xref: /linux/block/blk-core.c (revision 320ae51feed5c2f13664aa05a76bec198967e04d)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
46 
47 DEFINE_IDA(blk_queue_ida);
48 
49 /*
50  * For the allocated request tables
51  */
52 struct kmem_cache *request_cachep = NULL;
53 
54 /*
55  * For queue allocation
56  */
57 struct kmem_cache *blk_requestq_cachep;
58 
59 /*
60  * Controlling structure to kblockd
61  */
62 static struct workqueue_struct *kblockd_workqueue;
63 
64 void blk_queue_congestion_threshold(struct request_queue *q)
65 {
66 	int nr;
67 
68 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
69 	if (nr > q->nr_requests)
70 		nr = q->nr_requests;
71 	q->nr_congestion_on = nr;
72 
73 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
74 	if (nr < 1)
75 		nr = 1;
76 	q->nr_congestion_off = nr;
77 }
78 
79 /**
80  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
81  * @bdev:	device
82  *
83  * Locates the passed device's request queue and returns the address of its
84  * backing_dev_info
85  *
86  * Will return NULL if the request queue cannot be located.
87  */
88 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
89 {
90 	struct backing_dev_info *ret = NULL;
91 	struct request_queue *q = bdev_get_queue(bdev);
92 
93 	if (q)
94 		ret = &q->backing_dev_info;
95 	return ret;
96 }
97 EXPORT_SYMBOL(blk_get_backing_dev_info);
98 
99 void blk_rq_init(struct request_queue *q, struct request *rq)
100 {
101 	memset(rq, 0, sizeof(*rq));
102 
103 	INIT_LIST_HEAD(&rq->queuelist);
104 	INIT_LIST_HEAD(&rq->timeout_list);
105 	rq->cpu = -1;
106 	rq->q = q;
107 	rq->__sector = (sector_t) -1;
108 	INIT_HLIST_NODE(&rq->hash);
109 	RB_CLEAR_NODE(&rq->rb_node);
110 	rq->cmd = rq->__cmd;
111 	rq->cmd_len = BLK_MAX_CDB;
112 	rq->tag = -1;
113 	rq->start_time = jiffies;
114 	set_start_time_ns(rq);
115 	rq->part = NULL;
116 }
117 EXPORT_SYMBOL(blk_rq_init);
118 
119 static void req_bio_endio(struct request *rq, struct bio *bio,
120 			  unsigned int nbytes, int error)
121 {
122 	if (error)
123 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
124 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
125 		error = -EIO;
126 
127 	if (unlikely(rq->cmd_flags & REQ_QUIET))
128 		set_bit(BIO_QUIET, &bio->bi_flags);
129 
130 	bio_advance(bio, nbytes);
131 
132 	/* don't actually finish bio if it's part of flush sequence */
133 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
134 		bio_endio(bio, error);
135 }
136 
137 void blk_dump_rq_flags(struct request *rq, char *msg)
138 {
139 	int bit;
140 
141 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
142 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
143 		(unsigned long long) rq->cmd_flags);
144 
145 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
146 	       (unsigned long long)blk_rq_pos(rq),
147 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
148 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
149 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
150 
151 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
152 		printk(KERN_INFO "  cdb: ");
153 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
154 			printk("%02x ", rq->cmd[bit]);
155 		printk("\n");
156 	}
157 }
158 EXPORT_SYMBOL(blk_dump_rq_flags);
159 
160 static void blk_delay_work(struct work_struct *work)
161 {
162 	struct request_queue *q;
163 
164 	q = container_of(work, struct request_queue, delay_work.work);
165 	spin_lock_irq(q->queue_lock);
166 	__blk_run_queue(q);
167 	spin_unlock_irq(q->queue_lock);
168 }
169 
170 /**
171  * blk_delay_queue - restart queueing after defined interval
172  * @q:		The &struct request_queue in question
173  * @msecs:	Delay in msecs
174  *
175  * Description:
176  *   Sometimes queueing needs to be postponed for a little while, to allow
177  *   resources to come back. This function will make sure that queueing is
178  *   restarted around the specified time. Queue lock must be held.
179  */
180 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
181 {
182 	if (likely(!blk_queue_dead(q)))
183 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
184 				   msecs_to_jiffies(msecs));
185 }
186 EXPORT_SYMBOL(blk_delay_queue);
187 
188 /**
189  * blk_start_queue - restart a previously stopped queue
190  * @q:    The &struct request_queue in question
191  *
192  * Description:
193  *   blk_start_queue() will clear the stop flag on the queue, and call
194  *   the request_fn for the queue if it was in a stopped state when
195  *   entered. Also see blk_stop_queue(). Queue lock must be held.
196  **/
197 void blk_start_queue(struct request_queue *q)
198 {
199 	WARN_ON(!irqs_disabled());
200 
201 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 	__blk_run_queue(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue);
205 
206 /**
207  * blk_stop_queue - stop a queue
208  * @q:    The &struct request_queue in question
209  *
210  * Description:
211  *   The Linux block layer assumes that a block driver will consume all
212  *   entries on the request queue when the request_fn strategy is called.
213  *   Often this will not happen, because of hardware limitations (queue
214  *   depth settings). If a device driver gets a 'queue full' response,
215  *   or if it simply chooses not to queue more I/O at one point, it can
216  *   call this function to prevent the request_fn from being called until
217  *   the driver has signalled it's ready to go again. This happens by calling
218  *   blk_start_queue() to restart queue operations. Queue lock must be held.
219  **/
220 void blk_stop_queue(struct request_queue *q)
221 {
222 	cancel_delayed_work(&q->delay_work);
223 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
224 }
225 EXPORT_SYMBOL(blk_stop_queue);
226 
227 /**
228  * blk_sync_queue - cancel any pending callbacks on a queue
229  * @q: the queue
230  *
231  * Description:
232  *     The block layer may perform asynchronous callback activity
233  *     on a queue, such as calling the unplug function after a timeout.
234  *     A block device may call blk_sync_queue to ensure that any
235  *     such activity is cancelled, thus allowing it to release resources
236  *     that the callbacks might use. The caller must already have made sure
237  *     that its ->make_request_fn will not re-add plugging prior to calling
238  *     this function.
239  *
240  *     This function does not cancel any asynchronous activity arising
241  *     out of elevator or throttling code. That would require elevaotor_exit()
242  *     and blkcg_exit_queue() to be called with queue lock initialized.
243  *
244  */
245 void blk_sync_queue(struct request_queue *q)
246 {
247 	del_timer_sync(&q->timeout);
248 	cancel_delayed_work_sync(&q->delay_work);
249 }
250 EXPORT_SYMBOL(blk_sync_queue);
251 
252 /**
253  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
254  * @q:	The queue to run
255  *
256  * Description:
257  *    Invoke request handling on a queue if there are any pending requests.
258  *    May be used to restart request handling after a request has completed.
259  *    This variant runs the queue whether or not the queue has been
260  *    stopped. Must be called with the queue lock held and interrupts
261  *    disabled. See also @blk_run_queue.
262  */
263 inline void __blk_run_queue_uncond(struct request_queue *q)
264 {
265 	if (unlikely(blk_queue_dead(q)))
266 		return;
267 
268 	/*
269 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
270 	 * the queue lock internally. As a result multiple threads may be
271 	 * running such a request function concurrently. Keep track of the
272 	 * number of active request_fn invocations such that blk_drain_queue()
273 	 * can wait until all these request_fn calls have finished.
274 	 */
275 	q->request_fn_active++;
276 	q->request_fn(q);
277 	q->request_fn_active--;
278 }
279 
280 /**
281  * __blk_run_queue - run a single device queue
282  * @q:	The queue to run
283  *
284  * Description:
285  *    See @blk_run_queue. This variant must be called with the queue lock
286  *    held and interrupts disabled.
287  */
288 void __blk_run_queue(struct request_queue *q)
289 {
290 	if (unlikely(blk_queue_stopped(q)))
291 		return;
292 
293 	__blk_run_queue_uncond(q);
294 }
295 EXPORT_SYMBOL(__blk_run_queue);
296 
297 /**
298  * blk_run_queue_async - run a single device queue in workqueue context
299  * @q:	The queue to run
300  *
301  * Description:
302  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
303  *    of us. The caller must hold the queue lock.
304  */
305 void blk_run_queue_async(struct request_queue *q)
306 {
307 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
308 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
309 }
310 EXPORT_SYMBOL(blk_run_queue_async);
311 
312 /**
313  * blk_run_queue - run a single device queue
314  * @q: The queue to run
315  *
316  * Description:
317  *    Invoke request handling on this queue, if it has pending work to do.
318  *    May be used to restart queueing when a request has completed.
319  */
320 void blk_run_queue(struct request_queue *q)
321 {
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(q->queue_lock, flags);
325 	__blk_run_queue(q);
326 	spin_unlock_irqrestore(q->queue_lock, flags);
327 }
328 EXPORT_SYMBOL(blk_run_queue);
329 
330 void blk_put_queue(struct request_queue *q)
331 {
332 	kobject_put(&q->kobj);
333 }
334 EXPORT_SYMBOL(blk_put_queue);
335 
336 /**
337  * __blk_drain_queue - drain requests from request_queue
338  * @q: queue to drain
339  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
340  *
341  * Drain requests from @q.  If @drain_all is set, all requests are drained.
342  * If not, only ELVPRIV requests are drained.  The caller is responsible
343  * for ensuring that no new requests which need to be drained are queued.
344  */
345 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
346 	__releases(q->queue_lock)
347 	__acquires(q->queue_lock)
348 {
349 	int i;
350 
351 	lockdep_assert_held(q->queue_lock);
352 
353 	while (true) {
354 		bool drain = false;
355 
356 		/*
357 		 * The caller might be trying to drain @q before its
358 		 * elevator is initialized.
359 		 */
360 		if (q->elevator)
361 			elv_drain_elevator(q);
362 
363 		blkcg_drain_queue(q);
364 
365 		/*
366 		 * This function might be called on a queue which failed
367 		 * driver init after queue creation or is not yet fully
368 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
369 		 * in such cases.  Kick queue iff dispatch queue has
370 		 * something on it and @q has request_fn set.
371 		 */
372 		if (!list_empty(&q->queue_head) && q->request_fn)
373 			__blk_run_queue(q);
374 
375 		drain |= q->nr_rqs_elvpriv;
376 		drain |= q->request_fn_active;
377 
378 		/*
379 		 * Unfortunately, requests are queued at and tracked from
380 		 * multiple places and there's no single counter which can
381 		 * be drained.  Check all the queues and counters.
382 		 */
383 		if (drain_all) {
384 			drain |= !list_empty(&q->queue_head);
385 			for (i = 0; i < 2; i++) {
386 				drain |= q->nr_rqs[i];
387 				drain |= q->in_flight[i];
388 				drain |= !list_empty(&q->flush_queue[i]);
389 			}
390 		}
391 
392 		if (!drain)
393 			break;
394 
395 		spin_unlock_irq(q->queue_lock);
396 
397 		msleep(10);
398 
399 		spin_lock_irq(q->queue_lock);
400 	}
401 
402 	/*
403 	 * With queue marked dead, any woken up waiter will fail the
404 	 * allocation path, so the wakeup chaining is lost and we're
405 	 * left with hung waiters. We need to wake up those waiters.
406 	 */
407 	if (q->request_fn) {
408 		struct request_list *rl;
409 
410 		blk_queue_for_each_rl(rl, q)
411 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
412 				wake_up_all(&rl->wait[i]);
413 	}
414 }
415 
416 /**
417  * blk_queue_bypass_start - enter queue bypass mode
418  * @q: queue of interest
419  *
420  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
421  * function makes @q enter bypass mode and drains all requests which were
422  * throttled or issued before.  On return, it's guaranteed that no request
423  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
424  * inside queue or RCU read lock.
425  */
426 void blk_queue_bypass_start(struct request_queue *q)
427 {
428 	bool drain;
429 
430 	spin_lock_irq(q->queue_lock);
431 	drain = !q->bypass_depth++;
432 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
433 	spin_unlock_irq(q->queue_lock);
434 
435 	if (drain) {
436 		spin_lock_irq(q->queue_lock);
437 		__blk_drain_queue(q, false);
438 		spin_unlock_irq(q->queue_lock);
439 
440 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
441 		synchronize_rcu();
442 	}
443 }
444 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
445 
446 /**
447  * blk_queue_bypass_end - leave queue bypass mode
448  * @q: queue of interest
449  *
450  * Leave bypass mode and restore the normal queueing behavior.
