xref: /linux/block/blk-core.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46 
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 #include "blk-ioprio.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62 
63 static DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 static struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85 
86 /**
87  * blk_queue_flag_clear - atomically clear a queue flag
88  * @flag: flag to be cleared
89  * @q: request queue
90  */
91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 	clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96 
97 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
98 static const char *const blk_op_name[] = {
99 	REQ_OP_NAME(READ),
100 	REQ_OP_NAME(WRITE),
101 	REQ_OP_NAME(FLUSH),
102 	REQ_OP_NAME(DISCARD),
103 	REQ_OP_NAME(SECURE_ERASE),
104 	REQ_OP_NAME(ZONE_RESET),
105 	REQ_OP_NAME(ZONE_RESET_ALL),
106 	REQ_OP_NAME(ZONE_OPEN),
107 	REQ_OP_NAME(ZONE_CLOSE),
108 	REQ_OP_NAME(ZONE_FINISH),
109 	REQ_OP_NAME(ZONE_APPEND),
110 	REQ_OP_NAME(WRITE_ZEROES),
111 	REQ_OP_NAME(DRV_IN),
112 	REQ_OP_NAME(DRV_OUT),
113 };
114 #undef REQ_OP_NAME
115 
116 /**
117  * blk_op_str - Return the string "name" for an operation REQ_OP_name.
118  * @op: a request operation.
119  *
120  * Convert a request operation REQ_OP_name into the string "name". Useful for
121  * debugging and tracing BIOs and requests. For an invalid request operation
122  * code, the string "UNKNOWN" is returned.
123  */
124 inline const char *blk_op_str(enum req_op op)
125 {
126 	const char *op_str = "UNKNOWN";
127 
128 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
129 		op_str = blk_op_name[op];
130 
131 	return op_str;
132 }
133 EXPORT_SYMBOL_GPL(blk_op_str);
134 
135 static const struct {
136 	int		errno;
137 	const char	*name;
138 } blk_errors[] = {
139 	[BLK_STS_OK]		= { 0,		"" },
140 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
141 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
142 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
143 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
144 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
145 	[BLK_STS_RESV_CONFLICT]	= { -EBADE,	"reservation conflict" },
146 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
147 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
148 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
149 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
150 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
151 	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
152 
153 	/* device mapper special case, should not leak out: */
154 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
155 
156 	/* zone device specific errors */
157 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
158 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
159 
160 	/* Command duration limit device-side timeout */
161 	[BLK_STS_DURATION_LIMIT]	= { -ETIME, "duration limit exceeded" },
162 
163 	[BLK_STS_INVAL]		= { -EINVAL,	"invalid" },
164 
165 	/* everything else not covered above: */
166 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
167 };
168 
169 blk_status_t errno_to_blk_status(int errno)
170 {
171 	int i;
172 
173 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
174 		if (blk_errors[i].errno == errno)
175 			return (__force blk_status_t)i;
176 	}
177 
178 	return BLK_STS_IOERR;
179 }
180 EXPORT_SYMBOL_GPL(errno_to_blk_status);
181 
182 int blk_status_to_errno(blk_status_t status)
183 {
184 	int idx = (__force int)status;
185 
186 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
187 		return -EIO;
188 	return blk_errors[idx].errno;
189 }
190 EXPORT_SYMBOL_GPL(blk_status_to_errno);
191 
192 const char *blk_status_to_str(blk_status_t status)
193 {
194 	int idx = (__force int)status;
195 
196 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
197 		return "<null>";
198 	return blk_errors[idx].name;
199 }
200 EXPORT_SYMBOL_GPL(blk_status_to_str);
201 
202 /**
203  * blk_sync_queue - cancel any pending callbacks on a queue
204  * @q: the queue
205  *
206  * Description:
207  *     The block layer may perform asynchronous callback activity
208  *     on a queue, such as calling the unplug function after a timeout.
209  *     A block device may call blk_sync_queue to ensure that any
210  *     such activity is cancelled, thus allowing it to release resources
211  *     that the callbacks might use. The caller must already have made sure
212  *     that its ->submit_bio will not re-add plugging prior to calling
213  *     this function.
214  *
215  *     This function does not cancel any asynchronous activity arising
216  *     out of elevator or throttling code. That would require elevator_exit()
217  *     and blkcg_exit_queue() to be called with queue lock initialized.
