xref: /linux/block/blk-core.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
34 
35 #include "blk.h"
36 
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 
41 static int __make_request(struct request_queue *q, struct bio *bio);
42 
43 /*
44  * For the allocated request tables
45  */
46 static struct kmem_cache *request_cachep;
47 
48 /*
49  * For queue allocation
50  */
51 struct kmem_cache *blk_requestq_cachep;
52 
53 /*
54  * Controlling structure to kblockd
55  */
56 static struct workqueue_struct *kblockd_workqueue;
57 
58 static void drive_stat_acct(struct request *rq, int new_io)
59 {
60 	struct hd_struct *part;
61 	int rw = rq_data_dir(rq);
62 	int cpu;
63 
64 	if (!blk_do_io_stat(rq))
65 		return;
66 
67 	cpu = part_stat_lock();
68 
69 	if (!new_io) {
70 		part = rq->part;
71 		part_stat_inc(cpu, part, merges[rw]);
72 	} else {
73 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
74 		if (!hd_struct_try_get(part)) {
75 			/*
76 			 * The partition is already being removed,
77 			 * the request will be accounted on the disk only
78 			 *
79 			 * We take a reference on disk->part0 although that
80 			 * partition will never be deleted, so we can treat
81 			 * it as any other partition.
82 			 */
83 			part = &rq->rq_disk->part0;
84 			hd_struct_get(part);
85 		}
86 		part_round_stats(cpu, part);
87 		part_inc_in_flight(part, rw);
88 		rq->part = part;
89 	}
90 
91 	part_stat_unlock();
92 }
93 
94 void blk_queue_congestion_threshold(struct request_queue *q)
95 {
96 	int nr;
97 
98 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 	if (nr > q->nr_requests)
100 		nr = q->nr_requests;
101 	q->nr_congestion_on = nr;
102 
103 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 	if (nr < 1)
105 		nr = 1;
106 	q->nr_congestion_off = nr;
107 }
108 
109 /**
110  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111  * @bdev:	device
112  *
113  * Locates the passed device's request queue and returns the address of its
114  * backing_dev_info
115  *
116  * Will return NULL if the request queue cannot be located.
117  */
118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119 {
120 	struct backing_dev_info *ret = NULL;
121 	struct request_queue *q = bdev_get_queue(bdev);
122 
123 	if (q)
124 		ret = &q->backing_dev_info;
125 	return ret;
126 }
127 EXPORT_SYMBOL(blk_get_backing_dev_info);
128 
129 void blk_rq_init(struct request_queue *q, struct request *rq)
130 {
131 	memset(rq, 0, sizeof(*rq));
132 
133 	INIT_LIST_HEAD(&rq->queuelist);
134 	INIT_LIST_HEAD(&rq->timeout_list);
135 	rq->cpu = -1;
136 	rq->q = q;
137 	rq->__sector = (sector_t) -1;
138 	INIT_HLIST_NODE(&rq->hash);
139 	RB_CLEAR_NODE(&rq->rb_node);
140 	rq->cmd = rq->__cmd;
141 	rq->cmd_len = BLK_MAX_CDB;
142 	rq->tag = -1;
143 	rq->ref_count = 1;
144 	rq->start_time = jiffies;
145 	set_start_time_ns(rq);
146 	rq->part = NULL;
147 }
148 EXPORT_SYMBOL(blk_rq_init);
149 
150 static void req_bio_endio(struct request *rq, struct bio *bio,
151 			  unsigned int nbytes, int error)
152 {
153 	if (error)
154 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 		error = -EIO;
157 
158 	if (unlikely(nbytes > bio->bi_size)) {
159 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 		       __func__, nbytes, bio->bi_size);
161 		nbytes = bio->bi_size;
162 	}
163 
164 	if (unlikely(rq->cmd_flags & REQ_QUIET))
165 		set_bit(BIO_QUIET, &bio->bi_flags);
166 
167 	bio->bi_size -= nbytes;
168 	bio->bi_sector += (nbytes >> 9);
169 
170 	if (bio_integrity(bio))
171 		bio_integrity_advance(bio, nbytes);
172 
173 	/* don't actually finish bio if it's part of flush sequence */
174 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 		bio_endio(bio, error);
176 }
177 
178 void blk_dump_rq_flags(struct request *rq, char *msg)
179 {
180 	int bit;
181 
182 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 		rq->cmd_flags);
185 
186 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
187 	       (unsigned long long)blk_rq_pos(rq),
188 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
189 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
190 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
191 
192 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
193 		printk(KERN_INFO "  cdb: ");
194 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
195 			printk("%02x ", rq->cmd[bit]);
196 		printk("\n");
197 	}
198 }
199 EXPORT_SYMBOL(blk_dump_rq_flags);
200 
201 static void blk_delay_work(struct work_struct *work)
202 {
203 	struct request_queue *q;
204 
205 	q = container_of(work, struct request_queue, delay_work.work);
206 	spin_lock_irq(q->queue_lock);
207 	__blk_run_queue(q);
208 	spin_unlock_irq(q->queue_lock);
209 }
210 
211 /**
212  * blk_delay_queue - restart queueing after defined interval
213  * @q:		The &struct request_queue in question
214  * @msecs:	Delay in msecs
215  *
216  * Description:
217  *   Sometimes queueing needs to be postponed for a little while, to allow
218  *   resources to come back. This function will make sure that queueing is
219  *   restarted around the specified time.
