xref: /linux/block/blk-core.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36 
37 #include "blk.h"
38 #include "blk-cgroup.h"
39 
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43 
44 DEFINE_IDA(blk_queue_ida);
45 
46 /*
47  * For the allocated request tables
48  */
49 static struct kmem_cache *request_cachep;
50 
51 /*
52  * For queue allocation
53  */
54 struct kmem_cache *blk_requestq_cachep;
55 
56 /*
57  * Controlling structure to kblockd
58  */
59 static struct workqueue_struct *kblockd_workqueue;
60 
61 static void drive_stat_acct(struct request *rq, int new_io)
62 {
63 	struct hd_struct *part;
64 	int rw = rq_data_dir(rq);
65 	int cpu;
66 
67 	if (!blk_do_io_stat(rq))
68 		return;
69 
70 	cpu = part_stat_lock();
71 
72 	if (!new_io) {
73 		part = rq->part;
74 		part_stat_inc(cpu, part, merges[rw]);
75 	} else {
76 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 		if (!hd_struct_try_get(part)) {
78 			/*
79 			 * The partition is already being removed,
80 			 * the request will be accounted on the disk only
81 			 *
82 			 * We take a reference on disk->part0 although that
83 			 * partition will never be deleted, so we can treat
84 			 * it as any other partition.
85 			 */
86 			part = &rq->rq_disk->part0;
87 			hd_struct_get(part);
88 		}
89 		part_round_stats(cpu, part);
90 		part_inc_in_flight(part, rw);
91 		rq->part = part;
92 	}
93 
94 	part_stat_unlock();
95 }
96 
97 void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 	int nr;
100 
101 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 	if (nr > q->nr_requests)
103 		nr = q->nr_requests;
104 	q->nr_congestion_on = nr;
105 
106 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 	if (nr < 1)
108 		nr = 1;
109 	q->nr_congestion_off = nr;
110 }
111 
112 /**
113  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114  * @bdev:	device
115  *
116  * Locates the passed device's request queue and returns the address of its
117  * backing_dev_info
118  *
119  * Will return NULL if the request queue cannot be located.
120  */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 	struct backing_dev_info *ret = NULL;
124 	struct request_queue *q = bdev_get_queue(bdev);
125 
126 	if (q)
127 		ret = &q->backing_dev_info;
128 	return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131 
132 void blk_rq_init(struct request_queue *q, struct request *rq)
133 {
134 	memset(rq, 0, sizeof(*rq));
135 
136 	INIT_LIST_HEAD(&rq->queuelist);
137 	INIT_LIST_HEAD(&rq->timeout_list);
138 	rq->cpu = -1;
139 	rq->q = q;
140 	rq->__sector = (sector_t) -1;
141 	INIT_HLIST_NODE(&rq->hash);
142 	RB_CLEAR_NODE(&rq->rb_node);
143 	rq->cmd = rq->__cmd;
144 	rq->cmd_len = BLK_MAX_CDB;
145 	rq->tag = -1;
146 	rq->ref_count = 1;
147 	rq->start_time = jiffies;
148 	set_start_time_ns(rq);
149 	rq->part = NULL;
150 }
151 EXPORT_SYMBOL(blk_rq_init);
152 
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 			  unsigned int nbytes, int error)
155 {
156 	if (error)
157 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 		error = -EIO;
160 
161 	if (unlikely(nbytes > bio->bi_size)) {
162 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 		       __func__, nbytes, bio->bi_size);
164 		nbytes = bio->bi_size;
165 	}
166 
167 	if (unlikely(rq->cmd_flags & REQ_QUIET))
168 		set_bit(BIO_QUIET, &bio->bi_flags);
169 
170 	bio->bi_size -= nbytes;
171 	bio->bi_sector += (nbytes >> 9);
172 
173 	if (bio_integrity(bio))
174 		bio_integrity_advance(bio, nbytes);
175 
176 	/* don't actually finish bio if it's part of flush sequence */
177 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 		bio_endio(bio, error);
179 }
180 
181 void blk_dump_rq_flags(struct request *rq, char *msg)
182 {
183 	int bit;
184 
185 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 		rq->cmd_flags);
188 
189 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
190 	       (unsigned long long)blk_rq_pos(rq),
191 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
193 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194 
195 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 		printk(KERN_INFO "  cdb: ");
197 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 			printk("%02x ", rq->cmd[bit]);
199 		printk("\n");
200 	}
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203 
204 static void blk_delay_work(struct work_struct *work)
205 {
206 	struct request_queue *q;
207 
208 	q = container_of(work, struct request_queue, delay_work.work);
209 	spin_lock_irq(q->queue_lock);
210 	__blk_run_queue(q);
211 	spin_unlock_irq(q->queue_lock);
212 }
213 
214 /**
215  * blk_delay_queue - restart queueing after defined interval
216  * @q:		The &struct request_queue in question
217  * @msecs:	Delay in msecs
218  *
219  * Description:
220  *   Sometimes queueing needs to be postponed for a little while, to allow
221  *   resources to come back. This function will make sure that queueing is
222  *   restarted around the specified time.
223  */
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225 {
226 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 				msecs_to_jiffies(msecs));
228 }
229 EXPORT_SYMBOL(blk_delay_queue);
230 
231 /**
232  * blk_start_queue - restart a previously stopped queue
233  * @q:    The &struct request_queue in question
234  *
235  * Description:
236  *   blk_start_queue() will clear the stop flag on the queue, and call
237  *   the request_fn for the queue if it was in a stopped state when
238  *   entered. Also see blk_stop_queue(). Queue lock must be held.
239  **/
240 void blk_start_queue(struct request_queue *q)
241 {
242 	WARN_ON(!irqs_disabled());
243 
244 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 	__blk_run_queue(q);
246 }
247 EXPORT_SYMBOL(blk_start_queue);
248 
249 /**
250  * blk_stop_queue - stop a queue
251  * @q:    The &struct request_queue in question
252  *
253  * Description:
254  *   The Linux block layer assumes that a block driver will consume all
255  *   entries on the request queue when the request_fn strategy is called.
256  *   Often this will not happen, because of hardware limitations (queue
257  *   depth settings). If a device driver gets a 'queue full' response,
258  *   or if it simply chooses not to queue more I/O at one point, it can
259  *   call this function to prevent the request_fn from being called until
260  *   the driver has signalled it's ready to go again. This happens by calling
261  *   blk_start_queue() to restart queue operations. Queue lock must be held.
262  **/
263 void blk_stop_queue(struct request_queue *q)
264 {
265 	__cancel_delayed_work(&q->delay_work);
266 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
267 }
268 EXPORT_SYMBOL(blk_stop_queue);
269 
270 /**
271  * blk_sync_queue - cancel any pending callbacks on a queue
272  * @q: the queue
273  *
274  * Description:
275  *     The block layer may perform asynchronous callback activity
276  *     on a queue, such as calling the unplug function after a timeout.
277  *     A block device may call blk_sync_queue to ensure that any
278  *     such activity is cancelled, thus allowing it to release resources
279  *     that the callbacks might use. The caller must already have made sure
280  *     that its ->make_request_fn will not re-add plugging prior to calling
281  *     this function.
282  *
283  *     This function does not cancel any asynchronous activity arising
284  *     out of elevator or throttling code. That would require elevaotor_exit()
285  *     and blkcg_exit_queue() to be called with queue lock initialized.
286  *
287  */
288 void blk_sync_queue(struct request_queue *q)
289 {
290 	del_timer_sync(&q->timeout);
291 	cancel_delayed_work_sync(&q->delay_work);
292 }
293 EXPORT_SYMBOL(blk_sync_queue);
294 
295 /**
296  * __blk_run_queue - run a single device queue
297  * @q:	The queue to run
298  *
299  * Description:
300  *    See @blk_run_queue. This variant must be called with the queue lock
301  *    held and interrupts disabled.
302  */
303 void __blk_run_queue(struct request_queue *q)
304 {
305 	if (unlikely(blk_queue_stopped(q)))
306 		return;
307 
308 	q->request_fn(q);
309 }
310 EXPORT_SYMBOL(__blk_run_queue);
311 
312 /**
313  * blk_run_queue_async - run a single device queue in workqueue context
314  * @q:	The queue to run
315  *
316  * Description:
317  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318  *    of us.
319  */
320 void blk_run_queue_async(struct request_queue *q)
321 {
322 	if (likely(!blk_queue_stopped(q))) {
323 		__cancel_delayed_work(&q->delay_work);
324 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
325 	}
326 }
327 EXPORT_SYMBOL(blk_run_queue_async);
328 
329 /**
330  * blk_run_queue - run a single device queue
331  * @q: The queue to run
332  *
333  * Description:
334  *    Invoke request handling on this queue, if it has pending work to do.
335  *    May be used to restart queueing when a request has completed.
336  */
337 void blk_run_queue(struct request_queue *q)
338 {
339 	unsigned long flags;
340 
341 	spin_lock_irqsave(q->queue_lock, flags);
342 	__blk_run_queue(q);
343 	spin_unlock_irqrestore(q->queue_lock, flags);
344 }
345 EXPORT_SYMBOL(blk_run_queue);
346 
347 void blk_put_queue(struct request_queue *q)
348 {
349 	kobject_put(&q->kobj);
350 }
351 EXPORT_SYMBOL(blk_put_queue);
352 
353 /**
354  * blk_drain_queue - drain requests from request_queue
355  * @q: queue to drain
356  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
357  *
358  * Drain requests from @q.  If @drain_all is set, all requests are drained.
359  * If not, only ELVPRIV requests are drained.  The caller is responsible
360  * for ensuring that no new requests which need to be drained are queued.
361  */
362 void blk_drain_queue(struct request_queue *q, bool drain_all)
363 {
364 	int i;
365 
366 	while (true) {
367 		bool drain = false;
368 
369 		spin_lock_irq(q->queue_lock);
370 
371 		/*
372 		 * The caller might be trying to drain @q before its
373 		 * elevator is initialized.
374 		 */
375 		if (q->elevator)
376 			elv_drain_elevator(q);
377 
378 		blkcg_drain_queue(q);
379 
380 		/*
381 		 * This function might be called on a queue which failed
382 		 * driver init after queue creation or is not yet fully
383 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
384 		 * in such cases.  Kick queue iff dispatch queue has
385 		 * something on it and @q has request_fn set.
386 		 */
387 		if (!list_empty(&q->queue_head) && q->request_fn)
388 			__blk_run_queue(q);
389 
390 		drain |= q->rq.elvpriv;
391 
392 		/*
393 		 * Unfortunately, requests are queued at and tracked from
394 		 * multiple places and there's no single counter which can
395 		 * be drained.  Check all the queues and counters.
396 		 */
397 		if (drain_all) {
398 			drain |= !list_empty(&q->queue_head);
399 			for (i = 0; i < 2; i++) {
400 				drain |= q->rq.count[i];
401 				drain |= q->in_flight[i];
402 				drain |= !list_empty(&q->flush_queue[i]);
403 			}
404 		}
405 
406 		spin_unlock_irq(q->queue_lock);
407 
408 		if (!drain)
409 			break;
410 		msleep(10);
411 	}
412 
413 	/*
414 	 * With queue marked dead, any woken up waiter will fail the
415 	 * allocation path, so the wakeup chaining is lost and we're
416 	 * left with hung waiters. We need to wake up those waiters.
417 	 */
418 	if (q->request_fn) {
419 		spin_lock_irq(q->queue_lock);
420 		for (i = 0; i < ARRAY_SIZE(q->rq.wait); i++)
421 			wake_up_all(&q->rq.wait[i]);
422 		spin_unlock_irq(q->queue_lock);
423 	}
424 }
425 
426 /**
427  * blk_queue_bypass_start - enter queue bypass mode
428  * @q: queue of interest
429  *
430  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
431  * function makes @q enter bypass mode and drains all requests which were
432  * throttled or issued before.  On return, it's guaranteed that no request
433  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434  * inside queue or RCU read lock.