218  *
219  */
220 void blk_sync_queue(struct request_queue *q)
221 {
222 	timer_delete_sync(&q->timeout);
223 	cancel_work_sync(&q->timeout_work);
224 }
225 EXPORT_SYMBOL(blk_sync_queue);
226 
227 /**
228  * blk_set_pm_only - increment pm_only counter
229  * @q: request queue pointer
230  */
231 void blk_set_pm_only(struct request_queue *q)
232 {
233 	atomic_inc(&q->pm_only);
234 }
235 EXPORT_SYMBOL_GPL(blk_set_pm_only);
236 
237 void blk_clear_pm_only(struct request_queue *q)
238 {
239 	int pm_only;
240 
241 	pm_only = atomic_dec_return(&q->pm_only);
242 	WARN_ON_ONCE(pm_only < 0);
243 	if (pm_only == 0)
244 		wake_up_all(&q->mq_freeze_wq);
245 }
246 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
247 
248 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
249 {
250 	struct request_queue *q = container_of(rcu_head,
251 			struct request_queue, rcu_head);
252 
253 	percpu_ref_exit(&q->q_usage_counter);
254 	kmem_cache_free(blk_requestq_cachep, q);
255 }
256 
257 static void blk_free_queue(struct request_queue *q)
258 {
259 	blk_free_queue_stats(q->stats);
260 	if (queue_is_mq(q))
261 		blk_mq_release(q);
262 
263 	ida_free(&blk_queue_ida, q->id);
264 	lockdep_unregister_key(&q->io_lock_cls_key);
265 	lockdep_unregister_key(&q->q_lock_cls_key);
266 	call_rcu(&q->rcu_head, blk_free_queue_rcu);
267 }
268 
269 /**
270  * blk_put_queue - decrement the request_queue refcount
271  * @q: the request_queue structure to decrement the refcount for
272  *
273  * Decrements the refcount of the request_queue and free it when the refcount
274  * reaches 0.
275  */
276 void blk_put_queue(struct request_queue *q)
277 {
278 	if (refcount_dec_and_test(&q->refs))
279 		blk_free_queue(q);
280 }
281 EXPORT_SYMBOL(blk_put_queue);
282 
283 bool blk_queue_start_drain(struct request_queue *q)
284 {
285 	/*
286 	 * When queue DYING flag is set, we need to block new req
287 	 * entering queue, so we call blk_freeze_queue_start() to
288 	 * prevent I/O from crossing blk_queue_enter().
289 	 */
290 	bool freeze = __blk_freeze_queue_start(q, current);
291 	if (queue_is_mq(q))
292 		blk_mq_wake_waiters(q);
293 	/* Make blk_queue_enter() reexamine the DYING flag. */
294 	wake_up_all(&q->mq_freeze_wq);
295 
296 	return freeze;
297 }
298 
299 /**
300  * blk_queue_enter() - try to increase q->q_usage_counter
301  * @q: request queue pointer
302  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
303  */
304 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
305 {
306 	const bool pm = flags & BLK_MQ_REQ_PM;
307 
308 	while (!blk_try_enter_queue(q, pm)) {
309 		if (flags & BLK_MQ_REQ_NOWAIT)
310 			return -EAGAIN;
311 
312 		/*
313 		 * read pair of barrier in blk_freeze_queue_start(), we need to
314 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
315 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
316 		 * following wait may never return if the two reads are
317 		 * reordered.
318 		 */
319 		smp_rmb();
320 		wait_event(q->mq_freeze_wq,
321 			   (!q->mq_freeze_depth &&
322 			    blk_pm_resume_queue(pm, q)) ||
323 			   blk_queue_dying(q));
324 		if (blk_queue_dying(q))
325 			return -ENODEV;
326 	}
327 
328 	rwsem_acquire_read(&q->q_lockdep_map, 0, 0, _RET_IP_);
329 	rwsem_release(&q->q_lockdep_map, _RET_IP_);
330 	return 0;
331 }
332 
333 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
334 {
335 	while (!blk_try_enter_queue(q, false)) {
336 		struct gendisk *disk = bio->bi_bdev->bd_disk;
337 
338 		if (bio->bi_opf & REQ_NOWAIT) {
339 			if (test_bit(GD_DEAD, &disk->state))
340 				goto dead;
341 			bio_wouldblock_error(bio);
342 			return -EAGAIN;
343 		}
344 
345 		/*
346 		 * read pair of barrier in blk_freeze_queue_start(), we need to
347 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
348 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
349 		 * following wait may never return if the two reads are
350 		 * reordered.