220  */
221 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
222 {
223 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
224 				msecs_to_jiffies(msecs));
225 }
226 EXPORT_SYMBOL(blk_delay_queue);
227 
228 /**
229  * blk_start_queue - restart a previously stopped queue
230  * @q:    The &struct request_queue in question
231  *
232  * Description:
233  *   blk_start_queue() will clear the stop flag on the queue, and call
234  *   the request_fn for the queue if it was in a stopped state when
235  *   entered. Also see blk_stop_queue(). Queue lock must be held.
236  **/
237 void blk_start_queue(struct request_queue *q)
238 {
239 	WARN_ON(!irqs_disabled());
240 
241 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 	__blk_run_queue(q);
243 }
244 EXPORT_SYMBOL(blk_start_queue);
245 
246 /**
247  * blk_stop_queue - stop a queue
248  * @q:    The &struct request_queue in question
249  *
250  * Description:
251  *   The Linux block layer assumes that a block driver will consume all
252  *   entries on the request queue when the request_fn strategy is called.
253  *   Often this will not happen, because of hardware limitations (queue
254  *   depth settings). If a device driver gets a 'queue full' response,
255  *   or if it simply chooses not to queue more I/O at one point, it can
256  *   call this function to prevent the request_fn from being called until
257  *   the driver has signalled it's ready to go again. This happens by calling
258  *   blk_start_queue() to restart queue operations. Queue lock must be held.
259  **/
260 void blk_stop_queue(struct request_queue *q)
261 {
262 	__cancel_delayed_work(&q->delay_work);
263 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
264 }
265 EXPORT_SYMBOL(blk_stop_queue);
266 
267 /**
268  * blk_sync_queue - cancel any pending callbacks on a queue
269  * @q: the queue
270  *
271  * Description:
272  *     The block layer may perform asynchronous callback activity
273  *     on a queue, such as calling the unplug function after a timeout.
274  *     A block device may call blk_sync_queue to ensure that any
275  *     such activity is cancelled, thus allowing it to release resources
276  *     that the callbacks might use. The caller must already have made sure
277  *     that its ->make_request_fn will not re-add plugging prior to calling
278  *     this function.
279  *
280  *     This function does not cancel any asynchronous activity arising
281  *     out of elevator or throttling code. That would require elevaotor_exit()
282  *     and blk_throtl_exit() to be called with queue lock initialized.
283  *
284  */
285 void blk_sync_queue(struct request_queue *q)
286 {
287 	del_timer_sync(&q->timeout);
288 	cancel_delayed_work_sync(&q->delay_work);
289 }
290 EXPORT_SYMBOL(blk_sync_queue);
291 
292 /**
293  * __blk_run_queue - run a single device queue
294  * @q:	The queue to run
295  *
296  * Description:
297  *    See @blk_run_queue. This variant must be called with the queue lock
298  *    held and interrupts disabled.
299  */
300 void __blk_run_queue(struct request_queue *q)
301 {
302 	if (unlikely(blk_queue_stopped(q)))
303 		return;
304 
305 	q->request_fn(q);
306 }
307 EXPORT_SYMBOL(__blk_run_queue);
308 
309 /**
310  * blk_run_queue_async - run a single device queue in workqueue context
311  * @q:	The queue to run
312  *
313  * Description:
314  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315  *    of us.
316  */
317 void blk_run_queue_async(struct request_queue *q)
318 {
319 	if (likely(!blk_queue_stopped(q))) {
320 		__cancel_delayed_work(&q->delay_work);
321 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 	}
323 }
324 EXPORT_SYMBOL(blk_run_queue_async);
325 
326 /**
327  * blk_run_queue - run a single device queue
328  * @q: The queue to run
329  *
330  * Description:
331  *    Invoke request handling on this queue, if it has pending work to do.
332  *    May be used to restart queueing when a request has completed.
333  */
334 void blk_run_queue(struct request_queue *q)
335 {
336 	unsigned long flags;
337 
338 	spin_lock_irqsave(q->queue_lock, flags);
339 	__blk_run_queue(q);
340 	spin_unlock_irqrestore(q->queue_lock, flags);
341 }
342 EXPORT_SYMBOL(blk_run_queue);
343 
344 void blk_put_queue(struct request_queue *q)
345 {
346 	kobject_put(&q->kobj);
347 }
348 EXPORT_SYMBOL(blk_put_queue);
349 
350 /*
351  * Note: If a driver supplied the queue lock, it should not zap that lock
352  * unexpectedly as some queue cleanup components like elevator_exit() and
353  * blk_throtl_exit() need queue lock.
354  */
355 void blk_cleanup_queue(struct request_queue *q)
356 {
357 	/*
358 	 * We know we have process context here, so we can be a little
359 	 * cautious and ensure that pending block actions on this device
360 	 * are done before moving on. Going into this function, we should
361 	 * not have processes doing IO to this device.