451  */
452 void blk_queue_bypass_end(struct request_queue *q)
453 {
454 	spin_lock_irq(q->queue_lock);
455 	if (!--q->bypass_depth)
456 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
457 	WARN_ON_ONCE(q->bypass_depth < 0);
458 	spin_unlock_irq(q->queue_lock);
459 }
460 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
461 
462 /**
463  * blk_cleanup_queue - shutdown a request queue
464  * @q: request queue to shutdown
465  *
466  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
467  * put it.  All future requests will be failed immediately with -ENODEV.
468  */
469 void blk_cleanup_queue(struct request_queue *q)
470 {
471 	spinlock_t *lock = q->queue_lock;
472 
473 	/* mark @q DYING, no new request or merges will be allowed afterwards */
474 	mutex_lock(&q->sysfs_lock);
475 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
476 	spin_lock_irq(lock);
477 
478 	/*
479 	 * A dying queue is permanently in bypass mode till released.  Note
480 	 * that, unlike blk_queue_bypass_start(), we aren't performing
481 	 * synchronize_rcu() after entering bypass mode to avoid the delay
482 	 * as some drivers create and destroy a lot of queues while
483 	 * probing.  This is still safe because blk_release_queue() will be
484 	 * called only after the queue refcnt drops to zero and nothing,
485 	 * RCU or not, would be traversing the queue by then.
486 	 */
487 	q->bypass_depth++;
488 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
489 
490 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
491 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
492 	queue_flag_set(QUEUE_FLAG_DYING, q);
493 	spin_unlock_irq(lock);
494 	mutex_unlock(&q->sysfs_lock);
495 
496 	/*
497 	 * Drain all requests queued before DYING marking. Set DEAD flag to
498 	 * prevent that q->request_fn() gets invoked after draining finished.
499 	 */
500 	spin_lock_irq(lock);
501 	__blk_drain_queue(q, true);
502 	queue_flag_set(QUEUE_FLAG_DEAD, q);
503 	spin_unlock_irq(lock);
504 
505 	/* @q won't process any more request, flush async actions */
506 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
507 	blk_sync_queue(q);
508 
509 	spin_lock_irq(lock);
510 	if (q->queue_lock != &q->__queue_lock)
511 		q->queue_lock = &q->__queue_lock;
512 	spin_unlock_irq(lock);
513 
514 	/* @q is and will stay empty, shutdown and put */
515 	blk_put_queue(q);
516 }
517 EXPORT_SYMBOL(blk_cleanup_queue);
518 
519 int blk_init_rl(struct request_list *rl, struct request_queue *q,
520 		gfp_t gfp_mask)
521 {
522 	if (unlikely(rl->rq_pool))
523 		return 0;
524 
525 	rl->q = q;
526 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
527 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
528 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
529 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
530 
531 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
532 					  mempool_free_slab, request_cachep,
533 					  gfp_mask, q->node);
534 	if (!rl->rq_pool)
535 		return -ENOMEM;
536 
537 	return 0;
538 }
539 
540 void blk_exit_rl(struct request_list *rl)
541 {
542 	if (rl->rq_pool)
543 		mempool_destroy(rl->rq_pool);
544 }
545 
546 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
547 {
548 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
549 }
550 EXPORT_SYMBOL(blk_alloc_queue);
551 
552 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
553 {
554 	struct request_queue *q;
555 	int err;
556 
557 	q = kmem_cache_alloc_node(blk_requestq_cachep,
558 				gfp_mask | __GFP_ZERO, node_id);
559 	if (!q)
560 		return NULL;
561 
562 	if (percpu_counter_init(&q->mq_usage_counter, 0))
563 		goto fail_q;
564 
565 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
566 	if (q->id < 0)
567 		goto fail_c;
568 
569 	q->backing_dev_info.ra_pages =
570 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
571 	q->backing_dev_info.state = 0;
572 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
573 	q->backing_dev_info.name = "block";
574 	q->node = node_id;
575 
576 	err = bdi_init(&q->backing_dev_info);
577 	if (err)
578 		goto fail_id;
579 
580 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
581 		    laptop_mode_timer_fn, (unsigned long) q);
582 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
583 	INIT_LIST_HEAD(&q->queue_head);
584 	INIT_LIST_HEAD(&q->timeout_list);
585 	INIT_LIST_HEAD(&q->icq_list);
586 #ifdef CONFIG_BLK_CGROUP
587 	INIT_LIST_HEAD(&q->blkg_list);
588 #endif
589 	INIT_LIST_HEAD(&q->flush_queue[0]);
590 	INIT_LIST_HEAD(&q->flush_queue[1]);
591 	INIT_LIST_HEAD(&q->flush_data_in_flight);
592 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
593 
594 	kobject_init(&q->kobj, &blk_queue_ktype);
595 
596 	mutex_init(&q->sysfs_lock);
597 	spin_lock_init(&q->__queue_lock);
598 
599 	/*
600 	 * By default initialize queue_lock to internal lock and driver can
601 	 * override it later if need be.
602 	 */
603 	q->queue_lock = &q->__queue_lock;
604 
605 	/*
606 	 * A queue starts its life with bypass turned on to avoid
607 	 * unnecessary bypass on/off overhead and nasty surprises during
608 	 * init.  The initial bypass will be finished when the queue is
609 	 * registered by blk_register_queue().
610 	 */
611 	q->bypass_depth = 1;
612 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
613 
614 	init_waitqueue_head(&q->mq_freeze_wq);
615 
616 	if (blkcg_init_queue(q))
617 		goto fail_id;
618 
619 	return q;
620 
621 fail_id:
622 	ida_simple_remove(&blk_queue_ida, q->id);
623 fail_c:
624 	percpu_counter_destroy(&q->mq_usage_counter);
625 fail_q:
626 	kmem_cache_free(blk_requestq_cachep, q);
627 	return NULL;
628 }
629 EXPORT_SYMBOL(blk_alloc_queue_node);
630 
631 /**
632  * blk_init_queue  - prepare a request queue for use with a block device
633  * @rfn:  The function to be called to process requests that have been
634  *        placed on the queue.
635  * @lock: Request queue spin lock
636  *
637  * Description:
638  *    If a block device wishes to use the standard request handling procedures,
639  *    which sorts requests and coalesces adjacent requests, then it must
640  *    call blk_init_queue().  The function @rfn will be called when there
641  *    are requests on the queue that need to be processed.  If the device
642  *    supports plugging, then @rfn may not be called immediately when requests
643  *    are available on the queue, but may be called at some time later instead.
644  *    Plugged queues are generally unplugged when a buffer belonging to one
645  *    of the requests on the queue is needed, or due to memory pressure.
646  *
647  *    @rfn is not required, or even expected, to remove all requests off the
648  *    queue, but only as many as it can handle at a time.  If it does leave
649  *    requests on the queue, it is responsible for arranging that the requests
650  *    get dealt with eventually.
651  *
652  *    The queue spin lock must be held while manipulating the requests on the
653  *    request queue; this lock will be taken also from interrupt context, so irq
654  *    disabling is needed for it.
655  *
656  *    Function returns a pointer to the initialized request queue, or %NULL if
657  *    it didn't succeed.
658  *
659  * Note:
660  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
661  *    when the block device is deactivated (such as at module unload).
662  **/
663 
664 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
665 {
666 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
667 }
668 EXPORT_SYMBOL(blk_init_queue);
669 
670 struct request_queue *
671 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
672 {
673 	struct request_queue *uninit_q, *q;
674 
675 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
676 	if (!uninit_q)
677 		return NULL;
678 
679 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
680 	if (!q)
681 		blk_cleanup_queue(uninit_q);
682 
683 	return q;
684 }
685 EXPORT_SYMBOL(blk_init_queue_node);
686 
687 struct request_queue *
688 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
689 			 spinlock_t *lock)
690 {
691 	if (!q)
692 		return NULL;
693 
694 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
695 		return NULL;
696 
697 	q->request_fn		= rfn;
698 	q->prep_rq_fn		= NULL;
699 	q->unprep_rq_fn		= NULL;
700 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
701 
702 	/* Override internal queue lock with supplied lock pointer */
703 	if (lock)
704 		q->queue_lock		= lock;
705 
706 	/*
707 	 * This also sets hw/phys segments, boundary and size
708 	 */
709 	blk_queue_make_request(q, blk_queue_bio);
710 
711 	q->sg_reserved_size = INT_MAX;
712 
713 	/* init elevator */
714 	if (elevator_init(q, NULL))
715 		return NULL;
716 	return q;
717 }
718 EXPORT_SYMBOL(blk_init_allocated_queue);
719 
720 bool blk_get_queue(struct request_queue *q)
721 {
722 	if (likely(!blk_queue_dying(q))) {
723 		__blk_get_queue(q);
724 		return true;
725 	}
726 
727 	return false;
728 }
729 EXPORT_SYMBOL(blk_get_queue);
730 
731 static inline void blk_free_request(struct request_list *rl, struct request *rq)
732 {
733 	if (rq->cmd_flags & REQ_ELVPRIV) {
734 		elv_put_request(rl->q, rq);
735 		if (rq->elv.icq)
736 			put_io_context(rq->elv.icq->ioc);
737 	}
738 
739 	mempool_free(rq, rl->rq_pool);
740 }
741 
742 /*
743  * ioc_batching returns true if the ioc is a valid batching request and
744  * should be given priority access to a request.
745  */
746 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
747 {
748 	if (!ioc)
749 		return 0;
750 
751 	/*
752 	 * Make sure the process is able to allocate at least 1 request
753 	 * even if the batch times out, otherwise we could theoretically
754 	 * lose wakeups.
755 	 */
756 	return ioc->nr_batch_requests == q->nr_batching ||
757 		(ioc->nr_batch_requests > 0
758 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
759 }
760 
761 /*
762  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
763  * will cause the process to be a "batcher" on all queues in the system. This
764  * is the behaviour we want though - once it gets a wakeup it should be given
765  * a nice run.
766  */
767 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
768 {
769 	if (!ioc || ioc_batching(q, ioc))
770 		return;
771 
772 	ioc->nr_batch_requests = q->nr_batching;
773 	ioc->last_waited = jiffies;
774 }
775 
776 static void __freed_request(struct request_list *rl, int sync)
777 {
778 	struct request_queue *q = rl->q;
779 
780 	/*
781 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
782 	 * blkcg anyway, just use root blkcg state.
783 	 */
784 	if (rl == &q->root_rl &&
785 	    rl->count[sync] < queue_congestion_off_threshold(q))
786 		blk_clear_queue_congested(q, sync);
787 
788 	if (rl->count[sync] + 1 <= q->nr_requests) {
789 		if (waitqueue_active(&rl->wait[sync]))
790 			wake_up(&rl->wait[sync]);
791 
792 		blk_clear_rl_full(rl, sync);
793 	}
794 }
795 
796 /*
797  * A request has just been released.  Account for it, update the full and
798  * congestion status, wake up any waiters.   Called under q->queue_lock.
799  */
800 static void freed_request(struct request_list *rl, unsigned int flags)
801 {
802 	struct request_queue *q = rl->q;
803 	int sync = rw_is_sync(flags);
804 
805 	q->nr_rqs[sync]--;
806 	rl->count[sync]--;
807 	if (flags & REQ_ELVPRIV)
808 		q->nr_rqs_elvpriv--;
809 
810 	__freed_request(rl, sync);
811 
812 	if (unlikely(rl->starved[sync ^ 1]))
813 		__freed_request(rl, sync ^ 1);
814 }
815 
816 /*
817  * Determine if elevator data should be initialized when allocating the
818  * request associated with @bio.
819  */
820 static bool blk_rq_should_init_elevator(struct bio *bio)
821 {
822 	if (!bio)
823 		return true;
824 
825 	/*
826 	 * Flush requests do not use the elevator so skip initialization.
827 	 * This allows a request to share the flush and elevator data.
828 	 */
829 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
830 		return false;
831 
832 	return true;
833 }
834 
835 /**
836  * rq_ioc - determine io_context for request allocation
837  * @bio: request being allocated is for this bio (can be %NULL)
838  *
839  * Determine io_context to use for request allocation for @bio.  May return
840  * %NULL if %current->io_context doesn't exist.
841  */
842 static struct io_context *rq_ioc(struct bio *bio)
843 {
844 #ifdef CONFIG_BLK_CGROUP
845 	if (bio && bio->bi_ioc)
846 		return bio->bi_ioc;
847 #endif
848 	return current->io_context;
849 }
850 
851 /**
852  * __get_request - get a free request
853  * @rl: request list to allocate from
854  * @rw_flags: RW and SYNC flags
855  * @bio: bio to allocate request for (can be %NULL)
856  * @gfp_mask: allocation mask
857  *
858  * Get a free request from @q.  This function may fail under memory
859  * pressure or if @q is dead.
860  *
861  * Must be callled with @q->queue_lock held and,
862  * Returns %NULL on failure, with @q->queue_lock held.
863  * Returns !%NULL on success, with @q->queue_lock *not held*.