351 		 */
352 		smp_rmb();
353 		wait_event(q->mq_freeze_wq,
354 			   (!q->mq_freeze_depth &&
355 			    blk_pm_resume_queue(false, q)) ||
356 			   test_bit(GD_DEAD, &disk->state));
357 		if (test_bit(GD_DEAD, &disk->state))
358 			goto dead;
359 	}
360 
361 	rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
362 	rwsem_release(&q->io_lockdep_map, _RET_IP_);
363 	return 0;
364 dead:
365 	bio_io_error(bio);
366 	return -ENODEV;
367 }
368 
369 void blk_queue_exit(struct request_queue *q)
370 {
371 	percpu_ref_put(&q->q_usage_counter);
372 }
373 
374 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
375 {
376 	struct request_queue *q =
377 		container_of(ref, struct request_queue, q_usage_counter);
378 
379 	wake_up_all(&q->mq_freeze_wq);
380 }
381 
382 static void blk_rq_timed_out_timer(struct timer_list *t)
383 {
384 	struct request_queue *q = timer_container_of(q, t, timeout);
385 
386 	kblockd_schedule_work(&q->timeout_work);
387 }
388 
389 static void blk_timeout_work(struct work_struct *work)
390 {
391 }
392 
393 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
394 {
395 	struct request_queue *q;
396 	int error;
397 
398 	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
399 				  node_id);
400 	if (!q)
401 		return ERR_PTR(-ENOMEM);
402 
403 	q->last_merge = NULL;
404 
405 	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
406 	if (q->id < 0) {
407 		error = q->id;
408 		goto fail_q;
409 	}
410 
411 	q->stats = blk_alloc_queue_stats();
412 	if (!q->stats) {
413 		error = -ENOMEM;
414 		goto fail_id;
415 	}
416 
417 	error = blk_set_default_limits(lim);
418 	if (error)
419 		goto fail_stats;
420 	q->limits = *lim;
421 
422 	q->node = node_id;
423 
424 	atomic_set(&q->nr_active_requests_shared_tags, 0);
425 
426 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
427 	INIT_WORK(&q->timeout_work, blk_timeout_work);
428 	INIT_LIST_HEAD(&q->icq_list);
429 
430 	refcount_set(&q->refs, 1);
431 	mutex_init(&q->debugfs_mutex);
432 	mutex_init(&q->elevator_lock);
433 	mutex_init(&q->sysfs_lock);
434 	mutex_init(&q->limits_lock);
435 	mutex_init(&q->rq_qos_mutex);
436 	spin_lock_init(&q->queue_lock);
437 
438 	init_waitqueue_head(&q->mq_freeze_wq);
439 	mutex_init(&q->mq_freeze_lock);
440 
441 	blkg_init_queue(q);
442 
443 	/*
444 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
445 	 * See blk_register_queue() for details.
446 	 */
447 	error = percpu_ref_init(&q->q_usage_counter,
448 				blk_queue_usage_counter_release,
449 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
450 	if (error)
451 		goto fail_stats;
452 	lockdep_register_key(&q->io_lock_cls_key);
453 	lockdep_register_key(&q->q_lock_cls_key);
454 	lockdep_init_map(&q->io_lockdep_map, "&q->q_usage_counter(io)",
455 			 &q->io_lock_cls_key, 0);
456 	lockdep_init_map(&q->q_lockdep_map, "&q->q_usage_counter(queue)",
457 			 &q->q_lock_cls_key, 0);
458 
459 	/* Teach lockdep about lock ordering (reclaim WRT queue freeze lock). */
460 	fs_reclaim_acquire(GFP_KERNEL);
461 	rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
462 	rwsem_release(&q->io_lockdep_map, _RET_IP_);
463 	fs_reclaim_release(GFP_KERNEL);
464 
465 	q->nr_requests = BLKDEV_DEFAULT_RQ;
466 	q->async_depth = BLKDEV_DEFAULT_RQ;
467 
468 	return q;
469 
470 fail_stats:
471 	blk_free_queue_stats(q->stats);
472 fail_id:
473 	ida_free(&blk_queue_ida, q->id);
474 fail_q:
475 	kmem_cache_free(blk_requestq_cachep, q);
476 	return ERR_PTR(error);
477 }
478 
479 /**
480  * blk_get_queue - increment the request_queue refcount
481  * @q: the request_queue structure to increment the refcount for
482  *
483  * Increment the refcount of the request_queue kobject.
484  *
485  * Context: Any context.
486  */
487 bool blk_get_queue(struct request_queue *q)
488 {
489 	if (unlikely(blk_queue_dying(q)))
490 		return false;
491 	refcount_inc(&q->refs);
492 	return true;
493 }
494 EXPORT_SYMBOL(blk_get_queue);
495 
496 #ifdef CONFIG_FAIL_MAKE_REQUEST
497 
498 static DECLARE_FAULT_ATTR(fail_make_request);
499 
500 static int __init setup_fail_make_request(char *str)
501 {
502 	return setup_fault_attr(&fail_make_request, str);
503 }
504 __setup("fail_make_request=", setup_fail_make_request);
505 
506 bool should_fail_request(struct block_device *part, unsigned int bytes)
507 {
508 	return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
509 	       should_fail(&fail_make_request, bytes);
510 }
511 
512 static int __init fail_make_request_debugfs(void)
513 {
514 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
515 						NULL, &fail_make_request);
516 
517 	return PTR_ERR_OR_ZERO(dir);
518 }
519 
520 late_initcall(fail_make_request_debugfs);
521 #endif /* CONFIG_FAIL_MAKE_REQUEST */
522 
523 static inline void bio_check_ro(struct bio *bio)
524 {
525 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
526 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
527 			return;
528 
529 		if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
530 			return;
531 
532 		bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
533 
534 		/*
535 		 * Use ioctl to set underlying disk of raid/dm to read-only
536 		 * will trigger this.