362 	 */
363 	blk_sync_queue(q);
364 
365 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
366 	mutex_lock(&q->sysfs_lock);
367 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
368 	mutex_unlock(&q->sysfs_lock);
369 
370 	if (q->elevator)
371 		elevator_exit(q->elevator);
372 
373 	blk_throtl_exit(q);
374 
375 	blk_put_queue(q);
376 }
377 EXPORT_SYMBOL(blk_cleanup_queue);
378 
379 static int blk_init_free_list(struct request_queue *q)
380 {
381 	struct request_list *rl = &q->rq;
382 
383 	if (unlikely(rl->rq_pool))
384 		return 0;
385 
386 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
387 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
388 	rl->elvpriv = 0;
389 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
390 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
391 
392 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
393 				mempool_free_slab, request_cachep, q->node);
394 
395 	if (!rl->rq_pool)
396 		return -ENOMEM;
397 
398 	return 0;
399 }
400 
401 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
402 {
403 	return blk_alloc_queue_node(gfp_mask, -1);
404 }
405 EXPORT_SYMBOL(blk_alloc_queue);
406 
407 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
408 {
409 	struct request_queue *q;
410 	int err;
411 
412 	q = kmem_cache_alloc_node(blk_requestq_cachep,
413 				gfp_mask | __GFP_ZERO, node_id);
414 	if (!q)
415 		return NULL;
416 
417 	q->backing_dev_info.ra_pages =
418 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
419 	q->backing_dev_info.state = 0;
420 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
421 	q->backing_dev_info.name = "block";
422 
423 	err = bdi_init(&q->backing_dev_info);
424 	if (err) {
425 		kmem_cache_free(blk_requestq_cachep, q);
426 		return NULL;
427 	}
428 
429 	if (blk_throtl_init(q)) {
430 		kmem_cache_free(blk_requestq_cachep, q);
431 		return NULL;
432 	}
433 
434 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
435 		    laptop_mode_timer_fn, (unsigned long) q);
436 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
437 	INIT_LIST_HEAD(&q->timeout_list);
438 	INIT_LIST_HEAD(&q->flush_queue[0]);
439 	INIT_LIST_HEAD(&q->flush_queue[1]);
440 	INIT_LIST_HEAD(&q->flush_data_in_flight);
441 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
442 
443 	kobject_init(&q->kobj, &blk_queue_ktype);
444 
445 	mutex_init(&q->sysfs_lock);
446 	spin_lock_init(&q->__queue_lock);
447 
448 	/*
449 	 * By default initialize queue_lock to internal lock and driver can
450 	 * override it later if need be.
451 	 */
452 	q->queue_lock = &q->__queue_lock;
453 
454 	return q;
455 }
456 EXPORT_SYMBOL(blk_alloc_queue_node);
457 
458 /**
459  * blk_init_queue  - prepare a request queue for use with a block device
460  * @rfn:  The function to be called to process requests that have been
461  *        placed on the queue.
462  * @lock: Request queue spin lock
463  *
464  * Description:
465  *    If a block device wishes to use the standard request handling procedures,
466  *    which sorts requests and coalesces adjacent requests, then it must
467  *    call blk_init_queue().  The function @rfn will be called when there
468  *    are requests on the queue that need to be processed.  If the device
469  *    supports plugging, then @rfn may not be called immediately when requests
470  *    are available on the queue, but may be called at some time later instead.
471  *    Plugged queues are generally unplugged when a buffer belonging to one
472  *    of the requests on the queue is needed, or due to memory pressure.
473  *
474  *    @rfn is not required, or even expected, to remove all requests off the
475  *    queue, but only as many as it can handle at a time.  If it does leave
476  *    requests on the queue, it is responsible for arranging that the requests
477  *    get dealt with eventually.
478  *
479  *    The queue spin lock must be held while manipulating the requests on the
480  *    request queue; this lock will be taken also from interrupt context, so irq
481  *    disabling is needed for it.
482  *
483  *    Function returns a pointer to the initialized request queue, or %NULL if
484  *    it didn't succeed.
485  *
486  * Note:
487  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
488  *    when the block device is deactivated (such as at module unload).
489  **/
490 
491 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
492 {
493 	return blk_init_queue_node(rfn, lock, -1);
494 }
495 EXPORT_SYMBOL(blk_init_queue);
496 
497 struct request_queue *
498 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
499 {
500 	struct request_queue *uninit_q, *q;
501 
502 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
503 	if (!uninit_q)
504 		return NULL;
505 
506 	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
507 	if (!q)
508 		blk_cleanup_queue(uninit_q);
509 
510 	return q;
511 }
512 EXPORT_SYMBOL(blk_init_queue_node);
513 
514 struct request_queue *
515 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
516 			 spinlock_t *lock)
517 {
518 	return blk_init_allocated_queue_node(q, rfn, lock, -1);
519 }
520 EXPORT_SYMBOL(blk_init_allocated_queue);
521 
522 struct request_queue *
523 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
524 			      spinlock_t *lock, int node_id)
525 {
526 	if (!q)
527 		return NULL;
528 
529 	q->node = node_id;
530 	if (blk_init_free_list(q))
531 		return NULL;
532 
533 	q->request_fn		= rfn;
534 	q->prep_rq_fn		= NULL;
535 	q->unprep_rq_fn		= NULL;
536 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
537 
538 	/* Override internal queue lock with supplied lock pointer */
539 	if (lock)
540 		q->queue_lock		= lock;
541 
542 	/*
543 	 * This also sets hw/phys segments, boundary and size
544 	 */
545 	blk_queue_make_request(q, __make_request);
546 
547 	q->sg_reserved_size = INT_MAX;
548 
549 	/*
550 	 * all done
551 	 */
552 	if (!elevator_init(q, NULL)) {
553 		blk_queue_congestion_threshold(q);
554 		return q;
555 	}
556 
557 	return NULL;
558 }
559 EXPORT_SYMBOL(blk_init_allocated_queue_node);
560 
561 int blk_get_queue(struct request_queue *q)
562 {
563 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
564 		kobject_get(&q->kobj);
565 		return 0;
566 	}
567 
568 	return 1;
569 }
570 EXPORT_SYMBOL(blk_get_queue);
571 
572 static inline void blk_free_request(struct request_queue *q, struct request *rq)
573 {
574 	if (rq->cmd_flags & REQ_ELVPRIV)
575 		elv_put_request(q, rq);
576 	mempool_free(rq, q->rq.rq_pool);
577 }
578 
579 static struct request *
580 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
581 {
582 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
583 
584 	if (!rq)
585 		return NULL;
586 
587 	blk_rq_init(q, rq);
588 
589 	rq->cmd_flags = flags | REQ_ALLOCED;
590 
591 	if (priv) {
592 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
593 			mempool_free(rq, q->rq.rq_pool);
594 			return NULL;
595 		}
596 		rq->cmd_flags |= REQ_ELVPRIV;
597 	}
598 
599 	return rq;
600 }
601 
602 /*
603  * ioc_batching returns true if the ioc is a valid batching request and
604  * should be given priority access to a request.
