xref: /linux/block/blk-core.c (revision 300a90b2cb5d442879e6398920c49aebbd5c8e40)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46 
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 #include "blk-ioprio.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62 
63 static DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 static struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85 
86 /**
87  * blk_queue_flag_clear - atomically clear a queue flag
88  * @flag: flag to be cleared
89  * @q: request queue
90  */
91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 	clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96 
97 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
98 static const char *const blk_op_name[] = {
99 	REQ_OP_NAME(READ),
100 	REQ_OP_NAME(WRITE),
101 	REQ_OP_NAME(FLUSH),
102 	REQ_OP_NAME(DISCARD),
103 	REQ_OP_NAME(SECURE_ERASE),
104 	REQ_OP_NAME(ZONE_RESET),
105 	REQ_OP_NAME(ZONE_RESET_ALL),
106 	REQ_OP_NAME(ZONE_OPEN),
107 	REQ_OP_NAME(ZONE_CLOSE),
108 	REQ_OP_NAME(ZONE_FINISH),
109 	REQ_OP_NAME(ZONE_APPEND),
110 	REQ_OP_NAME(WRITE_ZEROES),
111 	REQ_OP_NAME(DRV_IN),
112 	REQ_OP_NAME(DRV_OUT),
113 };
114 #undef REQ_OP_NAME
115 
116 /**
117  * blk_op_str - Return string XXX in the REQ_OP_XXX.
118  * @op: REQ_OP_XXX.
119  *
120  * Description: Centralize block layer function to convert REQ_OP_XXX into
121  * string format. Useful in the debugging and tracing bio or request. For
122  * invalid REQ_OP_XXX it returns string "UNKNOWN".
123  */
124 inline const char *blk_op_str(enum req_op op)
125 {
126 	const char *op_str = "UNKNOWN";
127 
128 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
129 		op_str = blk_op_name[op];
130 
131 	return op_str;
132 }
133 EXPORT_SYMBOL_GPL(blk_op_str);
134 
135 static const struct {
136 	int		errno;
137 	const char	*name;
138 } blk_errors[] = {
139 	[BLK_STS_OK]		= { 0,		"" },
140 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
141 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
142 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
143 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
144 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
145 	[BLK_STS_RESV_CONFLICT]	= { -EBADE,	"reservation conflict" },
146 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
147 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
148 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
149 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
150 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
151 	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
152 
153 	/* device mapper special case, should not leak out: */
154 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
155 
156 	/* zone device specific errors */
157 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
158 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
159 
160 	/* Command duration limit device-side timeout */
161 	[BLK_STS_DURATION_LIMIT]	= { -ETIME, "duration limit exceeded" },
162 
163 	[BLK_STS_INVAL]		= { -EINVAL,	"invalid" },
164 
165 	/* everything else not covered above: */
166 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
167 };
168 
169 blk_status_t errno_to_blk_status(int errno)
170 {
171 	int i;
172 
173 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
174 		if (blk_errors[i].errno == errno)
175 			return (__force blk_status_t)i;
176 	}
177 
178 	return BLK_STS_IOERR;
179 }
180 EXPORT_SYMBOL_GPL(errno_to_blk_status);
181 
182 int blk_status_to_errno(blk_status_t status)
183 {
184 	int idx = (__force int)status;
185 
186 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
187 		return -EIO;
188 	return blk_errors[idx].errno;
189 }
190 EXPORT_SYMBOL_GPL(blk_status_to_errno);
191 
192 const char *blk_status_to_str(blk_status_t status)
193 {
194 	int idx = (__force int)status;
195 
196 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
197 		return "<null>";
198 	return blk_errors[idx].name;
199 }
200 EXPORT_SYMBOL_GPL(blk_status_to_str);
201 
202 /**
203  * blk_sync_queue - cancel any pending callbacks on a queue
204  * @q: the queue
205  *
206  * Description:
207  *     The block layer may perform asynchronous callback activity
208  *     on a queue, such as calling the unplug function after a timeout.
209  *     A block device may call blk_sync_queue to ensure that any
210  *     such activity is cancelled, thus allowing it to release resources
211  *     that the callbacks might use. The caller must already have made sure
212  *     that its ->submit_bio will not re-add plugging prior to calling
213  *     this function.
214  *
215  *     This function does not cancel any asynchronous activity arising
216  *     out of elevator or throttling code. That would require elevator_exit()
217  *     and blkcg_exit_queue() to be called with queue lock initialized.