435  */
436 void blk_queue_bypass_start(struct request_queue *q)
437 {
438 	bool drain;
439 
440 	spin_lock_irq(q->queue_lock);
441 	drain = !q->bypass_depth++;
442 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 	spin_unlock_irq(q->queue_lock);
444 
445 	if (drain) {
446 		blk_drain_queue(q, false);
447 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
448 		synchronize_rcu();
449 	}
450 }
451 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
452 
453 /**
454  * blk_queue_bypass_end - leave queue bypass mode
455  * @q: queue of interest
456  *
457  * Leave bypass mode and restore the normal queueing behavior.
458  */
459 void blk_queue_bypass_end(struct request_queue *q)
460 {
461 	spin_lock_irq(q->queue_lock);
462 	if (!--q->bypass_depth)
463 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
464 	WARN_ON_ONCE(q->bypass_depth < 0);
465 	spin_unlock_irq(q->queue_lock);
466 }
467 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
468 
469 /**
470  * blk_cleanup_queue - shutdown a request queue
471  * @q: request queue to shutdown
472  *
473  * Mark @q DEAD, drain all pending requests, destroy and put it.  All
474  * future requests will be failed immediately with -ENODEV.
475  */
476 void blk_cleanup_queue(struct request_queue *q)
477 {
478 	spinlock_t *lock = q->queue_lock;
479 
480 	/* mark @q DEAD, no new request or merges will be allowed afterwards */
481 	mutex_lock(&q->sysfs_lock);
482 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483 	spin_lock_irq(lock);
484 
485 	/*
486 	 * Dead queue is permanently in bypass mode till released.  Note
487 	 * that, unlike blk_queue_bypass_start(), we aren't performing
488 	 * synchronize_rcu() after entering bypass mode to avoid the delay
489 	 * as some drivers create and destroy a lot of queues while
490 	 * probing.  This is still safe because blk_release_queue() will be
491 	 * called only after the queue refcnt drops to zero and nothing,
492 	 * RCU or not, would be traversing the queue by then.
493 	 */
494 	q->bypass_depth++;
495 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
496 
497 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
498 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
499 	queue_flag_set(QUEUE_FLAG_DEAD, q);
500 	spin_unlock_irq(lock);
501 	mutex_unlock(&q->sysfs_lock);
502 
503 	/* drain all requests queued before DEAD marking */
504 	blk_drain_queue(q, true);
505 
506 	/* @q won't process any more request, flush async actions */
507 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
508 	blk_sync_queue(q);
509 
510 	spin_lock_irq(lock);
511 	if (q->queue_lock != &q->__queue_lock)
512 		q->queue_lock = &q->__queue_lock;
513 	spin_unlock_irq(lock);
514 
515 	/* @q is and will stay empty, shutdown and put */
516 	blk_put_queue(q);
517 }
518 EXPORT_SYMBOL(blk_cleanup_queue);
519 
520 static int blk_init_free_list(struct request_queue *q)
521 {
522 	struct request_list *rl = &q->rq;
523 
524 	if (unlikely(rl->rq_pool))
525 		return 0;
526 
527 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
528 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
529 	rl->elvpriv = 0;
530 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
531 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
532 
533 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
534 				mempool_free_slab, request_cachep, q->node);
535 
536 	if (!rl->rq_pool)
537 		return -ENOMEM;
538 
539 	return 0;
540 }
541 
542 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
543 {
544 	return blk_alloc_queue_node(gfp_mask, -1);
545 }
546 EXPORT_SYMBOL(blk_alloc_queue);
547 
548 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
549 {
550 	struct request_queue *q;
551 	int err;
552 
553 	q = kmem_cache_alloc_node(blk_requestq_cachep,
554 				gfp_mask | __GFP_ZERO, node_id);
555 	if (!q)
556 		return NULL;
557 
558 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
559 	if (q->id < 0)
560 		goto fail_q;
561 
562 	q->backing_dev_info.ra_pages =
563 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
564 	q->backing_dev_info.state = 0;
565 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
566 	q->backing_dev_info.name = "block";
567 	q->node = node_id;
568 
569 	err = bdi_init(&q->backing_dev_info);
570 	if (err)
571 		goto fail_id;
572 
573 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
574 		    laptop_mode_timer_fn, (unsigned long) q);
575 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
576 	INIT_LIST_HEAD(&q->queue_head);
577 	INIT_LIST_HEAD(&q->timeout_list);
578 	INIT_LIST_HEAD(&q->icq_list);
579 #ifdef CONFIG_BLK_CGROUP
580 	INIT_LIST_HEAD(&q->blkg_list);
581 #endif
582 	INIT_LIST_HEAD(&q->flush_queue[0]);
583 	INIT_LIST_HEAD(&q->flush_queue[1]);
584 	INIT_LIST_HEAD(&q->flush_data_in_flight);
585 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
586 
587 	kobject_init(&q->kobj, &blk_queue_ktype);
588 
589 	mutex_init(&q->sysfs_lock);
590 	spin_lock_init(&q->__queue_lock);
591 
592 	/*
593 	 * By default initialize queue_lock to internal lock and driver can
594 	 * override it later if need be.
595 	 */
596 	q->queue_lock = &q->__queue_lock;
597 
598 	/*
599 	 * A queue starts its life with bypass turned on to avoid
600 	 * unnecessary bypass on/off overhead and nasty surprises during
601 	 * init.  The initial bypass will be finished at the end of
602 	 * blk_init_allocated_queue().
603 	 */
604 	q->bypass_depth = 1;
605 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
606 
607 	if (blkcg_init_queue(q))
608 		goto fail_id;
609 
610 	return q;
611 
612 fail_id:
613 	ida_simple_remove(&blk_queue_ida, q->id);
614 fail_q:
615 	kmem_cache_free(blk_requestq_cachep, q);
616 	return NULL;
617 }
618 EXPORT_SYMBOL(blk_alloc_queue_node);
619 
620 /**
621  * blk_init_queue  - prepare a request queue for use with a block device
622  * @rfn:  The function to be called to process requests that have been
623  *        placed on the queue.
624  * @lock: Request queue spin lock
625  *
626  * Description:
627  *    If a block device wishes to use the standard request handling procedures,
628  *    which sorts requests and coalesces adjacent requests, then it must
629  *    call blk_init_queue().  The function @rfn will be called when there
630  *    are requests on the queue that need to be processed.  If the device
631  *    supports plugging, then @rfn may not be called immediately when requests
632  *    are available on the queue, but may be called at some time later instead.
633  *    Plugged queues are generally unplugged when a buffer belonging to one
634  *    of the requests on the queue is needed, or due to memory pressure.
635  *
636  *    @rfn is not required, or even expected, to remove all requests off the
637  *    queue, but only as many as it can handle at a time.  If it does leave
638  *    requests on the queue, it is responsible for arranging that the requests
639  *    get dealt with eventually.
640  *
641  *    The queue spin lock must be held while manipulating the requests on the
642  *    request queue; this lock will be taken also from interrupt context, so irq
643  *    disabling is needed for it.
644  *
645  *    Function returns a pointer to the initialized request queue, or %NULL if
646  *    it didn't succeed.
647  *
648  * Note:
649  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
650  *    when the block device is deactivated (such as at module unload).
651  **/
652 
653 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
654 {
655 	return blk_init_queue_node(rfn, lock, -1);
656 }
657 EXPORT_SYMBOL(blk_init_queue);
658 
659 struct request_queue *
660 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
661 {
662 	struct request_queue *uninit_q, *q;
663 
664 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
665 	if (!uninit_q)
666 		return NULL;
667 
668 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
669 	if (!q)
670 		blk_cleanup_queue(uninit_q);
671 
672 	return q;
673 }
674 EXPORT_SYMBOL(blk_init_queue_node);
675 
676 struct request_queue *
677 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
678 			 spinlock_t *lock)
679 {
680 	if (!q)
681 		return NULL;
682 
683 	if (blk_init_free_list(q))
684 		return NULL;
685 
686 	q->request_fn		= rfn;
687 	q->prep_rq_fn		= NULL;
688 	q->unprep_rq_fn		= NULL;
689 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
690 
691 	/* Override internal queue lock with supplied lock pointer */
692 	if (lock)
693 		q->queue_lock		= lock;
694 
695 	/*
696 	 * This also sets hw/phys segments, boundary and size
697 	 */
698 	blk_queue_make_request(q, blk_queue_bio);
699 
700 	q->sg_reserved_size = INT_MAX;
701 
702 	/* init elevator */
703 	if (elevator_init(q, NULL))
704 		return NULL;
705 
706 	blk_queue_congestion_threshold(q);
707 
708 	/* all done, end the initial bypass */
709 	blk_queue_bypass_end(q);
710 	return q;
711 }
712 EXPORT_SYMBOL(blk_init_allocated_queue);
713 
714 bool blk_get_queue(struct request_queue *q)
715 {
716 	if (likely(!blk_queue_dead(q))) {
717 		__blk_get_queue(q);
718 		return true;
719 	}
720 
721 	return false;
722 }
723 EXPORT_SYMBOL(blk_get_queue);
724 
725 static inline void blk_free_request(struct request_queue *q, struct request *rq)
726 {
727 	if (rq->cmd_flags & REQ_ELVPRIV) {
728 		elv_put_request(q, rq);
729 		if (rq->elv.icq)
730 			put_io_context(rq->elv.icq->ioc);
731 	}
732 
733 	mempool_free(rq, q->rq.rq_pool);
734 }
735 
736 /*
737  * ioc_batching returns true if the ioc is a valid batching request and
738  * should be given priority access to a request.
739  */
740 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
741 {
742 	if (!ioc)
743 		return 0;
744 
745 	/*
746 	 * Make sure the process is able to allocate at least 1 request
747 	 * even if the batch times out, otherwise we could theoretically
748 	 * lose wakeups.
749 	 */
750 	return ioc->nr_batch_requests == q->nr_batching ||
751 		(ioc->nr_batch_requests > 0
752 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
753 }
754 
755 /*
756  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
757  * will cause the process to be a "batcher" on all queues in the system. This
758  * is the behaviour we want though - once it gets a wakeup it should be given
759  * a nice run.
760  */
761 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
762 {
763 	if (!ioc || ioc_batching(q, ioc))
764 		return;
765 
766 	ioc->nr_batch_requests = q->nr_batching;
767 	ioc->last_waited = jiffies;
768 }
769 
770 static void __freed_request(struct request_queue *q, int sync)
771 {
772 	struct request_list *rl = &q->rq;
773 
774 	if (rl->count[sync] < queue_congestion_off_threshold(q))
775 		blk_clear_queue_congested(q, sync);
776 
777 	if (rl->count[sync] + 1 <= q->nr_requests) {
778 		if (waitqueue_active(&rl->wait[sync]))
779 			wake_up(&rl->wait[sync]);
780 
781 		blk_clear_queue_full(q, sync);
782 	}
783 }
784 
785 /*
786  * A request has just been released.  Account for it, update the full and
787  * congestion status, wake up any waiters.   Called under q->queue_lock.
788  */
789 static void freed_request(struct request_queue *q, unsigned int flags)
790 {
791 	struct request_list *rl = &q->rq;
792 	int sync = rw_is_sync(flags);
793 
794 	rl->count[sync]--;
795 	if (flags & REQ_ELVPRIV)
796 		rl->elvpriv--;
797 
798 	__freed_request(q, sync);
799 
800 	if (unlikely(rl->starved[sync ^ 1]))
801 		__freed_request(q, sync ^ 1);
802 }
803 
804 /*
805  * Determine if elevator data should be initialized when allocating the
806  * request associated with @bio.
