1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 #include <linux/list_sort.h> 31 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/block.h> 34 35 #include "blk.h" 36 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 40 41 static int __make_request(struct request_queue *q, struct bio *bio); 42 43 /* 44 * For the allocated request tables 45 */ 46 static struct kmem_cache *request_cachep; 47 48 /* 49 * For queue allocation 50 */ 51 struct kmem_cache *blk_requestq_cachep; 52 53 /* 54 * Controlling structure to kblockd 55 */ 56 static struct workqueue_struct *kblockd_workqueue; 57 58 static void drive_stat_acct(struct request *rq, int new_io) 59 { 60 struct hd_struct *part; 61 int rw = rq_data_dir(rq); 62 int cpu; 63 64 if (!blk_do_io_stat(rq)) 65 return; 66 67 cpu = part_stat_lock(); 68 69 if (!new_io) { 70 part = rq->part; 71 part_stat_inc(cpu, part, merges[rw]); 72 } else { 73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 74 if (!hd_struct_try_get(part)) { 75 /* 76 * The partition is already being removed, 77 * the request will be accounted on the disk only 78 * 79 * We take a reference on disk->part0 although that 80 * partition will never be deleted, so we can treat 81 * it as any other partition. 82 */ 83 part = &rq->rq_disk->part0; 84 hd_struct_get(part); 85 } 86 part_round_stats(cpu, part); 87 part_inc_in_flight(part, rw); 88 rq->part = part; 89 } 90 91 part_stat_unlock(); 92 } 93 94 void blk_queue_congestion_threshold(struct request_queue *q) 95 { 96 int nr; 97 98 nr = q->nr_requests - (q->nr_requests / 8) + 1; 99 if (nr > q->nr_requests) 100 nr = q->nr_requests; 101 q->nr_congestion_on = nr; 102 103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 104 if (nr < 1) 105 nr = 1; 106 q->nr_congestion_off = nr; 107 } 108 109 /** 110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 111 * @bdev: device 112 * 113 * Locates the passed device's request queue and returns the address of its 114 * backing_dev_info 115 * 116 * Will return NULL if the request queue cannot be located. 117 */ 118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 119 { 120 struct backing_dev_info *ret = NULL; 121 struct request_queue *q = bdev_get_queue(bdev); 122 123 if (q) 124 ret = &q->backing_dev_info; 125 return ret; 126 } 127 EXPORT_SYMBOL(blk_get_backing_dev_info); 128 129 void blk_rq_init(struct request_queue *q, struct request *rq) 130 { 131 memset(rq, 0, sizeof(*rq)); 132 133 INIT_LIST_HEAD(&rq->queuelist); 134 INIT_LIST_HEAD(&rq->timeout_list); 135 rq->cpu = -1; 136 rq->q = q; 137 rq->__sector = (sector_t) -1; 138 INIT_HLIST_NODE(&rq->hash); 139 RB_CLEAR_NODE(&rq->rb_node); 140 rq->cmd = rq->__cmd; 141 rq->cmd_len = BLK_MAX_CDB; 142 rq->tag = -1; 143 rq->ref_count = 1; 144 rq->start_time = jiffies; 145 set_start_time_ns(rq); 146 rq->part = NULL; 147 } 148 EXPORT_SYMBOL(blk_rq_init); 149 150 static void req_bio_endio(struct request *rq, struct bio *bio, 151 unsigned int nbytes, int error) 152 { 153 if (error) 154 clear_bit(BIO_UPTODATE, &bio->bi_flags); 155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 156 error = -EIO; 157 158 if (unlikely(nbytes > bio->bi_size)) { 159 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 160 __func__, nbytes, bio->bi_size); 161 nbytes = bio->bi_size; 162 } 163 164 if (unlikely(rq->cmd_flags & REQ_QUIET)) 165 set_bit(BIO_QUIET, &bio->bi_flags); 166 167 bio->bi_size -= nbytes; 168 bio->bi_sector += (nbytes >> 9); 169 170 if (bio_integrity(bio)) 171 bio_integrity_advance(bio, nbytes); 172 173 /* don't actually finish bio if it's part of flush sequence */ 174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 175 bio_endio(bio, error); 176 } 177 178 void blk_dump_rq_flags(struct request *rq, char *msg) 179 { 180 int bit; 181 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 184 rq->cmd_flags); 185 186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 187 (unsigned long long)blk_rq_pos(rq), 188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 191 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 193 printk(KERN_INFO " cdb: "); 194 for (bit = 0; bit < BLK_MAX_CDB; bit++) 195 printk("%02x ", rq->cmd[bit]); 196 printk("\n"); 197 } 198 } 199 EXPORT_SYMBOL(blk_dump_rq_flags); 200 201 static void blk_delay_work(struct work_struct *work) 202 { 203 struct request_queue *q; 204 205 q = container_of(work, struct request_queue, delay_work.work); 206 spin_lock_irq(q->queue_lock); 207 __blk_run_queue(q); 208 spin_unlock_irq(q->queue_lock); 209 } 210 211 /** 212 * blk_delay_queue - restart queueing after defined interval 213 * @q: The &struct request_queue in question 214 * @msecs: Delay in msecs 215 * 216 * Description: 217 * Sometimes queueing needs to be postponed for a little while, to allow 218 * resources to come back. This function will make sure that queueing is 219 * restarted around the specified time. 220 */ 221 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 222 { 223 queue_delayed_work(kblockd_workqueue, &q->delay_work, 224 msecs_to_jiffies(msecs)); 225 } 226 EXPORT_SYMBOL(blk_delay_queue); 227 228 /** 229 * blk_start_queue - restart a previously stopped queue 230 * @q: The &struct request_queue in question 231 * 232 * Description: 233 * blk_start_queue() will clear the stop flag on the queue, and call 234 * the request_fn for the queue if it was in a stopped state when 235 * entered. Also see blk_stop_queue(). Queue lock must be held. 236 **/ 237 void blk_start_queue(struct request_queue *q) 238 { 239 WARN_ON(!irqs_disabled()); 240 241 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 242 __blk_run_queue(q); 243 } 244 EXPORT_SYMBOL(blk_start_queue); 245 246 /** 247 * blk_stop_queue - stop a queue 248 * @q: The &struct request_queue in question 249 * 250 * Description: 251 * The Linux block layer assumes that a block driver will consume all 252 * entries on the request queue when the request_fn strategy is called. 253 * Often this will not happen, because of hardware limitations (queue 254 * depth settings). If a device driver gets a 'queue full' response, 255 * or if it simply chooses not to queue more I/O at one point, it can 256 * call this function to prevent the request_fn from being called until 257 * the driver has signalled it's ready to go again. This happens by calling 258 * blk_start_queue() to restart queue operations. Queue lock must be held. 259 **/ 260 void blk_stop_queue(struct request_queue *q) 261 { 262 __cancel_delayed_work(&q->delay_work); 263 queue_flag_set(QUEUE_FLAG_STOPPED, q); 264 } 265 EXPORT_SYMBOL(blk_stop_queue); 266 267 /** 268 * blk_sync_queue - cancel any pending callbacks on a queue 269 * @q: the queue 270 * 271 * Description: 272 * The block layer may perform asynchronous callback activity 273 * on a queue, such as calling the unplug function after a timeout. 274 * A block device may call blk_sync_queue to ensure that any 275 * such activity is cancelled, thus allowing it to release resources 276 * that the callbacks might use. The caller must already have made sure 277 * that its ->make_request_fn will not re-add plugging prior to calling 278 * this function. 279 * 280 * This function does not cancel any asynchronous activity arising 281 * out of elevator or throttling code. That would require elevaotor_exit() 282 * and blk_throtl_exit() to be called with queue lock initialized. 283 * 284 */ 285 void blk_sync_queue(struct request_queue *q) 286 { 287 del_timer_sync(&q->timeout); 288 cancel_delayed_work_sync(&q->delay_work); 289 } 290 EXPORT_SYMBOL(blk_sync_queue); 291 292 /** 293 * __blk_run_queue - run a single device queue 294 * @q: The queue to run 295 * 296 * Description: 297 * See @blk_run_queue. This variant must be called with the queue lock 298 * held and interrupts disabled. 299 */ 300 void __blk_run_queue(struct request_queue *q) 301 { 302 if (unlikely(blk_queue_stopped(q))) 303 return; 304 305 q->request_fn(q); 306 } 307 EXPORT_SYMBOL(__blk_run_queue); 308 309 /** 310 * blk_run_queue_async - run a single device queue in workqueue context 311 * @q: The queue to run 312 * 313 * Description: 314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 315 * of us. 316 */ 317 void blk_run_queue_async(struct request_queue *q) 318 { 319 if (likely(!blk_queue_stopped(q))) { 320 __cancel_delayed_work(&q->delay_work); 321 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0); 322 } 323 } 324 EXPORT_SYMBOL(blk_run_queue_async); 325 326 /** 327 * blk_run_queue - run a single device queue 328 * @q: The queue to run 329 * 330 * Description: 331 * Invoke request handling on this queue, if it has pending work to do. 332 * May be used to restart queueing when a request has completed. 333 */ 334 void blk_run_queue(struct request_queue *q) 335 { 336 unsigned long flags; 337 338 spin_lock_irqsave(q->queue_lock, flags); 339 __blk_run_queue(q); 340 spin_unlock_irqrestore(q->queue_lock, flags); 341 } 342 EXPORT_SYMBOL(blk_run_queue); 343 344 void blk_put_queue(struct request_queue *q) 345 { 346 kobject_put(&q->kobj); 347 } 348 EXPORT_SYMBOL(blk_put_queue); 349 350 /* 351 * Note: If a driver supplied the queue lock, it should not zap that lock 352 * unexpectedly as some queue cleanup components like elevator_exit() and 353 * blk_throtl_exit() need queue lock. 354 */ 355 void blk_cleanup_queue(struct request_queue *q) 356 { 357 /* 358 * We know we have process context here, so we can be a little 359 * cautious and ensure that pending block actions on this device 360 * are done before moving on. Going into this function, we should 361 * not have processes doing IO to this device. 