218  *
219  */
220 void blk_sync_queue(struct request_queue *q)
221 {
222 	del_timer_sync(&q->timeout);
223 	cancel_work_sync(&q->timeout_work);
224 }
225 EXPORT_SYMBOL(blk_sync_queue);
226 
227 /**
228  * blk_set_pm_only - increment pm_only counter
229  * @q: request queue pointer
230  */
231 void blk_set_pm_only(struct request_queue *q)
232 {
233 	atomic_inc(&q->pm_only);
234 }
235 EXPORT_SYMBOL_GPL(blk_set_pm_only);
236 
237 void blk_clear_pm_only(struct request_queue *q)
238 {
239 	int pm_only;
240 
241 	pm_only = atomic_dec_return(&q->pm_only);
242 	WARN_ON_ONCE(pm_only < 0);
243 	if (pm_only == 0)
244 		wake_up_all(&q->mq_freeze_wq);
245 }
246 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
247 
248 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
249 {
250 	struct request_queue *q = container_of(rcu_head,
251 			struct request_queue, rcu_head);
252 
253 	percpu_ref_exit(&q->q_usage_counter);
254 	kmem_cache_free(blk_requestq_cachep, q);
255 }
256 
257 static void blk_free_queue(struct request_queue *q)
258 {
259 	blk_free_queue_stats(q->stats);
260 	if (queue_is_mq(q))
261 		blk_mq_release(q);
262 
263 	ida_free(&blk_queue_ida, q->id);
264 	call_rcu(&q->rcu_head, blk_free_queue_rcu);
265 }
266 
267 /**
268  * blk_put_queue - decrement the request_queue refcount
269  * @q: the request_queue structure to decrement the refcount for
270  *
271  * Decrements the refcount of the request_queue and free it when the refcount
272  * reaches 0.
273  */
274 void blk_put_queue(struct request_queue *q)
275 {
276 	if (refcount_dec_and_test(&q->refs))
277 		blk_free_queue(q);
278 }
279 EXPORT_SYMBOL(blk_put_queue);
280 
281 void blk_queue_start_drain(struct request_queue *q)
282 {
283 	/*
284 	 * When queue DYING flag is set, we need to block new req
285 	 * entering queue, so we call blk_freeze_queue_start() to
286 	 * prevent I/O from crossing blk_queue_enter().
287 	 */
288 	blk_freeze_queue_start(q);
289 	if (queue_is_mq(q))
290 		blk_mq_wake_waiters(q);
291 	/* Make blk_queue_enter() reexamine the DYING flag. */
292 	wake_up_all(&q->mq_freeze_wq);
293 }
294 
295 /**
296  * blk_queue_enter() - try to increase q->q_usage_counter
297  * @q: request queue pointer
298  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
299  */
300 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
301 {
302 	const bool pm = flags & BLK_MQ_REQ_PM;
303 
304 	while (!blk_try_enter_queue(q, pm)) {
305 		if (flags & BLK_MQ_REQ_NOWAIT)
306 			return -EAGAIN;
307 
308 		/*
309 		 * read pair of barrier in blk_freeze_queue_start(), we need to
310 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
311 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
312 		 * following wait may never return if the two reads are
313 		 * reordered.
314 		 */
315 		smp_rmb();
316 		wait_event(q->mq_freeze_wq,
317 			   (!q->mq_freeze_depth &&
318 			    blk_pm_resume_queue(pm, q)) ||
319 			   blk_queue_dying(q));
320 		if (blk_queue_dying(q))
321 			return -ENODEV;
322 	}
323 
324 	return 0;
325 }
326 
327 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
328 {
329 	while (!blk_try_enter_queue(q, false)) {
330 		struct gendisk *disk = bio->bi_bdev->bd_disk;
331 
332 		if (bio->bi_opf & REQ_NOWAIT) {
333 			if (test_bit(GD_DEAD, &disk->state))
334 				goto dead;
335 			bio_wouldblock_error(bio);
336 			return -EAGAIN;
337 		}
338 
339 		/*
340 		 * read pair of barrier in blk_freeze_queue_start(), we need to
341 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
342 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
343 		 * following wait may never return if the two reads are
344 		 * reordered.