864  */
865 static struct request *__get_request(struct request_list *rl, int rw_flags,
866 				     struct bio *bio, gfp_t gfp_mask)
867 {
868 	struct request_queue *q = rl->q;
869 	struct request *rq;
870 	struct elevator_type *et = q->elevator->type;
871 	struct io_context *ioc = rq_ioc(bio);
872 	struct io_cq *icq = NULL;
873 	const bool is_sync = rw_is_sync(rw_flags) != 0;
874 	int may_queue;
875 
876 	if (unlikely(blk_queue_dying(q)))
877 		return NULL;
878 
879 	may_queue = elv_may_queue(q, rw_flags);
880 	if (may_queue == ELV_MQUEUE_NO)
881 		goto rq_starved;
882 
883 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
884 		if (rl->count[is_sync]+1 >= q->nr_requests) {
885 			/*
886 			 * The queue will fill after this allocation, so set
887 			 * it as full, and mark this process as "batching".
888 			 * This process will be allowed to complete a batch of
889 			 * requests, others will be blocked.
890 			 */
891 			if (!blk_rl_full(rl, is_sync)) {
892 				ioc_set_batching(q, ioc);
893 				blk_set_rl_full(rl, is_sync);
894 			} else {
895 				if (may_queue != ELV_MQUEUE_MUST
896 						&& !ioc_batching(q, ioc)) {
897 					/*
898 					 * The queue is full and the allocating
899 					 * process is not a "batcher", and not
900 					 * exempted by the IO scheduler
901 					 */
902 					return NULL;
903 				}
904 			}
905 		}
906 		/*
907 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
908 		 * root blkcg anyway, just use root blkcg state.
909 		 */
910 		if (rl == &q->root_rl)
911 			blk_set_queue_congested(q, is_sync);
912 	}
913 
914 	/*
915 	 * Only allow batching queuers to allocate up to 50% over the defined
916 	 * limit of requests, otherwise we could have thousands of requests
917 	 * allocated with any setting of ->nr_requests
918 	 */
919 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
920 		return NULL;
921 
922 	q->nr_rqs[is_sync]++;
923 	rl->count[is_sync]++;
924 	rl->starved[is_sync] = 0;
925 
926 	/*
927 	 * Decide whether the new request will be managed by elevator.  If
928 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
929 	 * prevent the current elevator from being destroyed until the new
930 	 * request is freed.  This guarantees icq's won't be destroyed and
931 	 * makes creating new ones safe.
932 	 *
933 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
934 	 * it will be created after releasing queue_lock.
935 	 */
936 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
937 		rw_flags |= REQ_ELVPRIV;
938 		q->nr_rqs_elvpriv++;
939 		if (et->icq_cache && ioc)
940 			icq = ioc_lookup_icq(ioc, q);
941 	}
942 
943 	if (blk_queue_io_stat(q))
944 		rw_flags |= REQ_IO_STAT;
945 	spin_unlock_irq(q->queue_lock);
946 
947 	/* allocate and init request */
948 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
949 	if (!rq)
950 		goto fail_alloc;
951 
952 	blk_rq_init(q, rq);
953 	blk_rq_set_rl(rq, rl);
954 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
955 
956 	/* init elvpriv */
957 	if (rw_flags & REQ_ELVPRIV) {
958 		if (unlikely(et->icq_cache && !icq)) {
959 			if (ioc)
960 				icq = ioc_create_icq(ioc, q, gfp_mask);
961 			if (!icq)
962 				goto fail_elvpriv;
963 		}
964 
965 		rq->elv.icq = icq;
966 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
967 			goto fail_elvpriv;
968 
969 		/* @rq->elv.icq holds io_context until @rq is freed */
970 		if (icq)
971 			get_io_context(icq->ioc);
972 	}
973 out:
974 	/*
975 	 * ioc may be NULL here, and ioc_batching will be false. That's
976 	 * OK, if the queue is under the request limit then requests need
977 	 * not count toward the nr_batch_requests limit. There will always
978 	 * be some limit enforced by BLK_BATCH_TIME.
979 	 */
980 	if (ioc_batching(q, ioc))
981 		ioc->nr_batch_requests--;
982 
983 	trace_block_getrq(q, bio, rw_flags & 1);
984 	return rq;
985 
986 fail_elvpriv:
987 	/*
988 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
989 	 * and may fail indefinitely under memory pressure and thus
990 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
991 	 * disturb iosched and blkcg but weird is bettern than dead.
992 	 */
993 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
994 			   dev_name(q->backing_dev_info.dev));
995 
996 	rq->cmd_flags &= ~REQ_ELVPRIV;
997 	rq->elv.icq = NULL;
998 
999 	spin_lock_irq(q->queue_lock);
1000 	q->nr_rqs_elvpriv--;
1001 	spin_unlock_irq(q->queue_lock);
1002 	goto out;
1003 
1004 fail_alloc:
1005 	/*
1006 	 * Allocation failed presumably due to memory. Undo anything we
1007 	 * might have messed up.
1008 	 *
1009 	 * Allocating task should really be put onto the front of the wait
1010 	 * queue, but this is pretty rare.
1011 	 */
1012 	spin_lock_irq(q->queue_lock);
1013 	freed_request(rl, rw_flags);
1014 
1015 	/*
1016 	 * in the very unlikely event that allocation failed and no
1017 	 * requests for this direction was pending, mark us starved so that
1018 	 * freeing of a request in the other direction will notice
1019 	 * us. another possible fix would be to split the rq mempool into
1020 	 * READ and WRITE
1021 	 */
1022 rq_starved:
1023 	if (unlikely(rl->count[is_sync] == 0))
1024 		rl->starved[is_sync] = 1;
1025 	return NULL;
1026 }
1027 
1028 /**
1029  * get_request - get a free request
1030  * @q: request_queue to allocate request from
1031  * @rw_flags: RW and SYNC flags
1032  * @bio: bio to allocate request for (can be %NULL)
1033  * @gfp_mask: allocation mask
1034  *
1035  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1036  * function keeps retrying under memory pressure and fails iff @q is dead.
1037  *
1038  * Must be callled with @q->queue_lock held and,
1039  * Returns %NULL on failure, with @q->queue_lock held.
1040  * Returns !%NULL on success, with @q->queue_lock *not held*.
1041  */
1042 static struct request *get_request(struct request_queue *q, int rw_flags,
1043 				   struct bio *bio, gfp_t gfp_mask)
1044 {
1045 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1046 	DEFINE_WAIT(wait);
1047 	struct request_list *rl;
1048 	struct request *rq;
1049 
1050 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1051 retry:
1052 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1053 	if (rq)
1054 		return rq;
1055 
1056 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1057 		blk_put_rl(rl);
1058 		return NULL;
1059 	}
1060 
1061 	/* wait on @rl and retry */
1062 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1063 				  TASK_UNINTERRUPTIBLE);
1064 
1065 	trace_block_sleeprq(q, bio, rw_flags & 1);
1066 
1067 	spin_unlock_irq(q->queue_lock);
1068 	io_schedule();
1069 
1070 	/*
1071 	 * After sleeping, we become a "batching" process and will be able
1072 	 * to allocate at least one request, and up to a big batch of them
1073 	 * for a small period time.  See ioc_batching, ioc_set_batching
1074 	 */
1075 	ioc_set_batching(q, current->io_context);
1076 
1077 	spin_lock_irq(q->queue_lock);
1078 	finish_wait(&rl->wait[is_sync], &wait);
1079 
1080 	goto retry;
1081 }
1082 
1083 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1084 		gfp_t gfp_mask)
1085 {
1086 	struct request *rq;
1087 
1088 	BUG_ON(rw != READ && rw != WRITE);
1089 
1090 	/* create ioc upfront */
1091 	create_io_context(gfp_mask, q->node);
1092 
1093 	spin_lock_irq(q->queue_lock);
1094 	rq = get_request(q, rw, NULL, gfp_mask);
1095 	if (!rq)
1096 		spin_unlock_irq(q->queue_lock);
1097 	/* q->queue_lock is unlocked at this point */
1098 
1099 	return rq;
1100 }
1101 
1102 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1103 {
1104 	if (q->mq_ops)
1105 		return blk_mq_alloc_request(q, rw, gfp_mask);
1106 	else
1107 		return blk_old_get_request(q, rw, gfp_mask);
1108 }
1109 EXPORT_SYMBOL(blk_get_request);
1110 
1111 /**
1112  * blk_make_request - given a bio, allocate a corresponding struct request.
1113  * @q: target request queue
1114  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1115  *        It may be a chained-bio properly constructed by block/bio layer.
1116  * @gfp_mask: gfp flags to be used for memory allocation
1117  *
1118  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1119  * type commands. Where the struct request needs to be farther initialized by
1120  * the caller. It is passed a &struct bio, which describes the memory info of
1121  * the I/O transfer.
1122  *
1123  * The caller of blk_make_request must make sure that bi_io_vec
1124  * are set to describe the memory buffers. That bio_data_dir() will return
1125  * the needed direction of the request. (And all bio's in the passed bio-chain
1126  * are properly set accordingly)
1127  *
1128  * If called under none-sleepable conditions, mapped bio buffers must not
1129  * need bouncing, by calling the appropriate masked or flagged allocator,
1130  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1131  * BUG.
1132  *
1133  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1134  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1135  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1136  * completion of a bio that hasn't been submitted yet, thus resulting in a
1137  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1138  * of bio_alloc(), as that avoids the mempool deadlock.
1139  * If possible a big IO should be split into smaller parts when allocation
1140  * fails. Partial allocation should not be an error, or you risk a live-lock.
1141  */
1142 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1143 				 gfp_t gfp_mask)
1144 {
1145 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1146 
1147 	if (unlikely(!rq))
1148 		return ERR_PTR(-ENOMEM);
1149 
1150 	for_each_bio(bio) {
1151 		struct bio *bounce_bio = bio;
1152 		int ret;
1153 
1154 		blk_queue_bounce(q, &bounce_bio);
1155 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1156 		if (unlikely(ret)) {
1157 			blk_put_request(rq);
1158 			return ERR_PTR(ret);
1159 		}
1160 	}
1161 
1162 	return rq;
1163 }
1164 EXPORT_SYMBOL(blk_make_request);
1165 
1166 /**
1167  * blk_requeue_request - put a request back on queue
1168  * @q:		request queue where request should be inserted
1169  * @rq:		request to be inserted
1170  *
1171  * Description:
1172  *    Drivers often keep queueing requests until the hardware cannot accept
1173  *    more, when that condition happens we need to put the request back
1174  *    on the queue. Must be called with queue lock held.
1175  */
1176 void blk_requeue_request(struct request_queue *q, struct request *rq)
1177 {
1178 	blk_delete_timer(rq);
1179 	blk_clear_rq_complete(rq);
1180 	trace_block_rq_requeue(q, rq);
1181 
1182 	if (blk_rq_tagged(rq))
1183 		blk_queue_end_tag(q, rq);
1184 
1185 	BUG_ON(blk_queued_rq(rq));
1186 
1187 	elv_requeue_request(q, rq);
1188 }
1189 EXPORT_SYMBOL(blk_requeue_request);
1190 
1191 static void add_acct_request(struct request_queue *q, struct request *rq,
1192 			     int where)
1193 {
1194 	blk_account_io_start(rq, true);
1195 	__elv_add_request(q, rq, where);
1196 }
1197 
1198 static void part_round_stats_single(int cpu, struct hd_struct *part,
1199 				    unsigned long now)
1200 {
1201 	if (now == part->stamp)
1202 		return;
1203 
1204 	if (part_in_flight(part)) {
1205 		__part_stat_add(cpu, part, time_in_queue,
1206 				part_in_flight(part) * (now - part->stamp));
1207 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1208 	}
1209 	part->stamp = now;
1210 }
1211 
1212 /**
1213  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1214  * @cpu: cpu number for stats access
1215  * @part: target partition
1216  *
1217  * The average IO queue length and utilisation statistics are maintained
1218  * by observing the current state of the queue length and the amount of
1219  * time it has been in this state for.
1220  *
1221  * Normally, that accounting is done on IO completion, but that can result
1222  * in more than a second's worth of IO being accounted for within any one
1223  * second, leading to >100% utilisation.  To deal with that, we call this
1224  * function to do a round-off before returning the results when reading
1225  * /proc/diskstats.  This accounts immediately for all queue usage up to
1226  * the current jiffies and restarts the counters again.