807  */
808 static bool blk_rq_should_init_elevator(struct bio *bio)
809 {
810 	if (!bio)
811 		return true;
812 
813 	/*
814 	 * Flush requests do not use the elevator so skip initialization.
815 	 * This allows a request to share the flush and elevator data.
816 	 */
817 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
818 		return false;
819 
820 	return true;
821 }
822 
823 /**
824  * rq_ioc - determine io_context for request allocation
825  * @bio: request being allocated is for this bio (can be %NULL)
826  *
827  * Determine io_context to use for request allocation for @bio.  May return
828  * %NULL if %current->io_context doesn't exist.
829  */
830 static struct io_context *rq_ioc(struct bio *bio)
831 {
832 #ifdef CONFIG_BLK_CGROUP
833 	if (bio && bio->bi_ioc)
834 		return bio->bi_ioc;
835 #endif
836 	return current->io_context;
837 }
838 
839 /**
840  * get_request - get a free request
841  * @q: request_queue to allocate request from
842  * @rw_flags: RW and SYNC flags
843  * @bio: bio to allocate request for (can be %NULL)
844  * @gfp_mask: allocation mask
845  *
846  * Get a free request from @q.  This function may fail under memory
847  * pressure or if @q is dead.
848  *
849  * Must be callled with @q->queue_lock held and,
850  * Returns %NULL on failure, with @q->queue_lock held.
851  * Returns !%NULL on success, with @q->queue_lock *not held*.
852  */
853 static struct request *get_request(struct request_queue *q, int rw_flags,
854 				   struct bio *bio, gfp_t gfp_mask)
855 {
856 	struct request *rq;
857 	struct request_list *rl = &q->rq;
858 	struct elevator_type *et;
859 	struct io_context *ioc;
860 	struct io_cq *icq = NULL;
861 	const bool is_sync = rw_is_sync(rw_flags) != 0;
862 	bool retried = false;
863 	int may_queue;
864 retry:
865 	et = q->elevator->type;
866 	ioc = rq_ioc(bio);
867 
868 	if (unlikely(blk_queue_dead(q)))
869 		return NULL;
870 
871 	may_queue = elv_may_queue(q, rw_flags);
872 	if (may_queue == ELV_MQUEUE_NO)
873 		goto rq_starved;
874 
875 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
876 		if (rl->count[is_sync]+1 >= q->nr_requests) {
877 			/*
878 			 * We want ioc to record batching state.  If it's
879 			 * not already there, creating a new one requires
880 			 * dropping queue_lock, which in turn requires
881 			 * retesting conditions to avoid queue hang.
882 			 */
883 			if (!ioc && !retried) {
884 				spin_unlock_irq(q->queue_lock);
885 				create_io_context(gfp_mask, q->node);
886 				spin_lock_irq(q->queue_lock);
887 				retried = true;
888 				goto retry;
889 			}
890 
891 			/*
892 			 * The queue will fill after this allocation, so set
893 			 * it as full, and mark this process as "batching".
894 			 * This process will be allowed to complete a batch of
895 			 * requests, others will be blocked.
896 			 */
897 			if (!blk_queue_full(q, is_sync)) {
898 				ioc_set_batching(q, ioc);
899 				blk_set_queue_full(q, is_sync);
900 			} else {
901 				if (may_queue != ELV_MQUEUE_MUST
902 						&& !ioc_batching(q, ioc)) {
903 					/*
904 					 * The queue is full and the allocating
905 					 * process is not a "batcher", and not
906 					 * exempted by the IO scheduler
907 					 */
908 					return NULL;
909 				}
910 			}
911 		}
912 		blk_set_queue_congested(q, is_sync);
913 	}
914 
915 	/*
916 	 * Only allow batching queuers to allocate up to 50% over the defined
917 	 * limit of requests, otherwise we could have thousands of requests
918 	 * allocated with any setting of ->nr_requests
919 	 */
920 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
921 		return NULL;
922 
923 	rl->count[is_sync]++;
924 	rl->starved[is_sync] = 0;
925 
926 	/*
927 	 * Decide whether the new request will be managed by elevator.  If
928 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
929 	 * prevent the current elevator from being destroyed until the new
930 	 * request is freed.  This guarantees icq's won't be destroyed and
931 	 * makes creating new ones safe.
932 	 *
933 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
934 	 * it will be created after releasing queue_lock.
935 	 */
936 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
937 		rw_flags |= REQ_ELVPRIV;
938 		rl->elvpriv++;
939 		if (et->icq_cache && ioc)
940 			icq = ioc_lookup_icq(ioc, q);
941 	}
942 
943 	if (blk_queue_io_stat(q))
944 		rw_flags |= REQ_IO_STAT;
945 	spin_unlock_irq(q->queue_lock);
946 
947 	/* allocate and init request */
948 	rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
949 	if (!rq)
950 		goto fail_alloc;
951 
952 	blk_rq_init(q, rq);
953 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
954 
955 	/* init elvpriv */
956 	if (rw_flags & REQ_ELVPRIV) {
957 		if (unlikely(et->icq_cache && !icq)) {
958 			create_io_context(gfp_mask, q->node);
959 			ioc = rq_ioc(bio);
960 			if (!ioc)
961 				goto fail_elvpriv;
962 
963 			icq = ioc_create_icq(ioc, q, gfp_mask);
964 			if (!icq)
965 				goto fail_elvpriv;
966 		}
967 
968 		rq->elv.icq = icq;
969 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
970 			goto fail_elvpriv;
971 
972 		/* @rq->elv.icq holds io_context until @rq is freed */
973 		if (icq)
974 			get_io_context(icq->ioc);
975 	}
976 out:
977 	/*
978 	 * ioc may be NULL here, and ioc_batching will be false. That's
979 	 * OK, if the queue is under the request limit then requests need
980 	 * not count toward the nr_batch_requests limit. There will always
981 	 * be some limit enforced by BLK_BATCH_TIME.
982 	 */
983 	if (ioc_batching(q, ioc))
984 		ioc->nr_batch_requests--;
985 
986 	trace_block_getrq(q, bio, rw_flags & 1);
987 	return rq;
988 
989 fail_elvpriv:
990 	/*
991 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
992 	 * and may fail indefinitely under memory pressure and thus
993 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
994 	 * disturb iosched and blkcg but weird is bettern than dead.
995 	 */
996 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
997 			   dev_name(q->backing_dev_info.dev));
998 
999 	rq->cmd_flags &= ~REQ_ELVPRIV;
1000 	rq->elv.icq = NULL;
1001 
1002 	spin_lock_irq(q->queue_lock);
1003 	rl->elvpriv--;
1004 	spin_unlock_irq(q->queue_lock);
1005 	goto out;
1006 
1007 fail_alloc:
1008 	/*
1009 	 * Allocation failed presumably due to memory. Undo anything we
1010 	 * might have messed up.
1011 	 *
1012 	 * Allocating task should really be put onto the front of the wait
1013 	 * queue, but this is pretty rare.
1014 	 */
1015 	spin_lock_irq(q->queue_lock);
1016 	freed_request(q, rw_flags);
1017 
1018 	/*
1019 	 * in the very unlikely event that allocation failed and no
1020 	 * requests for this direction was pending, mark us starved so that
1021 	 * freeing of a request in the other direction will notice
1022 	 * us. another possible fix would be to split the rq mempool into
1023 	 * READ and WRITE
1024 	 */
1025 rq_starved:
1026 	if (unlikely(rl->count[is_sync] == 0))
1027 		rl->starved[is_sync] = 1;
1028 	return NULL;
1029 }
1030 
1031 /**
1032  * get_request_wait - get a free request with retry
1033  * @q: request_queue to allocate request from
1034  * @rw_flags: RW and SYNC flags
1035  * @bio: bio to allocate request for (can be %NULL)
1036  *
1037  * Get a free request from @q.  This function keeps retrying under memory
1038  * pressure and fails iff @q is dead.
1039  *
1040  * Must be callled with @q->queue_lock held and,
1041  * Returns %NULL on failure, with @q->queue_lock held.
1042  * Returns !%NULL on success, with @q->queue_lock *not held*.
1043  */
1044 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
1045 					struct bio *bio)
1046 {
1047 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1048 	struct request *rq;
1049 
1050 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
1051 	while (!rq) {
1052 		DEFINE_WAIT(wait);
1053 		struct request_list *rl = &q->rq;
1054 
1055 		if (unlikely(blk_queue_dead(q)))
1056 			return NULL;
1057 
1058 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1059 				TASK_UNINTERRUPTIBLE);
1060 
1061 		trace_block_sleeprq(q, bio, rw_flags & 1);
1062 
1063 		spin_unlock_irq(q->queue_lock);
1064 		io_schedule();
1065 
1066 		/*
1067 		 * After sleeping, we become a "batching" process and
1068 		 * will be able to allocate at least one request, and
1069 		 * up to a big batch of them for a small period time.
1070 		 * See ioc_batching, ioc_set_batching
1071 		 */
1072 		create_io_context(GFP_NOIO, q->node);
1073 		ioc_set_batching(q, current->io_context);
1074 
1075 		spin_lock_irq(q->queue_lock);
1076 		finish_wait(&rl->wait[is_sync], &wait);
1077 
1078 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
1079 	};
1080 
1081 	return rq;
1082 }
1083 
1084 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1085 {
1086 	struct request *rq;
1087 
1088 	BUG_ON(rw != READ && rw != WRITE);
1089 
1090 	spin_lock_irq(q->queue_lock);
1091 	if (gfp_mask & __GFP_WAIT)
1092 		rq = get_request_wait(q, rw, NULL);
1093 	else
1094 		rq = get_request(q, rw, NULL, gfp_mask);
1095 	if (!rq)
1096 		spin_unlock_irq(q->queue_lock);
1097 	/* q->queue_lock is unlocked at this point */
1098 
1099 	return rq;
1100 }
1101 EXPORT_SYMBOL(blk_get_request);
1102 
1103 /**
1104  * blk_make_request - given a bio, allocate a corresponding struct request.
1105  * @q: target request queue
1106  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1107  *        It may be a chained-bio properly constructed by block/bio layer.
1108  * @gfp_mask: gfp flags to be used for memory allocation
1109  *
1110  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1111  * type commands. Where the struct request needs to be farther initialized by
1112  * the caller. It is passed a &struct bio, which describes the memory info of
1113  * the I/O transfer.
1114  *
1115  * The caller of blk_make_request must make sure that bi_io_vec
1116  * are set to describe the memory buffers. That bio_data_dir() will return
1117  * the needed direction of the request. (And all bio's in the passed bio-chain
1118  * are properly set accordingly)
1119  *
1120  * If called under none-sleepable conditions, mapped bio buffers must not
1121  * need bouncing, by calling the appropriate masked or flagged allocator,
1122  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1123  * BUG.
1124  *
1125  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1126  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1127  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1128  * completion of a bio that hasn't been submitted yet, thus resulting in a
1129  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1130  * of bio_alloc(), as that avoids the mempool deadlock.
1131  * If possible a big IO should be split into smaller parts when allocation
1132  * fails. Partial allocation should not be an error, or you risk a live-lock.
1133  */
1134 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1135 				 gfp_t gfp_mask)
1136 {
1137 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1138 
1139 	if (unlikely(!rq))
1140 		return ERR_PTR(-ENOMEM);
1141 
1142 	for_each_bio(bio) {
1143 		struct bio *bounce_bio = bio;
1144 		int ret;
1145 
1146 		blk_queue_bounce(q, &bounce_bio);
1147 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1148 		if (unlikely(ret)) {
1149 			blk_put_request(rq);
1150 			return ERR_PTR(ret);
1151 		}
1152 	}
1153 
1154 	return rq;
1155 }
1156 EXPORT_SYMBOL(blk_make_request);
1157 
1158 /**
1159  * blk_requeue_request - put a request back on queue
1160  * @q:		request queue where request should be inserted
1161  * @rq:		request to be inserted
1162  *
1163  * Description:
1164  *    Drivers often keep queueing requests until the hardware cannot accept
1165  *    more, when that condition happens we need to put the request back
1166  *    on the queue. Must be called with queue lock held.