345 		 */
346 		smp_rmb();
347 		wait_event(q->mq_freeze_wq,
348 			   (!q->mq_freeze_depth &&
349 			    blk_pm_resume_queue(false, q)) ||
350 			   test_bit(GD_DEAD, &disk->state));
351 		if (test_bit(GD_DEAD, &disk->state))
352 			goto dead;
353 	}
354 
355 	return 0;
356 dead:
357 	bio_io_error(bio);
358 	return -ENODEV;
359 }
360 
361 void blk_queue_exit(struct request_queue *q)
362 {
363 	percpu_ref_put(&q->q_usage_counter);
364 }
365 
366 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
367 {
368 	struct request_queue *q =
369 		container_of(ref, struct request_queue, q_usage_counter);
370 
371 	wake_up_all(&q->mq_freeze_wq);
372 }
373 
374 static void blk_rq_timed_out_timer(struct timer_list *t)
375 {
376 	struct request_queue *q = from_timer(q, t, timeout);
377 
378 	kblockd_schedule_work(&q->timeout_work);
379 }
380 
381 static void blk_timeout_work(struct work_struct *work)
382 {
383 }
384 
385 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
386 {
387 	struct request_queue *q;
388 	int error;
389 
390 	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
391 				  node_id);
392 	if (!q)
393 		return ERR_PTR(-ENOMEM);
394 
395 	q->last_merge = NULL;
396 
397 	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
398 	if (q->id < 0) {
399 		error = q->id;
400 		goto fail_q;
401 	}
402 
403 	q->stats = blk_alloc_queue_stats();
404 	if (!q->stats) {
405 		error = -ENOMEM;
406 		goto fail_id;
407 	}
408 
409 	error = blk_set_default_limits(lim);
410 	if (error)
411 		goto fail_stats;
412 	q->limits = *lim;
413 
414 	q->node = node_id;
415 
416 	atomic_set(&q->nr_active_requests_shared_tags, 0);
417 
418 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
419 	INIT_WORK(&q->timeout_work, blk_timeout_work);
420 	INIT_LIST_HEAD(&q->icq_list);
421 
422 	refcount_set(&q->refs, 1);
423 	mutex_init(&q->debugfs_mutex);
424 	mutex_init(&q->sysfs_lock);
425 	mutex_init(&q->sysfs_dir_lock);
426 	mutex_init(&q->limits_lock);
427 	mutex_init(&q->rq_qos_mutex);
428 	spin_lock_init(&q->queue_lock);
429 
430 	init_waitqueue_head(&q->mq_freeze_wq);
431 	mutex_init(&q->mq_freeze_lock);
432 
433 	blkg_init_queue(q);
434 
435 	/*
436 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
437 	 * See blk_register_queue() for details.
438 	 */
439 	error = percpu_ref_init(&q->q_usage_counter,
440 				blk_queue_usage_counter_release,
441 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
442 	if (error)
443 		goto fail_stats;
444 
445 	q->nr_requests = BLKDEV_DEFAULT_RQ;
446 
447 	return q;
448 
449 fail_stats:
450 	blk_free_queue_stats(q->stats);
451 fail_id:
452 	ida_free(&blk_queue_ida, q->id);
453 fail_q:
454 	kmem_cache_free(blk_requestq_cachep, q);
455 	return ERR_PTR(error);
456 }
457 
458 /**
459  * blk_get_queue - increment the request_queue refcount
460  * @q: the request_queue structure to increment the refcount for
461  *
462  * Increment the refcount of the request_queue kobject.
463  *
464  * Context: Any context.
465  */
466 bool blk_get_queue(struct request_queue *q)
467 {
468 	if (unlikely(blk_queue_dying(q)))
469 		return false;
470 	refcount_inc(&q->refs);
471 	return true;
472 }
473 EXPORT_SYMBOL(blk_get_queue);
474 
475 #ifdef CONFIG_FAIL_MAKE_REQUEST
476 
477 static DECLARE_FAULT_ATTR(fail_make_request);
478 
479 static int __init setup_fail_make_request(char *str)
480 {
481 	return setup_fault_attr(&fail_make_request, str);
482 }
483 __setup("fail_make_request=", setup_fail_make_request);
484 
485 bool should_fail_request(struct block_device *part, unsigned int bytes)
486 {
487 	return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
488 	       should_fail(&fail_make_request, bytes);
489 }
490 
491 static int __init fail_make_request_debugfs(void)
492 {
493 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
494 						NULL, &fail_make_request);
495 
496 	return PTR_ERR_OR_ZERO(dir);
497 }
498 
499 late_initcall(fail_make_request_debugfs);
500 #endif /* CONFIG_FAIL_MAKE_REQUEST */
501 
502 static inline void bio_check_ro(struct bio *bio)
503 {
504 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
505 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
506 			return;
507 
508 		if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
509 			return;
510 
511 		bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
512 
513 		/*
514 		 * Use ioctl to set underlying disk of raid/dm to read-only
515 		 * will trigger this.
516 		 */
517 		pr_warn("Trying to write to read-only block-device %pg\n",
518 			bio->bi_bdev);
519 	}
520 }
521 
522 static noinline int should_fail_bio(struct bio *bio)
523 {
524 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
525 		return -EIO;
526 	return 0;
527 }
528 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
529 
530 /*
531  * Check whether this bio extends beyond the end of the device or partition.
532  * This may well happen - the kernel calls bread() without checking the size of
533  * the device, e.g., when mounting a file system.