362 */ 363 blk_sync_queue(q); 364 365 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 366 mutex_lock(&q->sysfs_lock); 367 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 368 mutex_unlock(&q->sysfs_lock); 369 370 if (q->elevator) 371 elevator_exit(q->elevator); 372 373 blk_throtl_exit(q); 374 375 blk_put_queue(q); 376 } 377 EXPORT_SYMBOL(blk_cleanup_queue); 378 379 static int blk_init_free_list(struct request_queue *q) 380 { 381 struct request_list *rl = &q->rq; 382 383 if (unlikely(rl->rq_pool)) 384 return 0; 385 386 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 387 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 388 rl->elvpriv = 0; 389 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 390 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 391 392 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 393 mempool_free_slab, request_cachep, q->node); 394 395 if (!rl->rq_pool) 396 return -ENOMEM; 397 398 return 0; 399 } 400 401 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 402 { 403 return blk_alloc_queue_node(gfp_mask, -1); 404 } 405 EXPORT_SYMBOL(blk_alloc_queue); 406 407 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 408 { 409 struct request_queue *q; 410 int err; 411 412 q = kmem_cache_alloc_node(blk_requestq_cachep, 413 gfp_mask | __GFP_ZERO, node_id); 414 if (!q) 415 return NULL; 416 417 q->backing_dev_info.ra_pages = 418 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 419 q->backing_dev_info.state = 0; 420 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 421 q->backing_dev_info.name = "block"; 422 423 err = bdi_init(&q->backing_dev_info); 424 if (err) { 425 kmem_cache_free(blk_requestq_cachep, q); 426 return NULL; 427 } 428 429 if (blk_throtl_init(q)) { 430 kmem_cache_free(blk_requestq_cachep, q); 431 return NULL; 432 } 433 434 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 435 laptop_mode_timer_fn, (unsigned long) q); 436 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 437 INIT_LIST_HEAD(&q->timeout_list); 438 INIT_LIST_HEAD(&q->flush_queue[0]); 439 INIT_LIST_HEAD(&q->flush_queue[1]); 440 INIT_LIST_HEAD(&q->flush_data_in_flight); 441 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 442 443 kobject_init(&q->kobj, &blk_queue_ktype); 444 445 mutex_init(&q->sysfs_lock); 446 spin_lock_init(&q->__queue_lock); 447 448 /* 449 * By default initialize queue_lock to internal lock and driver can 450 * override it later if need be. 451 */ 452 q->queue_lock = &q->__queue_lock; 453 454 return q; 455 } 456 EXPORT_SYMBOL(blk_alloc_queue_node); 457 458 /** 459 * blk_init_queue - prepare a request queue for use with a block device 460 * @rfn: The function to be called to process requests that have been 461 * placed on the queue. 462 * @lock: Request queue spin lock 463 * 464 * Description: 465 * If a block device wishes to use the standard request handling procedures, 466 * which sorts requests and coalesces adjacent requests, then it must 467 * call blk_init_queue(). The function @rfn will be called when there 468 * are requests on the queue that need to be processed. If the device 469 * supports plugging, then @rfn may not be called immediately when requests 470 * are available on the queue, but may be called at some time later instead. 471 * Plugged queues are generally unplugged when a buffer belonging to one 472 * of the requests on the queue is needed, or due to memory pressure. 473 * 474 * @rfn is not required, or even expected, to remove all requests off the 475 * queue, but only as many as it can handle at a time. If it does leave 476 * requests on the queue, it is responsible for arranging that the requests 477 * get dealt with eventually. 478 * 479 * The queue spin lock must be held while manipulating the requests on the 480 * request queue; this lock will be taken also from interrupt context, so irq 481 * disabling is needed for it. 482 * 483 * Function returns a pointer to the initialized request queue, or %NULL if 484 * it didn't succeed. 485 * 486 * Note: 487 * blk_init_queue() must be paired with a blk_cleanup_queue() call 488 * when the block device is deactivated (such as at module unload). 489 **/ 490 491 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 492 { 493 return blk_init_queue_node(rfn, lock, -1); 494 } 495 EXPORT_SYMBOL(blk_init_queue); 496 497 struct request_queue * 498 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 499 { 500 struct request_queue *uninit_q, *q; 501 502 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 503 if (!uninit_q) 504 return NULL; 505 506 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id); 507 if (!q) 508 blk_cleanup_queue(uninit_q); 509 510 return q; 511 } 512 EXPORT_SYMBOL(blk_init_queue_node); 513 514 struct request_queue * 515 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 516 spinlock_t *lock) 517 { 518 return blk_init_allocated_queue_node(q, rfn, lock, -1); 519 } 520 EXPORT_SYMBOL(blk_init_allocated_queue); 521 522 struct request_queue * 523 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 524 spinlock_t *lock, int node_id) 525 { 526 if (!q) 527 return NULL; 528 529 q->node = node_id; 530 if (blk_init_free_list(q)) 531 return NULL; 532 533 q->request_fn = rfn; 534 q->prep_rq_fn = NULL; 535 q->unprep_rq_fn = NULL; 536 q->queue_flags = QUEUE_FLAG_DEFAULT; 537 538 /* Override internal queue lock with supplied lock pointer */ 539 if (lock) 540 q->queue_lock = lock; 541 542 /* 543 * This also sets hw/phys segments, boundary and size 544 */ 545 blk_queue_make_request(q, __make_request); 546 547 q->sg_reserved_size = INT_MAX; 548 549 /* 550 * all done 551 */ 552 if (!elevator_init(q, NULL)) { 553 blk_queue_congestion_threshold(q); 554 return q; 555 } 556 557 return NULL; 558 } 559 EXPORT_SYMBOL(blk_init_allocated_queue_node); 560 561 int blk_get_queue(struct request_queue *q) 562 { 563 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 564 kobject_get(&q->kobj); 565 return 0; 566 } 567 568 return 1; 569 } 570 EXPORT_SYMBOL(blk_get_queue); 571 572 static inline void blk_free_request(struct request_queue *q, struct request *rq) 573 { 574 if (rq->cmd_flags & REQ_ELVPRIV) 575 elv_put_request(q, rq); 576 mempool_free(rq, q->rq.rq_pool); 577 } 578 579 static struct request * 580 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 581 { 582 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 583 584 if (!rq) 585 return NULL; 586 587 blk_rq_init(q, rq); 588 589 rq->cmd_flags = flags | REQ_ALLOCED; 590 591 if (priv) { 592 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 593 mempool_free(rq, q->rq.rq_pool); 594 return NULL; 595 } 596 rq->cmd_flags |= REQ_ELVPRIV; 597 } 598 599 return rq; 600 } 601 602 /* 603 * ioc_batching returns true if the ioc is a valid batching request and 604 * should be given priority access to a request. 605 */ 606 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 607 { 608 if (!ioc) 609 return 0; 610 611 /* 612 * Make sure the process is able to allocate at least 1 request 613 * even if the batch times out, otherwise we could theoretically 614 * lose wakeups. 615 */ 616 return ioc->nr_batch_requests == q->nr_batching || 617 (ioc->nr_batch_requests > 0 618 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 619 } 620 621 /* 622 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 623 * will cause the process to be a "batcher" on all queues in the system. This 624 * is the behaviour we want though - once it gets a wakeup it should be given 625 * a nice run. 626 */ 627 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 628 { 629 if (!ioc || ioc_batching(q, ioc)) 630 return; 631 632 ioc->nr_batch_requests = q->nr_batching; 633 ioc->last_waited = jiffies; 634 } 635 636 static void __freed_request(struct request_queue *q, int sync) 637 { 638 struct request_list *rl = &q->rq; 639 640 if (rl->count[sync] < queue_congestion_off_threshold(q)) 641 blk_clear_queue_congested(q, sync); 642 643 if (rl->count[sync] + 1 <= q->nr_requests) { 644 if (waitqueue_active(&rl->wait[sync])) 645 wake_up(&rl->wait[sync]); 646 647 blk_clear_queue_full(q, sync); 648 } 649 } 650 651 /* 652 * A request has just been released. Account for it, update the full and 653 * congestion status, wake up any waiters. Called under q->queue_lock. 654 */ 655 static void freed_request(struct request_queue *q, int sync, int priv) 656 { 657 struct request_list *rl = &q->rq; 658 659 rl->count[sync]--; 660 if (priv) 661 rl->elvpriv--; 662 663 __freed_request(q, sync); 664 665 if (unlikely(rl->starved[sync ^ 1])) 666 __freed_request(q, sync ^ 1); 667 } 668 669 /* 670 * Determine if elevator data should be initialized when allocating the 671 * request associated with @bio. 672 */ 673 static bool blk_rq_should_init_elevator(struct bio *bio) 674 { 675 if (!bio) 676 return true; 677 678 /* 679 * Flush requests do not use the elevator so skip initialization. 680 * This allows a request to share the flush and elevator data. 681 */ 682 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 683 return false; 684 685 return true; 686 } 687 688 /* 689 * Get a free request, queue_lock must be held. 690 * Returns NULL on failure, with queue_lock held. 691 * Returns !NULL on success, with queue_lock *not held*. 692 */ 693 static struct request *get_request(struct request_queue *q, int rw_flags, 694 struct bio *bio, gfp_t gfp_mask) 695 { 696 struct request *rq = NULL; 697 struct request_list *rl = &q->rq; 698 struct io_context *ioc = NULL; 699 const bool is_sync = rw_is_sync(rw_flags) != 0; 700 int may_queue, priv = 0; 701 702 may_queue = elv_may_queue(q, rw_flags); 703 if (may_queue == ELV_MQUEUE_NO) 704 goto rq_starved; 705 706 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 707 if (rl->count[is_sync]+1 >= q->nr_requests) { 708 ioc = current_io_context(GFP_ATOMIC, q->node); 709 /* 710 * The queue will fill after this allocation, so set 711 * it as full, and mark this process as "batching". 712 * This process will be allowed to complete a batch of 713 * requests, others will be blocked. 