1167  */
1168 void blk_requeue_request(struct request_queue *q, struct request *rq)
1169 {
1170 	blk_delete_timer(rq);
1171 	blk_clear_rq_complete(rq);
1172 	trace_block_rq_requeue(q, rq);
1173 
1174 	if (blk_rq_tagged(rq))
1175 		blk_queue_end_tag(q, rq);
1176 
1177 	BUG_ON(blk_queued_rq(rq));
1178 
1179 	elv_requeue_request(q, rq);
1180 }
1181 EXPORT_SYMBOL(blk_requeue_request);
1182 
1183 static void add_acct_request(struct request_queue *q, struct request *rq,
1184 			     int where)
1185 {
1186 	drive_stat_acct(rq, 1);
1187 	__elv_add_request(q, rq, where);
1188 }
1189 
1190 static void part_round_stats_single(int cpu, struct hd_struct *part,
1191 				    unsigned long now)
1192 {
1193 	if (now == part->stamp)
1194 		return;
1195 
1196 	if (part_in_flight(part)) {
1197 		__part_stat_add(cpu, part, time_in_queue,
1198 				part_in_flight(part) * (now - part->stamp));
1199 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1200 	}
1201 	part->stamp = now;
1202 }
1203 
1204 /**
1205  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1206  * @cpu: cpu number for stats access
1207  * @part: target partition
1208  *
1209  * The average IO queue length and utilisation statistics are maintained
1210  * by observing the current state of the queue length and the amount of
1211  * time it has been in this state for.
1212  *
1213  * Normally, that accounting is done on IO completion, but that can result
1214  * in more than a second's worth of IO being accounted for within any one
1215  * second, leading to >100% utilisation.  To deal with that, we call this
1216  * function to do a round-off before returning the results when reading
1217  * /proc/diskstats.  This accounts immediately for all queue usage up to
1218  * the current jiffies and restarts the counters again.
1219  */
1220 void part_round_stats(int cpu, struct hd_struct *part)
1221 {
1222 	unsigned long now = jiffies;
1223 
1224 	if (part->partno)
1225 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1226 	part_round_stats_single(cpu, part, now);
1227 }
1228 EXPORT_SYMBOL_GPL(part_round_stats);
1229 
1230 /*
1231  * queue lock must be held
1232  */
1233 void __blk_put_request(struct request_queue *q, struct request *req)
1234 {
1235 	if (unlikely(!q))
1236 		return;
1237 	if (unlikely(--req->ref_count))
1238 		return;
1239 
1240 	elv_completed_request(q, req);
1241 
1242 	/* this is a bio leak */
1243 	WARN_ON(req->bio != NULL);
1244 
1245 	/*
1246 	 * Request may not have originated from ll_rw_blk. if not,
1247 	 * it didn't come out of our reserved rq pools
1248 	 */
1249 	if (req->cmd_flags & REQ_ALLOCED) {
1250 		unsigned int flags = req->cmd_flags;
1251 
1252 		BUG_ON(!list_empty(&req->queuelist));
1253 		BUG_ON(!hlist_unhashed(&req->hash));
1254 
1255 		blk_free_request(q, req);
1256 		freed_request(q, flags);
1257 	}
1258 }
1259 EXPORT_SYMBOL_GPL(__blk_put_request);
1260 
1261 void blk_put_request(struct request *req)
1262 {
1263 	unsigned long flags;
1264 	struct request_queue *q = req->q;
1265 
1266 	spin_lock_irqsave(q->queue_lock, flags);
1267 	__blk_put_request(q, req);
1268 	spin_unlock_irqrestore(q->queue_lock, flags);
1269 }
1270 EXPORT_SYMBOL(blk_put_request);
1271 
1272 /**
1273  * blk_add_request_payload - add a payload to a request
1274  * @rq: request to update
1275  * @page: page backing the payload
1276  * @len: length of the payload.
1277  *
1278  * This allows to later add a payload to an already submitted request by
1279  * a block driver.  The driver needs to take care of freeing the payload
1280  * itself.
1281  *
1282  * Note that this is a quite horrible hack and nothing but handling of
1283  * discard requests should ever use it.
1284  */
1285 void blk_add_request_payload(struct request *rq, struct page *page,
1286 		unsigned int len)
1287 {
1288 	struct bio *bio = rq->bio;
1289 
1290 	bio->bi_io_vec->bv_page = page;
1291 	bio->bi_io_vec->bv_offset = 0;
1292 	bio->bi_io_vec->bv_len = len;
1293 
1294 	bio->bi_size = len;
1295 	bio->bi_vcnt = 1;
1296 	bio->bi_phys_segments = 1;
1297 
1298 	rq->__data_len = rq->resid_len = len;
1299 	rq->nr_phys_segments = 1;
1300 	rq->buffer = bio_data(bio);
1301 }
1302 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1303 
1304 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1305 				   struct bio *bio)
1306 {
1307 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1308 
1309 	if (!ll_back_merge_fn(q, req, bio))
1310 		return false;
1311 
1312 	trace_block_bio_backmerge(q, bio);
1313 
1314 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1315 		blk_rq_set_mixed_merge(req);
1316 
1317 	req->biotail->bi_next = bio;
1318 	req->biotail = bio;
1319 	req->__data_len += bio->bi_size;
1320 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1321 
1322 	drive_stat_acct(req, 0);
1323 	return true;
1324 }
1325 
1326 static bool bio_attempt_front_merge(struct request_queue *q,
1327 				    struct request *req, struct bio *bio)
1328 {
1329 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1330 
1331 	if (!ll_front_merge_fn(q, req, bio))
1332 		return false;
1333 
1334 	trace_block_bio_frontmerge(q, bio);
1335 
1336 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1337 		blk_rq_set_mixed_merge(req);
1338 
1339 	bio->bi_next = req->bio;
1340 	req->bio = bio;
1341 
1342 	/*
1343 	 * may not be valid. if the low level driver said
1344 	 * it didn't need a bounce buffer then it better
1345 	 * not touch req->buffer either...
1346 	 */
1347 	req->buffer = bio_data(bio);
1348 	req->__sector = bio->bi_sector;
1349 	req->__data_len += bio->bi_size;
1350 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1351 
1352 	drive_stat_acct(req, 0);
1353 	return true;
1354 }
1355 
1356 /**
1357  * attempt_plug_merge - try to merge with %current's plugged list
1358  * @q: request_queue new bio is being queued at
1359  * @bio: new bio being queued
1360  * @request_count: out parameter for number of traversed plugged requests
1361  *
1362  * Determine whether @bio being queued on @q can be merged with a request
1363  * on %current's plugged list.  Returns %true if merge was successful,
1364  * otherwise %false.
1365  *
1366  * Plugging coalesces IOs from the same issuer for the same purpose without
1367  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1368  * than scheduling, and the request, while may have elvpriv data, is not
1369  * added on the elevator at this point.  In addition, we don't have
1370  * reliable access to the elevator outside queue lock.  Only check basic
1371  * merging parameters without querying the elevator.
1372  */
1373 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1374 			       unsigned int *request_count)
1375 {
1376 	struct blk_plug *plug;
1377 	struct request *rq;
1378 	bool ret = false;
1379 
1380 	plug = current->plug;
1381 	if (!plug)
1382 		goto out;
1383 	*request_count = 0;
1384 
1385 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1386 		int el_ret;
1387 
1388 		if (rq->q == q)
1389 			(*request_count)++;
1390 
1391 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1392 			continue;
1393 
1394 		el_ret = blk_try_merge(rq, bio);
1395 		if (el_ret == ELEVATOR_BACK_MERGE) {
1396 			ret = bio_attempt_back_merge(q, rq, bio);
1397 			if (ret)
1398 				break;
1399 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1400 			ret = bio_attempt_front_merge(q, rq, bio);
1401 			if (ret)
1402 				break;
1403 		}
1404 	}
1405 out:
1406 	return ret;
1407 }
1408 
1409 void init_request_from_bio(struct request *req, struct bio *bio)
1410 {
1411 	req->cmd_type = REQ_TYPE_FS;
1412 
1413 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1414 	if (bio->bi_rw & REQ_RAHEAD)
1415 		req->cmd_flags |= REQ_FAILFAST_MASK;
1416 
1417 	req->errors = 0;
1418 	req->__sector = bio->bi_sector;
1419 	req->ioprio = bio_prio(bio);
1420 	blk_rq_bio_prep(req->q, req, bio);
1421 }
1422 
1423 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1424 {
1425 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1426 	struct blk_plug *plug;
1427 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1428 	struct request *req;
1429 	unsigned int request_count = 0;
1430 
1431 	/*
1432 	 * low level driver can indicate that it wants pages above a
1433 	 * certain limit bounced to low memory (ie for highmem, or even
1434 	 * ISA dma in theory)
1435 	 */
1436 	blk_queue_bounce(q, &bio);
1437 
1438 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1439 		spin_lock_irq(q->queue_lock);
1440 		where = ELEVATOR_INSERT_FLUSH;
1441 		goto get_rq;
1442 	}
1443 
1444 	/*
1445 	 * Check if we can merge with the plugged list before grabbing
1446 	 * any locks.
1447 	 */
1448 	if (attempt_plug_merge(q, bio, &request_count))
1449 		return;
1450 
1451 	spin_lock_irq(q->queue_lock);
1452 
1453 	el_ret = elv_merge(q, &req, bio);
1454 	if (el_ret == ELEVATOR_BACK_MERGE) {
1455 		if (bio_attempt_back_merge(q, req, bio)) {
1456 			elv_bio_merged(q, req, bio);
1457 			if (!attempt_back_merge(q, req))
1458 				elv_merged_request(q, req, el_ret);
1459 			goto out_unlock;
1460 		}
1461 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1462 		if (bio_attempt_front_merge(q, req, bio)) {
1463 			elv_bio_merged(q, req, bio);
1464 			if (!attempt_front_merge(q, req))
1465 				elv_merged_request(q, req, el_ret);
1466 			goto out_unlock;
1467 		}
1468 	}
1469 
1470 get_rq:
1471 	/*
1472 	 * This sync check and mask will be re-done in init_request_from_bio(),
1473 	 * but we need to set it earlier to expose the sync flag to the
1474 	 * rq allocator and io schedulers.
1475 	 */
1476 	rw_flags = bio_data_dir(bio);
1477 	if (sync)
1478 		rw_flags |= REQ_SYNC;
1479 
1480 	/*
1481 	 * Grab a free request. This is might sleep but can not fail.
1482 	 * Returns with the queue unlocked.
1483 	 */
1484 	req = get_request_wait(q, rw_flags, bio);
1485 	if (unlikely(!req)) {
1486 		bio_endio(bio, -ENODEV);	/* @q is dead */
1487 		goto out_unlock;
1488 	}
1489 
1490 	/*
1491 	 * After dropping the lock and possibly sleeping here, our request
1492 	 * may now be mergeable after it had proven unmergeable (above).
1493 	 * We don't worry about that case for efficiency. It won't happen
1494 	 * often, and the elevators are able to handle it.
1495 	 */
1496 	init_request_from_bio(req, bio);
1497 
1498 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1499 		req->cpu = raw_smp_processor_id();
1500 
1501 	plug = current->plug;
1502 	if (plug) {
1503 		/*
1504 		 * If this is the first request added after a plug, fire
1505 		 * of a plug trace. If others have been added before, check
1506 		 * if we have multiple devices in this plug. If so, make a
1507 		 * note to sort the list before dispatch.