534  */
535 static inline int bio_check_eod(struct bio *bio)
536 {
537 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
538 	unsigned int nr_sectors = bio_sectors(bio);
539 
540 	if (nr_sectors &&
541 	    (nr_sectors > maxsector ||
542 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
543 		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
544 				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
545 				    current->comm, bio->bi_bdev, bio->bi_opf,
546 				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
547 		return -EIO;
548 	}
549 	return 0;
550 }
551 
552 /*
553  * Remap block n of partition p to block n+start(p) of the disk.
554  */
555 static int blk_partition_remap(struct bio *bio)
556 {
557 	struct block_device *p = bio->bi_bdev;
558 
559 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
560 		return -EIO;
561 	if (bio_sectors(bio)) {
562 		bio->bi_iter.bi_sector += p->bd_start_sect;
563 		trace_block_bio_remap(bio, p->bd_dev,
564 				      bio->bi_iter.bi_sector -
565 				      p->bd_start_sect);
566 	}
567 	bio_set_flag(bio, BIO_REMAPPED);
568 	return 0;
569 }
570 
571 /*
572  * Check write append to a zoned block device.
573  */
574 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
575 						 struct bio *bio)
576 {
577 	int nr_sectors = bio_sectors(bio);
578 
579 	/* Only applicable to zoned block devices */
580 	if (!bdev_is_zoned(bio->bi_bdev))
581 		return BLK_STS_NOTSUPP;
582 
583 	/* The bio sector must point to the start of a sequential zone */
584 	if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
585 		return BLK_STS_IOERR;
586 
587 	/*
588 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
589 	 * split and could result in non-contiguous sectors being written in
590 	 * different zones.
591 	 */
592 	if (nr_sectors > q->limits.chunk_sectors)
593 		return BLK_STS_IOERR;
594 
595 	/* Make sure the BIO is small enough and will not get split */
596 	if (nr_sectors > queue_max_zone_append_sectors(q))
597 		return BLK_STS_IOERR;
598 
599 	bio->bi_opf |= REQ_NOMERGE;
600 
601 	return BLK_STS_OK;
602 }
603 
604 static void __submit_bio(struct bio *bio)
605 {
606 	/* If plug is not used, add new plug here to cache nsecs time. */
607 	struct blk_plug plug;
608 
609 	if (unlikely(!blk_crypto_bio_prep(&bio)))
610 		return;
611 
612 	blk_start_plug(&plug);
613 
614 	if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
615 		blk_mq_submit_bio(bio);
616 	} else if (likely(bio_queue_enter(bio) == 0)) {
617 		struct gendisk *disk = bio->bi_bdev->bd_disk;
618 
619 		disk->fops->submit_bio(bio);
620 		blk_queue_exit(disk->queue);
621 	}
622 
623 	blk_finish_plug(&plug);
624 }
625 
626 /*
627  * The loop in this function may be a bit non-obvious, and so deserves some
628  * explanation:
629  *
630  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
631  *    that), so we have a list with a single bio.
632  *  - We pretend that we have just taken it off a longer list, so we assign
633  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
634  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
635  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
636  *    non-NULL value in bio_list and re-enter the loop from the top.
637  *  - In this case we really did just take the bio of the top of the list (no
638  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
639  *    again.
640  *
641  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
642  * bio_list_on_stack[1] contains bios that were submitted before the current
643  *	->submit_bio, but that haven't been processed yet.
644  */
645 static void __submit_bio_noacct(struct bio *bio)
646 {
647 	struct bio_list bio_list_on_stack[2];
648 
649 	BUG_ON(bio->bi_next);
650 
651 	bio_list_init(&bio_list_on_stack[0]);
652 	current->bio_list = bio_list_on_stack;
653 
654 	do {
655 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
656 		struct bio_list lower, same;
657 
658 		/*
659 		 * Create a fresh bio_list for all subordinate requests.
660 		 */
661 		bio_list_on_stack[1] = bio_list_on_stack[0];
662 		bio_list_init(&bio_list_on_stack[0]);
663 
664 		__submit_bio(bio);
665 
666 		/*
667 		 * Sort new bios into those for a lower level and those for the
668 		 * same level.
669 		 */
670 		bio_list_init(&lower);
671 		bio_list_init(&same);
672 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
673 			if (q == bdev_get_queue(bio->bi_bdev))
674 				bio_list_add(&same, bio);
675 			else
676 				bio_list_add(&lower, bio);
677 
678 		/*
679 		 * Now assemble so we handle the lowest level first.