714 */ 715 if (!blk_queue_full(q, is_sync)) { 716 ioc_set_batching(q, ioc); 717 blk_set_queue_full(q, is_sync); 718 } else { 719 if (may_queue != ELV_MQUEUE_MUST 720 && !ioc_batching(q, ioc)) { 721 /* 722 * The queue is full and the allocating 723 * process is not a "batcher", and not 724 * exempted by the IO scheduler 725 */ 726 goto out; 727 } 728 } 729 } 730 blk_set_queue_congested(q, is_sync); 731 } 732 733 /* 734 * Only allow batching queuers to allocate up to 50% over the defined 735 * limit of requests, otherwise we could have thousands of requests 736 * allocated with any setting of ->nr_requests 737 */ 738 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 739 goto out; 740 741 rl->count[is_sync]++; 742 rl->starved[is_sync] = 0; 743 744 if (blk_rq_should_init_elevator(bio)) { 745 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 746 if (priv) 747 rl->elvpriv++; 748 } 749 750 if (blk_queue_io_stat(q)) 751 rw_flags |= REQ_IO_STAT; 752 spin_unlock_irq(q->queue_lock); 753 754 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 755 if (unlikely(!rq)) { 756 /* 757 * Allocation failed presumably due to memory. Undo anything 758 * we might have messed up. 759 * 760 * Allocating task should really be put onto the front of the 761 * wait queue, but this is pretty rare. 762 */ 763 spin_lock_irq(q->queue_lock); 764 freed_request(q, is_sync, priv); 765 766 /* 767 * in the very unlikely event that allocation failed and no 768 * requests for this direction was pending, mark us starved 769 * so that freeing of a request in the other direction will 770 * notice us. another possible fix would be to split the 771 * rq mempool into READ and WRITE 772 */ 773 rq_starved: 774 if (unlikely(rl->count[is_sync] == 0)) 775 rl->starved[is_sync] = 1; 776 777 goto out; 778 } 779 780 /* 781 * ioc may be NULL here, and ioc_batching will be false. That's 782 * OK, if the queue is under the request limit then requests need 783 * not count toward the nr_batch_requests limit. There will always 784 * be some limit enforced by BLK_BATCH_TIME. 785 */ 786 if (ioc_batching(q, ioc)) 787 ioc->nr_batch_requests--; 788 789 trace_block_getrq(q, bio, rw_flags & 1); 790 out: 791 return rq; 792 } 793 794 /* 795 * No available requests for this queue, wait for some requests to become 796 * available. 797 * 798 * Called with q->queue_lock held, and returns with it unlocked. 799 */ 800 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 801 struct bio *bio) 802 { 803 const bool is_sync = rw_is_sync(rw_flags) != 0; 804 struct request *rq; 805 806 rq = get_request(q, rw_flags, bio, GFP_NOIO); 807 while (!rq) { 808 DEFINE_WAIT(wait); 809 struct io_context *ioc; 810 struct request_list *rl = &q->rq; 811 812 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 813 TASK_UNINTERRUPTIBLE); 814 815 trace_block_sleeprq(q, bio, rw_flags & 1); 816 817 spin_unlock_irq(q->queue_lock); 818 io_schedule(); 819 820 /* 821 * After sleeping, we become a "batching" process and 822 * will be able to allocate at least one request, and 823 * up to a big batch of them for a small period time. 824 * See ioc_batching, ioc_set_batching 825 */ 826 ioc = current_io_context(GFP_NOIO, q->node); 827 ioc_set_batching(q, ioc); 828 829 spin_lock_irq(q->queue_lock); 830 finish_wait(&rl->wait[is_sync], &wait); 831 832 rq = get_request(q, rw_flags, bio, GFP_NOIO); 833 }; 834 835 return rq; 836 } 837 838 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 839 { 840 struct request *rq; 841 842 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 843 return NULL; 844 845 BUG_ON(rw != READ && rw != WRITE); 846 847 spin_lock_irq(q->queue_lock); 848 if (gfp_mask & __GFP_WAIT) { 849 rq = get_request_wait(q, rw, NULL); 850 } else { 851 rq = get_request(q, rw, NULL, gfp_mask); 852 if (!rq) 853 spin_unlock_irq(q->queue_lock); 854 } 855 /* q->queue_lock is unlocked at this point */ 856 857 return rq; 858 } 859 EXPORT_SYMBOL(blk_get_request); 860 861 /** 862 * blk_make_request - given a bio, allocate a corresponding struct request. 863 * @q: target request queue 864 * @bio: The bio describing the memory mappings that will be submitted for IO. 865 * It may be a chained-bio properly constructed by block/bio layer. 866 * @gfp_mask: gfp flags to be used for memory allocation 867 * 868 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 869 * type commands. Where the struct request needs to be farther initialized by 870 * the caller. It is passed a &struct bio, which describes the memory info of 871 * the I/O transfer. 872 * 873 * The caller of blk_make_request must make sure that bi_io_vec 874 * are set to describe the memory buffers. That bio_data_dir() will return 875 * the needed direction of the request. (And all bio's in the passed bio-chain 876 * are properly set accordingly) 877 * 878 * If called under none-sleepable conditions, mapped bio buffers must not 879 * need bouncing, by calling the appropriate masked or flagged allocator, 880 * suitable for the target device. Otherwise the call to blk_queue_bounce will 881 * BUG. 882 * 883 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 884 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 885 * anything but the first bio in the chain. Otherwise you risk waiting for IO 886 * completion of a bio that hasn't been submitted yet, thus resulting in a 887 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 888 * of bio_alloc(), as that avoids the mempool deadlock. 889 * If possible a big IO should be split into smaller parts when allocation 890 * fails. Partial allocation should not be an error, or you risk a live-lock. 891 */ 892 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 893 gfp_t gfp_mask) 894 { 895 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 896 897 if (unlikely(!rq)) 898 return ERR_PTR(-ENOMEM); 899 900 for_each_bio(bio) { 901 struct bio *bounce_bio = bio; 902 int ret; 903 904 blk_queue_bounce(q, &bounce_bio); 905 ret = blk_rq_append_bio(q, rq, bounce_bio); 906 if (unlikely(ret)) { 907 blk_put_request(rq); 908 return ERR_PTR(ret); 909 } 910 } 911 912 return rq; 913 } 914 EXPORT_SYMBOL(blk_make_request); 915 916 /** 917 * blk_requeue_request - put a request back on queue 918 * @q: request queue where request should be inserted 919 * @rq: request to be inserted 920 * 921 * Description: 922 * Drivers often keep queueing requests until the hardware cannot accept 923 * more, when that condition happens we need to put the request back 924 * on the queue. Must be called with queue lock held. 925 */ 926 void blk_requeue_request(struct request_queue *q, struct request *rq) 927 { 928 blk_delete_timer(rq); 929 blk_clear_rq_complete(rq); 930 trace_block_rq_requeue(q, rq); 931 932 if (blk_rq_tagged(rq)) 933 blk_queue_end_tag(q, rq); 934 935 BUG_ON(blk_queued_rq(rq)); 936 937 elv_requeue_request(q, rq); 938 } 939 EXPORT_SYMBOL(blk_requeue_request); 940 941 static void add_acct_request(struct request_queue *q, struct request *rq, 942 int where) 943 { 944 drive_stat_acct(rq, 1); 945 __elv_add_request(q, rq, where); 946 } 947 948 /** 949 * blk_insert_request - insert a special request into a request queue 950 * @q: request queue where request should be inserted 951 * @rq: request to be inserted 952 * @at_head: insert request at head or tail of queue 953 * @data: private data 954 * 955 * Description: 956 * Many block devices need to execute commands asynchronously, so they don't 957 * block the whole kernel from preemption during request execution. This is 958 * accomplished normally by inserting aritficial requests tagged as 959 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 960 * be scheduled for actual execution by the request queue. 961 * 962 * We have the option of inserting the head or the tail of the queue. 963 * Typically we use the tail for new ioctls and so forth. We use the head 964 * of the queue for things like a QUEUE_FULL message from a device, or a 965 * host that is unable to accept a particular command. 966 */ 967 void blk_insert_request(struct request_queue *q, struct request *rq, 968 int at_head, void *data) 969 { 970 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 971 unsigned long flags; 972 973 /* 974 * tell I/O scheduler that this isn't a regular read/write (ie it 975 * must not attempt merges on this) and that it acts as a soft 976 * barrier 977 */ 978 rq->cmd_type = REQ_TYPE_SPECIAL; 979 980 rq->special = data; 981 982 spin_lock_irqsave(q->queue_lock, flags); 983 984 /* 985 * If command is tagged, release the tag 986 */ 987 if (blk_rq_tagged(rq)) 988 blk_queue_end_tag(q, rq); 989 990 add_acct_request(q, rq, where); 991 __blk_run_queue(q); 992 spin_unlock_irqrestore(q->queue_lock, flags); 993 } 994 EXPORT_SYMBOL(blk_insert_request); 995 996 static void part_round_stats_single(int cpu, struct hd_struct *part, 997 unsigned long now) 998 { 999 if (now == part->stamp) 1000 return; 1001 1002 if (part_in_flight(part)) { 1003 __part_stat_add(cpu, part, time_in_queue, 1004 part_in_flight(part) * (now - part->stamp)); 1005 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1006 } 1007 part->stamp = now; 1008 } 1009 1010 /** 1011 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1012 * @cpu: cpu number for stats access 1013 * @part: target partition 1014 * 1015 * The average IO queue length and utilisation statistics are maintained 1016 * by observing the current state of the queue length and the amount of 1017 * time it has been in this state for. 1018 * 1019 * Normally, that accounting is done on IO completion, but that can result 1020 * in more than a second's worth of IO being accounted for within any one 1021 * second, leading to >100% utilisation. To deal with that, we call this 1022 * function to do a round-off before returning the results when reading 1023 * /proc/diskstats. This accounts immediately for all queue usage up to 1024 * the current jiffies and restarts the counters again. 1025 */ 1026 void part_round_stats(int cpu, struct hd_struct *part) 1027 { 1028 unsigned long now = jiffies; 1029 1030 if (part->partno) 1031 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1032 part_round_stats_single(cpu, part, now); 1033 } 1034 EXPORT_SYMBOL_GPL(part_round_stats); 1035 1036 /* 1037 * queue lock must be held 1038 */ 1039 void __blk_put_request(struct request_queue *q, struct request *req) 1040 { 1041 if (unlikely(!q)) 1042 return; 1043 if (unlikely(--req->ref_count)) 1044 return; 1045 1046 elv_completed_request(q, req); 1047 1048 /* this is a bio leak */ 1049 WARN_ON(req->bio != NULL); 1050 1051 /* 1052 * Request may not have originated from ll_rw_blk. if not, 1053 * it didn't come out of our reserved rq pools 1054 */ 1055 if (req->cmd_flags & REQ_ALLOCED) { 1056 int is_sync = rq_is_sync(req) != 0; 1057 int priv = req->cmd_flags & REQ_ELVPRIV; 1058 1059 BUG_ON(!list_empty(&req->queuelist)); 1060 BUG_ON(!hlist_unhashed(&req->hash)); 1061 1062 blk_free_request(q, req); 1063 freed_request(q, is_sync, priv); 1064 } 1065 } 1066 EXPORT_SYMBOL_GPL(__blk_put_request); 1067 1068 void blk_put_request(struct request *req) 1069 { 1070 unsigned long flags; 1071 struct request_queue *q = req->q; 1072 1073 spin_lock_irqsave(q->queue_lock, flags); 1074 __blk_put_request(q, req); 1075 spin_unlock_irqrestore(q->queue_lock, flags); 1076 } 1077 EXPORT_SYMBOL(blk_put_request); 1078 1079 /** 1080 * blk_add_request_payload - add a payload to a request 1081 * @rq: request to update 1082 * @page: page backing the payload 1083 * @len: length of the payload. 