1508 		 */
1509 		if (list_empty(&plug->list))
1510 			trace_block_plug(q);
1511 		else {
1512 			if (!plug->should_sort) {
1513 				struct request *__rq;
1514 
1515 				__rq = list_entry_rq(plug->list.prev);
1516 				if (__rq->q != q)
1517 					plug->should_sort = 1;
1518 			}
1519 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1520 				blk_flush_plug_list(plug, false);
1521 				trace_block_plug(q);
1522 			}
1523 		}
1524 		list_add_tail(&req->queuelist, &plug->list);
1525 		drive_stat_acct(req, 1);
1526 	} else {
1527 		spin_lock_irq(q->queue_lock);
1528 		add_acct_request(q, req, where);
1529 		__blk_run_queue(q);
1530 out_unlock:
1531 		spin_unlock_irq(q->queue_lock);
1532 	}
1533 }
1534 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1535 
1536 /*
1537  * If bio->bi_dev is a partition, remap the location
1538  */
1539 static inline void blk_partition_remap(struct bio *bio)
1540 {
1541 	struct block_device *bdev = bio->bi_bdev;
1542 
1543 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1544 		struct hd_struct *p = bdev->bd_part;
1545 
1546 		bio->bi_sector += p->start_sect;
1547 		bio->bi_bdev = bdev->bd_contains;
1548 
1549 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1550 				      bdev->bd_dev,
1551 				      bio->bi_sector - p->start_sect);
1552 	}
1553 }
1554 
1555 static void handle_bad_sector(struct bio *bio)
1556 {
1557 	char b[BDEVNAME_SIZE];
1558 
1559 	printk(KERN_INFO "attempt to access beyond end of device\n");
1560 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1561 			bdevname(bio->bi_bdev, b),
1562 			bio->bi_rw,
1563 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1564 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1565 
1566 	set_bit(BIO_EOF, &bio->bi_flags);
1567 }
1568 
1569 #ifdef CONFIG_FAIL_MAKE_REQUEST
1570 
1571 static DECLARE_FAULT_ATTR(fail_make_request);
1572 
1573 static int __init setup_fail_make_request(char *str)
1574 {
1575 	return setup_fault_attr(&fail_make_request, str);
1576 }
1577 __setup("fail_make_request=", setup_fail_make_request);
1578 
1579 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1580 {
1581 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1582 }
1583 
1584 static int __init fail_make_request_debugfs(void)
1585 {
1586 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1587 						NULL, &fail_make_request);
1588 
1589 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1590 }
1591 
1592 late_initcall(fail_make_request_debugfs);
1593 
1594 #else /* CONFIG_FAIL_MAKE_REQUEST */
1595 
1596 static inline bool should_fail_request(struct hd_struct *part,
1597 					unsigned int bytes)
1598 {
1599 	return false;
1600 }
1601 
1602 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1603 
1604 /*
1605  * Check whether this bio extends beyond the end of the device.
1606  */
1607 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1608 {
1609 	sector_t maxsector;
1610 
1611 	if (!nr_sectors)
1612 		return 0;
1613 
1614 	/* Test device or partition size, when known. */
1615 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1616 	if (maxsector) {
1617 		sector_t sector = bio->bi_sector;
1618 
1619 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1620 			/*
1621 			 * This may well happen - the kernel calls bread()
1622 			 * without checking the size of the device, e.g., when
1623 			 * mounting a device.
1624 			 */
1625 			handle_bad_sector(bio);
1626 			return 1;
1627 		}
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 static noinline_for_stack bool
1634 generic_make_request_checks(struct bio *bio)
1635 {
1636 	struct request_queue *q;
1637 	int nr_sectors = bio_sectors(bio);
1638 	int err = -EIO;
1639 	char b[BDEVNAME_SIZE];
1640 	struct hd_struct *part;
1641 
1642 	might_sleep();
1643 
1644 	if (bio_check_eod(bio, nr_sectors))
1645 		goto end_io;
1646 
1647 	q = bdev_get_queue(bio->bi_bdev);
1648 	if (unlikely(!q)) {
1649 		printk(KERN_ERR
1650 		       "generic_make_request: Trying to access "
1651 			"nonexistent block-device %s (%Lu)\n",
1652 			bdevname(bio->bi_bdev, b),
1653 			(long long) bio->bi_sector);
1654 		goto end_io;
1655 	}
1656 
1657 	if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1658 		     nr_sectors > queue_max_hw_sectors(q))) {
1659 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1660 		       bdevname(bio->bi_bdev, b),
1661 		       bio_sectors(bio),
1662 		       queue_max_hw_sectors(q));
1663 		goto end_io;
1664 	}
1665 
1666 	part = bio->bi_bdev->bd_part;
1667 	if (should_fail_request(part, bio->bi_size) ||
1668 	    should_fail_request(&part_to_disk(part)->part0,
1669 				bio->bi_size))
1670 		goto end_io;
1671 
1672 	/*
1673 	 * If this device has partitions, remap block n
1674 	 * of partition p to block n+start(p) of the disk.
1675 	 */
1676 	blk_partition_remap(bio);
1677 
1678 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1679 		goto end_io;
1680 
1681 	if (bio_check_eod(bio, nr_sectors))
1682 		goto end_io;
1683 
1684 	/*
1685 	 * Filter flush bio's early so that make_request based
1686 	 * drivers without flush support don't have to worry
1687 	 * about them.
1688 	 */
1689 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1690 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1691 		if (!nr_sectors) {
1692 			err = 0;
1693 			goto end_io;
1694 		}
1695 	}
1696 
1697 	if ((bio->bi_rw & REQ_DISCARD) &&
1698 	    (!blk_queue_discard(q) ||
1699 	     ((bio->bi_rw & REQ_SECURE) &&
1700 	      !blk_queue_secdiscard(q)))) {
1701 		err = -EOPNOTSUPP;
1702 		goto end_io;
1703 	}
1704 
1705 	if (blk_throtl_bio(q, bio))
1706 		return false;	/* throttled, will be resubmitted later */
1707 
1708 	trace_block_bio_queue(q, bio);
1709 	return true;
1710 
1711 end_io:
1712 	bio_endio(bio, err);
1713 	return false;
1714 }
1715 
1716 /**
1717  * generic_make_request - hand a buffer to its device driver for I/O
1718  * @bio:  The bio describing the location in memory and on the device.
1719  *
1720  * generic_make_request() is used to make I/O requests of block
1721  * devices. It is passed a &struct bio, which describes the I/O that needs
1722  * to be done.
1723  *
1724  * generic_make_request() does not return any status.  The
1725  * success/failure status of the request, along with notification of
1726  * completion, is delivered asynchronously through the bio->bi_end_io
1727  * function described (one day) else where.
1728  *
1729  * The caller of generic_make_request must make sure that bi_io_vec
1730  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1731  * set to describe the device address, and the
1732  * bi_end_io and optionally bi_private are set to describe how
1733  * completion notification should be signaled.
1734  *
1735  * generic_make_request and the drivers it calls may use bi_next if this
1736  * bio happens to be merged with someone else, and may resubmit the bio to
1737  * a lower device by calling into generic_make_request recursively, which
1738  * means the bio should NOT be touched after the call to ->make_request_fn.
1739  */
1740 void generic_make_request(struct bio *bio)
1741 {
1742 	struct bio_list bio_list_on_stack;
1743 
1744 	if (!generic_make_request_checks(bio))
1745 		return;
1746 
1747 	/*
1748 	 * We only want one ->make_request_fn to be active at a time, else
1749 	 * stack usage with stacked devices could be a problem.  So use
1750 	 * current->bio_list to keep a list of requests submited by a
1751 	 * make_request_fn function.  current->bio_list is also used as a
1752 	 * flag to say if generic_make_request is currently active in this
1753 	 * task or not.  If it is NULL, then no make_request is active.  If
1754 	 * it is non-NULL, then a make_request is active, and new requests
1755 	 * should be added at the tail
1756 	 */
1757 	if (current->bio_list) {
1758 		bio_list_add(current->bio_list, bio);
1759 		return;
1760 	}
1761 
1762 	/* following loop may be a bit non-obvious, and so deserves some
1763 	 * explanation.
1764 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1765 	 * ensure that) so we have a list with a single bio.
1766 	 * We pretend that we have just taken it off a longer list, so
1767 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1768 	 * thus initialising the bio_list of new bios to be
1769 	 * added.  ->make_request() may indeed add some more bios
1770 	 * through a recursive call to generic_make_request.  If it
1771 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1772 	 * from the top.  In this case we really did just take the bio
1773 	 * of the top of the list (no pretending) and so remove it from
1774 	 * bio_list, and call into ->make_request() again.
1775 	 */
1776 	BUG_ON(bio->bi_next);
1777 	bio_list_init(&bio_list_on_stack);
1778 	current->bio_list = &bio_list_on_stack;
1779 	do {
1780 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1781 
1782 		q->make_request_fn(q, bio);
1783 
1784 		bio = bio_list_pop(current->bio_list);
1785 	} while (bio);
1786 	current->bio_list = NULL; /* deactivate */
1787 }
1788 EXPORT_SYMBOL(generic_make_request);
1789 
1790 /**
1791  * submit_bio - submit a bio to the block device layer for I/O
1792  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1793  * @bio: The &struct bio which describes the I/O
1794  *
1795  * submit_bio() is very similar in purpose to generic_make_request(), and
1796  * uses that function to do most of the work. Both are fairly rough
1797  * interfaces; @bio must be presetup and ready for I/O.
1798  *
1799  */
1800 void submit_bio(int rw, struct bio *bio)
1801 {
1802 	int count = bio_sectors(bio);
1803 
1804 	bio->bi_rw |= rw;
1805 
1806 	/*
1807 	 * If it's a regular read/write or a barrier with data attached,
1808 	 * go through the normal accounting stuff before submission.
1809 	 */
1810 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1811 		if (rw & WRITE) {
1812 			count_vm_events(PGPGOUT, count);
1813 		} else {
1814 			task_io_account_read(bio->bi_size);
1815 			count_vm_events(PGPGIN, count);
1816 		}
1817 
1818 		if (unlikely(block_dump)) {
1819 			char b[BDEVNAME_SIZE];
1820 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1821 			current->comm, task_pid_nr(current),
1822 				(rw & WRITE) ? "WRITE" : "READ",
1823 				(unsigned long long)bio->bi_sector,
1824 				bdevname(bio->bi_bdev, b),
1825 				count);
1826 		}
1827 	}
1828 
1829 	generic_make_request(bio);
1830 }
1831 EXPORT_SYMBOL(submit_bio);
1832 
1833 /**
1834  * blk_rq_check_limits - Helper function to check a request for the queue limit
1835  * @q:  the queue
1836  * @rq: the request being checked
1837  *
1838  * Description:
1839  *    @rq may have been made based on weaker limitations of upper-level queues
1840  *    in request stacking drivers, and it may violate the limitation of @q.
1841  *    Since the block layer and the underlying device driver trust @rq
1842  *    after it is inserted to @q, it should be checked against @q before
1843  *    the insertion using this generic function.
1844  *
1845  *    This function should also be useful for request stacking drivers
1846  *    in some cases below, so export this function.
1847  *    Request stacking drivers like request-based dm may change the queue
1848  *    limits while requests are in the queue (e.g. dm's table swapping).
1849  *    Such request stacking drivers should check those requests agaist
1850  *    the new queue limits again when they dispatch those requests,
1851  *    although such checkings are also done against the old queue limits
1852  *    when submitting requests.
1853  */
1854 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1855 {
1856 	if (rq->cmd_flags & REQ_DISCARD)
1857 		return 0;
1858 
1859 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1860 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1861 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1862 		return -EIO;
1863 	}
1864 
1865 	/*
1866 	 * queue's settings related to segment counting like q->bounce_pfn
1867 	 * may differ from that of other stacking queues.
1868 	 * Recalculate it to check the request correctly on this queue's
1869 	 * limitation.