537 		 */
538 		pr_warn("Trying to write to read-only block-device %pg\n",
539 			bio->bi_bdev);
540 	}
541 }
542 
543 int should_fail_bio(struct bio *bio)
544 {
545 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
546 		return -EIO;
547 	return 0;
548 }
549 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
550 
551 /*
552  * Check whether this bio extends beyond the end of the device or partition.
553  * This may well happen - the kernel calls bread() without checking the size of
554  * the device, e.g., when mounting a file system.
555  */
556 static inline int bio_check_eod(struct bio *bio)
557 {
558 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
559 	unsigned int nr_sectors = bio_sectors(bio);
560 
561 	if (nr_sectors &&
562 	    (nr_sectors > maxsector ||
563 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
564 		if (!maxsector)
565 			return -EIO;
566 		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
567 				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
568 				    current->comm, bio->bi_bdev, bio->bi_opf,
569 				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
570 		return -EIO;
571 	}
572 	return 0;
573 }
574 
575 /*
576  * Remap block n of partition p to block n+start(p) of the disk.
577  */
578 static int blk_partition_remap(struct bio *bio)
579 {
580 	struct block_device *p = bio->bi_bdev;
581 
582 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
583 		return -EIO;
584 	if (bio_sectors(bio)) {
585 		bio->bi_iter.bi_sector += p->bd_start_sect;
586 		trace_block_bio_remap(bio, p->bd_dev,
587 				      bio->bi_iter.bi_sector -
588 				      p->bd_start_sect);
589 	}
590 	bio_set_flag(bio, BIO_REMAPPED);
591 	return 0;
592 }
593 
594 /*
595  * Check write append to a zoned block device.
596  */
597 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
598 						 struct bio *bio)
599 {
600 	int nr_sectors = bio_sectors(bio);
601 
602 	/* Only applicable to zoned block devices */
603 	if (!bdev_is_zoned(bio->bi_bdev))
604 		return BLK_STS_NOTSUPP;
605 
606 	/* The bio sector must point to the start of a sequential zone */
607 	if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
608 		return BLK_STS_IOERR;
609 
610 	/*
611 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
612 	 * split and could result in non-contiguous sectors being written in
613 	 * different zones.
614 	 */
615 	if (nr_sectors > q->limits.chunk_sectors)
616 		return BLK_STS_IOERR;
617 
618 	/* Make sure the BIO is small enough and will not get split */
619 	if (nr_sectors > q->limits.max_zone_append_sectors)
620 		return BLK_STS_IOERR;
621 
622 	bio->bi_opf |= REQ_NOMERGE;
623 
624 	return BLK_STS_OK;
625 }
626 
627 static void __submit_bio(struct bio *bio)
628 {
629 	/* If plug is not used, add new plug here to cache nsecs time. */
630 	struct blk_plug plug;
631 
632 	blk_start_plug(&plug);
633 
634 	if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
635 		blk_mq_submit_bio(bio);
636 	} else if (likely(bio_queue_enter(bio) == 0)) {
637 		struct gendisk *disk = bio->bi_bdev->bd_disk;
638 
639 		if ((bio->bi_opf & REQ_POLLED) &&
640 		    !(disk->queue->limits.features & BLK_FEAT_POLL)) {
641 			bio->bi_status = BLK_STS_NOTSUPP;
642 			bio_endio(bio);
643 		} else {
644 			disk->fops->submit_bio(bio);
645 		}
646 		blk_queue_exit(disk->queue);
647 	}
648 
649 	blk_finish_plug(&plug);
650 }
651 
652 /*
653  * The loop in this function may be a bit non-obvious, and so deserves some
654  * explanation:
655  *
656  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
657  *    that), so we have a list with a single bio.
658  *  - We pretend that we have just taken it off a longer list, so we assign
659  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
660  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
661  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
662  *    non-NULL value in bio_list and re-enter the loop from the top.
663  *  - In this case we really did just take the bio off the top of the list (no
664  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
665  *    again.
666  *
667  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
668  * bio_list_on_stack[1] contains bios that were submitted before the current
669  *	->submit_bio(), but that haven't been processed yet.
670  */
671 static void __submit_bio_noacct(struct bio *bio)
672 {
673 	struct bio_list bio_list_on_stack[2];
674 
675 	BUG_ON(bio->bi_next);
676 
677 	bio_list_init(&bio_list_on_stack[0]);
678 	current->bio_list = bio_list_on_stack;
679 
680 	do {
681 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
682 		struct bio_list lower, same;
683 
684 		/*
685 		 * Create a fresh bio_list for all subordinate requests.
686 		 */
687 		bio_list_on_stack[1] = bio_list_on_stack[0];
688 		bio_list_init(&bio_list_on_stack[0]);
689 
690 		__submit_bio(bio);
691 
692 		/*
693 		 * Sort new bios into those for a lower level and those for the
694 		 * same level.