1084 * 1085 * This allows to later add a payload to an already submitted request by 1086 * a block driver. The driver needs to take care of freeing the payload 1087 * itself. 1088 * 1089 * Note that this is a quite horrible hack and nothing but handling of 1090 * discard requests should ever use it. 1091 */ 1092 void blk_add_request_payload(struct request *rq, struct page *page, 1093 unsigned int len) 1094 { 1095 struct bio *bio = rq->bio; 1096 1097 bio->bi_io_vec->bv_page = page; 1098 bio->bi_io_vec->bv_offset = 0; 1099 bio->bi_io_vec->bv_len = len; 1100 1101 bio->bi_size = len; 1102 bio->bi_vcnt = 1; 1103 bio->bi_phys_segments = 1; 1104 1105 rq->__data_len = rq->resid_len = len; 1106 rq->nr_phys_segments = 1; 1107 rq->buffer = bio_data(bio); 1108 } 1109 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1110 1111 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1112 struct bio *bio) 1113 { 1114 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1115 1116 if (!ll_back_merge_fn(q, req, bio)) 1117 return false; 1118 1119 trace_block_bio_backmerge(q, bio); 1120 1121 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1122 blk_rq_set_mixed_merge(req); 1123 1124 req->biotail->bi_next = bio; 1125 req->biotail = bio; 1126 req->__data_len += bio->bi_size; 1127 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1128 1129 drive_stat_acct(req, 0); 1130 elv_bio_merged(q, req, bio); 1131 return true; 1132 } 1133 1134 static bool bio_attempt_front_merge(struct request_queue *q, 1135 struct request *req, struct bio *bio) 1136 { 1137 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1138 1139 if (!ll_front_merge_fn(q, req, bio)) 1140 return false; 1141 1142 trace_block_bio_frontmerge(q, bio); 1143 1144 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1145 blk_rq_set_mixed_merge(req); 1146 1147 bio->bi_next = req->bio; 1148 req->bio = bio; 1149 1150 /* 1151 * may not be valid. if the low level driver said 1152 * it didn't need a bounce buffer then it better 1153 * not touch req->buffer either... 1154 */ 1155 req->buffer = bio_data(bio); 1156 req->__sector = bio->bi_sector; 1157 req->__data_len += bio->bi_size; 1158 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1159 1160 drive_stat_acct(req, 0); 1161 elv_bio_merged(q, req, bio); 1162 return true; 1163 } 1164 1165 /* 1166 * Attempts to merge with the plugged list in the current process. Returns 1167 * true if merge was successful, otherwise false. 1168 */ 1169 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q, 1170 struct bio *bio) 1171 { 1172 struct blk_plug *plug; 1173 struct request *rq; 1174 bool ret = false; 1175 1176 plug = tsk->plug; 1177 if (!plug) 1178 goto out; 1179 1180 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1181 int el_ret; 1182 1183 if (rq->q != q) 1184 continue; 1185 1186 el_ret = elv_try_merge(rq, bio); 1187 if (el_ret == ELEVATOR_BACK_MERGE) { 1188 ret = bio_attempt_back_merge(q, rq, bio); 1189 if (ret) 1190 break; 1191 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1192 ret = bio_attempt_front_merge(q, rq, bio); 1193 if (ret) 1194 break; 1195 } 1196 } 1197 out: 1198 return ret; 1199 } 1200 1201 void init_request_from_bio(struct request *req, struct bio *bio) 1202 { 1203 req->cpu = bio->bi_comp_cpu; 1204 req->cmd_type = REQ_TYPE_FS; 1205 1206 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1207 if (bio->bi_rw & REQ_RAHEAD) 1208 req->cmd_flags |= REQ_FAILFAST_MASK; 1209 1210 req->errors = 0; 1211 req->__sector = bio->bi_sector; 1212 req->ioprio = bio_prio(bio); 1213 blk_rq_bio_prep(req->q, req, bio); 1214 } 1215 1216 static int __make_request(struct request_queue *q, struct bio *bio) 1217 { 1218 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1219 struct blk_plug *plug; 1220 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1221 struct request *req; 1222 1223 /* 1224 * low level driver can indicate that it wants pages above a 1225 * certain limit bounced to low memory (ie for highmem, or even 1226 * ISA dma in theory) 1227 */ 1228 blk_queue_bounce(q, &bio); 1229 1230 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1231 spin_lock_irq(q->queue_lock); 1232 where = ELEVATOR_INSERT_FLUSH; 1233 goto get_rq; 1234 } 1235 1236 /* 1237 * Check if we can merge with the plugged list before grabbing 1238 * any locks. 1239 */ 1240 if (attempt_plug_merge(current, q, bio)) 1241 goto out; 1242 1243 spin_lock_irq(q->queue_lock); 1244 1245 el_ret = elv_merge(q, &req, bio); 1246 if (el_ret == ELEVATOR_BACK_MERGE) { 1247 if (bio_attempt_back_merge(q, req, bio)) { 1248 if (!attempt_back_merge(q, req)) 1249 elv_merged_request(q, req, el_ret); 1250 goto out_unlock; 1251 } 1252 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1253 if (bio_attempt_front_merge(q, req, bio)) { 1254 if (!attempt_front_merge(q, req)) 1255 elv_merged_request(q, req, el_ret); 1256 goto out_unlock; 1257 } 1258 } 1259 1260 get_rq: 1261 /* 1262 * This sync check and mask will be re-done in init_request_from_bio(), 1263 * but we need to set it earlier to expose the sync flag to the 1264 * rq allocator and io schedulers. 1265 */ 1266 rw_flags = bio_data_dir(bio); 1267 if (sync) 1268 rw_flags |= REQ_SYNC; 1269 1270 /* 1271 * Grab a free request. This is might sleep but can not fail. 1272 * Returns with the queue unlocked. 1273 */ 1274 req = get_request_wait(q, rw_flags, bio); 1275 1276 /* 1277 * After dropping the lock and possibly sleeping here, our request 1278 * may now be mergeable after it had proven unmergeable (above). 1279 * We don't worry about that case for efficiency. It won't happen 1280 * often, and the elevators are able to handle it. 1281 */ 1282 init_request_from_bio(req, bio); 1283 1284 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1285 bio_flagged(bio, BIO_CPU_AFFINE)) 1286 req->cpu = raw_smp_processor_id(); 1287 1288 plug = current->plug; 1289 if (plug) { 1290 /* 1291 * If this is the first request added after a plug, fire 1292 * of a plug trace. If others have been added before, check 1293 * if we have multiple devices in this plug. If so, make a 1294 * note to sort the list before dispatch. 1295 */ 1296 if (list_empty(&plug->list)) 1297 trace_block_plug(q); 1298 else if (!plug->should_sort) { 1299 struct request *__rq; 1300 1301 __rq = list_entry_rq(plug->list.prev); 1302 if (__rq->q != q) 1303 plug->should_sort = 1; 1304 } 1305 list_add_tail(&req->queuelist, &plug->list); 1306 plug->count++; 1307 drive_stat_acct(req, 1); 1308 if (plug->count >= BLK_MAX_REQUEST_COUNT) 1309 blk_flush_plug_list(plug, false); 1310 } else { 1311 spin_lock_irq(q->queue_lock); 1312 add_acct_request(q, req, where); 1313 __blk_run_queue(q); 1314 out_unlock: 1315 spin_unlock_irq(q->queue_lock); 1316 } 1317 out: 1318 return 0; 1319 } 1320 1321 /* 1322 * If bio->bi_dev is a partition, remap the location 1323 */ 1324 static inline void blk_partition_remap(struct bio *bio) 1325 { 1326 struct block_device *bdev = bio->bi_bdev; 1327 1328 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1329 struct hd_struct *p = bdev->bd_part; 1330 1331 bio->bi_sector += p->start_sect; 1332 bio->bi_bdev = bdev->bd_contains; 1333 1334 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1335 bdev->bd_dev, 1336 bio->bi_sector - p->start_sect); 1337 } 1338 } 1339 1340 static void handle_bad_sector(struct bio *bio) 1341 { 1342 char b[BDEVNAME_SIZE]; 1343 1344 printk(KERN_INFO "attempt to access beyond end of device\n"); 1345 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1346 bdevname(bio->bi_bdev, b), 1347 bio->bi_rw, 1348 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1349 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1350 1351 set_bit(BIO_EOF, &bio->bi_flags); 1352 } 1353 1354 #ifdef CONFIG_FAIL_MAKE_REQUEST 1355 1356 static DECLARE_FAULT_ATTR(fail_make_request); 1357 1358 static int __init setup_fail_make_request(char *str) 1359 { 1360 return setup_fault_attr(&fail_make_request, str); 1361 } 1362 __setup("fail_make_request=", setup_fail_make_request); 1363 1364 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1365 { 1366 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1367 } 1368 1369 static int __init fail_make_request_debugfs(void) 1370 { 1371 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1372 NULL, &fail_make_request); 1373 1374 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1375 } 1376 1377 late_initcall(fail_make_request_debugfs); 1378 1379 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1380 1381 static inline bool should_fail_request(struct hd_struct *part, 1382 unsigned int bytes) 1383 { 1384 return false; 1385 } 1386 1387 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1388 1389 /* 1390 * Check whether this bio extends beyond the end of the device. 1391 */ 1392 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1393 { 1394 sector_t maxsector; 1395 1396 if (!nr_sectors) 1397 return 0; 1398 1399 /* Test device or partition size, when known. */ 1400 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1401 if (maxsector) { 1402 sector_t sector = bio->bi_sector; 1403 1404 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1405 /* 1406 * This may well happen - the kernel calls bread() 1407 * without checking the size of the device, e.g., when 1408 * mounting a device. 1409 */ 1410 handle_bad_sector(bio); 1411 return 1; 1412 } 1413 } 1414 1415 return 0; 1416 } 1417 1418 /** 1419 * generic_make_request - hand a buffer to its device driver for I/O 1420 * @bio: The bio describing the location in memory and on the device. 