605  */
606 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
607 {
608 	if (!ioc)
609 		return 0;
610 
611 	/*
612 	 * Make sure the process is able to allocate at least 1 request
613 	 * even if the batch times out, otherwise we could theoretically
614 	 * lose wakeups.
615 	 */
616 	return ioc->nr_batch_requests == q->nr_batching ||
617 		(ioc->nr_batch_requests > 0
618 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
619 }
620 
621 /*
622  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
623  * will cause the process to be a "batcher" on all queues in the system. This
624  * is the behaviour we want though - once it gets a wakeup it should be given
625  * a nice run.
626  */
627 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
628 {
629 	if (!ioc || ioc_batching(q, ioc))
630 		return;
631 
632 	ioc->nr_batch_requests = q->nr_batching;
633 	ioc->last_waited = jiffies;
634 }
635 
636 static void __freed_request(struct request_queue *q, int sync)
637 {
638 	struct request_list *rl = &q->rq;
639 
640 	if (rl->count[sync] < queue_congestion_off_threshold(q))
641 		blk_clear_queue_congested(q, sync);
642 
643 	if (rl->count[sync] + 1 <= q->nr_requests) {
644 		if (waitqueue_active(&rl->wait[sync]))
645 			wake_up(&rl->wait[sync]);
646 
647 		blk_clear_queue_full(q, sync);
648 	}
649 }
650 
651 /*
652  * A request has just been released.  Account for it, update the full and
653  * congestion status, wake up any waiters.   Called under q->queue_lock.
654  */
655 static void freed_request(struct request_queue *q, int sync, int priv)
656 {
657 	struct request_list *rl = &q->rq;
658 
659 	rl->count[sync]--;
660 	if (priv)
661 		rl->elvpriv--;
662 
663 	__freed_request(q, sync);
664 
665 	if (unlikely(rl->starved[sync ^ 1]))
666 		__freed_request(q, sync ^ 1);
667 }
668 
669 /*
670  * Determine if elevator data should be initialized when allocating the
671  * request associated with @bio.
672  */
673 static bool blk_rq_should_init_elevator(struct bio *bio)
674 {
675 	if (!bio)
676 		return true;
677 
678 	/*
679 	 * Flush requests do not use the elevator so skip initialization.
680 	 * This allows a request to share the flush and elevator data.
681 	 */
682 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
683 		return false;
684 
685 	return true;
686 }
687 
688 /*
689  * Get a free request, queue_lock must be held.
690  * Returns NULL on failure, with queue_lock held.
691  * Returns !NULL on success, with queue_lock *not held*.
692  */
693 static struct request *get_request(struct request_queue *q, int rw_flags,
694 				   struct bio *bio, gfp_t gfp_mask)
695 {
696 	struct request *rq = NULL;
697 	struct request_list *rl = &q->rq;
698 	struct io_context *ioc = NULL;
699 	const bool is_sync = rw_is_sync(rw_flags) != 0;
700 	int may_queue, priv = 0;
701 
702 	may_queue = elv_may_queue(q, rw_flags);
703 	if (may_queue == ELV_MQUEUE_NO)
704 		goto rq_starved;
705 
706 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
707 		if (rl->count[is_sync]+1 >= q->nr_requests) {
708 			ioc = current_io_context(GFP_ATOMIC, q->node);
709 			/*
710 			 * The queue will fill after this allocation, so set
711 			 * it as full, and mark this process as "batching".
712 			 * This process will be allowed to complete a batch of
713 			 * requests, others will be blocked.
714 			 */
715 			if (!blk_queue_full(q, is_sync)) {
716 				ioc_set_batching(q, ioc);
717 				blk_set_queue_full(q, is_sync);
718 			} else {
719 				if (may_queue != ELV_MQUEUE_MUST
720 						&& !ioc_batching(q, ioc)) {
721 					/*
722 					 * The queue is full and the allocating
723 					 * process is not a "batcher", and not
724 					 * exempted by the IO scheduler
725 					 */
726 					goto out;
727 				}
728 			}
729 		}
730 		blk_set_queue_congested(q, is_sync);
731 	}
732 
733 	/*
734 	 * Only allow batching queuers to allocate up to 50% over the defined
735 	 * limit of requests, otherwise we could have thousands of requests
736 	 * allocated with any setting of ->nr_requests
737 	 */
738 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
739 		goto out;
740 
741 	rl->count[is_sync]++;
742 	rl->starved[is_sync] = 0;
743 
744 	if (blk_rq_should_init_elevator(bio)) {
745 		priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
746 		if (priv)
747 			rl->elvpriv++;
748 	}
749 
750 	if (blk_queue_io_stat(q))
751 		rw_flags |= REQ_IO_STAT;
752 	spin_unlock_irq(q->queue_lock);
753 
754 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
755 	if (unlikely(!rq)) {
756 		/*
757 		 * Allocation failed presumably due to memory. Undo anything
758 		 * we might have messed up.