695 		 */
696 		bio_list_init(&lower);
697 		bio_list_init(&same);
698 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
699 			if (q == bdev_get_queue(bio->bi_bdev))
700 				bio_list_add(&same, bio);
701 			else
702 				bio_list_add(&lower, bio);
703 
704 		/*
705 		 * Now assemble so we handle the lowest level first.
706 		 */
707 		bio_list_merge(&bio_list_on_stack[0], &lower);
708 		bio_list_merge(&bio_list_on_stack[0], &same);
709 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
710 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
711 
712 	current->bio_list = NULL;
713 }
714 
715 static void __submit_bio_noacct_mq(struct bio *bio)
716 {
717 	struct bio_list bio_list[2] = { };
718 
719 	current->bio_list = bio_list;
720 
721 	do {
722 		__submit_bio(bio);
723 	} while ((bio = bio_list_pop(&bio_list[0])));
724 
725 	current->bio_list = NULL;
726 }
727 
728 void submit_bio_noacct_nocheck(struct bio *bio, bool split)
729 {
730 	blk_cgroup_bio_start(bio);
731 
732 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
733 		trace_block_bio_queue(bio);
734 		/*
735 		 * Now that enqueuing has been traced, we need to trace
736 		 * completion as well.
737 		 */
738 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
739 	}
740 
741 	/*
742 	 * We only want one ->submit_bio to be active at a time, else stack
743 	 * usage with stacked devices could be a problem.  Use current->bio_list
744 	 * to collect a list of requests submitted by a ->submit_bio method
745 	 * while it is active, and then process them after it returned.
746 	 */
747 	if (current->bio_list) {
748 		if (split)
749 			bio_list_add_head(&current->bio_list[0], bio);
750 		else
751 			bio_list_add(&current->bio_list[0], bio);
752 	} else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
753 		__submit_bio_noacct_mq(bio);
754 	} else {
755 		__submit_bio_noacct(bio);
756 	}
757 }
758 
759 static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
760 						 struct bio *bio)
761 {
762 	if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
763 		return BLK_STS_INVAL;
764 
765 	if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
766 		return BLK_STS_INVAL;
767 
768 	return BLK_STS_OK;
769 }
770 
771 /**
772  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
773  * @bio:  The bio describing the location in memory and on the device.
774  *
775  * This is a version of submit_bio() that shall only be used for I/O that is
776  * resubmitted to lower level drivers by stacking block drivers.  All file
777  * systems and other upper level users of the block layer should use
778  * submit_bio() instead.
779  */
780 void submit_bio_noacct(struct bio *bio)
781 {
782 	struct block_device *bdev = bio->bi_bdev;
783 	struct request_queue *q = bdev_get_queue(bdev);
784 	blk_status_t status = BLK_STS_IOERR;
785 
786 	might_sleep();
787 
788 	/*
789 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
790 	 * if queue does not support NOWAIT.
791 	 */
792 	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
793 		goto not_supported;
794 
795 	if (bio_has_crypt_ctx(bio)) {
796 		if (WARN_ON_ONCE(!bio_has_data(bio)))
797 			goto end_io;
798 		if (!blk_crypto_supported(bio))
799 			goto not_supported;
800 	}
801 
802 	if (should_fail_bio(bio))
803 		goto end_io;
804 	bio_check_ro(bio);
805 	if (!bio_flagged(bio, BIO_REMAPPED)) {
806 		if (unlikely(bio_check_eod(bio)))
807 			goto end_io;
808 		if (bdev_is_partition(bdev) &&
809 		    unlikely(blk_partition_remap(bio)))
810 			goto end_io;
811 	}
812 
813 	/*
814 	 * Filter flush bio's early so that bio based drivers without flush
815 	 * support don't have to worry about them.
816 	 */
817 	if (op_is_flush(bio->bi_opf)) {
818 		if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
819 				 bio_op(bio) != REQ_OP_ZONE_APPEND))
820 			goto end_io;
821 		if (!bdev_write_cache(bdev)) {
822 			bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
823 			if (!bio_sectors(bio)) {
824 				status = BLK_STS_OK;
825 				goto end_io;
826 			}
827 		}
828 	}
829 
830 	switch (bio_op(bio)) {
831 	case REQ_OP_READ:
832 		break;
833 	case REQ_OP_WRITE:
834 		if (bio->bi_opf & REQ_ATOMIC) {
835 			status = blk_validate_atomic_write_op_size(q, bio);
836 			if (status != BLK_STS_OK)
837 				goto end_io;
838 		}
839 		break;
840 	case REQ_OP_FLUSH:
841 		/*
842 		 * REQ_OP_FLUSH can't be submitted through bios, it is only
843 		 * synthetized in struct request by the flush state machine.