1227  */
1228 void part_round_stats(int cpu, struct hd_struct *part)
1229 {
1230 	unsigned long now = jiffies;
1231 
1232 	if (part->partno)
1233 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1234 	part_round_stats_single(cpu, part, now);
1235 }
1236 EXPORT_SYMBOL_GPL(part_round_stats);
1237 
1238 #ifdef CONFIG_PM_RUNTIME
1239 static void blk_pm_put_request(struct request *rq)
1240 {
1241 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1242 		pm_runtime_mark_last_busy(rq->q->dev);
1243 }
1244 #else
1245 static inline void blk_pm_put_request(struct request *rq) {}
1246 #endif
1247 
1248 /*
1249  * queue lock must be held
1250  */
1251 void __blk_put_request(struct request_queue *q, struct request *req)
1252 {
1253 	if (unlikely(!q))
1254 		return;
1255 
1256 	blk_pm_put_request(req);
1257 
1258 	elv_completed_request(q, req);
1259 
1260 	/* this is a bio leak */
1261 	WARN_ON(req->bio != NULL);
1262 
1263 	/*
1264 	 * Request may not have originated from ll_rw_blk. if not,
1265 	 * it didn't come out of our reserved rq pools
1266 	 */
1267 	if (req->cmd_flags & REQ_ALLOCED) {
1268 		unsigned int flags = req->cmd_flags;
1269 		struct request_list *rl = blk_rq_rl(req);
1270 
1271 		BUG_ON(!list_empty(&req->queuelist));
1272 		BUG_ON(!hlist_unhashed(&req->hash));
1273 
1274 		blk_free_request(rl, req);
1275 		freed_request(rl, flags);
1276 		blk_put_rl(rl);
1277 	}
1278 }
1279 EXPORT_SYMBOL_GPL(__blk_put_request);
1280 
1281 void blk_put_request(struct request *req)
1282 {
1283 	struct request_queue *q = req->q;
1284 
1285 	if (q->mq_ops)
1286 		blk_mq_free_request(req);
1287 	else {
1288 		unsigned long flags;
1289 
1290 		spin_lock_irqsave(q->queue_lock, flags);
1291 		__blk_put_request(q, req);
1292 		spin_unlock_irqrestore(q->queue_lock, flags);
1293 	}
1294 }
1295 EXPORT_SYMBOL(blk_put_request);
1296 
1297 /**
1298  * blk_add_request_payload - add a payload to a request
1299  * @rq: request to update
1300  * @page: page backing the payload
1301  * @len: length of the payload.
1302  *
1303  * This allows to later add a payload to an already submitted request by
1304  * a block driver.  The driver needs to take care of freeing the payload
1305  * itself.
1306  *
1307  * Note that this is a quite horrible hack and nothing but handling of
1308  * discard requests should ever use it.
1309  */
1310 void blk_add_request_payload(struct request *rq, struct page *page,
1311 		unsigned int len)
1312 {
1313 	struct bio *bio = rq->bio;
1314 
1315 	bio->bi_io_vec->bv_page = page;
1316 	bio->bi_io_vec->bv_offset = 0;
1317 	bio->bi_io_vec->bv_len = len;
1318 
1319 	bio->bi_size = len;
1320 	bio->bi_vcnt = 1;
1321 	bio->bi_phys_segments = 1;
1322 
1323 	rq->__data_len = rq->resid_len = len;
1324 	rq->nr_phys_segments = 1;
1325 	rq->buffer = bio_data(bio);
1326 }
1327 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1328 
1329 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1330 			    struct bio *bio)
1331 {
1332 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1333 
1334 	if (!ll_back_merge_fn(q, req, bio))
1335 		return false;
1336 
1337 	trace_block_bio_backmerge(q, req, bio);
1338 
1339 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1340 		blk_rq_set_mixed_merge(req);
1341 
1342 	req->biotail->bi_next = bio;
1343 	req->biotail = bio;
1344 	req->__data_len += bio->bi_size;
1345 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1346 
1347 	blk_account_io_start(req, false);
1348 	return true;
1349 }
1350 
1351 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1352 			     struct bio *bio)
1353 {
1354 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1355 
1356 	if (!ll_front_merge_fn(q, req, bio))
1357 		return false;
1358 
1359 	trace_block_bio_frontmerge(q, req, bio);
1360 
1361 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1362 		blk_rq_set_mixed_merge(req);
1363 
1364 	bio->bi_next = req->bio;
1365 	req->bio = bio;
1366 
1367 	/*
1368 	 * may not be valid. if the low level driver said
1369 	 * it didn't need a bounce buffer then it better
1370 	 * not touch req->buffer either...
1371 	 */
1372 	req->buffer = bio_data(bio);
1373 	req->__sector = bio->bi_sector;
1374 	req->__data_len += bio->bi_size;
1375 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1376 
1377 	blk_account_io_start(req, false);
1378 	return true;
1379 }
1380 
1381 /**
1382  * blk_attempt_plug_merge - try to merge with %current's plugged list
1383  * @q: request_queue new bio is being queued at
1384  * @bio: new bio being queued
1385  * @request_count: out parameter for number of traversed plugged requests
1386  *
1387  * Determine whether @bio being queued on @q can be merged with a request
1388  * on %current's plugged list.  Returns %true if merge was successful,
1389  * otherwise %false.
1390  *
1391  * Plugging coalesces IOs from the same issuer for the same purpose without
1392  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1393  * than scheduling, and the request, while may have elvpriv data, is not
1394  * added on the elevator at this point.  In addition, we don't have
1395  * reliable access to the elevator outside queue lock.  Only check basic
1396  * merging parameters without querying the elevator.
1397  */
1398 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1399 			    unsigned int *request_count)
1400 {
1401 	struct blk_plug *plug;
1402 	struct request *rq;
1403 	bool ret = false;
1404 
1405 	plug = current->plug;
1406 	if (!plug)
1407 		goto out;
1408 	*request_count = 0;
1409 
1410 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1411 		int el_ret;
1412 
1413 		if (rq->q == q)
1414 			(*request_count)++;
1415 
1416 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1417 			continue;
1418 
1419 		el_ret = blk_try_merge(rq, bio);
1420 		if (el_ret == ELEVATOR_BACK_MERGE) {
1421 			ret = bio_attempt_back_merge(q, rq, bio);
1422 			if (ret)
1423 				break;
1424 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1425 			ret = bio_attempt_front_merge(q, rq, bio);
1426 			if (ret)
1427 				break;
1428 		}
1429 	}
1430 out:
1431 	return ret;
1432 }
1433 
1434 void init_request_from_bio(struct request *req, struct bio *bio)
1435 {
1436 	req->cmd_type = REQ_TYPE_FS;
1437 
1438 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1439 	if (bio->bi_rw & REQ_RAHEAD)
1440 		req->cmd_flags |= REQ_FAILFAST_MASK;
1441 
1442 	req->errors = 0;
1443 	req->__sector = bio->bi_sector;
1444 	req->ioprio = bio_prio(bio);
1445 	blk_rq_bio_prep(req->q, req, bio);
1446 }
1447 
1448 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1449 {
1450 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1451 	struct blk_plug *plug;
1452 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1453 	struct request *req;
1454 	unsigned int request_count = 0;
1455 
1456 	/*
1457 	 * low level driver can indicate that it wants pages above a
1458 	 * certain limit bounced to low memory (ie for highmem, or even
1459 	 * ISA dma in theory)
1460 	 */
1461 	blk_queue_bounce(q, &bio);
1462 
1463 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1464 		bio_endio(bio, -EIO);
1465 		return;
1466 	}
1467 
1468 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1469 		spin_lock_irq(q->queue_lock);
1470 		where = ELEVATOR_INSERT_FLUSH;
1471 		goto get_rq;
1472 	}
1473 
1474 	/*
1475 	 * Check if we can merge with the plugged list before grabbing
1476 	 * any locks.
1477 	 */
1478 	if (blk_attempt_plug_merge(q, bio, &request_count))
1479 		return;
1480 
1481 	spin_lock_irq(q->queue_lock);
1482 
1483 	el_ret = elv_merge(q, &req, bio);
1484 	if (el_ret == ELEVATOR_BACK_MERGE) {
1485 		if (bio_attempt_back_merge(q, req, bio)) {
1486 			elv_bio_merged(q, req, bio);
1487 			if (!attempt_back_merge(q, req))
1488 				elv_merged_request(q, req, el_ret);
1489 			goto out_unlock;
1490 		}
1491 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1492 		if (bio_attempt_front_merge(q, req, bio)) {
1493 			elv_bio_merged(q, req, bio);
1494 			if (!attempt_front_merge(q, req))
1495 				elv_merged_request(q, req, el_ret);
1496 			goto out_unlock;
1497 		}
1498 	}
1499 
1500 get_rq:
1501 	/*
1502 	 * This sync check and mask will be re-done in init_request_from_bio(),
1503 	 * but we need to set it earlier to expose the sync flag to the
1504 	 * rq allocator and io schedulers.
1505 	 */
1506 	rw_flags = bio_data_dir(bio);
1507 	if (sync)
1508 		rw_flags |= REQ_SYNC;
1509 
1510 	/*
1511 	 * Grab a free request. This is might sleep but can not fail.
1512 	 * Returns with the queue unlocked.
1513 	 */
1514 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1515 	if (unlikely(!req)) {
1516 		bio_endio(bio, -ENODEV);	/* @q is dead */
1517 		goto out_unlock;
1518 	}
1519 
1520 	/*
1521 	 * After dropping the lock and possibly sleeping here, our request
1522 	 * may now be mergeable after it had proven unmergeable (above).
1523 	 * We don't worry about that case for efficiency. It won't happen
1524 	 * often, and the elevators are able to handle it.
1525 	 */
1526 	init_request_from_bio(req, bio);
1527 
1528 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1529 		req->cpu = raw_smp_processor_id();
1530 
1531 	plug = current->plug;
1532 	if (plug) {
1533 		/*
1534 		 * If this is the first request added after a plug, fire
1535 		 * of a plug trace.
1536 		 */
1537 		if (!request_count)
1538 			trace_block_plug(q);
1539 		else {
1540 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1541 				blk_flush_plug_list(plug, false);
1542 				trace_block_plug(q);
1543 			}
1544 		}
1545 		list_add_tail(&req->queuelist, &plug->list);
1546 		blk_account_io_start(req, true);
1547 	} else {
1548 		spin_lock_irq(q->queue_lock);
1549 		add_acct_request(q, req, where);
1550 		__blk_run_queue(q);
1551 out_unlock:
1552 		spin_unlock_irq(q->queue_lock);
1553 	}
1554 }
1555 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1556 
1557 /*
1558  * If bio->bi_dev is a partition, remap the location
1559  */
1560 static inline void blk_partition_remap(struct bio *bio)
1561 {
1562 	struct block_device *bdev = bio->bi_bdev;
1563 
1564 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1565 		struct hd_struct *p = bdev->bd_part;
1566 
1567 		bio->bi_sector += p->start_sect;
1568 		bio->bi_bdev = bdev->bd_contains;
1569 
1570 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1571 				      bdev->bd_dev,
1572 				      bio->bi_sector - p->start_sect);
1573 	}
1574 }
1575 
1576 static void handle_bad_sector(struct bio *bio)
1577 {
1578 	char b[BDEVNAME_SIZE];
1579 
1580 	printk(KERN_INFO "attempt to access beyond end of device\n");
1581 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1582 			bdevname(bio->bi_bdev, b),
1583 			bio->bi_rw,
1584 			(unsigned long long)bio_end_sector(bio),
1585 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1586 
1587 	set_bit(BIO_EOF, &bio->bi_flags);
1588 }
1589 
1590 #ifdef CONFIG_FAIL_MAKE_REQUEST
1591 
1592 static DECLARE_FAULT_ATTR(fail_make_request);
1593 
1594 static int __init setup_fail_make_request(char *str)
1595 {
1596 	return setup_fault_attr(&fail_make_request, str);
1597 }
1598 __setup("fail_make_request=", setup_fail_make_request);
1599 
1600 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1601 {
1602 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1603 }
1604 
1605 static int __init fail_make_request_debugfs(void)
1606 {
1607 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1608 						NULL, &fail_make_request);
1609 
1610 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1611 }
1612 
1613 late_initcall(fail_make_request_debugfs);
1614 
1615 #else /* CONFIG_FAIL_MAKE_REQUEST */
1616 
1617 static inline bool should_fail_request(struct hd_struct *part,
1618 					unsigned int bytes)
1619 {
1620 	return false;
1621 }
1622 
1623 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1624 
1625 /*
1626  * Check whether this bio extends beyond the end of the device.
1627  */
1628 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1629 {
1630 	sector_t maxsector;
1631 
1632 	if (!nr_sectors)
1633 		return 0;
1634 
1635 	/* Test device or partition size, when known. */
1636 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1637 	if (maxsector) {
1638 		sector_t sector = bio->bi_sector;
1639 
1640 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1641 			/*
1642 			 * This may well happen - the kernel calls bread()
1643 			 * without checking the size of the device, e.g., when
1644 			 * mounting a device.