680 		 */
681 		bio_list_merge(&bio_list_on_stack[0], &lower);
682 		bio_list_merge(&bio_list_on_stack[0], &same);
683 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
684 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
685 
686 	current->bio_list = NULL;
687 }
688 
689 static void __submit_bio_noacct_mq(struct bio *bio)
690 {
691 	struct bio_list bio_list[2] = { };
692 
693 	current->bio_list = bio_list;
694 
695 	do {
696 		__submit_bio(bio);
697 	} while ((bio = bio_list_pop(&bio_list[0])));
698 
699 	current->bio_list = NULL;
700 }
701 
702 void submit_bio_noacct_nocheck(struct bio *bio)
703 {
704 	blk_cgroup_bio_start(bio);
705 	blkcg_bio_issue_init(bio);
706 
707 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
708 		trace_block_bio_queue(bio);
709 		/*
710 		 * Now that enqueuing has been traced, we need to trace
711 		 * completion as well.
712 		 */
713 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
714 	}
715 
716 	/*
717 	 * We only want one ->submit_bio to be active at a time, else stack
718 	 * usage with stacked devices could be a problem.  Use current->bio_list
719 	 * to collect a list of requests submited by a ->submit_bio method while
720 	 * it is active, and then process them after it returned.
721 	 */
722 	if (current->bio_list)
723 		bio_list_add(&current->bio_list[0], bio);
724 	else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
725 		__submit_bio_noacct_mq(bio);
726 	else
727 		__submit_bio_noacct(bio);
728 }
729 
730 static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
731 						 struct bio *bio)
732 {
733 	if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
734 		return BLK_STS_INVAL;
735 
736 	if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
737 		return BLK_STS_INVAL;
738 
739 	return BLK_STS_OK;
740 }
741 
742 /**
743  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
744  * @bio:  The bio describing the location in memory and on the device.
745  *
746  * This is a version of submit_bio() that shall only be used for I/O that is
747  * resubmitted to lower level drivers by stacking block drivers.  All file
748  * systems and other upper level users of the block layer should use
749  * submit_bio() instead.
750  */
751 void submit_bio_noacct(struct bio *bio)
752 {
753 	struct block_device *bdev = bio->bi_bdev;
754 	struct request_queue *q = bdev_get_queue(bdev);
755 	blk_status_t status = BLK_STS_IOERR;
756 
757 	might_sleep();
758 
759 	/*
760 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
761 	 * if queue does not support NOWAIT.
762 	 */
763 	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
764 		goto not_supported;
765 
766 	if (should_fail_bio(bio))
767 		goto end_io;
768 	bio_check_ro(bio);
769 	if (!bio_flagged(bio, BIO_REMAPPED)) {
770 		if (unlikely(bio_check_eod(bio)))
771 			goto end_io;
772 		if (bdev_is_partition(bdev) &&
773 		    unlikely(blk_partition_remap(bio)))
774 			goto end_io;
775 	}
776 
777 	/*
778 	 * Filter flush bio's early so that bio based drivers without flush
779 	 * support don't have to worry about them.
780 	 */
781 	if (op_is_flush(bio->bi_opf)) {
782 		if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
783 				 bio_op(bio) != REQ_OP_ZONE_APPEND))
784 			goto end_io;
785 		if (!bdev_write_cache(bdev)) {
786 			bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
787 			if (!bio_sectors(bio)) {
788 				status = BLK_STS_OK;
789 				goto end_io;
790 			}
791 		}
792 	}
793 
794 	if (!(q->limits.features & BLK_FEAT_POLL) &&
795 			(bio->bi_opf & REQ_POLLED)) {
796 		bio_clear_polled(bio);
797 		goto not_supported;
798 	}
799 
800 	switch (bio_op(bio)) {
801 	case REQ_OP_READ:
802 	case REQ_OP_WRITE:
803 		if (bio->bi_opf & REQ_ATOMIC) {
804 			status = blk_validate_atomic_write_op_size(q, bio);
805 			if (status != BLK_STS_OK)
806 				goto end_io;
807 		}
808 		break;
809 	case REQ_OP_FLUSH:
810 		/*
811 		 * REQ_OP_FLUSH can't be submitted through bios, it is only
812 		 * synthetized in struct request by the flush state machine.
813 		 */
814 		goto not_supported;
815 	case REQ_OP_DISCARD:
816 		if (!bdev_max_discard_sectors(bdev))
817 			goto not_supported;
818 		break;
819 	case REQ_OP_SECURE_ERASE:
820 		if (!bdev_max_secure_erase_sectors(bdev))
821 			goto not_supported;
822 		break;
823 	case REQ_OP_ZONE_APPEND:
824 		status = blk_check_zone_append(q, bio);
825 		if (status != BLK_STS_OK)
826 			goto end_io;
827 		break;
828 	case REQ_OP_WRITE_ZEROES:
829 		if (!q->limits.max_write_zeroes_sectors)
830 			goto not_supported;
831 		break;
832 	case REQ_OP_ZONE_RESET:
833 	case REQ_OP_ZONE_OPEN:
834 	case REQ_OP_ZONE_CLOSE:
835 	case REQ_OP_ZONE_FINISH:
836 	case REQ_OP_ZONE_RESET_ALL:
837 		if (!bdev_is_zoned(bio->bi_bdev))
838 			goto not_supported;
839 		break;
840 	case REQ_OP_DRV_IN:
841 	case REQ_OP_DRV_OUT:
842 		/*
843 		 * Driver private operations are only used with passthrough
844 		 * requests.