844 		 */
845 		goto not_supported;
846 	case REQ_OP_DISCARD:
847 		if (!bdev_max_discard_sectors(bdev))
848 			goto not_supported;
849 		break;
850 	case REQ_OP_SECURE_ERASE:
851 		if (!bdev_max_secure_erase_sectors(bdev))
852 			goto not_supported;
853 		break;
854 	case REQ_OP_ZONE_APPEND:
855 		status = blk_check_zone_append(q, bio);
856 		if (status != BLK_STS_OK)
857 			goto end_io;
858 		break;
859 	case REQ_OP_WRITE_ZEROES:
860 		if (!q->limits.max_write_zeroes_sectors)
861 			goto not_supported;
862 		break;
863 	case REQ_OP_ZONE_RESET:
864 	case REQ_OP_ZONE_OPEN:
865 	case REQ_OP_ZONE_CLOSE:
866 	case REQ_OP_ZONE_FINISH:
867 	case REQ_OP_ZONE_RESET_ALL:
868 		if (!bdev_is_zoned(bio->bi_bdev))
869 			goto not_supported;
870 		break;
871 	case REQ_OP_DRV_IN:
872 	case REQ_OP_DRV_OUT:
873 		/*
874 		 * Driver private operations are only used with passthrough
875 		 * requests.
876 		 */
877 		fallthrough;
878 	default:
879 		goto not_supported;
880 	}
881 
882 	if (blk_throtl_bio(bio))
883 		return;
884 	submit_bio_noacct_nocheck(bio, false);
885 	return;
886 
887 not_supported:
888 	status = BLK_STS_NOTSUPP;
889 end_io:
890 	bio->bi_status = status;
891 	bio_endio(bio);
892 }
893 EXPORT_SYMBOL(submit_bio_noacct);
894 
895 static void bio_set_ioprio(struct bio *bio)
896 {
897 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
898 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
899 		bio->bi_ioprio = get_current_ioprio();
900 	blkcg_set_ioprio(bio);
901 }
902 
903 /**
904  * submit_bio - submit a bio to the block device layer for I/O
905  * @bio: The &struct bio which describes the I/O
906  *
907  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
908  * fully set up &struct bio that describes the I/O that needs to be done.  The
909  * bio will be sent to the device described by the bi_bdev field.
910  *
911  * The success/failure status of the request, along with notification of
912  * completion, is delivered asynchronously through the ->bi_end_io() callback
913  * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
914  * been called.
915  */
916 void submit_bio(struct bio *bio)
917 {
918 	if (bio_op(bio) == REQ_OP_READ) {
919 		task_io_account_read(bio->bi_iter.bi_size);
920 		count_vm_events(PGPGIN, bio_sectors(bio));
921 	} else if (bio_op(bio) == REQ_OP_WRITE) {
922 		count_vm_events(PGPGOUT, bio_sectors(bio));
923 	}
924 
925 	bio_set_ioprio(bio);
926 	submit_bio_noacct(bio);
927 }
928 EXPORT_SYMBOL(submit_bio);
929 
930 /**
931  * bio_poll - poll for BIO completions
932  * @bio: bio to poll for
933  * @iob: batches of IO
934  * @flags: BLK_POLL_* flags that control the behavior
935  *
936  * Poll for completions on queue associated with the bio. Returns number of
937  * completed entries found.
938  *
939  * Note: the caller must either be the context that submitted @bio, or
940  * be in a RCU critical section to prevent freeing of @bio.
941  */
942 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
943 {
944 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
945 	struct block_device *bdev;
946 	struct request_queue *q;
947 	int ret = 0;
948 
949 	bdev = READ_ONCE(bio->bi_bdev);
950 	if (!bdev)
951 		return 0;
952 
953 	q = bdev_get_queue(bdev);
954 	if (cookie == BLK_QC_T_NONE)
955 		return 0;
956 
957 	blk_flush_plug(current->plug, false);
958 
959 	/*
960 	 * We need to be able to enter a frozen queue, similar to how
961 	 * timeouts also need to do that. If that is blocked, then we can
962 	 * have pending IO when a queue freeze is started, and then the
963 	 * wait for the freeze to finish will wait for polled requests to
964 	 * timeout as the poller is preventer from entering the queue and
965 	 * completing them. As long as we prevent new IO from being queued,
966 	 * that should be all that matters.
967 	 */
968 	if (!percpu_ref_tryget(&q->q_usage_counter))
969 		return 0;
970 	if (queue_is_mq(q)) {
971 		ret = blk_mq_poll(q, cookie, iob, flags);
972 	} else {
973 		struct gendisk *disk = q->disk;
974 
975 		if ((q->limits.features & BLK_FEAT_POLL) && disk &&
976 		    disk->fops->poll_bio)
977 			ret = disk->fops->poll_bio(bio, iob, flags);
978 	}
979 	blk_queue_exit(q);
980 	return ret;
981 }
982 EXPORT_SYMBOL_GPL(bio_poll);
983 
984 /*
985  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
986  * in iocb->private, and cleared before freeing the bio.