1645 			 */
1646 			handle_bad_sector(bio);
1647 			return 1;
1648 		}
1649 	}
1650 
1651 	return 0;
1652 }
1653 
1654 static noinline_for_stack bool
1655 generic_make_request_checks(struct bio *bio)
1656 {
1657 	struct request_queue *q;
1658 	int nr_sectors = bio_sectors(bio);
1659 	int err = -EIO;
1660 	char b[BDEVNAME_SIZE];
1661 	struct hd_struct *part;
1662 
1663 	might_sleep();
1664 
1665 	if (bio_check_eod(bio, nr_sectors))
1666 		goto end_io;
1667 
1668 	q = bdev_get_queue(bio->bi_bdev);
1669 	if (unlikely(!q)) {
1670 		printk(KERN_ERR
1671 		       "generic_make_request: Trying to access "
1672 			"nonexistent block-device %s (%Lu)\n",
1673 			bdevname(bio->bi_bdev, b),
1674 			(long long) bio->bi_sector);
1675 		goto end_io;
1676 	}
1677 
1678 	if (likely(bio_is_rw(bio) &&
1679 		   nr_sectors > queue_max_hw_sectors(q))) {
1680 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1681 		       bdevname(bio->bi_bdev, b),
1682 		       bio_sectors(bio),
1683 		       queue_max_hw_sectors(q));
1684 		goto end_io;
1685 	}
1686 
1687 	part = bio->bi_bdev->bd_part;
1688 	if (should_fail_request(part, bio->bi_size) ||
1689 	    should_fail_request(&part_to_disk(part)->part0,
1690 				bio->bi_size))
1691 		goto end_io;
1692 
1693 	/*
1694 	 * If this device has partitions, remap block n
1695 	 * of partition p to block n+start(p) of the disk.
1696 	 */
1697 	blk_partition_remap(bio);
1698 
1699 	if (bio_check_eod(bio, nr_sectors))
1700 		goto end_io;
1701 
1702 	/*
1703 	 * Filter flush bio's early so that make_request based
1704 	 * drivers without flush support don't have to worry
1705 	 * about them.
1706 	 */
1707 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1708 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1709 		if (!nr_sectors) {
1710 			err = 0;
1711 			goto end_io;
1712 		}
1713 	}
1714 
1715 	if ((bio->bi_rw & REQ_DISCARD) &&
1716 	    (!blk_queue_discard(q) ||
1717 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1718 		err = -EOPNOTSUPP;
1719 		goto end_io;
1720 	}
1721 
1722 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1723 		err = -EOPNOTSUPP;
1724 		goto end_io;
1725 	}
1726 
1727 	/*
1728 	 * Various block parts want %current->io_context and lazy ioc
1729 	 * allocation ends up trading a lot of pain for a small amount of
1730 	 * memory.  Just allocate it upfront.  This may fail and block
1731 	 * layer knows how to live with it.
1732 	 */
1733 	create_io_context(GFP_ATOMIC, q->node);
1734 
1735 	if (blk_throtl_bio(q, bio))
1736 		return false;	/* throttled, will be resubmitted later */
1737 
1738 	trace_block_bio_queue(q, bio);
1739 	return true;
1740 
1741 end_io:
1742 	bio_endio(bio, err);
1743 	return false;
1744 }
1745 
1746 /**
1747  * generic_make_request - hand a buffer to its device driver for I/O
1748  * @bio:  The bio describing the location in memory and on the device.
1749  *
1750  * generic_make_request() is used to make I/O requests of block
1751  * devices. It is passed a &struct bio, which describes the I/O that needs
1752  * to be done.
1753  *
1754  * generic_make_request() does not return any status.  The
1755  * success/failure status of the request, along with notification of
1756  * completion, is delivered asynchronously through the bio->bi_end_io
1757  * function described (one day) else where.
1758  *
1759  * The caller of generic_make_request must make sure that bi_io_vec
1760  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1761  * set to describe the device address, and the
1762  * bi_end_io and optionally bi_private are set to describe how
1763  * completion notification should be signaled.
1764  *
1765  * generic_make_request and the drivers it calls may use bi_next if this
1766  * bio happens to be merged with someone else, and may resubmit the bio to
1767  * a lower device by calling into generic_make_request recursively, which
1768  * means the bio should NOT be touched after the call to ->make_request_fn.
1769  */
1770 void generic_make_request(struct bio *bio)
1771 {
1772 	struct bio_list bio_list_on_stack;
1773 
1774 	if (!generic_make_request_checks(bio))
1775 		return;
1776 
1777 	/*
1778 	 * We only want one ->make_request_fn to be active at a time, else
1779 	 * stack usage with stacked devices could be a problem.  So use
1780 	 * current->bio_list to keep a list of requests submited by a
1781 	 * make_request_fn function.  current->bio_list is also used as a
1782 	 * flag to say if generic_make_request is currently active in this
1783 	 * task or not.  If it is NULL, then no make_request is active.  If
1784 	 * it is non-NULL, then a make_request is active, and new requests
1785 	 * should be added at the tail
1786 	 */
1787 	if (current->bio_list) {
1788 		bio_list_add(current->bio_list, bio);
1789 		return;
1790 	}
1791 
1792 	/* following loop may be a bit non-obvious, and so deserves some
1793 	 * explanation.
1794 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1795 	 * ensure that) so we have a list with a single bio.
1796 	 * We pretend that we have just taken it off a longer list, so
1797 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1798 	 * thus initialising the bio_list of new bios to be
1799 	 * added.  ->make_request() may indeed add some more bios
1800 	 * through a recursive call to generic_make_request.  If it
1801 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1802 	 * from the top.  In this case we really did just take the bio
1803 	 * of the top of the list (no pretending) and so remove it from
1804 	 * bio_list, and call into ->make_request() again.
1805 	 */
1806 	BUG_ON(bio->bi_next);
1807 	bio_list_init(&bio_list_on_stack);
1808 	current->bio_list = &bio_list_on_stack;
1809 	do {
1810 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1811 
1812 		q->make_request_fn(q, bio);
1813 
1814 		bio = bio_list_pop(current->bio_list);
1815 	} while (bio);
1816 	current->bio_list = NULL; /* deactivate */
1817 }
1818 EXPORT_SYMBOL(generic_make_request);
1819 
1820 /**
1821  * submit_bio - submit a bio to the block device layer for I/O
1822  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1823  * @bio: The &struct bio which describes the I/O
1824  *
1825  * submit_bio() is very similar in purpose to generic_make_request(), and
1826  * uses that function to do most of the work. Both are fairly rough
1827  * interfaces; @bio must be presetup and ready for I/O.
1828  *
1829  */
1830 void submit_bio(int rw, struct bio *bio)
1831 {
1832 	bio->bi_rw |= rw;
1833 
1834 	/*
1835 	 * If it's a regular read/write or a barrier with data attached,
1836 	 * go through the normal accounting stuff before submission.
1837 	 */
1838 	if (bio_has_data(bio)) {
1839 		unsigned int count;
1840 
1841 		if (unlikely(rw & REQ_WRITE_SAME))
1842 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1843 		else
1844 			count = bio_sectors(bio);
1845 
1846 		if (rw & WRITE) {
1847 			count_vm_events(PGPGOUT, count);
1848 		} else {
1849 			task_io_account_read(bio->bi_size);
1850 			count_vm_events(PGPGIN, count);
1851 		}
1852 
1853 		if (unlikely(block_dump)) {
1854 			char b[BDEVNAME_SIZE];
1855 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1856 			current->comm, task_pid_nr(current),
1857 				(rw & WRITE) ? "WRITE" : "READ",
1858 				(unsigned long long)bio->bi_sector,
1859 				bdevname(bio->bi_bdev, b),
1860 				count);
1861 		}
1862 	}
1863 
1864 	generic_make_request(bio);
1865 }
1866 EXPORT_SYMBOL(submit_bio);
1867 
1868 /**
1869  * blk_rq_check_limits - Helper function to check a request for the queue limit
1870  * @q:  the queue
1871  * @rq: the request being checked
1872  *
1873  * Description:
1874  *    @rq may have been made based on weaker limitations of upper-level queues
1875  *    in request stacking drivers, and it may violate the limitation of @q.
1876  *    Since the block layer and the underlying device driver trust @rq
1877  *    after it is inserted to @q, it should be checked against @q before
1878  *    the insertion using this generic function.
1879  *
1880  *    This function should also be useful for request stacking drivers
1881  *    in some cases below, so export this function.
1882  *    Request stacking drivers like request-based dm may change the queue
1883  *    limits while requests are in the queue (e.g. dm's table swapping).
1884  *    Such request stacking drivers should check those requests agaist
1885  *    the new queue limits again when they dispatch those requests,
1886  *    although such checkings are also done against the old queue limits
1887  *    when submitting requests.
1888  */
1889 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1890 {
1891 	if (!rq_mergeable(rq))
1892 		return 0;
1893 
1894 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1895 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1896 		return -EIO;
1897 	}
1898 
1899 	/*
1900 	 * queue's settings related to segment counting like q->bounce_pfn
1901 	 * may differ from that of other stacking queues.
1902 	 * Recalculate it to check the request correctly on this queue's
1903 	 * limitation.
1904 	 */
1905 	blk_recalc_rq_segments(rq);
1906 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1907 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1908 		return -EIO;
1909 	}
1910 
1911 	return 0;
1912 }
1913 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1914 
1915 /**
1916  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1917  * @q:  the queue to submit the request
1918  * @rq: the request being queued
1919  */
1920 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1921 {
1922 	unsigned long flags;
1923 	int where = ELEVATOR_INSERT_BACK;
1924 
1925 	if (blk_rq_check_limits(q, rq))
1926 		return -EIO;
1927 
1928 	if (rq->rq_disk &&
1929 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1930 		return -EIO;
1931 
1932 	spin_lock_irqsave(q->queue_lock, flags);
1933 	if (unlikely(blk_queue_dying(q))) {
1934 		spin_unlock_irqrestore(q->queue_lock, flags);
1935 		return -ENODEV;
1936 	}
1937 
1938 	/*
1939 	 * Submitting request must be dequeued before calling this function
1940 	 * because it will be linked to another request_queue
1941 	 */
1942 	BUG_ON(blk_queued_rq(rq));
1943 
1944 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1945 		where = ELEVATOR_INSERT_FLUSH;
1946 
1947 	add_acct_request(q, rq, where);
1948 	if (where == ELEVATOR_INSERT_FLUSH)
1949 		__blk_run_queue(q);
1950 	spin_unlock_irqrestore(q->queue_lock, flags);
1951 
1952 	return 0;
1953 }
1954 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1955 
1956 /**
1957  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1958  * @rq: request to examine
1959  *
1960  * Description:
1961  *     A request could be merge of IOs which require different failure
1962  *     handling.  This function determines the number of bytes which
1963  *     can be failed from the beginning of the request without
1964  *     crossing into area which need to be retried further.
1965  *
1966  * Return:
1967  *     The number of bytes to fail.
1968  *
1969  * Context:
1970  *     queue_lock must be held.
1971  */
1972 unsigned int blk_rq_err_bytes(const struct request *rq)
1973 {
1974 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1975 	unsigned int bytes = 0;
1976 	struct bio *bio;
1977 
1978 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1979 		return blk_rq_bytes(rq);
1980 
1981 	/*
1982 	 * Currently the only 'mixing' which can happen is between
1983 	 * different fastfail types.  We can safely fail portions
1984 	 * which have all the failfast bits that the first one has -
1985 	 * the ones which are at least as eager to fail as the first
1986 	 * one.
1987 	 */
1988 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1989 		if ((bio->bi_rw & ff) != ff)
1990 			break;
1991 		bytes += bio->bi_size;
1992 	}
1993 
1994 	/* this could lead to infinite loop */
1995 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1996 	return bytes;
1997 }
1998 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1999 
2000 void blk_account_io_completion(struct request *req, unsigned int bytes)
2001 {
2002 	if (blk_do_io_stat(req)) {
2003 		const int rw = rq_data_dir(req);
2004 		struct hd_struct *part;
2005 		int cpu;
2006 
2007 		cpu = part_stat_lock();
2008 		part = req->part;
2009 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2010 		part_stat_unlock();
2011 	}
2012 }
2013 
2014 void blk_account_io_done(struct request *req)
2015 {
2016 	/*
2017 	 * Account IO completion.  flush_rq isn't accounted as a
2018 	 * normal IO on queueing nor completion.  Accounting the
2019 	 * containing request is enough.