1421 * 1422 * generic_make_request() is used to make I/O requests of block 1423 * devices. It is passed a &struct bio, which describes the I/O that needs 1424 * to be done. 1425 * 1426 * generic_make_request() does not return any status. The 1427 * success/failure status of the request, along with notification of 1428 * completion, is delivered asynchronously through the bio->bi_end_io 1429 * function described (one day) else where. 1430 * 1431 * The caller of generic_make_request must make sure that bi_io_vec 1432 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1433 * set to describe the device address, and the 1434 * bi_end_io and optionally bi_private are set to describe how 1435 * completion notification should be signaled. 1436 * 1437 * generic_make_request and the drivers it calls may use bi_next if this 1438 * bio happens to be merged with someone else, and may change bi_dev and 1439 * bi_sector for remaps as it sees fit. So the values of these fields 1440 * should NOT be depended on after the call to generic_make_request. 1441 */ 1442 static inline void __generic_make_request(struct bio *bio) 1443 { 1444 struct request_queue *q; 1445 sector_t old_sector; 1446 int ret, nr_sectors = bio_sectors(bio); 1447 dev_t old_dev; 1448 int err = -EIO; 1449 1450 might_sleep(); 1451 1452 if (bio_check_eod(bio, nr_sectors)) 1453 goto end_io; 1454 1455 /* 1456 * Resolve the mapping until finished. (drivers are 1457 * still free to implement/resolve their own stacking 1458 * by explicitly returning 0) 1459 * 1460 * NOTE: we don't repeat the blk_size check for each new device. 1461 * Stacking drivers are expected to know what they are doing. 1462 */ 1463 old_sector = -1; 1464 old_dev = 0; 1465 do { 1466 char b[BDEVNAME_SIZE]; 1467 struct hd_struct *part; 1468 1469 q = bdev_get_queue(bio->bi_bdev); 1470 if (unlikely(!q)) { 1471 printk(KERN_ERR 1472 "generic_make_request: Trying to access " 1473 "nonexistent block-device %s (%Lu)\n", 1474 bdevname(bio->bi_bdev, b), 1475 (long long) bio->bi_sector); 1476 goto end_io; 1477 } 1478 1479 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1480 nr_sectors > queue_max_hw_sectors(q))) { 1481 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1482 bdevname(bio->bi_bdev, b), 1483 bio_sectors(bio), 1484 queue_max_hw_sectors(q)); 1485 goto end_io; 1486 } 1487 1488 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1489 goto end_io; 1490 1491 part = bio->bi_bdev->bd_part; 1492 if (should_fail_request(part, bio->bi_size) || 1493 should_fail_request(&part_to_disk(part)->part0, 1494 bio->bi_size)) 1495 goto end_io; 1496 1497 /* 1498 * If this device has partitions, remap block n 1499 * of partition p to block n+start(p) of the disk. 1500 */ 1501 blk_partition_remap(bio); 1502 1503 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1504 goto end_io; 1505 1506 if (old_sector != -1) 1507 trace_block_bio_remap(q, bio, old_dev, old_sector); 1508 1509 old_sector = bio->bi_sector; 1510 old_dev = bio->bi_bdev->bd_dev; 1511 1512 if (bio_check_eod(bio, nr_sectors)) 1513 goto end_io; 1514 1515 /* 1516 * Filter flush bio's early so that make_request based 1517 * drivers without flush support don't have to worry 1518 * about them. 1519 */ 1520 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1521 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1522 if (!nr_sectors) { 1523 err = 0; 1524 goto end_io; 1525 } 1526 } 1527 1528 if ((bio->bi_rw & REQ_DISCARD) && 1529 (!blk_queue_discard(q) || 1530 ((bio->bi_rw & REQ_SECURE) && 1531 !blk_queue_secdiscard(q)))) { 1532 err = -EOPNOTSUPP; 1533 goto end_io; 1534 } 1535 1536 if (blk_throtl_bio(q, &bio)) 1537 goto end_io; 1538 1539 /* 1540 * If bio = NULL, bio has been throttled and will be submitted 1541 * later. 1542 */ 1543 if (!bio) 1544 break; 1545 1546 trace_block_bio_queue(q, bio); 1547 1548 ret = q->make_request_fn(q, bio); 1549 } while (ret); 1550 1551 return; 1552 1553 end_io: 1554 bio_endio(bio, err); 1555 } 1556 1557 /* 1558 * We only want one ->make_request_fn to be active at a time, 1559 * else stack usage with stacked devices could be a problem. 1560 * So use current->bio_list to keep a list of requests 1561 * submited by a make_request_fn function. 1562 * current->bio_list is also used as a flag to say if 1563 * generic_make_request is currently active in this task or not. 1564 * If it is NULL, then no make_request is active. If it is non-NULL, 1565 * then a make_request is active, and new requests should be added 1566 * at the tail 1567 */ 1568 void generic_make_request(struct bio *bio) 1569 { 1570 struct bio_list bio_list_on_stack; 1571 1572 if (current->bio_list) { 1573 /* make_request is active */ 1574 bio_list_add(current->bio_list, bio); 1575 return; 1576 } 1577 /* following loop may be a bit non-obvious, and so deserves some 1578 * explanation. 1579 * Before entering the loop, bio->bi_next is NULL (as all callers 1580 * ensure that) so we have a list with a single bio. 1581 * We pretend that we have just taken it off a longer list, so 1582 * we assign bio_list to a pointer to the bio_list_on_stack, 1583 * thus initialising the bio_list of new bios to be 1584 * added. __generic_make_request may indeed add some more bios 1585 * through a recursive call to generic_make_request. If it 1586 * did, we find a non-NULL value in bio_list and re-enter the loop 1587 * from the top. In this case we really did just take the bio 1588 * of the top of the list (no pretending) and so remove it from 1589 * bio_list, and call into __generic_make_request again. 1590 * 1591 * The loop was structured like this to make only one call to 1592 * __generic_make_request (which is important as it is large and 1593 * inlined) and to keep the structure simple. 1594 */ 1595 BUG_ON(bio->bi_next); 1596 bio_list_init(&bio_list_on_stack); 1597 current->bio_list = &bio_list_on_stack; 1598 do { 1599 __generic_make_request(bio); 1600 bio = bio_list_pop(current->bio_list); 1601 } while (bio); 1602 current->bio_list = NULL; /* deactivate */ 1603 } 1604 EXPORT_SYMBOL(generic_make_request); 1605 1606 /** 1607 * submit_bio - submit a bio to the block device layer for I/O 1608 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1609 * @bio: The &struct bio which describes the I/O 1610 * 1611 * submit_bio() is very similar in purpose to generic_make_request(), and 1612 * uses that function to do most of the work. Both are fairly rough 1613 * interfaces; @bio must be presetup and ready for I/O. 1614 * 1615 */ 1616 void submit_bio(int rw, struct bio *bio) 1617 { 1618 int count = bio_sectors(bio); 1619 1620 bio->bi_rw |= rw; 1621 1622 /* 1623 * If it's a regular read/write or a barrier with data attached, 1624 * go through the normal accounting stuff before submission. 1625 */ 1626 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1627 if (rw & WRITE) { 1628 count_vm_events(PGPGOUT, count); 1629 } else { 1630 task_io_account_read(bio->bi_size); 1631 count_vm_events(PGPGIN, count); 1632 } 1633 1634 if (unlikely(block_dump)) { 1635 char b[BDEVNAME_SIZE]; 1636 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1637 current->comm, task_pid_nr(current), 1638 (rw & WRITE) ? "WRITE" : "READ", 1639 (unsigned long long)bio->bi_sector, 1640 bdevname(bio->bi_bdev, b), 1641 count); 1642 } 1643 } 1644 1645 generic_make_request(bio); 1646 } 1647 EXPORT_SYMBOL(submit_bio); 1648 1649 /** 1650 * blk_rq_check_limits - Helper function to check a request for the queue limit 1651 * @q: the queue 1652 * @rq: the request being checked 1653 * 1654 * Description: 1655 * @rq may have been made based on weaker limitations of upper-level queues 1656 * in request stacking drivers, and it may violate the limitation of @q. 1657 * Since the block layer and the underlying device driver trust @rq 1658 * after it is inserted to @q, it should be checked against @q before 1659 * the insertion using this generic function. 1660 * 1661 * This function should also be useful for request stacking drivers 1662 * in some cases below, so export this function. 1663 * Request stacking drivers like request-based dm may change the queue 1664 * limits while requests are in the queue (e.g. dm's table swapping). 1665 * Such request stacking drivers should check those requests agaist 1666 * the new queue limits again when they dispatch those requests, 1667 * although such checkings are also done against the old queue limits 1668 * when submitting requests. 1669 */ 1670 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1671 { 1672 if (rq->cmd_flags & REQ_DISCARD) 1673 return 0; 1674 1675 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1676 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1677 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1678 return -EIO; 1679 } 1680 1681 /* 1682 * queue's settings related to segment counting like q->bounce_pfn 1683 * may differ from that of other stacking queues. 1684 * Recalculate it to check the request correctly on this queue's 1685 * limitation. 1686 */ 1687 blk_recalc_rq_segments(rq); 1688 if (rq->nr_phys_segments > queue_max_segments(q)) { 1689 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1690 return -EIO; 1691 } 1692 1693 return 0; 1694 } 1695 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1696 1697 /** 1698 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1699 * @q: the queue to submit the request 1700 * @rq: the request being queued 1701 */ 1702 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1703 { 1704 unsigned long flags; 1705 1706 if (blk_rq_check_limits(q, rq)) 1707 return -EIO; 1708 1709 if (rq->rq_disk && 1710 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1711 return -EIO; 1712 1713 spin_lock_irqsave(q->queue_lock, flags); 1714 1715 /* 1716 * Submitting request must be dequeued before calling this function 1717 * because it will be linked to another request_queue 1718 */ 1719 BUG_ON(blk_queued_rq(rq)); 1720 1721 add_acct_request(q, rq, ELEVATOR_INSERT_BACK); 1722 spin_unlock_irqrestore(q->queue_lock, flags); 1723 1724 return 0; 1725 } 1726 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1727 1728 /** 1729 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1730 * @rq: request to examine 1731 * 1732 * Description: 1733 * A request could be merge of IOs which require different failure 1734 * handling. This function determines the number of bytes which 1735 * can be failed from the beginning of the request without 1736 * crossing into area which need to be retried further. 