759 		 *
760 		 * Allocating task should really be put onto the front of the
761 		 * wait queue, but this is pretty rare.
762 		 */
763 		spin_lock_irq(q->queue_lock);
764 		freed_request(q, is_sync, priv);
765 
766 		/*
767 		 * in the very unlikely event that allocation failed and no
768 		 * requests for this direction was pending, mark us starved
769 		 * so that freeing of a request in the other direction will
770 		 * notice us. another possible fix would be to split the
771 		 * rq mempool into READ and WRITE
772 		 */
773 rq_starved:
774 		if (unlikely(rl->count[is_sync] == 0))
775 			rl->starved[is_sync] = 1;
776 
777 		goto out;
778 	}
779 
780 	/*
781 	 * ioc may be NULL here, and ioc_batching will be false. That's
782 	 * OK, if the queue is under the request limit then requests need
783 	 * not count toward the nr_batch_requests limit. There will always
784 	 * be some limit enforced by BLK_BATCH_TIME.
785 	 */
786 	if (ioc_batching(q, ioc))
787 		ioc->nr_batch_requests--;
788 
789 	trace_block_getrq(q, bio, rw_flags & 1);
790 out:
791 	return rq;
792 }
793 
794 /*
795  * No available requests for this queue, wait for some requests to become
796  * available.
797  *
798  * Called with q->queue_lock held, and returns with it unlocked.
799  */
800 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
801 					struct bio *bio)
802 {
803 	const bool is_sync = rw_is_sync(rw_flags) != 0;
804 	struct request *rq;
805 
806 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
807 	while (!rq) {
808 		DEFINE_WAIT(wait);
809 		struct io_context *ioc;
810 		struct request_list *rl = &q->rq;
811 
812 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
813 				TASK_UNINTERRUPTIBLE);
814 
815 		trace_block_sleeprq(q, bio, rw_flags & 1);
816 
817 		spin_unlock_irq(q->queue_lock);
818 		io_schedule();
819 
820 		/*
821 		 * After sleeping, we become a "batching" process and
822 		 * will be able to allocate at least one request, and
823 		 * up to a big batch of them for a small period time.
824 		 * See ioc_batching, ioc_set_batching
825 		 */
826 		ioc = current_io_context(GFP_NOIO, q->node);
827 		ioc_set_batching(q, ioc);
828 
829 		spin_lock_irq(q->queue_lock);
830 		finish_wait(&rl->wait[is_sync], &wait);
831 
832 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
833 	};
834 
835 	return rq;
836 }
837 
838 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
839 {
840 	struct request *rq;
841 
842 	BUG_ON(rw != READ && rw != WRITE);
843 
844 	spin_lock_irq(q->queue_lock);
845 	if (gfp_mask & __GFP_WAIT) {
846 		rq = get_request_wait(q, rw, NULL);
847 	} else {
848 		rq = get_request(q, rw, NULL, gfp_mask);
849 		if (!rq)
850 			spin_unlock_irq(q->queue_lock);
851 	}
852 	/* q->queue_lock is unlocked at this point */
853 
854 	return rq;
855 }
856 EXPORT_SYMBOL(blk_get_request);
857 
858 /**
859  * blk_make_request - given a bio, allocate a corresponding struct request.
860  * @q: target request queue
861  * @bio:  The bio describing the memory mappings that will be submitted for IO.
862  *        It may be a chained-bio properly constructed by block/bio layer.
863  * @gfp_mask: gfp flags to be used for memory allocation
864  *
865  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
866  * type commands. Where the struct request needs to be farther initialized by
867  * the caller. It is passed a &struct bio, which describes the memory info of
868  * the I/O transfer.
869  *
870  * The caller of blk_make_request must make sure that bi_io_vec
871  * are set to describe the memory buffers. That bio_data_dir() will return
872  * the needed direction of the request. (And all bio's in the passed bio-chain
873  * are properly set accordingly)
874  *
875  * If called under none-sleepable conditions, mapped bio buffers must not
876  * need bouncing, by calling the appropriate masked or flagged allocator,
877  * suitable for the target device. Otherwise the call to blk_queue_bounce will
878  * BUG.
879  *
880  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
881  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
882  * anything but the first bio in the chain. Otherwise you risk waiting for IO
883  * completion of a bio that hasn't been submitted yet, thus resulting in a
884  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
885  * of bio_alloc(), as that avoids the mempool deadlock.
886  * If possible a big IO should be split into smaller parts when allocation
887  * fails. Partial allocation should not be an error, or you risk a live-lock.
888  */
889 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
890 				 gfp_t gfp_mask)
891 {
892 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
893 
894 	if (unlikely(!rq))
895 		return ERR_PTR(-ENOMEM);
896 
897 	for_each_bio(bio) {
898 		struct bio *bounce_bio = bio;
899 		int ret;
900 
901 		blk_queue_bounce(q, &bounce_bio);
902 		ret = blk_rq_append_bio(q, rq, bounce_bio);
903 		if (unlikely(ret)) {
904 			blk_put_request(rq);
905 			return ERR_PTR(ret);
906 		}
907 	}
908 
909 	return rq;
910 }
911 EXPORT_SYMBOL(blk_make_request);
912 
913 /**
914  * blk_requeue_request - put a request back on queue
915  * @q:		request queue where request should be inserted
916  * @rq:		request to be inserted
917  *
918  * Description:
919  *    Drivers often keep queueing requests until the hardware cannot accept
920  *    more, when that condition happens we need to put the request back
921  *    on the queue. Must be called with queue lock held.