845 		 */
846 		fallthrough;
847 	default:
848 		goto not_supported;
849 	}
850 
851 	if (blk_throtl_bio(bio))
852 		return;
853 	submit_bio_noacct_nocheck(bio);
854 	return;
855 
856 not_supported:
857 	status = BLK_STS_NOTSUPP;
858 end_io:
859 	bio->bi_status = status;
860 	bio_endio(bio);
861 }
862 EXPORT_SYMBOL(submit_bio_noacct);
863 
864 static void bio_set_ioprio(struct bio *bio)
865 {
866 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
867 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
868 		bio->bi_ioprio = get_current_ioprio();
869 	blkcg_set_ioprio(bio);
870 }
871 
872 /**
873  * submit_bio - submit a bio to the block device layer for I/O
874  * @bio: The &struct bio which describes the I/O
875  *
876  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
877  * fully set up &struct bio that describes the I/O that needs to be done.  The
878  * bio will be send to the device described by the bi_bdev field.
879  *
880  * The success/failure status of the request, along with notification of
881  * completion, is delivered asynchronously through the ->bi_end_io() callback
882  * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
883  * been called.
884  */
885 void submit_bio(struct bio *bio)
886 {
887 	if (bio_op(bio) == REQ_OP_READ) {
888 		task_io_account_read(bio->bi_iter.bi_size);
889 		count_vm_events(PGPGIN, bio_sectors(bio));
890 	} else if (bio_op(bio) == REQ_OP_WRITE) {
891 		count_vm_events(PGPGOUT, bio_sectors(bio));
892 	}
893 
894 	bio_set_ioprio(bio);
895 	submit_bio_noacct(bio);
896 }
897 EXPORT_SYMBOL(submit_bio);
898 
899 /**
900  * bio_poll - poll for BIO completions
901  * @bio: bio to poll for
902  * @iob: batches of IO
903  * @flags: BLK_POLL_* flags that control the behavior
904  *
905  * Poll for completions on queue associated with the bio. Returns number of
906  * completed entries found.
907  *
908  * Note: the caller must either be the context that submitted @bio, or
909  * be in a RCU critical section to prevent freeing of @bio.
910  */
911 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
912 {
913 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
914 	struct block_device *bdev;
915 	struct request_queue *q;
916 	int ret = 0;
917 
918 	bdev = READ_ONCE(bio->bi_bdev);
919 	if (!bdev)
920 		return 0;
921 
922 	q = bdev_get_queue(bdev);
923 	if (cookie == BLK_QC_T_NONE || !(q->limits.features & BLK_FEAT_POLL))
924 		return 0;
925 
926 	blk_flush_plug(current->plug, false);
927 
928 	/*
929 	 * We need to be able to enter a frozen queue, similar to how
930 	 * timeouts also need to do that. If that is blocked, then we can
931 	 * have pending IO when a queue freeze is started, and then the
932 	 * wait for the freeze to finish will wait for polled requests to
933 	 * timeout as the poller is preventer from entering the queue and
934 	 * completing them. As long as we prevent new IO from being queued,
935 	 * that should be all that matters.
936 	 */
937 	if (!percpu_ref_tryget(&q->q_usage_counter))
938 		return 0;
939 	if (queue_is_mq(q)) {
940 		ret = blk_mq_poll(q, cookie, iob, flags);
941 	} else {
942 		struct gendisk *disk = q->disk;
943 
944 		if (disk && disk->fops->poll_bio)
945 			ret = disk->fops->poll_bio(bio, iob, flags);
946 	}
947 	blk_queue_exit(q);
948 	return ret;
949 }
950 EXPORT_SYMBOL_GPL(bio_poll);
951 
952 /*
953  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
954  * in iocb->private, and cleared before freeing the bio.
955  */
956 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
957 		    unsigned int flags)
958 {
959 	struct bio *bio;
960 	int ret = 0;
961 
962 	/*
963 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
964 	 * point to a freshly allocated bio at this point.  If that happens
965 	 * we have a few cases to consider:
966 	 *
967 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
968 	 *     simply nothing in this case
969 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
970 	 *     this and return 0
971 	 *  3) the bio points to a poll capable device, including but not
972 	 *     limited to the one that the original bio pointed to.  In this
973 	 *     case we will call into the actual poll method and poll for I/O,
974 	 *     even if we don't need to, but it won't cause harm either.