1870 	 */
1871 	blk_recalc_rq_segments(rq);
1872 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1873 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1874 		return -EIO;
1875 	}
1876 
1877 	return 0;
1878 }
1879 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1880 
1881 /**
1882  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1883  * @q:  the queue to submit the request
1884  * @rq: the request being queued
1885  */
1886 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1887 {
1888 	unsigned long flags;
1889 	int where = ELEVATOR_INSERT_BACK;
1890 
1891 	if (blk_rq_check_limits(q, rq))
1892 		return -EIO;
1893 
1894 	if (rq->rq_disk &&
1895 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1896 		return -EIO;
1897 
1898 	spin_lock_irqsave(q->queue_lock, flags);
1899 	if (unlikely(blk_queue_dead(q))) {
1900 		spin_unlock_irqrestore(q->queue_lock, flags);
1901 		return -ENODEV;
1902 	}
1903 
1904 	/*
1905 	 * Submitting request must be dequeued before calling this function
1906 	 * because it will be linked to another request_queue
1907 	 */
1908 	BUG_ON(blk_queued_rq(rq));
1909 
1910 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1911 		where = ELEVATOR_INSERT_FLUSH;
1912 
1913 	add_acct_request(q, rq, where);
1914 	if (where == ELEVATOR_INSERT_FLUSH)
1915 		__blk_run_queue(q);
1916 	spin_unlock_irqrestore(q->queue_lock, flags);
1917 
1918 	return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1921 
1922 /**
1923  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1924  * @rq: request to examine
1925  *
1926  * Description:
1927  *     A request could be merge of IOs which require different failure
1928  *     handling.  This function determines the number of bytes which
1929  *     can be failed from the beginning of the request without
1930  *     crossing into area which need to be retried further.
1931  *
1932  * Return:
1933  *     The number of bytes to fail.
1934  *
1935  * Context:
1936  *     queue_lock must be held.
1937  */
1938 unsigned int blk_rq_err_bytes(const struct request *rq)
1939 {
1940 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1941 	unsigned int bytes = 0;
1942 	struct bio *bio;
1943 
1944 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1945 		return blk_rq_bytes(rq);
1946 
1947 	/*
1948 	 * Currently the only 'mixing' which can happen is between
1949 	 * different fastfail types.  We can safely fail portions
1950 	 * which have all the failfast bits that the first one has -
1951 	 * the ones which are at least as eager to fail as the first
1952 	 * one.
1953 	 */
1954 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1955 		if ((bio->bi_rw & ff) != ff)
1956 			break;
1957 		bytes += bio->bi_size;
1958 	}
1959 
1960 	/* this could lead to infinite loop */
1961 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1962 	return bytes;
1963 }
1964 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1965 
1966 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1967 {
1968 	if (blk_do_io_stat(req)) {
1969 		const int rw = rq_data_dir(req);
1970 		struct hd_struct *part;
1971 		int cpu;
1972 
1973 		cpu = part_stat_lock();
1974 		part = req->part;
1975 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1976 		part_stat_unlock();
1977 	}
1978 }
1979 
1980 static void blk_account_io_done(struct request *req)
1981 {
1982 	/*
1983 	 * Account IO completion.  flush_rq isn't accounted as a
1984 	 * normal IO on queueing nor completion.  Accounting the
1985 	 * containing request is enough.
1986 	 */
1987 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1988 		unsigned long duration = jiffies - req->start_time;
1989 		const int rw = rq_data_dir(req);
1990 		struct hd_struct *part;
1991 		int cpu;
1992 
1993 		cpu = part_stat_lock();
1994 		part = req->part;
1995 
1996 		part_stat_inc(cpu, part, ios[rw]);
1997 		part_stat_add(cpu, part, ticks[rw], duration);
1998 		part_round_stats(cpu, part);
1999 		part_dec_in_flight(part, rw);
2000 
2001 		hd_struct_put(part);
2002 		part_stat_unlock();
2003 	}
2004 }
2005 
2006 /**
2007  * blk_peek_request - peek at the top of a request queue
2008  * @q: request queue to peek at
2009  *
2010  * Description:
2011  *     Return the request at the top of @q.  The returned request
2012  *     should be started using blk_start_request() before LLD starts
2013  *     processing it.
2014  *
2015  * Return:
2016  *     Pointer to the request at the top of @q if available.  Null
2017  *     otherwise.
2018  *
2019  * Context:
2020  *     queue_lock must be held.
2021  */
2022 struct request *blk_peek_request(struct request_queue *q)
2023 {
2024 	struct request *rq;
2025 	int ret;
2026 
2027 	while ((rq = __elv_next_request(q)) != NULL) {
2028 		if (!(rq->cmd_flags & REQ_STARTED)) {
2029 			/*
2030 			 * This is the first time the device driver
2031 			 * sees this request (possibly after
2032 			 * requeueing).  Notify IO scheduler.
2033 			 */
2034 			if (rq->cmd_flags & REQ_SORTED)
2035 				elv_activate_rq(q, rq);
2036 
2037 			/*
2038 			 * just mark as started even if we don't start
2039 			 * it, a request that has been delayed should
2040 			 * not be passed by new incoming requests
2041 			 */
2042 			rq->cmd_flags |= REQ_STARTED;
2043 			trace_block_rq_issue(q, rq);
2044 		}
2045 
2046 		if (!q->boundary_rq || q->boundary_rq == rq) {
2047 			q->end_sector = rq_end_sector(rq);
2048 			q->boundary_rq = NULL;
2049 		}
2050 
2051 		if (rq->cmd_flags & REQ_DONTPREP)
2052 			break;
2053 
2054 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2055 			/*
2056 			 * make sure space for the drain appears we
2057 			 * know we can do this because max_hw_segments
2058 			 * has been adjusted to be one fewer than the
2059 			 * device can handle
2060 			 */
2061 			rq->nr_phys_segments++;
2062 		}
2063 
2064 		if (!q->prep_rq_fn)
2065 			break;
2066 
2067 		ret = q->prep_rq_fn(q, rq);
2068 		if (ret == BLKPREP_OK) {
2069 			break;
2070 		} else if (ret == BLKPREP_DEFER) {
2071 			/*
2072 			 * the request may have been (partially) prepped.
2073 			 * we need to keep this request in the front to
2074 			 * avoid resource deadlock.  REQ_STARTED will
2075 			 * prevent other fs requests from passing this one.
2076 			 */
2077 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2078 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2079 				/*
2080 				 * remove the space for the drain we added
2081 				 * so that we don't add it again
2082 				 */
2083 				--rq->nr_phys_segments;
2084 			}
2085 
2086 			rq = NULL;
2087 			break;
2088 		} else if (ret == BLKPREP_KILL) {
2089 			rq->cmd_flags |= REQ_QUIET;
2090 			/*
2091 			 * Mark this request as started so we don't trigger
2092 			 * any debug logic in the end I/O path.
2093 			 */
2094 			blk_start_request(rq);
2095 			__blk_end_request_all(rq, -EIO);
2096 		} else {
2097 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2098 			break;
2099 		}
2100 	}
2101 
2102 	return rq;
2103 }
2104 EXPORT_SYMBOL(blk_peek_request);
2105 
2106 void blk_dequeue_request(struct request *rq)
2107 {
2108 	struct request_queue *q = rq->q;
2109 
2110 	BUG_ON(list_empty(&rq->queuelist));
2111 	BUG_ON(ELV_ON_HASH(rq));
2112 
2113 	list_del_init(&rq->queuelist);
2114 
2115 	/*
2116 	 * the time frame between a request being removed from the lists
2117 	 * and to it is freed is accounted as io that is in progress at
2118 	 * the driver side.
2119 	 */
2120 	if (blk_account_rq(rq)) {
2121 		q->in_flight[rq_is_sync(rq)]++;
2122 		set_io_start_time_ns(rq);
2123 	}
2124 }
2125 
2126 /**
2127  * blk_start_request - start request processing on the driver
2128  * @req: request to dequeue
2129  *
2130  * Description:
2131  *     Dequeue @req and start timeout timer on it.  This hands off the
2132  *     request to the driver.
2133  *
2134  *     Block internal functions which don't want to start timer should
2135  *     call blk_dequeue_request().
2136  *
2137  * Context:
2138  *     queue_lock must be held.
2139  */
2140 void blk_start_request(struct request *req)
2141 {
2142 	blk_dequeue_request(req);
2143 
2144 	/*
2145 	 * We are now handing the request to the hardware, initialize
2146 	 * resid_len to full count and add the timeout handler.
2147 	 */
2148 	req->resid_len = blk_rq_bytes(req);
2149 	if (unlikely(blk_bidi_rq(req)))
2150 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2151 
2152 	blk_add_timer(req);
2153 }
2154 EXPORT_SYMBOL(blk_start_request);
2155 
2156 /**
2157  * blk_fetch_request - fetch a request from a request queue
2158  * @q: request queue to fetch a request from
2159  *
2160  * Description:
2161  *     Return the request at the top of @q.  The request is started on
2162  *     return and LLD can start processing it immediately.
2163  *
2164  * Return:
2165  *     Pointer to the request at the top of @q if available.  Null
2166  *     otherwise.
2167  *
2168  * Context:
2169  *     queue_lock must be held.
2170  */
2171 struct request *blk_fetch_request(struct request_queue *q)
2172 {
2173 	struct request *rq;
2174 
2175 	rq = blk_peek_request(q);
2176 	if (rq)
2177 		blk_start_request(rq);
2178 	return rq;
2179 }
2180 EXPORT_SYMBOL(blk_fetch_request);
2181 
2182 /**
2183  * blk_update_request - Special helper function for request stacking drivers
2184  * @req:      the request being processed
2185  * @error:    %0 for success, < %0 for error
2186  * @nr_bytes: number of bytes to complete @req
2187  *
2188  * Description:
2189  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2190  *     the request structure even if @req doesn't have leftover.
2191  *     If @req has leftover, sets it up for the next range of segments.
2192  *
2193  *     This special helper function is only for request stacking drivers
2194  *     (e.g. request-based dm) so that they can handle partial completion.
2195  *     Actual device drivers should use blk_end_request instead.
2196  *
2197  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2198  *     %false return from this function.
2199  *
2200  * Return:
2201  *     %false - this request doesn't have any more data
2202  *     %true  - this request has more data
2203  **/
2204 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2205 {
2206 	int total_bytes, bio_nbytes, next_idx = 0;
2207 	struct bio *bio;
2208 
2209 	if (!req->bio)
2210 		return false;
2211 
2212 	trace_block_rq_complete(req->q, req);
2213 
2214 	/*
2215 	 * For fs requests, rq is just carrier of independent bio's
2216 	 * and each partial completion should be handled separately.
2217 	 * Reset per-request error on each partial completion.
2218 	 *
2219 	 * TODO: tj: This is too subtle.  It would be better to let
2220 	 * low level drivers do what they see fit.