922  */
923 void blk_requeue_request(struct request_queue *q, struct request *rq)
924 {
925 	blk_delete_timer(rq);
926 	blk_clear_rq_complete(rq);
927 	trace_block_rq_requeue(q, rq);
928 
929 	if (blk_rq_tagged(rq))
930 		blk_queue_end_tag(q, rq);
931 
932 	BUG_ON(blk_queued_rq(rq));
933 
934 	elv_requeue_request(q, rq);
935 }
936 EXPORT_SYMBOL(blk_requeue_request);
937 
938 static void add_acct_request(struct request_queue *q, struct request *rq,
939 			     int where)
940 {
941 	drive_stat_acct(rq, 1);
942 	__elv_add_request(q, rq, where);
943 }
944 
945 /**
946  * blk_insert_request - insert a special request into a request queue
947  * @q:		request queue where request should be inserted
948  * @rq:		request to be inserted
949  * @at_head:	insert request at head or tail of queue
950  * @data:	private data
951  *
952  * Description:
953  *    Many block devices need to execute commands asynchronously, so they don't
954  *    block the whole kernel from preemption during request execution.  This is
955  *    accomplished normally by inserting aritficial requests tagged as
956  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
957  *    be scheduled for actual execution by the request queue.
958  *
959  *    We have the option of inserting the head or the tail of the queue.
960  *    Typically we use the tail for new ioctls and so forth.  We use the head
961  *    of the queue for things like a QUEUE_FULL message from a device, or a
962  *    host that is unable to accept a particular command.
963  */
964 void blk_insert_request(struct request_queue *q, struct request *rq,
965 			int at_head, void *data)
966 {
967 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
968 	unsigned long flags;
969 
970 	/*
971 	 * tell I/O scheduler that this isn't a regular read/write (ie it
972 	 * must not attempt merges on this) and that it acts as a soft
973 	 * barrier
974 	 */
975 	rq->cmd_type = REQ_TYPE_SPECIAL;
976 
977 	rq->special = data;
978 
979 	spin_lock_irqsave(q->queue_lock, flags);
980 
981 	/*
982 	 * If command is tagged, release the tag
983 	 */
984 	if (blk_rq_tagged(rq))
985 		blk_queue_end_tag(q, rq);
986 
987 	add_acct_request(q, rq, where);
988 	__blk_run_queue(q);
989 	spin_unlock_irqrestore(q->queue_lock, flags);
990 }
991 EXPORT_SYMBOL(blk_insert_request);
992 
993 static void part_round_stats_single(int cpu, struct hd_struct *part,
994 				    unsigned long now)
995 {
996 	if (now == part->stamp)
997 		return;
998 
999 	if (part_in_flight(part)) {
1000 		__part_stat_add(cpu, part, time_in_queue,
1001 				part_in_flight(part) * (now - part->stamp));
1002 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1003 	}
1004 	part->stamp = now;
1005 }
1006 
1007 /**
1008  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1009  * @cpu: cpu number for stats access
1010  * @part: target partition
1011  *
1012  * The average IO queue length and utilisation statistics are maintained
1013  * by observing the current state of the queue length and the amount of
1014  * time it has been in this state for.
1015  *
1016  * Normally, that accounting is done on IO completion, but that can result
1017  * in more than a second's worth of IO being accounted for within any one
1018  * second, leading to >100% utilisation.  To deal with that, we call this
1019  * function to do a round-off before returning the results when reading
1020  * /proc/diskstats.  This accounts immediately for all queue usage up to
1021  * the current jiffies and restarts the counters again.
1022  */
1023 void part_round_stats(int cpu, struct hd_struct *part)
1024 {
1025 	unsigned long now = jiffies;
1026 
1027 	if (part->partno)
1028 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1029 	part_round_stats_single(cpu, part, now);
1030 }
1031 EXPORT_SYMBOL_GPL(part_round_stats);
1032 
1033 /*
1034  * queue lock must be held
1035  */
1036 void __blk_put_request(struct request_queue *q, struct request *req)
1037 {
1038 	if (unlikely(!q))
1039 		return;
1040 	if (unlikely(--req->ref_count))
1041 		return;
1042 
1043 	elv_completed_request(q, req);
1044 
1045 	/* this is a bio leak */
1046 	WARN_ON(req->bio != NULL);
1047 
1048 	/*
1049 	 * Request may not have originated from ll_rw_blk. if not,
1050 	 * it didn't come out of our reserved rq pools
1051 	 */
1052 	if (req->cmd_flags & REQ_ALLOCED) {
1053 		int is_sync = rq_is_sync(req) != 0;
1054 		int priv = req->cmd_flags & REQ_ELVPRIV;
1055 
1056 		BUG_ON(!list_empty(&req->queuelist));
1057 		BUG_ON(!hlist_unhashed(&req->hash));
1058 
1059 		blk_free_request(q, req);
1060 		freed_request(q, is_sync, priv);
1061 	}
1062 }
1063 EXPORT_SYMBOL_GPL(__blk_put_request);
1064 
1065 void blk_put_request(struct request *req)
1066 {
1067 	unsigned long flags;
1068 	struct request_queue *q = req->q;
1069 
1070 	spin_lock_irqsave(q->queue_lock, flags);
1071 	__blk_put_request(q, req);
1072 	spin_unlock_irqrestore(q->queue_lock, flags);
1073 }
1074 EXPORT_SYMBOL(blk_put_request);
1075 
1076 /**
1077  * blk_add_request_payload - add a payload to a request
1078  * @rq: request to update
1079  * @page: page backing the payload
1080  * @len: length of the payload.