2020 	 */
2021 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2022 		unsigned long duration = jiffies - req->start_time;
2023 		const int rw = rq_data_dir(req);
2024 		struct hd_struct *part;
2025 		int cpu;
2026 
2027 		cpu = part_stat_lock();
2028 		part = req->part;
2029 
2030 		part_stat_inc(cpu, part, ios[rw]);
2031 		part_stat_add(cpu, part, ticks[rw], duration);
2032 		part_round_stats(cpu, part);
2033 		part_dec_in_flight(part, rw);
2034 
2035 		hd_struct_put(part);
2036 		part_stat_unlock();
2037 	}
2038 }
2039 
2040 #ifdef CONFIG_PM_RUNTIME
2041 /*
2042  * Don't process normal requests when queue is suspended
2043  * or in the process of suspending/resuming
2044  */
2045 static struct request *blk_pm_peek_request(struct request_queue *q,
2046 					   struct request *rq)
2047 {
2048 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2049 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2050 		return NULL;
2051 	else
2052 		return rq;
2053 }
2054 #else
2055 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2056 						  struct request *rq)
2057 {
2058 	return rq;
2059 }
2060 #endif
2061 
2062 void blk_account_io_start(struct request *rq, bool new_io)
2063 {
2064 	struct hd_struct *part;
2065 	int rw = rq_data_dir(rq);
2066 	int cpu;
2067 
2068 	if (!blk_do_io_stat(rq))
2069 		return;
2070 
2071 	cpu = part_stat_lock();
2072 
2073 	if (!new_io) {
2074 		part = rq->part;
2075 		part_stat_inc(cpu, part, merges[rw]);
2076 	} else {
2077 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2078 		if (!hd_struct_try_get(part)) {
2079 			/*
2080 			 * The partition is already being removed,
2081 			 * the request will be accounted on the disk only
2082 			 *
2083 			 * We take a reference on disk->part0 although that
2084 			 * partition will never be deleted, so we can treat
2085 			 * it as any other partition.
2086 			 */
2087 			part = &rq->rq_disk->part0;
2088 			hd_struct_get(part);
2089 		}
2090 		part_round_stats(cpu, part);
2091 		part_inc_in_flight(part, rw);
2092 		rq->part = part;
2093 	}
2094 
2095 	part_stat_unlock();
2096 }
2097 
2098 /**
2099  * blk_peek_request - peek at the top of a request queue
2100  * @q: request queue to peek at
2101  *
2102  * Description:
2103  *     Return the request at the top of @q.  The returned request
2104  *     should be started using blk_start_request() before LLD starts
2105  *     processing it.
2106  *
2107  * Return:
2108  *     Pointer to the request at the top of @q if available.  Null
2109  *     otherwise.
2110  *
2111  * Context:
2112  *     queue_lock must be held.
2113  */
2114 struct request *blk_peek_request(struct request_queue *q)
2115 {
2116 	struct request *rq;
2117 	int ret;
2118 
2119 	while ((rq = __elv_next_request(q)) != NULL) {
2120 
2121 		rq = blk_pm_peek_request(q, rq);
2122 		if (!rq)
2123 			break;
2124 
2125 		if (!(rq->cmd_flags & REQ_STARTED)) {
2126 			/*
2127 			 * This is the first time the device driver
2128 			 * sees this request (possibly after
2129 			 * requeueing).  Notify IO scheduler.
2130 			 */
2131 			if (rq->cmd_flags & REQ_SORTED)
2132 				elv_activate_rq(q, rq);
2133 
2134 			/*
2135 			 * just mark as started even if we don't start
2136 			 * it, a request that has been delayed should
2137 			 * not be passed by new incoming requests
2138 			 */
2139 			rq->cmd_flags |= REQ_STARTED;
2140 			trace_block_rq_issue(q, rq);
2141 		}
2142 
2143 		if (!q->boundary_rq || q->boundary_rq == rq) {
2144 			q->end_sector = rq_end_sector(rq);
2145 			q->boundary_rq = NULL;
2146 		}
2147 
2148 		if (rq->cmd_flags & REQ_DONTPREP)
2149 			break;
2150 
2151 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2152 			/*
2153 			 * make sure space for the drain appears we
2154 			 * know we can do this because max_hw_segments
2155 			 * has been adjusted to be one fewer than the
2156 			 * device can handle
2157 			 */
2158 			rq->nr_phys_segments++;
2159 		}
2160 
2161 		if (!q->prep_rq_fn)
2162 			break;
2163 
2164 		ret = q->prep_rq_fn(q, rq);
2165 		if (ret == BLKPREP_OK) {
2166 			break;
2167 		} else if (ret == BLKPREP_DEFER) {
2168 			/*
2169 			 * the request may have been (partially) prepped.
2170 			 * we need to keep this request in the front to
2171 			 * avoid resource deadlock.  REQ_STARTED will
2172 			 * prevent other fs requests from passing this one.
2173 			 */
2174 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2175 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2176 				/*
2177 				 * remove the space for the drain we added
2178 				 * so that we don't add it again
2179 				 */
2180 				--rq->nr_phys_segments;
2181 			}
2182 
2183 			rq = NULL;
2184 			break;
2185 		} else if (ret == BLKPREP_KILL) {
2186 			rq->cmd_flags |= REQ_QUIET;
2187 			/*
2188 			 * Mark this request as started so we don't trigger
2189 			 * any debug logic in the end I/O path.
2190 			 */
2191 			blk_start_request(rq);
2192 			__blk_end_request_all(rq, -EIO);
2193 		} else {
2194 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2195 			break;
2196 		}
2197 	}
2198 
2199 	return rq;
2200 }
2201 EXPORT_SYMBOL(blk_peek_request);
2202 
2203 void blk_dequeue_request(struct request *rq)
2204 {
2205 	struct request_queue *q = rq->q;
2206 
2207 	BUG_ON(list_empty(&rq->queuelist));
2208 	BUG_ON(ELV_ON_HASH(rq));
2209 
2210 	list_del_init(&rq->queuelist);
2211 
2212 	/*
2213 	 * the time frame between a request being removed from the lists
2214 	 * and to it is freed is accounted as io that is in progress at
2215 	 * the driver side.
2216 	 */
2217 	if (blk_account_rq(rq)) {
2218 		q->in_flight[rq_is_sync(rq)]++;
2219 		set_io_start_time_ns(rq);
2220 	}
2221 }
2222 
2223 /**
2224  * blk_start_request - start request processing on the driver
2225  * @req: request to dequeue
2226  *
2227  * Description:
2228  *     Dequeue @req and start timeout timer on it.  This hands off the
2229  *     request to the driver.
2230  *
2231  *     Block internal functions which don't want to start timer should
2232  *     call blk_dequeue_request().
2233  *
2234  * Context:
2235  *     queue_lock must be held.
2236  */
2237 void blk_start_request(struct request *req)
2238 {
2239 	blk_dequeue_request(req);
2240 
2241 	/*
2242 	 * We are now handing the request to the hardware, initialize
2243 	 * resid_len to full count and add the timeout handler.
2244 	 */
2245 	req->resid_len = blk_rq_bytes(req);
2246 	if (unlikely(blk_bidi_rq(req)))
2247 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2248 
2249 	blk_add_timer(req);
2250 }
2251 EXPORT_SYMBOL(blk_start_request);
2252 
2253 /**
2254  * blk_fetch_request - fetch a request from a request queue
2255  * @q: request queue to fetch a request from
2256  *
2257  * Description:
2258  *     Return the request at the top of @q.  The request is started on
2259  *     return and LLD can start processing it immediately.
2260  *
2261  * Return:
2262  *     Pointer to the request at the top of @q if available.  Null
2263  *     otherwise.
2264  *
2265  * Context:
2266  *     queue_lock must be held.
2267  */
2268 struct request *blk_fetch_request(struct request_queue *q)
2269 {
2270 	struct request *rq;
2271 
2272 	rq = blk_peek_request(q);
2273 	if (rq)
2274 		blk_start_request(rq);
2275 	return rq;
2276 }
2277 EXPORT_SYMBOL(blk_fetch_request);
2278 
2279 /**
2280  * blk_update_request - Special helper function for request stacking drivers
2281  * @req:      the request being processed
2282  * @error:    %0 for success, < %0 for error
2283  * @nr_bytes: number of bytes to complete @req
2284  *
2285  * Description:
2286  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2287  *     the request structure even if @req doesn't have leftover.
2288  *     If @req has leftover, sets it up for the next range of segments.
2289  *
2290  *     This special helper function is only for request stacking drivers
2291  *     (e.g. request-based dm) so that they can handle partial completion.
2292  *     Actual device drivers should use blk_end_request instead.
2293  *
2294  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2295  *     %false return from this function.
2296  *
2297  * Return:
2298  *     %false - this request doesn't have any more data
2299  *     %true  - this request has more data
2300  **/
2301 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2302 {
2303 	int total_bytes;
2304 
2305 	if (!req->bio)
2306 		return false;
2307 
2308 	trace_block_rq_complete(req->q, req);
2309 
2310 	/*
2311 	 * For fs requests, rq is just carrier of independent bio's
2312 	 * and each partial completion should be handled separately.
2313 	 * Reset per-request error on each partial completion.
2314 	 *
2315 	 * TODO: tj: This is too subtle.  It would be better to let
2316 	 * low level drivers do what they see fit.
2317 	 */
2318 	if (req->cmd_type == REQ_TYPE_FS)
2319 		req->errors = 0;
2320 
2321 	if (error && req->cmd_type == REQ_TYPE_FS &&
2322 	    !(req->cmd_flags & REQ_QUIET)) {
2323 		char *error_type;
2324 
2325 		switch (error) {
2326 		case -ENOLINK:
2327 			error_type = "recoverable transport";
2328 			break;
2329 		case -EREMOTEIO:
2330 			error_type = "critical target";
2331 			break;
2332 		case -EBADE:
2333 			error_type = "critical nexus";
2334 			break;
2335 		case -ETIMEDOUT:
2336 			error_type = "timeout";
2337 			break;
2338 		case -ENOSPC:
2339 			error_type = "critical space allocation";
2340 			break;
2341 		case -ENODATA:
2342 			error_type = "critical medium";
2343 			break;
2344 		case -EIO:
2345 		default:
2346 			error_type = "I/O";
2347 			break;
2348 		}
2349 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2350 				   error_type, req->rq_disk ?
2351 				   req->rq_disk->disk_name : "?",
2352 				   (unsigned long long)blk_rq_pos(req));
2353 
2354 	}
2355 
2356 	blk_account_io_completion(req, nr_bytes);
2357 
2358 	total_bytes = 0;
2359 	while (req->bio) {
2360 		struct bio *bio = req->bio;
2361 		unsigned bio_bytes = min(bio->bi_size, nr_bytes);
2362 
2363 		if (bio_bytes == bio->bi_size)
2364 			req->bio = bio->bi_next;
2365 
2366 		req_bio_endio(req, bio, bio_bytes, error);
2367 
2368 		total_bytes += bio_bytes;
2369 		nr_bytes -= bio_bytes;
2370 
2371 		if (!nr_bytes)
2372 			break;
2373 	}
2374 
2375 	/*
2376 	 * completely done
2377 	 */
2378 	if (!req->bio) {
2379 		/*
2380 		 * Reset counters so that the request stacking driver
2381 		 * can find how many bytes remain in the request
2382 		 * later.
2383 		 */
2384 		req->__data_len = 0;
2385 		return false;
2386 	}
2387 
2388 	req->__data_len -= total_bytes;
2389 	req->buffer = bio_data(req->bio);
2390 
2391 	/* update sector only for requests with clear definition of sector */
2392 	if (req->cmd_type == REQ_TYPE_FS)
2393 		req->__sector += total_bytes >> 9;
2394 
2395 	/* mixed attributes always follow the first bio */
2396 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2397 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2398 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2399 	}
2400 
2401 	/*
2402 	 * If total number of sectors is less than the first segment
2403 	 * size, something has gone terribly wrong.
2404 	 */
2405 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2406 		blk_dump_rq_flags(req, "request botched");
2407 		req->__data_len = blk_rq_cur_bytes(req);
2408 	}
2409 
2410 	/* recalculate the number of segments */
2411 	blk_recalc_rq_segments(req);
2412 
2413 	return true;
2414 }
2415 EXPORT_SYMBOL_GPL(blk_update_request);
2416 
2417 static bool blk_update_bidi_request(struct request *rq, int error,
2418 				    unsigned int nr_bytes,
2419 				    unsigned int bidi_bytes)
2420 {
2421 	if (blk_update_request(rq, error, nr_bytes))
2422 		return true;
2423 
2424 	/* Bidi request must be completed as a whole */
2425 	if (unlikely(blk_bidi_rq(rq)) &&
2426 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2427 		return true;
2428 
2429 	if (blk_queue_add_random(rq->q))
2430 		add_disk_randomness(rq->rq_disk);
2431 
2432 	return false;
2433 }
2434 
2435 /**
2436  * blk_unprep_request - unprepare a request
2437  * @req:	the request
2438  *
2439  * This function makes a request ready for complete resubmission (or
2440  * completion).  It happens only after all error handling is complete,
2441  * so represents the appropriate moment to deallocate any resources
2442  * that were allocated to the request in the prep_rq_fn.  The queue
2443  * lock is held when calling this.