975 	 *
976 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
977 	 * is still allocated. Because partitions hold a reference to the whole
978 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
979 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
980 	 * are still valid as well.
981 	 */
982 	rcu_read_lock();
983 	bio = READ_ONCE(kiocb->private);
984 	if (bio)
985 		ret = bio_poll(bio, iob, flags);
986 	rcu_read_unlock();
987 
988 	return ret;
989 }
990 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
991 
992 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
993 {
994 	unsigned long stamp;
995 again:
996 	stamp = READ_ONCE(part->bd_stamp);
997 	if (unlikely(time_after(now, stamp)) &&
998 	    likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
999 	    (end || part_in_flight(part)))
1000 		__part_stat_add(part, io_ticks, now - stamp);
1001 
1002 	if (bdev_is_partition(part)) {
1003 		part = bdev_whole(part);
1004 		goto again;
1005 	}
1006 }
1007 
1008 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1009 				 unsigned long start_time)
1010 {
1011 	part_stat_lock();
1012 	update_io_ticks(bdev, start_time, false);
1013 	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1014 	part_stat_unlock();
1015 
1016 	return start_time;
1017 }
1018 EXPORT_SYMBOL(bdev_start_io_acct);
1019 
1020 /**
1021  * bio_start_io_acct - start I/O accounting for bio based drivers
1022  * @bio:	bio to start account for
1023  *
1024  * Returns the start time that should be passed back to bio_end_io_acct().
1025  */
1026 unsigned long bio_start_io_acct(struct bio *bio)
1027 {
1028 	return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1029 }
1030 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1031 
1032 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1033 		      unsigned int sectors, unsigned long start_time)
1034 {
1035 	const int sgrp = op_stat_group(op);
1036 	unsigned long now = READ_ONCE(jiffies);
1037 	unsigned long duration = now - start_time;
1038 
1039 	part_stat_lock();
1040 	update_io_ticks(bdev, now, true);
1041 	part_stat_inc(bdev, ios[sgrp]);
1042 	part_stat_add(bdev, sectors[sgrp], sectors);
1043 	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1044 	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1045 	part_stat_unlock();
1046 }
1047 EXPORT_SYMBOL(bdev_end_io_acct);
1048 
1049 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1050 			      struct block_device *orig_bdev)
1051 {
1052 	bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1053 }
1054 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1055 
1056 /**
1057  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1058  * @q : the queue of the device being checked
1059  *
1060  * Description:
1061  *    Check if underlying low-level drivers of a device are busy.
1062  *    If the drivers want to export their busy state, they must set own
1063  *    exporting function using blk_queue_lld_busy() first.
1064  *
1065  *    Basically, this function is used only by request stacking drivers
1066  *    to stop dispatching requests to underlying devices when underlying
1067  *    devices are busy.  This behavior helps more I/O merging on the queue
1068  *    of the request stacking driver and prevents I/O throughput regression
1069  *    on burst I/O load.
1070  *
1071  * Return:
1072  *    0 - Not busy (The request stacking driver should dispatch request)
1073  *    1 - Busy (The request stacking driver should stop dispatching request)
1074  */
1075 int blk_lld_busy(struct request_queue *q)
1076 {
1077 	if (queue_is_mq(q) && q->mq_ops->busy)
1078 		return q->mq_ops->busy(q);
1079 
1080 	return 0;
1081 }
1082 EXPORT_SYMBOL_GPL(blk_lld_busy);
1083 
1084 int kblockd_schedule_work(struct work_struct *work)
1085 {
1086 	return queue_work(kblockd_workqueue, work);
1087 }
1088 EXPORT_SYMBOL(kblockd_schedule_work);
1089 
1090 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1091 				unsigned long delay)
1092 {
1093 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1094 }
1095 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1096 
1097 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1098 {
1099 	struct task_struct *tsk = current;
1100 
1101 	/*
1102 	 * If this is a nested plug, don't actually assign it.
1103 	 */
1104 	if (tsk->plug)
1105 		return;
1106 
1107 	plug->cur_ktime = 0;
1108 	plug->mq_list = NULL;
1109 	plug->cached_rq = NULL;
1110 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1111 	plug->rq_count = 0;
1112 	plug->multiple_queues = false;
1113 	plug->has_elevator = false;
1114 	INIT_LIST_HEAD(&plug->cb_list);
1115 
1116 	/*
1117 	 * Store ordering should not be needed here, since a potential
1118 	 * preempt will imply a full memory barrier
1119 	 */
1120 	tsk->plug = plug;
1121 }
1122 
1123 /**
1124  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1125  * @plug:	The &struct blk_plug that needs to be initialized
1126  *
1127  * Description:
1128  *   blk_start_plug() indicates to the block layer an intent by the caller
1129  *   to submit multiple I/O requests in a batch.  The block layer may use
1130  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1131  *   is called.  However, the block layer may choose to submit requests
1132  *   before a call to blk_finish_plug() if the number of queued I/Os
1133  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1134  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1135  *   the task schedules (see below).