2221 	 */
2222 	if (req->cmd_type == REQ_TYPE_FS)
2223 		req->errors = 0;
2224 
2225 	if (error && req->cmd_type == REQ_TYPE_FS &&
2226 	    !(req->cmd_flags & REQ_QUIET)) {
2227 		char *error_type;
2228 
2229 		switch (error) {
2230 		case -ENOLINK:
2231 			error_type = "recoverable transport";
2232 			break;
2233 		case -EREMOTEIO:
2234 			error_type = "critical target";
2235 			break;
2236 		case -EBADE:
2237 			error_type = "critical nexus";
2238 			break;
2239 		case -EIO:
2240 		default:
2241 			error_type = "I/O";
2242 			break;
2243 		}
2244 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2245 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2246 		       (unsigned long long)blk_rq_pos(req));
2247 	}
2248 
2249 	blk_account_io_completion(req, nr_bytes);
2250 
2251 	total_bytes = bio_nbytes = 0;
2252 	while ((bio = req->bio) != NULL) {
2253 		int nbytes;
2254 
2255 		if (nr_bytes >= bio->bi_size) {
2256 			req->bio = bio->bi_next;
2257 			nbytes = bio->bi_size;
2258 			req_bio_endio(req, bio, nbytes, error);
2259 			next_idx = 0;
2260 			bio_nbytes = 0;
2261 		} else {
2262 			int idx = bio->bi_idx + next_idx;
2263 
2264 			if (unlikely(idx >= bio->bi_vcnt)) {
2265 				blk_dump_rq_flags(req, "__end_that");
2266 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2267 				       __func__, idx, bio->bi_vcnt);
2268 				break;
2269 			}
2270 
2271 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2272 			BIO_BUG_ON(nbytes > bio->bi_size);
2273 
2274 			/*
2275 			 * not a complete bvec done
2276 			 */
2277 			if (unlikely(nbytes > nr_bytes)) {
2278 				bio_nbytes += nr_bytes;
2279 				total_bytes += nr_bytes;
2280 				break;
2281 			}
2282 
2283 			/*
2284 			 * advance to the next vector
2285 			 */
2286 			next_idx++;
2287 			bio_nbytes += nbytes;
2288 		}
2289 
2290 		total_bytes += nbytes;
2291 		nr_bytes -= nbytes;
2292 
2293 		bio = req->bio;
2294 		if (bio) {
2295 			/*
2296 			 * end more in this run, or just return 'not-done'
2297 			 */
2298 			if (unlikely(nr_bytes <= 0))
2299 				break;
2300 		}
2301 	}
2302 
2303 	/*
2304 	 * completely done
2305 	 */
2306 	if (!req->bio) {
2307 		/*
2308 		 * Reset counters so that the request stacking driver
2309 		 * can find how many bytes remain in the request
2310 		 * later.
2311 		 */
2312 		req->__data_len = 0;
2313 		return false;
2314 	}
2315 
2316 	/*
2317 	 * if the request wasn't completed, update state
2318 	 */
2319 	if (bio_nbytes) {
2320 		req_bio_endio(req, bio, bio_nbytes, error);
2321 		bio->bi_idx += next_idx;
2322 		bio_iovec(bio)->bv_offset += nr_bytes;
2323 		bio_iovec(bio)->bv_len -= nr_bytes;
2324 	}
2325 
2326 	req->__data_len -= total_bytes;
2327 	req->buffer = bio_data(req->bio);
2328 
2329 	/* update sector only for requests with clear definition of sector */
2330 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2331 		req->__sector += total_bytes >> 9;
2332 
2333 	/* mixed attributes always follow the first bio */
2334 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2335 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2336 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2337 	}
2338 
2339 	/*
2340 	 * If total number of sectors is less than the first segment
2341 	 * size, something has gone terribly wrong.
2342 	 */
2343 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2344 		blk_dump_rq_flags(req, "request botched");
2345 		req->__data_len = blk_rq_cur_bytes(req);
2346 	}
2347 
2348 	/* recalculate the number of segments */
2349 	blk_recalc_rq_segments(req);
2350 
2351 	return true;
2352 }
2353 EXPORT_SYMBOL_GPL(blk_update_request);
2354 
2355 static bool blk_update_bidi_request(struct request *rq, int error,
2356 				    unsigned int nr_bytes,
2357 				    unsigned int bidi_bytes)
2358 {
2359 	if (blk_update_request(rq, error, nr_bytes))
2360 		return true;
2361 
2362 	/* Bidi request must be completed as a whole */
2363 	if (unlikely(blk_bidi_rq(rq)) &&
2364 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2365 		return true;
2366 
2367 	if (blk_queue_add_random(rq->q))
2368 		add_disk_randomness(rq->rq_disk);
2369 
2370 	return false;
2371 }
2372 
2373 /**
2374  * blk_unprep_request - unprepare a request
2375  * @req:	the request
2376  *
2377  * This function makes a request ready for complete resubmission (or
2378  * completion).  It happens only after all error handling is complete,
2379  * so represents the appropriate moment to deallocate any resources
2380  * that were allocated to the request in the prep_rq_fn.  The queue
2381  * lock is held when calling this.
2382  */
2383 void blk_unprep_request(struct request *req)
2384 {
2385 	struct request_queue *q = req->q;
2386 
2387 	req->cmd_flags &= ~REQ_DONTPREP;
2388 	if (q->unprep_rq_fn)
2389 		q->unprep_rq_fn(q, req);
2390 }
2391 EXPORT_SYMBOL_GPL(blk_unprep_request);
2392 
2393 /*
2394  * queue lock must be held
2395  */
2396 static void blk_finish_request(struct request *req, int error)
2397 {
2398 	if (blk_rq_tagged(req))
2399 		blk_queue_end_tag(req->q, req);
2400 
2401 	BUG_ON(blk_queued_rq(req));
2402 
2403 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2404 		laptop_io_completion(&req->q->backing_dev_info);
2405 
2406 	blk_delete_timer(req);
2407 
2408 	if (req->cmd_flags & REQ_DONTPREP)
2409 		blk_unprep_request(req);
2410 
2411 
2412 	blk_account_io_done(req);
2413 
2414 	if (req->end_io)
2415 		req->end_io(req, error);
2416 	else {
2417 		if (blk_bidi_rq(req))
2418 			__blk_put_request(req->next_rq->q, req->next_rq);
2419 
2420 		__blk_put_request(req->q, req);
2421 	}
2422 }
2423 
2424 /**
2425  * blk_end_bidi_request - Complete a bidi request
2426  * @rq:         the request to complete
2427  * @error:      %0 for success, < %0 for error
2428  * @nr_bytes:   number of bytes to complete @rq
2429  * @bidi_bytes: number of bytes to complete @rq->next_rq
2430  *
2431  * Description:
2432  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2433  *     Drivers that supports bidi can safely call this member for any
2434  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2435  *     just ignored.
2436  *
2437  * Return:
2438  *     %false - we are done with this request
2439  *     %true  - still buffers pending for this request
2440  **/
2441 static bool blk_end_bidi_request(struct request *rq, int error,
2442 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2443 {
2444 	struct request_queue *q = rq->q;
2445 	unsigned long flags;
2446 
2447 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2448 		return true;
2449 
2450 	spin_lock_irqsave(q->queue_lock, flags);
2451 	blk_finish_request(rq, error);
2452 	spin_unlock_irqrestore(q->queue_lock, flags);
2453 
2454 	return false;
2455 }
2456 
2457 /**
2458  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2459  * @rq:         the request to complete
2460  * @error:      %0 for success, < %0 for error
2461  * @nr_bytes:   number of bytes to complete @rq
2462  * @bidi_bytes: number of bytes to complete @rq->next_rq
2463  *
2464  * Description:
2465  *     Identical to blk_end_bidi_request() except that queue lock is
2466  *     assumed to be locked on entry and remains so on return.
2467  *
2468  * Return:
2469  *     %false - we are done with this request
2470  *     %true  - still buffers pending for this request
2471  **/
2472 bool __blk_end_bidi_request(struct request *rq, int error,
2473 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2474 {
2475 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2476 		return true;
2477 
2478 	blk_finish_request(rq, error);
2479 
2480 	return false;
2481 }
2482 
2483 /**
2484  * blk_end_request - Helper function for drivers to complete the request.
2485  * @rq:       the request being processed
2486  * @error:    %0 for success, < %0 for error
2487  * @nr_bytes: number of bytes to complete
2488  *
2489  * Description:
2490  *     Ends I/O on a number of bytes attached to @rq.
2491  *     If @rq has leftover, sets it up for the next range of segments.
2492  *
2493  * Return:
2494  *     %false - we are done with this request
2495  *     %true  - still buffers pending for this request
2496  **/
2497 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2498 {
2499 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2500 }
2501 EXPORT_SYMBOL(blk_end_request);
2502 
2503 /**
2504  * blk_end_request_all - Helper function for drives to finish the request.
2505  * @rq: the request to finish
2506  * @error: %0 for success, < %0 for error
2507  *
2508  * Description:
2509  *     Completely finish @rq.
2510  */
2511 void blk_end_request_all(struct request *rq, int error)
2512 {
2513 	bool pending;
2514 	unsigned int bidi_bytes = 0;
2515 
2516 	if (unlikely(blk_bidi_rq(rq)))
2517 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2518 
2519 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2520 	BUG_ON(pending);
2521 }
2522 EXPORT_SYMBOL(blk_end_request_all);
2523 
2524 /**
2525  * blk_end_request_cur - Helper function to finish the current request chunk.
2526  * @rq: the request to finish the current chunk for
2527  * @error: %0 for success, < %0 for error
2528  *
2529  * Description:
2530  *     Complete the current consecutively mapped chunk from @rq.
2531  *
2532  * Return:
2533  *     %false - we are done with this request
2534  *     %true  - still buffers pending for this request
2535  */
2536 bool blk_end_request_cur(struct request *rq, int error)
2537 {
2538 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2539 }
2540 EXPORT_SYMBOL(blk_end_request_cur);
2541 
2542 /**
2543  * blk_end_request_err - Finish a request till the next failure boundary.
2544  * @rq: the request to finish till the next failure boundary for
2545  * @error: must be negative errno
2546  *
2547  * Description:
2548  *     Complete @rq till the next failure boundary.
2549  *
2550  * Return:
2551  *     %false - we are done with this request
2552  *     %true  - still buffers pending for this request
2553  */
2554 bool blk_end_request_err(struct request *rq, int error)
2555 {
2556 	WARN_ON(error >= 0);
2557 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2558 }
2559 EXPORT_SYMBOL_GPL(blk_end_request_err);
2560 
2561 /**
2562  * __blk_end_request - Helper function for drivers to complete the request.
2563  * @rq:       the request being processed
2564  * @error:    %0 for success, < %0 for error
2565  * @nr_bytes: number of bytes to complete
2566  *
2567  * Description:
2568  *     Must be called with queue lock held unlike blk_end_request().
2569  *
2570  * Return:
2571  *     %false - we are done with this request
2572  *     %true  - still buffers pending for this request
2573  **/
2574 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2575 {
2576 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2577 }
2578 EXPORT_SYMBOL(__blk_end_request);
2579 
2580 /**
2581  * __blk_end_request_all - Helper function for drives to finish the request.
2582  * @rq: the request to finish
2583  * @error: %0 for success, < %0 for error
2584  *
2585  * Description:
2586  *     Completely finish @rq.  Must be called with queue lock held.
2587  */
2588 void __blk_end_request_all(struct request *rq, int error)
2589 {
2590 	bool pending;
2591 	unsigned int bidi_bytes = 0;
2592 
2593 	if (unlikely(blk_bidi_rq(rq)))
2594 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2595 
2596 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2597 	BUG_ON(pending);
2598 }
2599 EXPORT_SYMBOL(__blk_end_request_all);
2600 
2601 /**
2602  * __blk_end_request_cur - Helper function to finish the current request chunk.
2603  * @rq: the request to finish the current chunk for
2604  * @error: %0 for success, < %0 for error
2605  *
2606  * Description:
2607  *     Complete the current consecutively mapped chunk from @rq.  Must
2608  *     be called with queue lock held.
2609  *
2610  * Return:
2611  *     %false - we are done with this request
2612  *     %true  - still buffers pending for this request
2613  */
2614 bool __blk_end_request_cur(struct request *rq, int error)
2615 {
2616 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2617 }
2618 EXPORT_SYMBOL(__blk_end_request_cur);
2619 
2620 /**
2621  * __blk_end_request_err - Finish a request till the next failure boundary.
2622  * @rq: the request to finish till the next failure boundary for
2623  * @error: must be negative errno
2624  *
2625  * Description:
2626  *     Complete @rq till the next failure boundary.  Must be called
2627  *     with queue lock held.