2444  */
2445 void blk_unprep_request(struct request *req)
2446 {
2447 	struct request_queue *q = req->q;
2448 
2449 	req->cmd_flags &= ~REQ_DONTPREP;
2450 	if (q->unprep_rq_fn)
2451 		q->unprep_rq_fn(q, req);
2452 }
2453 EXPORT_SYMBOL_GPL(blk_unprep_request);
2454 
2455 /*
2456  * queue lock must be held
2457  */
2458 static void blk_finish_request(struct request *req, int error)
2459 {
2460 	if (blk_rq_tagged(req))
2461 		blk_queue_end_tag(req->q, req);
2462 
2463 	BUG_ON(blk_queued_rq(req));
2464 
2465 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2466 		laptop_io_completion(&req->q->backing_dev_info);
2467 
2468 	blk_delete_timer(req);
2469 
2470 	if (req->cmd_flags & REQ_DONTPREP)
2471 		blk_unprep_request(req);
2472 
2473 	blk_account_io_done(req);
2474 
2475 	if (req->end_io)
2476 		req->end_io(req, error);
2477 	else {
2478 		if (blk_bidi_rq(req))
2479 			__blk_put_request(req->next_rq->q, req->next_rq);
2480 
2481 		__blk_put_request(req->q, req);
2482 	}
2483 }
2484 
2485 /**
2486  * blk_end_bidi_request - Complete a bidi request
2487  * @rq:         the request to complete
2488  * @error:      %0 for success, < %0 for error
2489  * @nr_bytes:   number of bytes to complete @rq
2490  * @bidi_bytes: number of bytes to complete @rq->next_rq
2491  *
2492  * Description:
2493  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2494  *     Drivers that supports bidi can safely call this member for any
2495  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2496  *     just ignored.
2497  *
2498  * Return:
2499  *     %false - we are done with this request
2500  *     %true  - still buffers pending for this request
2501  **/
2502 static bool blk_end_bidi_request(struct request *rq, int error,
2503 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2504 {
2505 	struct request_queue *q = rq->q;
2506 	unsigned long flags;
2507 
2508 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2509 		return true;
2510 
2511 	spin_lock_irqsave(q->queue_lock, flags);
2512 	blk_finish_request(rq, error);
2513 	spin_unlock_irqrestore(q->queue_lock, flags);
2514 
2515 	return false;
2516 }
2517 
2518 /**
2519  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2520  * @rq:         the request to complete
2521  * @error:      %0 for success, < %0 for error
2522  * @nr_bytes:   number of bytes to complete @rq
2523  * @bidi_bytes: number of bytes to complete @rq->next_rq
2524  *
2525  * Description:
2526  *     Identical to blk_end_bidi_request() except that queue lock is
2527  *     assumed to be locked on entry and remains so on return.
2528  *
2529  * Return:
2530  *     %false - we are done with this request
2531  *     %true  - still buffers pending for this request
2532  **/
2533 bool __blk_end_bidi_request(struct request *rq, int error,
2534 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2535 {
2536 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2537 		return true;
2538 
2539 	blk_finish_request(rq, error);
2540 
2541 	return false;
2542 }
2543 
2544 /**
2545  * blk_end_request - Helper function for drivers to complete the request.
2546  * @rq:       the request being processed
2547  * @error:    %0 for success, < %0 for error
2548  * @nr_bytes: number of bytes to complete
2549  *
2550  * Description:
2551  *     Ends I/O on a number of bytes attached to @rq.
2552  *     If @rq has leftover, sets it up for the next range of segments.
2553  *
2554  * Return:
2555  *     %false - we are done with this request
2556  *     %true  - still buffers pending for this request
2557  **/
2558 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2559 {
2560 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2561 }
2562 EXPORT_SYMBOL(blk_end_request);
2563 
2564 /**
2565  * blk_end_request_all - Helper function for drives to finish the request.
2566  * @rq: the request to finish
2567  * @error: %0 for success, < %0 for error
2568  *
2569  * Description:
2570  *     Completely finish @rq.
2571  */
2572 void blk_end_request_all(struct request *rq, int error)
2573 {
2574 	bool pending;
2575 	unsigned int bidi_bytes = 0;
2576 
2577 	if (unlikely(blk_bidi_rq(rq)))
2578 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2579 
2580 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2581 	BUG_ON(pending);
2582 }
2583 EXPORT_SYMBOL(blk_end_request_all);
2584 
2585 /**
2586  * blk_end_request_cur - Helper function to finish the current request chunk.
2587  * @rq: the request to finish the current chunk for
2588  * @error: %0 for success, < %0 for error
2589  *
2590  * Description:
2591  *     Complete the current consecutively mapped chunk from @rq.
2592  *
2593  * Return:
2594  *     %false - we are done with this request
2595  *     %true  - still buffers pending for this request
2596  */
2597 bool blk_end_request_cur(struct request *rq, int error)
2598 {
2599 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2600 }
2601 EXPORT_SYMBOL(blk_end_request_cur);
2602 
2603 /**
2604  * blk_end_request_err - Finish a request till the next failure boundary.
2605  * @rq: the request to finish till the next failure boundary for
2606  * @error: must be negative errno
2607  *
2608  * Description:
2609  *     Complete @rq till the next failure boundary.
2610  *
2611  * Return:
2612  *     %false - we are done with this request
2613  *     %true  - still buffers pending for this request
2614  */
2615 bool blk_end_request_err(struct request *rq, int error)
2616 {
2617 	WARN_ON(error >= 0);
2618 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2619 }
2620 EXPORT_SYMBOL_GPL(blk_end_request_err);
2621 
2622 /**
2623  * __blk_end_request - Helper function for drivers to complete the request.
2624  * @rq:       the request being processed
2625  * @error:    %0 for success, < %0 for error
2626  * @nr_bytes: number of bytes to complete
2627  *
2628  * Description:
2629  *     Must be called with queue lock held unlike blk_end_request().
2630  *
2631  * Return:
2632  *     %false - we are done with this request
2633  *     %true  - still buffers pending for this request
2634  **/
2635 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2636 {
2637 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2638 }
2639 EXPORT_SYMBOL(__blk_end_request);
2640 
2641 /**
2642  * __blk_end_request_all - Helper function for drives to finish the request.
2643  * @rq: the request to finish
2644  * @error: %0 for success, < %0 for error
2645  *
2646  * Description:
2647  *     Completely finish @rq.  Must be called with queue lock held.
2648  */
2649 void __blk_end_request_all(struct request *rq, int error)
2650 {
2651 	bool pending;
2652 	unsigned int bidi_bytes = 0;
2653 
2654 	if (unlikely(blk_bidi_rq(rq)))
2655 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2656 
2657 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2658 	BUG_ON(pending);
2659 }
2660 EXPORT_SYMBOL(__blk_end_request_all);
2661 
2662 /**
2663  * __blk_end_request_cur - Helper function to finish the current request chunk.
2664  * @rq: the request to finish the current chunk for
2665  * @error: %0 for success, < %0 for error
2666  *
2667  * Description:
2668  *     Complete the current consecutively mapped chunk from @rq.  Must
2669  *     be called with queue lock held.
2670  *
2671  * Return:
2672  *     %false - we are done with this request
2673  *     %true  - still buffers pending for this request
2674  */
2675 bool __blk_end_request_cur(struct request *rq, int error)
2676 {
2677 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2678 }
2679 EXPORT_SYMBOL(__blk_end_request_cur);
2680 
2681 /**
2682  * __blk_end_request_err - Finish a request till the next failure boundary.
2683  * @rq: the request to finish till the next failure boundary for
2684  * @error: must be negative errno
2685  *
2686  * Description:
2687  *     Complete @rq till the next failure boundary.  Must be called
2688  *     with queue lock held.
2689  *
2690  * Return:
2691  *     %false - we are done with this request
2692  *     %true  - still buffers pending for this request
2693  */
2694 bool __blk_end_request_err(struct request *rq, int error)
2695 {
2696 	WARN_ON(error >= 0);
2697 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2698 }
2699 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2700 
2701 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2702 		     struct bio *bio)
2703 {
2704 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2705 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2706 
2707 	if (bio_has_data(bio)) {
2708 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2709 		rq->buffer = bio_data(bio);
2710 	}
2711 	rq->__data_len = bio->bi_size;
2712 	rq->bio = rq->biotail = bio;
2713 
2714 	if (bio->bi_bdev)
2715 		rq->rq_disk = bio->bi_bdev->bd_disk;
2716 }
2717 
2718 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2719 /**
2720  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2721  * @rq: the request to be flushed
2722  *
2723  * Description:
2724  *     Flush all pages in @rq.
2725  */
2726 void rq_flush_dcache_pages(struct request *rq)
2727 {
2728 	struct req_iterator iter;
2729 	struct bio_vec *bvec;
2730 
2731 	rq_for_each_segment(bvec, rq, iter)
2732 		flush_dcache_page(bvec->bv_page);
2733 }
2734 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2735 #endif
2736 
2737 /**
2738  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2739  * @q : the queue of the device being checked
2740  *
2741  * Description:
2742  *    Check if underlying low-level drivers of a device are busy.
2743  *    If the drivers want to export their busy state, they must set own
2744  *    exporting function using blk_queue_lld_busy() first.
2745  *
2746  *    Basically, this function is used only by request stacking drivers
2747  *    to stop dispatching requests to underlying devices when underlying
2748  *    devices are busy.  This behavior helps more I/O merging on the queue
2749  *    of the request stacking driver and prevents I/O throughput regression
2750  *    on burst I/O load.
2751  *
2752  * Return:
2753  *    0 - Not busy (The request stacking driver should dispatch request)
2754  *    1 - Busy (The request stacking driver should stop dispatching request)
2755  */
2756 int blk_lld_busy(struct request_queue *q)
2757 {
2758 	if (q->lld_busy_fn)
2759 		return q->lld_busy_fn(q);
2760 
2761 	return 0;
2762 }
2763 EXPORT_SYMBOL_GPL(blk_lld_busy);
2764 
2765 /**
2766  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2767  * @rq: the clone request to be cleaned up
2768  *
2769  * Description:
2770  *     Free all bios in @rq for a cloned request.
2771  */
2772 void blk_rq_unprep_clone(struct request *rq)
2773 {
2774 	struct bio *bio;
2775 
2776 	while ((bio = rq->bio) != NULL) {
2777 		rq->bio = bio->bi_next;
2778 
2779 		bio_put(bio);
2780 	}
2781 }
2782 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2783 
2784 /*
2785  * Copy attributes of the original request to the clone request.
2786  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2787  */
2788 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2789 {
2790 	dst->cpu = src->cpu;
2791 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2792 	dst->cmd_type = src->cmd_type;
2793 	dst->__sector = blk_rq_pos(src);
2794 	dst->__data_len = blk_rq_bytes(src);
2795 	dst->nr_phys_segments = src->nr_phys_segments;
2796 	dst->ioprio = src->ioprio;
2797 	dst->extra_len = src->extra_len;
2798 }
2799 
2800 /**
2801  * blk_rq_prep_clone - Helper function to setup clone request
2802  * @rq: the request to be setup
2803  * @rq_src: original request to be cloned
2804  * @bs: bio_set that bios for clone are allocated from
2805  * @gfp_mask: memory allocation mask for bio
2806  * @bio_ctr: setup function to be called for each clone bio.
2807  *           Returns %0 for success, non %0 for failure.
2808  * @data: private data to be passed to @bio_ctr
2809  *
2810  * Description:
2811  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2812  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2813  *     are not copied, and copying such parts is the caller's responsibility.
2814  *     Also, pages which the original bios are pointing to are not copied
2815  *     and the cloned bios just point same pages.
2816  *     So cloned bios must be completed before original bios, which means
2817  *     the caller must complete @rq before @rq_src.