1737 * 1738 * Return: 1739 * The number of bytes to fail. 1740 * 1741 * Context: 1742 * queue_lock must be held. 1743 */ 1744 unsigned int blk_rq_err_bytes(const struct request *rq) 1745 { 1746 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1747 unsigned int bytes = 0; 1748 struct bio *bio; 1749 1750 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1751 return blk_rq_bytes(rq); 1752 1753 /* 1754 * Currently the only 'mixing' which can happen is between 1755 * different fastfail types. We can safely fail portions 1756 * which have all the failfast bits that the first one has - 1757 * the ones which are at least as eager to fail as the first 1758 * one. 1759 */ 1760 for (bio = rq->bio; bio; bio = bio->bi_next) { 1761 if ((bio->bi_rw & ff) != ff) 1762 break; 1763 bytes += bio->bi_size; 1764 } 1765 1766 /* this could lead to infinite loop */ 1767 BUG_ON(blk_rq_bytes(rq) && !bytes); 1768 return bytes; 1769 } 1770 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1771 1772 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1773 { 1774 if (blk_do_io_stat(req)) { 1775 const int rw = rq_data_dir(req); 1776 struct hd_struct *part; 1777 int cpu; 1778 1779 cpu = part_stat_lock(); 1780 part = req->part; 1781 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1782 part_stat_unlock(); 1783 } 1784 } 1785 1786 static void blk_account_io_done(struct request *req) 1787 { 1788 /* 1789 * Account IO completion. flush_rq isn't accounted as a 1790 * normal IO on queueing nor completion. Accounting the 1791 * containing request is enough. 1792 */ 1793 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 1794 unsigned long duration = jiffies - req->start_time; 1795 const int rw = rq_data_dir(req); 1796 struct hd_struct *part; 1797 int cpu; 1798 1799 cpu = part_stat_lock(); 1800 part = req->part; 1801 1802 part_stat_inc(cpu, part, ios[rw]); 1803 part_stat_add(cpu, part, ticks[rw], duration); 1804 part_round_stats(cpu, part); 1805 part_dec_in_flight(part, rw); 1806 1807 hd_struct_put(part); 1808 part_stat_unlock(); 1809 } 1810 } 1811 1812 /** 1813 * blk_peek_request - peek at the top of a request queue 1814 * @q: request queue to peek at 1815 * 1816 * Description: 1817 * Return the request at the top of @q. The returned request 1818 * should be started using blk_start_request() before LLD starts 1819 * processing it. 1820 * 1821 * Return: 1822 * Pointer to the request at the top of @q if available. Null 1823 * otherwise. 1824 * 1825 * Context: 1826 * queue_lock must be held. 1827 */ 1828 struct request *blk_peek_request(struct request_queue *q) 1829 { 1830 struct request *rq; 1831 int ret; 1832 1833 while ((rq = __elv_next_request(q)) != NULL) { 1834 if (!(rq->cmd_flags & REQ_STARTED)) { 1835 /* 1836 * This is the first time the device driver 1837 * sees this request (possibly after 1838 * requeueing). Notify IO scheduler. 1839 */ 1840 if (rq->cmd_flags & REQ_SORTED) 1841 elv_activate_rq(q, rq); 1842 1843 /* 1844 * just mark as started even if we don't start 1845 * it, a request that has been delayed should 1846 * not be passed by new incoming requests 1847 */ 1848 rq->cmd_flags |= REQ_STARTED; 1849 trace_block_rq_issue(q, rq); 1850 } 1851 1852 if (!q->boundary_rq || q->boundary_rq == rq) { 1853 q->end_sector = rq_end_sector(rq); 1854 q->boundary_rq = NULL; 1855 } 1856 1857 if (rq->cmd_flags & REQ_DONTPREP) 1858 break; 1859 1860 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1861 /* 1862 * make sure space for the drain appears we 1863 * know we can do this because max_hw_segments 1864 * has been adjusted to be one fewer than the 1865 * device can handle 1866 */ 1867 rq->nr_phys_segments++; 1868 } 1869 1870 if (!q->prep_rq_fn) 1871 break; 1872 1873 ret = q->prep_rq_fn(q, rq); 1874 if (ret == BLKPREP_OK) { 1875 break; 1876 } else if (ret == BLKPREP_DEFER) { 1877 /* 1878 * the request may have been (partially) prepped. 1879 * we need to keep this request in the front to 1880 * avoid resource deadlock. REQ_STARTED will 1881 * prevent other fs requests from passing this one. 1882 */ 1883 if (q->dma_drain_size && blk_rq_bytes(rq) && 1884 !(rq->cmd_flags & REQ_DONTPREP)) { 1885 /* 1886 * remove the space for the drain we added 1887 * so that we don't add it again 1888 */ 1889 --rq->nr_phys_segments; 1890 } 1891 1892 rq = NULL; 1893 break; 1894 } else if (ret == BLKPREP_KILL) { 1895 rq->cmd_flags |= REQ_QUIET; 1896 /* 1897 * Mark this request as started so we don't trigger 1898 * any debug logic in the end I/O path. 1899 */ 1900 blk_start_request(rq); 1901 __blk_end_request_all(rq, -EIO); 1902 } else { 1903 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1904 break; 1905 } 1906 } 1907 1908 return rq; 1909 } 1910 EXPORT_SYMBOL(blk_peek_request); 1911 1912 void blk_dequeue_request(struct request *rq) 1913 { 1914 struct request_queue *q = rq->q; 1915 1916 BUG_ON(list_empty(&rq->queuelist)); 1917 BUG_ON(ELV_ON_HASH(rq)); 1918 1919 list_del_init(&rq->queuelist); 1920 1921 /* 1922 * the time frame between a request being removed from the lists 1923 * and to it is freed is accounted as io that is in progress at 1924 * the driver side. 1925 */ 1926 if (blk_account_rq(rq)) { 1927 q->in_flight[rq_is_sync(rq)]++; 1928 set_io_start_time_ns(rq); 1929 } 1930 } 1931 1932 /** 1933 * blk_start_request - start request processing on the driver 1934 * @req: request to dequeue 1935 * 1936 * Description: 1937 * Dequeue @req and start timeout timer on it. This hands off the 1938 * request to the driver. 1939 * 1940 * Block internal functions which don't want to start timer should 1941 * call blk_dequeue_request(). 1942 * 1943 * Context: 1944 * queue_lock must be held. 1945 */ 1946 void blk_start_request(struct request *req) 1947 { 1948 blk_dequeue_request(req); 1949 1950 /* 1951 * We are now handing the request to the hardware, initialize 1952 * resid_len to full count and add the timeout handler. 1953 */ 1954 req->resid_len = blk_rq_bytes(req); 1955 if (unlikely(blk_bidi_rq(req))) 1956 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1957 1958 blk_add_timer(req); 1959 } 1960 EXPORT_SYMBOL(blk_start_request); 1961 1962 /** 1963 * blk_fetch_request - fetch a request from a request queue 1964 * @q: request queue to fetch a request from 1965 * 1966 * Description: 1967 * Return the request at the top of @q. The request is started on 1968 * return and LLD can start processing it immediately. 1969 * 1970 * Return: 1971 * Pointer to the request at the top of @q if available. Null 1972 * otherwise. 1973 * 1974 * Context: 1975 * queue_lock must be held. 1976 */ 1977 struct request *blk_fetch_request(struct request_queue *q) 1978 { 1979 struct request *rq; 1980 1981 rq = blk_peek_request(q); 1982 if (rq) 1983 blk_start_request(rq); 1984 return rq; 1985 } 1986 EXPORT_SYMBOL(blk_fetch_request); 1987 1988 /** 1989 * blk_update_request - Special helper function for request stacking drivers 1990 * @req: the request being processed 1991 * @error: %0 for success, < %0 for error 1992 * @nr_bytes: number of bytes to complete @req 1993 * 1994 * Description: 1995 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1996 * the request structure even if @req doesn't have leftover. 1997 * If @req has leftover, sets it up for the next range of segments. 1998 * 1999 * This special helper function is only for request stacking drivers 2000 * (e.g. request-based dm) so that they can handle partial completion. 2001 * Actual device drivers should use blk_end_request instead. 2002 * 2003 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2004 * %false return from this function. 2005 * 2006 * Return: 2007 * %false - this request doesn't have any more data 2008 * %true - this request has more data 2009 **/ 2010 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2011 { 2012 int total_bytes, bio_nbytes, next_idx = 0; 2013 struct bio *bio; 2014 2015 if (!req->bio) 2016 return false; 2017 2018 trace_block_rq_complete(req->q, req); 2019 2020 /* 2021 * For fs requests, rq is just carrier of independent bio's 2022 * and each partial completion should be handled separately. 2023 * Reset per-request error on each partial completion. 2024 * 2025 * TODO: tj: This is too subtle. It would be better to let 2026 * low level drivers do what they see fit. 2027 */ 2028 if (req->cmd_type == REQ_TYPE_FS) 2029 req->errors = 0; 2030 2031 if (error && req->cmd_type == REQ_TYPE_FS && 2032 !(req->cmd_flags & REQ_QUIET)) { 2033 char *error_type; 2034 2035 switch (error) { 2036 case -ENOLINK: 2037 error_type = "recoverable transport"; 2038 break; 2039 case -EREMOTEIO: 2040 error_type = "critical target"; 2041 break; 2042 case -EBADE: 2043 error_type = "critical nexus"; 2044 break; 2045 case -EIO: 2046 default: 2047 error_type = "I/O"; 2048 break; 2049 } 2050 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2051 error_type, req->rq_disk ? req->rq_disk->disk_name : "?", 2052 (unsigned long long)blk_rq_pos(req)); 2053 } 2054 2055 blk_account_io_completion(req, nr_bytes); 2056 2057 total_bytes = bio_nbytes = 0; 2058 while ((bio = req->bio) != NULL) { 2059 int nbytes; 2060 2061 if (nr_bytes >= bio->bi_size) { 2062 req->bio = bio->bi_next; 2063 nbytes = bio->bi_size; 2064 req_bio_endio(req, bio, nbytes, error); 2065 next_idx = 0; 2066 bio_nbytes = 0; 2067 } else { 2068 int idx = bio->bi_idx + next_idx; 2069 2070 if (unlikely(idx >= bio->bi_vcnt)) { 2071 blk_dump_rq_flags(req, "__end_that"); 2072 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2073 __func__, idx, bio->bi_vcnt); 2074 break; 2075 } 2076 2077 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2078 BIO_BUG_ON(nbytes > bio->bi_size); 2079 2080 /* 2081 * not a complete bvec done 2082 */ 2083 if (unlikely(nbytes > nr_bytes)) { 2084 bio_nbytes += nr_bytes; 2085 total_bytes += nr_bytes; 2086 break; 2087 } 2088 2089 /* 2090 * advance to the next vector 2091 */ 2092 next_idx++; 2093 bio_nbytes += nbytes; 2094 } 2095 2096 total_bytes += nbytes; 2097 nr_bytes -= nbytes; 2098 2099 bio = req->bio; 2100 if (bio) { 2101 /* 2102 * end more in this run, or just return 'not-done' 2103 */ 2104 if (unlikely(nr_bytes <= 0)) 2105 break; 2106 } 2107 } 2108 2109 /* 2110 * completely done 2111 */ 2112 if (!req->bio) { 2113 /* 2114 * Reset counters so that the request stacking driver 2115 * can find how many bytes remain in the request 2116 * later. 