987  */
988 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
989 		    unsigned int flags)
990 {
991 	struct bio *bio;
992 	int ret = 0;
993 
994 	/*
995 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
996 	 * point to a freshly allocated bio at this point.  If that happens
997 	 * we have a few cases to consider:
998 	 *
999 	 *  1) the bio is being initialized and bi_bdev is NULL.  We can just
1000 	 *     simply nothing in this case
1001 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
1002 	 *     this and return 0
1003 	 *  3) the bio points to a poll capable device, including but not
1004 	 *     limited to the one that the original bio pointed to.  In this
1005 	 *     case we will call into the actual poll method and poll for I/O,
1006 	 *     even if we don't need to, but it won't cause harm either.
1007 	 *
1008 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
1009 	 * is still allocated. Because partitions hold a reference to the whole
1010 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
1011 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
1012 	 * are still valid as well.
1013 	 */
1014 	rcu_read_lock();
1015 	bio = READ_ONCE(kiocb->private);
1016 	if (bio)
1017 		ret = bio_poll(bio, iob, flags);
1018 	rcu_read_unlock();
1019 
1020 	return ret;
1021 }
1022 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1023 
1024 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
1025 {
1026 	unsigned long stamp;
1027 again:
1028 	stamp = READ_ONCE(part->bd_stamp);
1029 	if (unlikely(time_after(now, stamp)) &&
1030 	    likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
1031 	    (end || bdev_count_inflight(part)))
1032 		__part_stat_add(part, io_ticks, now - stamp);
1033 
1034 	if (bdev_is_partition(part)) {
1035 		part = bdev_whole(part);
1036 		goto again;
1037 	}
1038 }
1039 
1040 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1041 				 unsigned long start_time)
1042 {
1043 	part_stat_lock();
1044 	update_io_ticks(bdev, start_time, false);
1045 	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1046 	part_stat_unlock();
1047 
1048 	return start_time;
1049 }
1050 EXPORT_SYMBOL(bdev_start_io_acct);
1051 
1052 /**
1053  * bio_start_io_acct - start I/O accounting for bio based drivers
1054  * @bio:	bio to start account for
1055  *
1056  * Returns the start time that should be passed back to bio_end_io_acct().
1057  */
1058 unsigned long bio_start_io_acct(struct bio *bio)
1059 {
1060 	return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1061 }
1062 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1063 
1064 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1065 		      unsigned int sectors, unsigned long start_time)
1066 {
1067 	const int sgrp = op_stat_group(op);
1068 	unsigned long now = READ_ONCE(jiffies);
1069 	unsigned long duration = now - start_time;
1070 
1071 	part_stat_lock();
1072 	update_io_ticks(bdev, now, true);
1073 	part_stat_inc(bdev, ios[sgrp]);
1074 	part_stat_add(bdev, sectors[sgrp], sectors);
1075 	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1076 	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1077 	part_stat_unlock();
1078 }
1079 EXPORT_SYMBOL(bdev_end_io_acct);
1080 
1081 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1082 			      struct block_device *orig_bdev)
1083 {
1084 	bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1085 }
1086 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1087 
1088 /**
1089  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1090  * @q : the queue of the device being checked
1091  *
1092  * Description:
1093  *    Check if underlying low-level drivers of a device are busy.
1094  *    If the drivers want to export their busy state, they must set own
1095  *    exporting function using blk_queue_lld_busy() first.
1096  *
1097  *    Basically, this function is used only by request stacking drivers
1098  *    to stop dispatching requests to underlying devices when underlying
1099  *    devices are busy.  This behavior helps more I/O merging on the queue
1100  *    of the request stacking driver and prevents I/O throughput regression
1101  *    on burst I/O load.
1102  *
1103  * Return:
1104  *    0 - Not busy (The request stacking driver should dispatch request)
1105  *    1 - Busy (The request stacking driver should stop dispatching request)
1106  */
1107 int blk_lld_busy(struct request_queue *q)
1108 {
1109 	if (queue_is_mq(q) && q->mq_ops->busy)
1110 		return q->mq_ops->busy(q);
1111 
1112 	return 0;
1113 }
1114 EXPORT_SYMBOL_GPL(blk_lld_busy);
1115 
1116 int kblockd_schedule_work(struct work_struct *work)
1117 {
1118 	return queue_work(kblockd_workqueue, work);
1119 }
1120 EXPORT_SYMBOL(kblockd_schedule_work);
1121 
1122 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1123 				unsigned long delay)
1124 {
1125 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1126 }
1127 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1128 
1129 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1130 {
1131 	struct task_struct *tsk = current;
1132 
1133 	/*
1134 	 * If this is a nested plug, don't actually assign it.