2818  */
2819 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2820 		      struct bio_set *bs, gfp_t gfp_mask,
2821 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2822 		      void *data)
2823 {
2824 	struct bio *bio, *bio_src;
2825 
2826 	if (!bs)
2827 		bs = fs_bio_set;
2828 
2829 	blk_rq_init(NULL, rq);
2830 
2831 	__rq_for_each_bio(bio_src, rq_src) {
2832 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2833 		if (!bio)
2834 			goto free_and_out;
2835 
2836 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2837 			goto free_and_out;
2838 
2839 		if (rq->bio) {
2840 			rq->biotail->bi_next = bio;
2841 			rq->biotail = bio;
2842 		} else
2843 			rq->bio = rq->biotail = bio;
2844 	}
2845 
2846 	__blk_rq_prep_clone(rq, rq_src);
2847 
2848 	return 0;
2849 
2850 free_and_out:
2851 	if (bio)
2852 		bio_put(bio);
2853 	blk_rq_unprep_clone(rq);
2854 
2855 	return -ENOMEM;
2856 }
2857 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2858 
2859 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2860 {
2861 	return queue_work(kblockd_workqueue, work);
2862 }
2863 EXPORT_SYMBOL(kblockd_schedule_work);
2864 
2865 int kblockd_schedule_delayed_work(struct request_queue *q,
2866 			struct delayed_work *dwork, unsigned long delay)
2867 {
2868 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2869 }
2870 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2871 
2872 #define PLUG_MAGIC	0x91827364
2873 
2874 /**
2875  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2876  * @plug:	The &struct blk_plug that needs to be initialized
2877  *
2878  * Description:
2879  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2880  *   pending I/O should the task end up blocking between blk_start_plug() and
2881  *   blk_finish_plug(). This is important from a performance perspective, but
2882  *   also ensures that we don't deadlock. For instance, if the task is blocking
2883  *   for a memory allocation, memory reclaim could end up wanting to free a
2884  *   page belonging to that request that is currently residing in our private
2885  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2886  *   this kind of deadlock.
2887  */
2888 void blk_start_plug(struct blk_plug *plug)
2889 {
2890 	struct task_struct *tsk = current;
2891 
2892 	plug->magic = PLUG_MAGIC;
2893 	INIT_LIST_HEAD(&plug->list);
2894 	INIT_LIST_HEAD(&plug->mq_list);
2895 	INIT_LIST_HEAD(&plug->cb_list);
2896 
2897 	/*
2898 	 * If this is a nested plug, don't actually assign it. It will be
2899 	 * flushed on its own.
2900 	 */
2901 	if (!tsk->plug) {
2902 		/*
2903 		 * Store ordering should not be needed here, since a potential
2904 		 * preempt will imply a full memory barrier
2905 		 */
2906 		tsk->plug = plug;
2907 	}
2908 }
2909 EXPORT_SYMBOL(blk_start_plug);
2910 
2911 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2912 {
2913 	struct request *rqa = container_of(a, struct request, queuelist);
2914 	struct request *rqb = container_of(b, struct request, queuelist);
2915 
2916 	return !(rqa->q < rqb->q ||
2917 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2918 }
2919 
2920 /*
2921  * If 'from_schedule' is true, then postpone the dispatch of requests
2922  * until a safe kblockd context. We due this to avoid accidental big
2923  * additional stack usage in driver dispatch, in places where the originally
2924  * plugger did not intend it.
2925  */
2926 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2927 			    bool from_schedule)
2928 	__releases(q->queue_lock)
2929 {
2930 	trace_block_unplug(q, depth, !from_schedule);
2931 
2932 	if (from_schedule)
2933 		blk_run_queue_async(q);
2934 	else
2935 		__blk_run_queue(q);
2936 	spin_unlock(q->queue_lock);
2937 }
2938 
2939 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2940 {
2941 	LIST_HEAD(callbacks);
2942 
2943 	while (!list_empty(&plug->cb_list)) {
2944 		list_splice_init(&plug->cb_list, &callbacks);
2945 
2946 		while (!list_empty(&callbacks)) {
2947 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2948 							  struct blk_plug_cb,
2949 							  list);
2950 			list_del(&cb->list);
2951 			cb->callback(cb, from_schedule);
2952 		}
2953 	}
2954 }
2955 
2956 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2957 				      int size)
2958 {
2959 	struct blk_plug *plug = current->plug;
2960 	struct blk_plug_cb *cb;
2961 
2962 	if (!plug)
2963 		return NULL;
2964 
2965 	list_for_each_entry(cb, &plug->cb_list, list)
2966 		if (cb->callback == unplug && cb->data == data)
2967 			return cb;
2968 
2969 	/* Not currently on the callback list */
2970 	BUG_ON(size < sizeof(*cb));
2971 	cb = kzalloc(size, GFP_ATOMIC);
2972 	if (cb) {
2973 		cb->data = data;
2974 		cb->callback = unplug;
2975 		list_add(&cb->list, &plug->cb_list);
2976 	}
2977 	return cb;
2978 }
2979 EXPORT_SYMBOL(blk_check_plugged);
2980 
2981 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2982 {
2983 	struct request_queue *q;
2984 	unsigned long flags;
2985 	struct request *rq;
2986 	LIST_HEAD(list);
2987 	unsigned int depth;
2988 
2989 	BUG_ON(plug->magic != PLUG_MAGIC);
2990 
2991 	flush_plug_callbacks(plug, from_schedule);
2992 
2993 	if (!list_empty(&plug->mq_list))
2994 		blk_mq_flush_plug_list(plug, from_schedule);
2995 
2996 	if (list_empty(&plug->list))
2997 		return;
2998 
2999 	list_splice_init(&plug->list, &list);
3000 
3001 	list_sort(NULL, &list, plug_rq_cmp);
3002 
3003 	q = NULL;
3004 	depth = 0;
3005 
3006 	/*
3007 	 * Save and disable interrupts here, to avoid doing it for every
3008 	 * queue lock we have to take.
3009 	 */
3010 	local_irq_save(flags);
3011 	while (!list_empty(&list)) {
3012 		rq = list_entry_rq(list.next);
3013 		list_del_init(&rq->queuelist);
3014 		BUG_ON(!rq->q);
3015 		if (rq->q != q) {
3016 			/*
3017 			 * This drops the queue lock
3018 			 */
3019 			if (q)
3020 				queue_unplugged(q, depth, from_schedule);
3021 			q = rq->q;
3022 			depth = 0;
3023 			spin_lock(q->queue_lock);
3024 		}
3025 
3026 		/*
3027 		 * Short-circuit if @q is dead
3028 		 */
3029 		if (unlikely(blk_queue_dying(q))) {
3030 			__blk_end_request_all(rq, -ENODEV);
3031 			continue;
3032 		}
3033 
3034 		/*
3035 		 * rq is already accounted, so use raw insert
3036 		 */
3037 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3038 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3039 		else
3040 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3041 
3042 		depth++;
3043 	}
3044 
3045 	/*
3046 	 * This drops the queue lock
3047 	 */
3048 	if (q)
3049 		queue_unplugged(q, depth, from_schedule);
3050 
3051 	local_irq_restore(flags);
3052 }
3053 
3054 void blk_finish_plug(struct blk_plug *plug)
3055 {
3056 	blk_flush_plug_list(plug, false);
3057 
3058 	if (plug == current->plug)
3059 		current->plug = NULL;
3060 }
3061 EXPORT_SYMBOL(blk_finish_plug);
3062 
3063 #ifdef CONFIG_PM_RUNTIME
3064 /**
3065  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3066  * @q: the queue of the device
3067  * @dev: the device the queue belongs to
3068  *
3069  * Description:
3070  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3071  *    @dev. Drivers that want to take advantage of request-based runtime PM
3072  *    should call this function after @dev has been initialized, and its
3073  *    request queue @q has been allocated, and runtime PM for it can not happen
3074  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3075  *    cases, driver should call this function before any I/O has taken place.
3076  *
3077  *    This function takes care of setting up using auto suspend for the device,
3078  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3079  *    until an updated value is either set by user or by driver. Drivers do
3080  *    not need to touch other autosuspend settings.
3081  *
3082  *    The block layer runtime PM is request based, so only works for drivers
3083  *    that use request as their IO unit instead of those directly use bio's.
3084  */
3085 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3086 {
3087 	q->dev = dev;
3088 	q->rpm_status = RPM_ACTIVE;
3089 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3090 	pm_runtime_use_autosuspend(q->dev);
3091 }
3092 EXPORT_SYMBOL(blk_pm_runtime_init);
3093 
3094 /**
3095  * blk_pre_runtime_suspend - Pre runtime suspend check
3096  * @q: the queue of the device
3097  *
3098  * Description:
3099  *    This function will check if runtime suspend is allowed for the device
3100  *    by examining if there are any requests pending in the queue. If there
3101  *    are requests pending, the device can not be runtime suspended; otherwise,
3102  *    the queue's status will be updated to SUSPENDING and the driver can
3103  *    proceed to suspend the device.
3104  *
3105  *    For the not allowed case, we mark last busy for the device so that
3106  *    runtime PM core will try to autosuspend it some time later.
3107  *
3108  *    This function should be called near the start of the device's
3109  *    runtime_suspend callback.
3110  *
3111  * Return:
3112  *    0		- OK to runtime suspend the device
3113  *    -EBUSY	- Device should not be runtime suspended
3114  */
3115 int blk_pre_runtime_suspend(struct request_queue *q)
3116 {
3117 	int ret = 0;
3118 
3119 	spin_lock_irq(q->queue_lock);
3120 	if (q->nr_pending) {
3121 		ret = -EBUSY;
3122 		pm_runtime_mark_last_busy(q->dev);
3123 	} else {
3124 		q->rpm_status = RPM_SUSPENDING;
3125 	}
3126 	spin_unlock_irq(q->queue_lock);
3127 	return ret;
3128 }
3129 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3130 
3131 /**
3132  * blk_post_runtime_suspend - Post runtime suspend processing
3133  * @q: the queue of the device
3134  * @err: return value of the device's runtime_suspend function
3135  *
3136  * Description:
3137  *    Update the queue's runtime status according to the return value of the
3138  *    device's runtime suspend function and mark last busy for the device so
3139  *    that PM core will try to auto suspend the device at a later time.
3140  *
3141  *    This function should be called near the end of the device's
3142  *    runtime_suspend callback.
3143  */
3144 void blk_post_runtime_suspend(struct request_queue *q, int err)
3145 {
3146 	spin_lock_irq(q->queue_lock);
3147 	if (!err) {
3148 		q->rpm_status = RPM_SUSPENDED;
3149 	} else {
3150 		q->rpm_status = RPM_ACTIVE;
3151 		pm_runtime_mark_last_busy(q->dev);
3152 	}
3153 	spin_unlock_irq(q->queue_lock);
3154 }
3155 EXPORT_SYMBOL(blk_post_runtime_suspend);
3156 
3157 /**
3158  * blk_pre_runtime_resume - Pre runtime resume processing
3159  * @q: the queue of the device
3160  *
3161  * Description:
3162  *    Update the queue's runtime status to RESUMING in preparation for the
3163  *    runtime resume of the device.
3164  *
3165  *    This function should be called near the start of the device's
3166  *    runtime_resume callback.
3167  */
3168 void blk_pre_runtime_resume(struct request_queue *q)
3169 {
3170 	spin_lock_irq(q->queue_lock);
3171 	q->rpm_status = RPM_RESUMING;
3172 	spin_unlock_irq(q->queue_lock);
3173 }
3174 EXPORT_SYMBOL(blk_pre_runtime_resume);
3175 
3176 /**
3177  * blk_post_runtime_resume - Post runtime resume processing
3178  * @q: the queue of the device
3179  * @err: return value of the device's runtime_resume function
3180  *
3181  * Description:
3182  *    Update the queue's runtime status according to the return value of the
3183  *    device's runtime_resume function. If it is successfully resumed, process
3184  *    the requests that are queued into the device's queue when it is resuming
3185  *    and then mark last busy and initiate autosuspend for it.
3186  *
3187  *    This function should be called near the end of the device's
3188  *    runtime_resume callback.
3189  */
3190 void blk_post_runtime_resume(struct request_queue *q, int err)
3191 {
3192 	spin_lock_irq(q->queue_lock);
3193 	if (!err) {
3194 		q->rpm_status = RPM_ACTIVE;
3195 		__blk_run_queue(q);
3196 		pm_runtime_mark_last_busy(q->dev);
3197 		pm_request_autosuspend(q->dev);
3198 	} else {
3199 		q->rpm_status = RPM_SUSPENDED;
3200 	}
3201 	spin_unlock_irq(q->queue_lock);
3202 }
3203 EXPORT_SYMBOL(blk_post_runtime_resume);
3204 #endif
3205 
3206 int __init blk_dev_init(void)
3207 {
3208 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3209 			sizeof(((struct request *)0)->cmd_flags));
3210 
3211 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3212 	kblockd_workqueue = alloc_workqueue("kblockd",
3213 					    WQ_MEM_RECLAIM | WQ_HIGHPRI |
3214 					    WQ_POWER_EFFICIENT, 0);
3215 	if (!kblockd_workqueue)
3216 		panic("Failed to create kblockd\n");
3217 
3218 	request_cachep = kmem_cache_create("blkdev_requests",
3219 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3220 
3221 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3222 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3223 
3224 	return 0;
3225 }
3226