2628  *
2629  * Return:
2630  *     %false - we are done with this request
2631  *     %true  - still buffers pending for this request
2632  */
2633 bool __blk_end_request_err(struct request *rq, int error)
2634 {
2635 	WARN_ON(error >= 0);
2636 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2637 }
2638 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2639 
2640 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2641 		     struct bio *bio)
2642 {
2643 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2644 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2645 
2646 	if (bio_has_data(bio)) {
2647 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2648 		rq->buffer = bio_data(bio);
2649 	}
2650 	rq->__data_len = bio->bi_size;
2651 	rq->bio = rq->biotail = bio;
2652 
2653 	if (bio->bi_bdev)
2654 		rq->rq_disk = bio->bi_bdev->bd_disk;
2655 }
2656 
2657 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2658 /**
2659  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2660  * @rq: the request to be flushed
2661  *
2662  * Description:
2663  *     Flush all pages in @rq.
2664  */
2665 void rq_flush_dcache_pages(struct request *rq)
2666 {
2667 	struct req_iterator iter;
2668 	struct bio_vec *bvec;
2669 
2670 	rq_for_each_segment(bvec, rq, iter)
2671 		flush_dcache_page(bvec->bv_page);
2672 }
2673 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2674 #endif
2675 
2676 /**
2677  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2678  * @q : the queue of the device being checked
2679  *
2680  * Description:
2681  *    Check if underlying low-level drivers of a device are busy.
2682  *    If the drivers want to export their busy state, they must set own
2683  *    exporting function using blk_queue_lld_busy() first.
2684  *
2685  *    Basically, this function is used only by request stacking drivers
2686  *    to stop dispatching requests to underlying devices when underlying
2687  *    devices are busy.  This behavior helps more I/O merging on the queue
2688  *    of the request stacking driver and prevents I/O throughput regression
2689  *    on burst I/O load.
2690  *
2691  * Return:
2692  *    0 - Not busy (The request stacking driver should dispatch request)
2693  *    1 - Busy (The request stacking driver should stop dispatching request)
2694  */
2695 int blk_lld_busy(struct request_queue *q)
2696 {
2697 	if (q->lld_busy_fn)
2698 		return q->lld_busy_fn(q);
2699 
2700 	return 0;
2701 }
2702 EXPORT_SYMBOL_GPL(blk_lld_busy);
2703 
2704 /**
2705  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2706  * @rq: the clone request to be cleaned up
2707  *
2708  * Description:
2709  *     Free all bios in @rq for a cloned request.
2710  */
2711 void blk_rq_unprep_clone(struct request *rq)
2712 {
2713 	struct bio *bio;
2714 
2715 	while ((bio = rq->bio) != NULL) {
2716 		rq->bio = bio->bi_next;
2717 
2718 		bio_put(bio);
2719 	}
2720 }
2721 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2722 
2723 /*
2724  * Copy attributes of the original request to the clone request.
2725  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2726  */
2727 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2728 {
2729 	dst->cpu = src->cpu;
2730 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2731 	dst->cmd_type = src->cmd_type;
2732 	dst->__sector = blk_rq_pos(src);
2733 	dst->__data_len = blk_rq_bytes(src);
2734 	dst->nr_phys_segments = src->nr_phys_segments;
2735 	dst->ioprio = src->ioprio;
2736 	dst->extra_len = src->extra_len;
2737 }
2738 
2739 /**
2740  * blk_rq_prep_clone - Helper function to setup clone request
2741  * @rq: the request to be setup
2742  * @rq_src: original request to be cloned
2743  * @bs: bio_set that bios for clone are allocated from
2744  * @gfp_mask: memory allocation mask for bio
2745  * @bio_ctr: setup function to be called for each clone bio.
2746  *           Returns %0 for success, non %0 for failure.
2747  * @data: private data to be passed to @bio_ctr
2748  *
2749  * Description:
2750  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2751  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2752  *     are not copied, and copying such parts is the caller's responsibility.
2753  *     Also, pages which the original bios are pointing to are not copied
2754  *     and the cloned bios just point same pages.
2755  *     So cloned bios must be completed before original bios, which means
2756  *     the caller must complete @rq before @rq_src.
2757  */
2758 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2759 		      struct bio_set *bs, gfp_t gfp_mask,
2760 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2761 		      void *data)
2762 {
2763 	struct bio *bio, *bio_src;
2764 
2765 	if (!bs)
2766 		bs = fs_bio_set;
2767 
2768 	blk_rq_init(NULL, rq);
2769 
2770 	__rq_for_each_bio(bio_src, rq_src) {
2771 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2772 		if (!bio)
2773 			goto free_and_out;
2774 
2775 		__bio_clone(bio, bio_src);
2776 
2777 		if (bio_integrity(bio_src) &&
2778 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2779 			goto free_and_out;
2780 
2781 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2782 			goto free_and_out;
2783 
2784 		if (rq->bio) {
2785 			rq->biotail->bi_next = bio;
2786 			rq->biotail = bio;
2787 		} else
2788 			rq->bio = rq->biotail = bio;
2789 	}
2790 
2791 	__blk_rq_prep_clone(rq, rq_src);
2792 
2793 	return 0;
2794 
2795 free_and_out:
2796 	if (bio)
2797 		bio_free(bio, bs);
2798 	blk_rq_unprep_clone(rq);
2799 
2800 	return -ENOMEM;
2801 }
2802 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2803 
2804 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2805 {
2806 	return queue_work(kblockd_workqueue, work);
2807 }
2808 EXPORT_SYMBOL(kblockd_schedule_work);
2809 
2810 int kblockd_schedule_delayed_work(struct request_queue *q,
2811 			struct delayed_work *dwork, unsigned long delay)
2812 {
2813 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2814 }
2815 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2816 
2817 #define PLUG_MAGIC	0x91827364
2818 
2819 /**
2820  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2821  * @plug:	The &struct blk_plug that needs to be initialized
2822  *
2823  * Description:
2824  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2825  *   pending I/O should the task end up blocking between blk_start_plug() and
2826  *   blk_finish_plug(). This is important from a performance perspective, but
2827  *   also ensures that we don't deadlock. For instance, if the task is blocking
2828  *   for a memory allocation, memory reclaim could end up wanting to free a
2829  *   page belonging to that request that is currently residing in our private
2830  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2831  *   this kind of deadlock.
2832  */
2833 void blk_start_plug(struct blk_plug *plug)
2834 {
2835 	struct task_struct *tsk = current;
2836 
2837 	plug->magic = PLUG_MAGIC;
2838 	INIT_LIST_HEAD(&plug->list);
2839 	INIT_LIST_HEAD(&plug->cb_list);
2840 	plug->should_sort = 0;
2841 
2842 	/*
2843 	 * If this is a nested plug, don't actually assign it. It will be
2844 	 * flushed on its own.
2845 	 */
2846 	if (!tsk->plug) {
2847 		/*
2848 		 * Store ordering should not be needed here, since a potential
2849 		 * preempt will imply a full memory barrier
2850 		 */
2851 		tsk->plug = plug;
2852 	}
2853 }
2854 EXPORT_SYMBOL(blk_start_plug);
2855 
2856 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2857 {
2858 	struct request *rqa = container_of(a, struct request, queuelist);
2859 	struct request *rqb = container_of(b, struct request, queuelist);
2860 
2861 	return !(rqa->q <= rqb->q);
2862 }
2863 
2864 /*
2865  * If 'from_schedule' is true, then postpone the dispatch of requests
2866  * until a safe kblockd context. We due this to avoid accidental big
2867  * additional stack usage in driver dispatch, in places where the originally
2868  * plugger did not intend it.
2869  */
2870 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2871 			    bool from_schedule)
2872 	__releases(q->queue_lock)
2873 {
2874 	trace_block_unplug(q, depth, !from_schedule);
2875 
2876 	/*
2877 	 * Don't mess with dead queue.
2878 	 */
2879 	if (unlikely(blk_queue_dead(q))) {
2880 		spin_unlock(q->queue_lock);
2881 		return;
2882 	}
2883 
2884 	/*
2885 	 * If we are punting this to kblockd, then we can safely drop
2886 	 * the queue_lock before waking kblockd (which needs to take
2887 	 * this lock).
2888 	 */
2889 	if (from_schedule) {
2890 		spin_unlock(q->queue_lock);
2891 		blk_run_queue_async(q);
2892 	} else {
2893 		__blk_run_queue(q);
2894 		spin_unlock(q->queue_lock);
2895 	}
2896 
2897 }
2898 
2899 static void flush_plug_callbacks(struct blk_plug *plug)
2900 {
2901 	LIST_HEAD(callbacks);
2902 
2903 	if (list_empty(&plug->cb_list))
2904 		return;
2905 
2906 	list_splice_init(&plug->cb_list, &callbacks);
2907 
2908 	while (!list_empty(&callbacks)) {
2909 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2910 							  struct blk_plug_cb,
2911 							  list);
2912 		list_del(&cb->list);
2913 		cb->callback(cb);
2914 	}
2915 }
2916 
2917 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2918 {
2919 	struct request_queue *q;
2920 	unsigned long flags;
2921 	struct request *rq;
2922 	LIST_HEAD(list);
2923 	unsigned int depth;
2924 
2925 	BUG_ON(plug->magic != PLUG_MAGIC);
2926 
2927 	flush_plug_callbacks(plug);
2928 	if (list_empty(&plug->list))
2929 		return;
2930 
2931 	list_splice_init(&plug->list, &list);
2932 
2933 	if (plug->should_sort) {
2934 		list_sort(NULL, &list, plug_rq_cmp);
2935 		plug->should_sort = 0;
2936 	}
2937 
2938 	q = NULL;
2939 	depth = 0;
2940 
2941 	/*
2942 	 * Save and disable interrupts here, to avoid doing it for every
2943 	 * queue lock we have to take.
2944 	 */
2945 	local_irq_save(flags);
2946 	while (!list_empty(&list)) {
2947 		rq = list_entry_rq(list.next);
2948 		list_del_init(&rq->queuelist);
2949 		BUG_ON(!rq->q);
2950 		if (rq->q != q) {
2951 			/*
2952 			 * This drops the queue lock
2953 			 */
2954 			if (q)
2955 				queue_unplugged(q, depth, from_schedule);
2956 			q = rq->q;
2957 			depth = 0;
2958 			spin_lock(q->queue_lock);
2959 		}
2960 
2961 		/*
2962 		 * Short-circuit if @q is dead
2963 		 */
2964 		if (unlikely(blk_queue_dead(q))) {
2965 			__blk_end_request_all(rq, -ENODEV);
2966 			continue;
2967 		}
2968 
2969 		/*
2970 		 * rq is already accounted, so use raw insert
2971 		 */
2972 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2973 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2974 		else
2975 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2976 
2977 		depth++;
2978 	}
2979 
2980 	/*
2981 	 * This drops the queue lock
2982 	 */
2983 	if (q)
2984 		queue_unplugged(q, depth, from_schedule);
2985 
2986 	local_irq_restore(flags);
2987 }
2988 
2989 void blk_finish_plug(struct blk_plug *plug)
2990 {
2991 	blk_flush_plug_list(plug, false);
2992 
2993 	if (plug == current->plug)
2994 		current->plug = NULL;
2995 }
2996 EXPORT_SYMBOL(blk_finish_plug);
2997 
2998 int __init blk_dev_init(void)
2999 {
3000 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3001 			sizeof(((struct request *)0)->cmd_flags));
3002 
3003 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3004 	kblockd_workqueue = alloc_workqueue("kblockd",
3005 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3006 	if (!kblockd_workqueue)
3007 		panic("Failed to create kblockd\n");
3008 
3009 	request_cachep = kmem_cache_create("blkdev_requests",
3010 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3011 
3012 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3013 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3014 
3015 	return 0;
3016 }
3017