2117 */ 2118 req->__data_len = 0; 2119 return false; 2120 } 2121 2122 /* 2123 * if the request wasn't completed, update state 2124 */ 2125 if (bio_nbytes) { 2126 req_bio_endio(req, bio, bio_nbytes, error); 2127 bio->bi_idx += next_idx; 2128 bio_iovec(bio)->bv_offset += nr_bytes; 2129 bio_iovec(bio)->bv_len -= nr_bytes; 2130 } 2131 2132 req->__data_len -= total_bytes; 2133 req->buffer = bio_data(req->bio); 2134 2135 /* update sector only for requests with clear definition of sector */ 2136 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2137 req->__sector += total_bytes >> 9; 2138 2139 /* mixed attributes always follow the first bio */ 2140 if (req->cmd_flags & REQ_MIXED_MERGE) { 2141 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2142 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2143 } 2144 2145 /* 2146 * If total number of sectors is less than the first segment 2147 * size, something has gone terribly wrong. 2148 */ 2149 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2150 blk_dump_rq_flags(req, "request botched"); 2151 req->__data_len = blk_rq_cur_bytes(req); 2152 } 2153 2154 /* recalculate the number of segments */ 2155 blk_recalc_rq_segments(req); 2156 2157 return true; 2158 } 2159 EXPORT_SYMBOL_GPL(blk_update_request); 2160 2161 static bool blk_update_bidi_request(struct request *rq, int error, 2162 unsigned int nr_bytes, 2163 unsigned int bidi_bytes) 2164 { 2165 if (blk_update_request(rq, error, nr_bytes)) 2166 return true; 2167 2168 /* Bidi request must be completed as a whole */ 2169 if (unlikely(blk_bidi_rq(rq)) && 2170 blk_update_request(rq->next_rq, error, bidi_bytes)) 2171 return true; 2172 2173 if (blk_queue_add_random(rq->q)) 2174 add_disk_randomness(rq->rq_disk); 2175 2176 return false; 2177 } 2178 2179 /** 2180 * blk_unprep_request - unprepare a request 2181 * @req: the request 2182 * 2183 * This function makes a request ready for complete resubmission (or 2184 * completion). It happens only after all error handling is complete, 2185 * so represents the appropriate moment to deallocate any resources 2186 * that were allocated to the request in the prep_rq_fn. The queue 2187 * lock is held when calling this. 2188 */ 2189 void blk_unprep_request(struct request *req) 2190 { 2191 struct request_queue *q = req->q; 2192 2193 req->cmd_flags &= ~REQ_DONTPREP; 2194 if (q->unprep_rq_fn) 2195 q->unprep_rq_fn(q, req); 2196 } 2197 EXPORT_SYMBOL_GPL(blk_unprep_request); 2198 2199 /* 2200 * queue lock must be held 2201 */ 2202 static void blk_finish_request(struct request *req, int error) 2203 { 2204 if (blk_rq_tagged(req)) 2205 blk_queue_end_tag(req->q, req); 2206 2207 BUG_ON(blk_queued_rq(req)); 2208 2209 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2210 laptop_io_completion(&req->q->backing_dev_info); 2211 2212 blk_delete_timer(req); 2213 2214 if (req->cmd_flags & REQ_DONTPREP) 2215 blk_unprep_request(req); 2216 2217 2218 blk_account_io_done(req); 2219 2220 if (req->end_io) 2221 req->end_io(req, error); 2222 else { 2223 if (blk_bidi_rq(req)) 2224 __blk_put_request(req->next_rq->q, req->next_rq); 2225 2226 __blk_put_request(req->q, req); 2227 } 2228 } 2229 2230 /** 2231 * blk_end_bidi_request - Complete a bidi request 2232 * @rq: the request to complete 2233 * @error: %0 for success, < %0 for error 2234 * @nr_bytes: number of bytes to complete @rq 2235 * @bidi_bytes: number of bytes to complete @rq->next_rq 2236 * 2237 * Description: 2238 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2239 * Drivers that supports bidi can safely call this member for any 2240 * type of request, bidi or uni. In the later case @bidi_bytes is 2241 * just ignored. 2242 * 2243 * Return: 2244 * %false - we are done with this request 2245 * %true - still buffers pending for this request 2246 **/ 2247 static bool blk_end_bidi_request(struct request *rq, int error, 2248 unsigned int nr_bytes, unsigned int bidi_bytes) 2249 { 2250 struct request_queue *q = rq->q; 2251 unsigned long flags; 2252 2253 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2254 return true; 2255 2256 spin_lock_irqsave(q->queue_lock, flags); 2257 blk_finish_request(rq, error); 2258 spin_unlock_irqrestore(q->queue_lock, flags); 2259 2260 return false; 2261 } 2262 2263 /** 2264 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2265 * @rq: the request to complete 2266 * @error: %0 for success, < %0 for error 2267 * @nr_bytes: number of bytes to complete @rq 2268 * @bidi_bytes: number of bytes to complete @rq->next_rq 2269 * 2270 * Description: 2271 * Identical to blk_end_bidi_request() except that queue lock is 2272 * assumed to be locked on entry and remains so on return. 2273 * 2274 * Return: 2275 * %false - we are done with this request 2276 * %true - still buffers pending for this request 2277 **/ 2278 static bool __blk_end_bidi_request(struct request *rq, int error, 2279 unsigned int nr_bytes, unsigned int bidi_bytes) 2280 { 2281 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2282 return true; 2283 2284 blk_finish_request(rq, error); 2285 2286 return false; 2287 } 2288 2289 /** 2290 * blk_end_request - Helper function for drivers to complete the request. 2291 * @rq: the request being processed 2292 * @error: %0 for success, < %0 for error 2293 * @nr_bytes: number of bytes to complete 2294 * 2295 * Description: 2296 * Ends I/O on a number of bytes attached to @rq. 2297 * If @rq has leftover, sets it up for the next range of segments. 2298 * 2299 * Return: 2300 * %false - we are done with this request 2301 * %true - still buffers pending for this request 2302 **/ 2303 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2304 { 2305 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2306 } 2307 EXPORT_SYMBOL(blk_end_request); 2308 2309 /** 2310 * blk_end_request_all - Helper function for drives to finish the request. 2311 * @rq: the request to finish 2312 * @error: %0 for success, < %0 for error 2313 * 2314 * Description: 2315 * Completely finish @rq. 2316 */ 2317 void blk_end_request_all(struct request *rq, int error) 2318 { 2319 bool pending; 2320 unsigned int bidi_bytes = 0; 2321 2322 if (unlikely(blk_bidi_rq(rq))) 2323 bidi_bytes = blk_rq_bytes(rq->next_rq); 2324 2325 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2326 BUG_ON(pending); 2327 } 2328 EXPORT_SYMBOL(blk_end_request_all); 2329 2330 /** 2331 * blk_end_request_cur - Helper function to finish the current request chunk. 2332 * @rq: the request to finish the current chunk for 2333 * @error: %0 for success, < %0 for error 2334 * 2335 * Description: 2336 * Complete the current consecutively mapped chunk from @rq. 2337 * 2338 * Return: 2339 * %false - we are done with this request 2340 * %true - still buffers pending for this request 2341 */ 2342 bool blk_end_request_cur(struct request *rq, int error) 2343 { 2344 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2345 } 2346 EXPORT_SYMBOL(blk_end_request_cur); 2347 2348 /** 2349 * blk_end_request_err - Finish a request till the next failure boundary. 2350 * @rq: the request to finish till the next failure boundary for 2351 * @error: must be negative errno 2352 * 2353 * Description: 2354 * Complete @rq till the next failure boundary. 2355 * 2356 * Return: 2357 * %false - we are done with this request 2358 * %true - still buffers pending for this request 2359 */ 2360 bool blk_end_request_err(struct request *rq, int error) 2361 { 2362 WARN_ON(error >= 0); 2363 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2364 } 2365 EXPORT_SYMBOL_GPL(blk_end_request_err); 2366 2367 /** 2368 * __blk_end_request - Helper function for drivers to complete the request. 2369 * @rq: the request being processed 2370 * @error: %0 for success, < %0 for error 2371 * @nr_bytes: number of bytes to complete 2372 * 2373 * Description: 2374 * Must be called with queue lock held unlike blk_end_request(). 2375 * 2376 * Return: 2377 * %false - we are done with this request 2378 * %true - still buffers pending for this request 2379 **/ 2380 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2381 { 2382 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2383 } 2384 EXPORT_SYMBOL(__blk_end_request); 2385 2386 /** 2387 * __blk_end_request_all - Helper function for drives to finish the request. 2388 * @rq: the request to finish 2389 * @error: %0 for success, < %0 for error 2390 * 2391 * Description: 2392 * Completely finish @rq. Must be called with queue lock held. 2393 */ 2394 void __blk_end_request_all(struct request *rq, int error) 2395 { 2396 bool pending; 2397 unsigned int bidi_bytes = 0; 2398 2399 if (unlikely(blk_bidi_rq(rq))) 2400 bidi_bytes = blk_rq_bytes(rq->next_rq); 2401 2402 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2403 BUG_ON(pending); 2404 } 2405 EXPORT_SYMBOL(__blk_end_request_all); 2406 2407 /** 2408 * __blk_end_request_cur - Helper function to finish the current request chunk. 2409 * @rq: the request to finish the current chunk for 2410 * @error: %0 for success, < %0 for error 2411 * 2412 * Description: 2413 * Complete the current consecutively mapped chunk from @rq. Must 2414 * be called with queue lock held. 2415 * 2416 * Return: 2417 * %false - we are done with this request 2418 * %true - still buffers pending for this request 2419 */ 2420 bool __blk_end_request_cur(struct request *rq, int error) 2421 { 2422 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2423 } 2424 EXPORT_SYMBOL(__blk_end_request_cur); 2425 2426 /** 2427 * __blk_end_request_err - Finish a request till the next failure boundary. 