1081  *
1082  * This allows to later add a payload to an already submitted request by
1083  * a block driver.  The driver needs to take care of freeing the payload
1084  * itself.
1085  *
1086  * Note that this is a quite horrible hack and nothing but handling of
1087  * discard requests should ever use it.
1088  */
1089 void blk_add_request_payload(struct request *rq, struct page *page,
1090 		unsigned int len)
1091 {
1092 	struct bio *bio = rq->bio;
1093 
1094 	bio->bi_io_vec->bv_page = page;
1095 	bio->bi_io_vec->bv_offset = 0;
1096 	bio->bi_io_vec->bv_len = len;
1097 
1098 	bio->bi_size = len;
1099 	bio->bi_vcnt = 1;
1100 	bio->bi_phys_segments = 1;
1101 
1102 	rq->__data_len = rq->resid_len = len;
1103 	rq->nr_phys_segments = 1;
1104 	rq->buffer = bio_data(bio);
1105 }
1106 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1107 
1108 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1109 				   struct bio *bio)
1110 {
1111 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1112 
1113 	if (!ll_back_merge_fn(q, req, bio))
1114 		return false;
1115 
1116 	trace_block_bio_backmerge(q, bio);
1117 
1118 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1119 		blk_rq_set_mixed_merge(req);
1120 
1121 	req->biotail->bi_next = bio;
1122 	req->biotail = bio;
1123 	req->__data_len += bio->bi_size;
1124 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1125 
1126 	drive_stat_acct(req, 0);
1127 	elv_bio_merged(q, req, bio);
1128 	return true;
1129 }
1130 
1131 static bool bio_attempt_front_merge(struct request_queue *q,
1132 				    struct request *req, struct bio *bio)
1133 {
1134 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1135 
1136 	if (!ll_front_merge_fn(q, req, bio))
1137 		return false;
1138 
1139 	trace_block_bio_frontmerge(q, bio);
1140 
1141 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1142 		blk_rq_set_mixed_merge(req);
1143 
1144 	bio->bi_next = req->bio;
1145 	req->bio = bio;
1146 
1147 	/*
1148 	 * may not be valid. if the low level driver said
1149 	 * it didn't need a bounce buffer then it better
1150 	 * not touch req->buffer either...
1151 	 */
1152 	req->buffer = bio_data(bio);
1153 	req->__sector = bio->bi_sector;
1154 	req->__data_len += bio->bi_size;
1155 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1156 
1157 	drive_stat_acct(req, 0);
1158 	elv_bio_merged(q, req, bio);
1159 	return true;
1160 }
1161 
1162 /*
1163  * Attempts to merge with the plugged list in the current process. Returns
1164  * true if merge was successful, otherwise false.
1165  */
1166 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1167 			       struct bio *bio)
1168 {
1169 	struct blk_plug *plug;
1170 	struct request *rq;
1171 	bool ret = false;
1172 
1173 	plug = tsk->plug;
1174 	if (!plug)
1175 		goto out;
1176 
1177 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1178 		int el_ret;
1179 
1180 		if (rq->q != q)
1181 			continue;
1182 
1183 		el_ret = elv_try_merge(rq, bio);
1184 		if (el_ret == ELEVATOR_BACK_MERGE) {
1185 			ret = bio_attempt_back_merge(q, rq, bio);
1186 			if (ret)
1187 				break;
1188 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1189 			ret = bio_attempt_front_merge(q, rq, bio);
1190 			if (ret)
1191 				break;
1192 		}
1193 	}
1194 out:
1195 	return ret;
1196 }
1197 
1198 void init_request_from_bio(struct request *req, struct bio *bio)
1199 {
1200 	req->cpu = bio->bi_comp_cpu;
1201 	req->cmd_type = REQ_TYPE_FS;
1202 
1203 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1204 	if (bio->bi_rw & REQ_RAHEAD)
1205 		req->cmd_flags |= REQ_FAILFAST_MASK;
1206 
1207 	req->errors = 0;
1208 	req->__sector = bio->bi_sector;
1209 	req->ioprio = bio_prio(bio);
1210 	blk_rq_bio_prep(req->q, req, bio);
1211 }
1212 
1213 static int __make_request(struct request_queue *q, struct bio *bio)
1214 {
1215 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1216 	struct blk_plug *plug;
1217 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1218 	struct request *req;
1219 
1220 	/*
1221 	 * low level driver can indicate that it wants pages above a
1222 	 * certain limit bounced to low memory (ie for highmem, or even
1223 	 * ISA dma in theory)
1224 	 */
1225 	blk_queue_bounce(q, &bio);
1226 
1227 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1228 		spin_lock_irq(q->queue_lock);
1229 		where = ELEVATOR_INSERT_FLUSH;
1230 		goto get_rq;
1231 	}
1232 
1233 	/*
1234 	 * Check if we can merge with the plugged list before grabbing
1235 	 * any locks.
1236 	 */
1237 	if (attempt_plug_merge(current, q, bio))
1238 		goto out;
1239 
1240 	spin_lock_irq(q->queue_lock);
1241 
1242 	el_ret = elv_merge(q, &req, bio);
1243 	if (el_ret == ELEVATOR_BACK_MERGE) {
1244 		if (bio_attempt_back_merge(q, req, bio)) {
1245 			if (!attempt_back_merge(q, req))
1246 				elv_merged_request(q, req, el_ret);
1247 			goto out_unlock;
1248 		}
1249 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1250 		if (bio_attempt_front_merge(q, req, bio)) {
1251 			if (!attempt_front_merge(q, req))
1252 				elv_merged_request(q, req, el_ret);
1253 			goto out_unlock;
1254 		}
1255 	}
1256 
1257 get_rq:
1258 	/*
1259 	 * This sync check and mask will be re-done in init_request_from_bio(),
1260 	 * but we need to set it earlier to expose the sync flag to the
1261 	 * rq allocator and io schedulers.