1135 	 */
1136 	if (tsk->plug)
1137 		return;
1138 
1139 	plug->cur_ktime = 0;
1140 	rq_list_init(&plug->mq_list);
1141 	rq_list_init(&plug->cached_rqs);
1142 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1143 	plug->rq_count = 0;
1144 	plug->multiple_queues = false;
1145 	plug->has_elevator = false;
1146 	INIT_LIST_HEAD(&plug->cb_list);
1147 
1148 	/*
1149 	 * Store ordering should not be needed here, since a potential
1150 	 * preempt will imply a full memory barrier
1151 	 */
1152 	tsk->plug = plug;
1153 }
1154 
1155 /**
1156  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1157  * @plug:	The &struct blk_plug that needs to be initialized
1158  *
1159  * Description:
1160  *   blk_start_plug() indicates to the block layer an intent by the caller
1161  *   to submit multiple I/O requests in a batch.  The block layer may use
1162  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1163  *   is called.  However, the block layer may choose to submit requests
1164  *   before a call to blk_finish_plug() if the number of queued I/Os
1165  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1166  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1167  *   the task schedules (see below).
1168  *
1169  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1170  *   pending I/O should the task end up blocking between blk_start_plug() and
1171  *   blk_finish_plug(). This is important from a performance perspective, but
1172  *   also ensures that we don't deadlock. For instance, if the task is blocking
1173  *   for a memory allocation, memory reclaim could end up wanting to free a
1174  *   page belonging to that request that is currently residing in our private
1175  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1176  *   this kind of deadlock.
1177  */
1178 void blk_start_plug(struct blk_plug *plug)
1179 {
1180 	blk_start_plug_nr_ios(plug, 1);
1181 }
1182 EXPORT_SYMBOL(blk_start_plug);
1183 
1184 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1185 {
1186 	LIST_HEAD(callbacks);
1187 
1188 	while (!list_empty(&plug->cb_list)) {
1189 		list_splice_init(&plug->cb_list, &callbacks);
1190 
1191 		while (!list_empty(&callbacks)) {
1192 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1193 							  struct blk_plug_cb,
1194 							  list);
1195 			list_del(&cb->list);
1196 			cb->callback(cb, from_schedule);
1197 		}
1198 	}
1199 }
1200 
1201 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1202 				      int size)
1203 {
1204 	struct blk_plug *plug = current->plug;
1205 	struct blk_plug_cb *cb;
1206 
1207 	if (!plug)
1208 		return NULL;
1209 
1210 	list_for_each_entry(cb, &plug->cb_list, list)
1211 		if (cb->callback == unplug && cb->data == data)
1212 			return cb;
1213 
1214 	/* Not currently on the callback list */
1215 	BUG_ON(size < sizeof(*cb));
1216 	cb = kzalloc(size, GFP_ATOMIC);
1217 	if (cb) {
1218 		cb->data = data;
1219 		cb->callback = unplug;
1220 		list_add(&cb->list, &plug->cb_list);
1221 	}
1222 	return cb;
1223 }
1224 EXPORT_SYMBOL(blk_check_plugged);
1225 
1226 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1227 {
1228 	if (!list_empty(&plug->cb_list))
1229 		flush_plug_callbacks(plug, from_schedule);
1230 	blk_mq_flush_plug_list(plug, from_schedule);
1231 	/*
1232 	 * Unconditionally flush out cached requests, even if the unplug
1233 	 * event came from schedule. Since we know hold references to the
1234 	 * queue for cached requests, we don't want a blocked task holding
1235 	 * up a queue freeze/quiesce event.
1236 	 */
1237 	if (unlikely(!rq_list_empty(&plug->cached_rqs)))
1238 		blk_mq_free_plug_rqs(plug);
1239 
1240 	plug->cur_ktime = 0;
1241 	current->flags &= ~PF_BLOCK_TS;
1242 }
1243 
1244 /**
1245  * blk_finish_plug - mark the end of a batch of submitted I/O
1246  * @plug:	The &struct blk_plug passed to blk_start_plug()
1247  *
1248  * Description:
1249  * Indicate that a batch of I/O submissions is complete.  This function
1250  * must be paired with an initial call to blk_start_plug().  The intent
1251  * is to allow the block layer to optimize I/O submission.  See the
1252  * documentation for blk_start_plug() for more information.
1253  */
1254 void blk_finish_plug(struct blk_plug *plug)
1255 {
1256 	if (plug == current->plug) {
1257 		__blk_flush_plug(plug, false);
1258 		current->plug = NULL;
1259 	}
1260 }
1261 EXPORT_SYMBOL(blk_finish_plug);
1262 
1263 void blk_io_schedule(void)
1264 {
1265 	/* Prevent hang_check timer from firing at us during very long I/O */
1266 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1267 
1268 	if (timeout)
1269 		io_schedule_timeout(timeout);
1270 	else
1271 		io_schedule();
1272 }
1273 EXPORT_SYMBOL_GPL(blk_io_schedule);
1274 
1275 int __init blk_dev_init(void)
1276 {
1277 	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1278 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1279 			sizeof_field(struct request, cmd_flags));
1280 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1281 			sizeof_field(struct bio, bi_opf));
1282 
1283 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1284 	kblockd_workqueue = alloc_workqueue("kblockd",
1285 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1286 	if (!kblockd_workqueue)
1287 		panic("Failed to create kblockd\n");
1288 
1289 	blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
1290 
1291 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1292 
1293 	return 0;
1294 }
1295