2428 * @rq: the request to finish till the next failure boundary for 2429 * @error: must be negative errno 2430 * 2431 * Description: 2432 * Complete @rq till the next failure boundary. Must be called 2433 * with queue lock held. 2434 * 2435 * Return: 2436 * %false - we are done with this request 2437 * %true - still buffers pending for this request 2438 */ 2439 bool __blk_end_request_err(struct request *rq, int error) 2440 { 2441 WARN_ON(error >= 0); 2442 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2443 } 2444 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2445 2446 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2447 struct bio *bio) 2448 { 2449 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2450 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2451 2452 if (bio_has_data(bio)) { 2453 rq->nr_phys_segments = bio_phys_segments(q, bio); 2454 rq->buffer = bio_data(bio); 2455 } 2456 rq->__data_len = bio->bi_size; 2457 rq->bio = rq->biotail = bio; 2458 2459 if (bio->bi_bdev) 2460 rq->rq_disk = bio->bi_bdev->bd_disk; 2461 } 2462 2463 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2464 /** 2465 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2466 * @rq: the request to be flushed 2467 * 2468 * Description: 2469 * Flush all pages in @rq. 2470 */ 2471 void rq_flush_dcache_pages(struct request *rq) 2472 { 2473 struct req_iterator iter; 2474 struct bio_vec *bvec; 2475 2476 rq_for_each_segment(bvec, rq, iter) 2477 flush_dcache_page(bvec->bv_page); 2478 } 2479 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2480 #endif 2481 2482 /** 2483 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2484 * @q : the queue of the device being checked 2485 * 2486 * Description: 2487 * Check if underlying low-level drivers of a device are busy. 2488 * If the drivers want to export their busy state, they must set own 2489 * exporting function using blk_queue_lld_busy() first. 2490 * 2491 * Basically, this function is used only by request stacking drivers 2492 * to stop dispatching requests to underlying devices when underlying 2493 * devices are busy. This behavior helps more I/O merging on the queue 2494 * of the request stacking driver and prevents I/O throughput regression 2495 * on burst I/O load. 2496 * 2497 * Return: 2498 * 0 - Not busy (The request stacking driver should dispatch request) 2499 * 1 - Busy (The request stacking driver should stop dispatching request) 2500 */ 2501 int blk_lld_busy(struct request_queue *q) 2502 { 2503 if (q->lld_busy_fn) 2504 return q->lld_busy_fn(q); 2505 2506 return 0; 2507 } 2508 EXPORT_SYMBOL_GPL(blk_lld_busy); 2509 2510 /** 2511 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2512 * @rq: the clone request to be cleaned up 2513 * 2514 * Description: 2515 * Free all bios in @rq for a cloned request. 2516 */ 2517 void blk_rq_unprep_clone(struct request *rq) 2518 { 2519 struct bio *bio; 2520 2521 while ((bio = rq->bio) != NULL) { 2522 rq->bio = bio->bi_next; 2523 2524 bio_put(bio); 2525 } 2526 } 2527 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2528 2529 /* 2530 * Copy attributes of the original request to the clone request. 2531 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2532 */ 2533 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2534 { 2535 dst->cpu = src->cpu; 2536 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2537 dst->cmd_type = src->cmd_type; 2538 dst->__sector = blk_rq_pos(src); 2539 dst->__data_len = blk_rq_bytes(src); 2540 dst->nr_phys_segments = src->nr_phys_segments; 2541 dst->ioprio = src->ioprio; 2542 dst->extra_len = src->extra_len; 2543 } 2544 2545 /** 2546 * blk_rq_prep_clone - Helper function to setup clone request 2547 * @rq: the request to be setup 2548 * @rq_src: original request to be cloned 2549 * @bs: bio_set that bios for clone are allocated from 2550 * @gfp_mask: memory allocation mask for bio 2551 * @bio_ctr: setup function to be called for each clone bio. 2552 * Returns %0 for success, non %0 for failure. 2553 * @data: private data to be passed to @bio_ctr 2554 * 2555 * Description: 2556 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2557 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2558 * are not copied, and copying such parts is the caller's responsibility. 2559 * Also, pages which the original bios are pointing to are not copied 2560 * and the cloned bios just point same pages. 2561 * So cloned bios must be completed before original bios, which means 2562 * the caller must complete @rq before @rq_src. 2563 */ 2564 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2565 struct bio_set *bs, gfp_t gfp_mask, 2566 int (*bio_ctr)(struct bio *, struct bio *, void *), 2567 void *data) 2568 { 2569 struct bio *bio, *bio_src; 2570 2571 if (!bs) 2572 bs = fs_bio_set; 2573 2574 blk_rq_init(NULL, rq); 2575 2576 __rq_for_each_bio(bio_src, rq_src) { 2577 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2578 if (!bio) 2579 goto free_and_out; 2580 2581 __bio_clone(bio, bio_src); 2582 2583 if (bio_integrity(bio_src) && 2584 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2585 goto free_and_out; 2586 2587 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2588 goto free_and_out; 2589 2590 if (rq->bio) { 2591 rq->biotail->bi_next = bio; 2592 rq->biotail = bio; 2593 } else 2594 rq->bio = rq->biotail = bio; 2595 } 2596 2597 __blk_rq_prep_clone(rq, rq_src); 2598 2599 return 0; 2600 2601 free_and_out: 2602 if (bio) 2603 bio_free(bio, bs); 2604 blk_rq_unprep_clone(rq); 2605 2606 return -ENOMEM; 2607 } 2608 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2609 2610 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2611 { 2612 return queue_work(kblockd_workqueue, work); 2613 } 2614 EXPORT_SYMBOL(kblockd_schedule_work); 2615 2616 int kblockd_schedule_delayed_work(struct request_queue *q, 2617 struct delayed_work *dwork, unsigned long delay) 2618 { 2619 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2620 } 2621 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2622 2623 #define PLUG_MAGIC 0x91827364 2624 2625 void blk_start_plug(struct blk_plug *plug) 2626 { 2627 struct task_struct *tsk = current; 2628 2629 plug->magic = PLUG_MAGIC; 2630 INIT_LIST_HEAD(&plug->list); 2631 INIT_LIST_HEAD(&plug->cb_list); 2632 plug->should_sort = 0; 2633 plug->count = 0; 2634 2635 /* 2636 * If this is a nested plug, don't actually assign it. It will be 2637 * flushed on its own. 2638 */ 2639 if (!tsk->plug) { 2640 /* 2641 * Store ordering should not be needed here, since a potential 2642 * preempt will imply a full memory barrier 2643 */ 2644 tsk->plug = plug; 2645 } 2646 } 2647 EXPORT_SYMBOL(blk_start_plug); 2648 2649 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2650 { 2651 struct request *rqa = container_of(a, struct request, queuelist); 2652 struct request *rqb = container_of(b, struct request, queuelist); 2653 2654 return !(rqa->q <= rqb->q); 2655 } 2656 2657 /* 2658 * If 'from_schedule' is true, then postpone the dispatch of requests 2659 * until a safe kblockd context. We due this to avoid accidental big 2660 * additional stack usage in driver dispatch, in places where the originally 2661 * plugger did not intend it. 2662 */ 2663 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2664 bool from_schedule) 2665 __releases(q->queue_lock) 2666 { 2667 trace_block_unplug(q, depth, !from_schedule); 2668 2669 /* 2670 * If we are punting this to kblockd, then we can safely drop 2671 * the queue_lock before waking kblockd (which needs to take 2672 * this lock). 2673 */ 2674 if (from_schedule) { 2675 spin_unlock(q->queue_lock); 2676 blk_run_queue_async(q); 2677 } else { 2678 __blk_run_queue(q); 2679 spin_unlock(q->queue_lock); 2680 } 2681 2682 } 2683 2684 static void flush_plug_callbacks(struct blk_plug *plug) 2685 { 2686 LIST_HEAD(callbacks); 2687 2688 if (list_empty(&plug->cb_list)) 2689 return; 2690 2691 list_splice_init(&plug->cb_list, &callbacks); 2692 2693 while (!list_empty(&callbacks)) { 2694 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2695 struct blk_plug_cb, 2696 list); 2697 list_del(&cb->list); 2698 cb->callback(cb); 2699 } 2700 } 2701 2702 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2703 { 2704 struct request_queue *q; 2705 unsigned long flags; 2706 struct request *rq; 2707 LIST_HEAD(list); 2708 unsigned int depth; 2709 2710 BUG_ON(plug->magic != PLUG_MAGIC); 2711 2712 flush_plug_callbacks(plug); 2713 if (list_empty(&plug->list)) 2714 return; 2715 2716 list_splice_init(&plug->list, &list); 2717 plug->count = 0; 2718 2719 if (plug->should_sort) { 2720 list_sort(NULL, &list, plug_rq_cmp); 2721 plug->should_sort = 0; 2722 } 2723 2724 q = NULL; 2725 depth = 0; 2726 2727 /* 2728 * Save and disable interrupts here, to avoid doing it for every 2729 * queue lock we have to take. 2730 */ 2731 local_irq_save(flags); 2732 while (!list_empty(&list)) { 2733 rq = list_entry_rq(list.next); 2734 list_del_init(&rq->queuelist); 2735 BUG_ON(!rq->q); 2736 if (rq->q != q) { 2737 /* 2738 * This drops the queue lock 2739 */ 2740 if (q) 2741 queue_unplugged(q, depth, from_schedule); 2742 q = rq->q; 2743 depth = 0; 2744 spin_lock(q->queue_lock); 2745 } 2746 /* 2747 * rq is already accounted, so use raw insert 2748 */ 2749 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 2750 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 2751 else 2752 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 2753 2754 depth++; 2755 } 2756 2757 /* 2758 * This drops the queue lock 2759 */ 2760 if (q) 2761 queue_unplugged(q, depth, from_schedule); 2762 2763 local_irq_restore(flags); 2764 } 2765 2766 void blk_finish_plug(struct blk_plug *plug) 2767 { 2768 blk_flush_plug_list(plug, false); 2769 2770 if (plug == current->plug) 2771 current->plug = NULL; 2772 } 2773 EXPORT_SYMBOL(blk_finish_plug); 2774 2775 int __init blk_dev_init(void) 2776 { 2777 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2778 sizeof(((struct request *)0)->cmd_flags)); 2779 2780 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 2781 kblockd_workqueue = alloc_workqueue("kblockd", 2782 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2783 if (!kblockd_workqueue) 2784 panic("Failed to create kblockd\n"); 2785 2786 request_cachep = kmem_cache_create("blkdev_requests", 2787 sizeof(struct request), 0, SLAB_PANIC, NULL); 2788 2789 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2790 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2791 2792 return 0; 2793 } 2794