 
3196 void blk_finish_plug(struct blk_plug *plug)
3197 {
3198 	blk_flush_plug_list(plug, false);
3199 
3200 	if (plug == current->plug)
3201 		current->plug = NULL;
3202 }
3203 EXPORT_SYMBOL(blk_finish_plug);
3204 
3205 #ifdef CONFIG_PM
3206 /**
3207  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3208  * @q: the queue of the device
3209  * @dev: the device the queue belongs to
3210  *
3211  * Description:
3212  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3213  *    @dev. Drivers that want to take advantage of request-based runtime PM
3214  *    should call this function after @dev has been initialized, and its
3215  *    request queue @q has been allocated, and runtime PM for it can not happen
3216  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3217  *    cases, driver should call this function before any I/O has taken place.
3218  *
3219  *    This function takes care of setting up using auto suspend for the device,
3220  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3221  *    until an updated value is either set by user or by driver. Drivers do
3222  *    not need to touch other autosuspend settings.
3223  *
3224  *    The block layer runtime PM is request based, so only works for drivers
3225  *    that use request as their IO unit instead of those directly use bio's.
3226  */
3227 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3228 {
3229 	q->dev = dev;
3230 	q->rpm_status = RPM_ACTIVE;
3231 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3232 	pm_runtime_use_autosuspend(q->dev);
3233 }
3234 EXPORT_SYMBOL(blk_pm_runtime_init);
3235 
3236 /**
3237  * blk_pre_runtime_suspend - Pre runtime suspend check
3238  * @q: the queue of the device
3239  *
3240  * Description:
3241  *    This function will check if runtime suspend is allowed for the device
3242  *    by examining if there are any requests pending in the queue. If there
3243  *    are requests pending, the device can not be runtime suspended; otherwise,
3244  *    the queue's status will be updated to SUSPENDING and the driver can
3245  *    proceed to suspend the device.
3246  *
3247  *    For the not allowed case, we mark last busy for the device so that
3248  *    runtime PM core will try to autosuspend it some time later.
3249  *
3250  *    This function should be called near the start of the device's
3251  *    runtime_suspend callback.
3252  *
3253  * Return:
3254  *    0		- OK to runtime suspend the device
3255  *    -EBUSY	- Device should not be runtime suspended
3256  */
3257 int blk_pre_runtime_suspend(struct request_queue *q)
3258 {
3259 	int ret = 0;
3260 
3261 	spin_lock_irq(q->queue_lock);
3262 	if (q->nr_pending) {
3263 		ret = -EBUSY;
3264 		pm_runtime_mark_last_busy(q->dev);
3265 	} else {
3266 		q->rpm_status = RPM_SUSPENDING;
3267 	}
3268 	spin_unlock_irq(q->queue_lock);
3269 	return ret;
3270 }
3271 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3272 
3273 /**
3274  * blk_post_runtime_suspend - Post runtime suspend processing
3275  * @q: the queue of the device
3276  * @err: return value of the device's runtime_suspend function
3277  *
3278  * Description:
3279  *    Update the queue's runtime status according to the return value of the
3280  *    device's runtime suspend function and mark last busy for the device so
3281  *    that PM core will try to auto suspend the device at a later time.
3282  *
3283  *    This function should be called near the end of the device's
3284  *    runtime_suspend callback.
3285  */
3286 void blk_post_runtime_suspend(struct request_queue *q, int err)
3287 {
3288 	spin_lock_irq(q->queue_lock);
3289 	if (!err) {
3290 		q->rpm_status = RPM_SUSPENDED;
3291 	} else {
3292 		q->rpm_status = RPM_ACTIVE;
3293 		pm_runtime_mark_last_busy(q->dev);
3294 	}
3295 	spin_unlock_irq(q->queue_lock);
3296 }
3297 EXPORT_SYMBOL(blk_post_runtime_suspend);
3298 
3299 /**
3300  * blk_pre_runtime_resume - Pre runtime resume processing
3301  * @q: the queue of the device
3302  *
3303  * Description:
3304  *    Update the queue's runtime status to RESUMING in preparation for the
3305  *    runtime resume of the device.
3306  *
3307  *    This function should be called near the start of the device's
3308  *    runtime_resume callback.
3309  */
3310 void blk_pre_runtime_resume(struct request_queue *q)
3311 {
3312 	spin_lock_irq(q->queue_lock);
3313 	q->rpm_status = RPM_RESUMING;
3314 	spin_unlock_irq(q->queue_lock);
3315 }
3316 EXPORT_SYMBOL(blk_pre_runtime_resume);
3317 
3318 /**
3319  * blk_post_runtime_resume - Post runtime resume processing
3320  * @q: the queue of the device
3321  * @err: return value of the device's runtime_resume function
3322  *
3323  * Description:
3324  *    Update the queue's runtime status according to the return value of the
3325  *    device's runtime_resume function. If it is successfully resumed, process
3326  *    the requests that are queued into the device's queue when it is resuming
3327  *    and then mark last busy and initiate autosuspend for it.
3328  *
3329  *    This function should be called near the end of the device's
3330  *    runtime_resume callback.
3331  */
3332 void blk_post_runtime_resume(struct request_queue *q, int err)
3333 {
3334 	spin_lock_irq(q->queue_lock);
3335 	if (!err) {
3336 		q->rpm_status = RPM_ACTIVE;
3337 		__blk_run_queue(q);
3338 		pm_runtime_mark_last_busy(q->dev);
3339 		pm_request_autosuspend(q->dev);
3340 	} else {
3341 		q->rpm_status = RPM_SUSPENDED;
3342 	}
3343 	spin_unlock_irq(q->queue_lock);
3344 }
3345 EXPORT_SYMBOL(blk_post_runtime_resume);
3346 #endif
3347 
3348 int __init blk_dev_init(void)
3349 {
3350 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3351 			sizeof(((struct request *)0)->cmd_flags));
3352 
3353 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3354 	kblockd_workqueue = alloc_workqueue("kblockd",
3355 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3356 	if (!kblockd_workqueue)
3357 		panic("Failed to create kblockd\n");
3358 
3359 	request_cachep = kmem_cache_create("blkdev_requests",
3360 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3361 
3362 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3363 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3364 
3365 	return 0;
3366 }
3367