1136  *
1137  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1138  *   pending I/O should the task end up blocking between blk_start_plug() and
1139  *   blk_finish_plug(). This is important from a performance perspective, but
1140  *   also ensures that we don't deadlock. For instance, if the task is blocking
1141  *   for a memory allocation, memory reclaim could end up wanting to free a
1142  *   page belonging to that request that is currently residing in our private
1143  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1144  *   this kind of deadlock.
1145  */
1146 void blk_start_plug(struct blk_plug *plug)
1147 {
1148 	blk_start_plug_nr_ios(plug, 1);
1149 }
1150 EXPORT_SYMBOL(blk_start_plug);
1151 
1152 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1153 {
1154 	LIST_HEAD(callbacks);
1155 
1156 	while (!list_empty(&plug->cb_list)) {
1157 		list_splice_init(&plug->cb_list, &callbacks);
1158 
1159 		while (!list_empty(&callbacks)) {
1160 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1161 							  struct blk_plug_cb,
1162 							  list);
1163 			list_del(&cb->list);
1164 			cb->callback(cb, from_schedule);
1165 		}
1166 	}
1167 }
1168 
1169 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1170 				      int size)
1171 {
1172 	struct blk_plug *plug = current->plug;
1173 	struct blk_plug_cb *cb;
1174 
1175 	if (!plug)
1176 		return NULL;
1177 
1178 	list_for_each_entry(cb, &plug->cb_list, list)
1179 		if (cb->callback == unplug && cb->data == data)
1180 			return cb;
1181 
1182 	/* Not currently on the callback list */
1183 	BUG_ON(size < sizeof(*cb));
1184 	cb = kzalloc(size, GFP_ATOMIC);
1185 	if (cb) {
1186 		cb->data = data;
1187 		cb->callback = unplug;
1188 		list_add(&cb->list, &plug->cb_list);
1189 	}
1190 	return cb;
1191 }
1192 EXPORT_SYMBOL(blk_check_plugged);
1193 
1194 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1195 {
1196 	if (!list_empty(&plug->cb_list))
1197 		flush_plug_callbacks(plug, from_schedule);
1198 	blk_mq_flush_plug_list(plug, from_schedule);
1199 	/*
1200 	 * Unconditionally flush out cached requests, even if the unplug
1201 	 * event came from schedule. Since we know hold references to the
1202 	 * queue for cached requests, we don't want a blocked task holding
1203 	 * up a queue freeze/quiesce event.
1204 	 */
1205 	if (unlikely(!rq_list_empty(plug->cached_rq)))
1206 		blk_mq_free_plug_rqs(plug);
1207 
1208 	plug->cur_ktime = 0;
1209 	current->flags &= ~PF_BLOCK_TS;
1210 }
1211 
1212 /**
1213  * blk_finish_plug - mark the end of a batch of submitted I/O
1214  * @plug:	The &struct blk_plug passed to blk_start_plug()
1215  *
1216  * Description:
1217  * Indicate that a batch of I/O submissions is complete.  This function
1218  * must be paired with an initial call to blk_start_plug().  The intent
1219  * is to allow the block layer to optimize I/O submission.  See the
1220  * documentation for blk_start_plug() for more information.
1221  */
1222 void blk_finish_plug(struct blk_plug *plug)
1223 {
1224 	if (plug == current->plug) {
1225 		__blk_flush_plug(plug, false);
1226 		current->plug = NULL;
1227 	}
1228 }
1229 EXPORT_SYMBOL(blk_finish_plug);
1230 
1231 void blk_io_schedule(void)
1232 {
1233 	/* Prevent hang_check timer from firing at us during very long I/O */
1234 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1235 
1236 	if (timeout)
1237 		io_schedule_timeout(timeout);
1238 	else
1239 		io_schedule();
1240 }
1241 EXPORT_SYMBOL_GPL(blk_io_schedule);
1242 
1243 int __init blk_dev_init(void)
1244 {
1245 	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1246 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1247 			sizeof_field(struct request, cmd_flags));
1248 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1249 			sizeof_field(struct bio, bi_opf));
1250 
1251 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1252 	kblockd_workqueue = alloc_workqueue("kblockd",
1253 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1254 	if (!kblockd_workqueue)
1255 		panic("Failed to create kblockd\n");
1256 
1257 	blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
1258 
1259 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1260 
1261 	return 0;
1262 }
1263