1262 	 */
1263 	rw_flags = bio_data_dir(bio);
1264 	if (sync)
1265 		rw_flags |= REQ_SYNC;
1266 
1267 	/*
1268 	 * Grab a free request. This is might sleep but can not fail.
1269 	 * Returns with the queue unlocked.
1270 	 */
1271 	req = get_request_wait(q, rw_flags, bio);
1272 
1273 	/*
1274 	 * After dropping the lock and possibly sleeping here, our request
1275 	 * may now be mergeable after it had proven unmergeable (above).
1276 	 * We don't worry about that case for efficiency. It won't happen
1277 	 * often, and the elevators are able to handle it.
1278 	 */
1279 	init_request_from_bio(req, bio);
1280 
1281 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1282 	    bio_flagged(bio, BIO_CPU_AFFINE)) {
1283 		req->cpu = blk_cpu_to_group(get_cpu());
1284 		put_cpu();
1285 	}
1286 
1287 	plug = current->plug;
1288 	if (plug) {
1289 		/*
1290 		 * If this is the first request added after a plug, fire
1291 		 * of a plug trace. If others have been added before, check
1292 		 * if we have multiple devices in this plug. If so, make a
1293 		 * note to sort the list before dispatch.
1294 		 */
1295 		if (list_empty(&plug->list))
1296 			trace_block_plug(q);
1297 		else if (!plug->should_sort) {
1298 			struct request *__rq;
1299 
1300 			__rq = list_entry_rq(plug->list.prev);
1301 			if (__rq->q != q)
1302 				plug->should_sort = 1;
1303 		}
1304 		list_add_tail(&req->queuelist, &plug->list);
1305 		drive_stat_acct(req, 1);
1306 	} else {
1307 		spin_lock_irq(q->queue_lock);
1308 		add_acct_request(q, req, where);
1309 		__blk_run_queue(q);
1310 out_unlock:
1311 		spin_unlock_irq(q->queue_lock);
1312 	}
1313 out:
1314 	return 0;
1315 }
1316 
1317 /*
1318  * If bio->bi_dev is a partition, remap the location
1319  */
1320 static inline void blk_partition_remap(struct bio *bio)
1321 {
1322 	struct block_device *bdev = bio->bi_bdev;
1323 
1324 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1325 		struct hd_struct *p = bdev->bd_part;
1326 
1327 		bio->bi_sector += p->start_sect;
1328 		bio->bi_bdev = bdev->bd_contains;
1329 
1330 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1331 				      bdev->bd_dev,
1332 				      bio->bi_sector - p->start_sect);
1333 	}
1334 }
1335 
1336 static void handle_bad_sector(struct bio *bio)
1337 {
1338 	char b[BDEVNAME_SIZE];
1339 
1340 	printk(KERN_INFO "attempt to access beyond end of device\n");
1341 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1342 			bdevname(bio->bi_bdev, b),
1343 			bio->bi_rw,
1344 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1345 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1346 
1347 	set_bit(BIO_EOF, &bio->bi_flags);
1348 }
1349 
1350 #ifdef CONFIG_FAIL_MAKE_REQUEST
1351 
1352 static DECLARE_FAULT_ATTR(fail_make_request);
1353 
1354 static int __init setup_fail_make_request(char *str)
1355 {
1356 	return setup_fault_attr(&fail_make_request, str);
1357 }
1358 __setup("fail_make_request=", setup_fail_make_request);
1359 
1360 static int should_fail_request(struct bio *bio)
1361 {
1362 	struct hd_struct *part = bio->bi_bdev->bd_part;
1363 
1364 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1365 		return should_fail(&fail_make_request, bio->bi_size);
1366 
1367 	return 0;
1368 }
1369 
1370 static int __init fail_make_request_debugfs(void)
1371 {
1372 	return init_fault_attr_dentries(&fail_make_request,
1373 					"fail_make_request");
1374 }
1375 
1376 late_initcall(fail_make_request_debugfs);
1377 
1378 #else /* CONFIG_FAIL_MAKE_REQUEST */
1379 
1380 static inline int should_fail_request(struct bio *bio)
1381 {
1382 	return 0;
1383 }
1384 
1385 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1386 
1387 /*
1388  * Check whether this bio extends beyond the end of the device.
1389  */
1390 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1391 {
1392 	sector_t maxsector;
1393 
1394 	if (!nr_sectors)
1395 		return 0;
1396 
1397 	/* Test device or partition size, when known. */
1398 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1399 	if (maxsector) {
1400 		sector_t sector = bio->bi_sector;
1401 
1402 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1403 			/*
1404 			 * This may well happen - the kernel calls bread()
1405 			 * without checking the size of the device, e.g., when
1406 			 * mounting a device.
1407 			 */
1408 			handle_bad_sector(bio);
1409 			return 1;
1410 		}
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 /**
1417  * generic_make_request - hand a buffer to its device driver for I/O
1418  * @bio:  The bio describing the location in memory and on the device.
1419  *
1420  * generic_make_request() is used to make I/O requests of block
1421  * devices. It is passed a &struct bio, which describes the I/O that needs
1422  * to be done.
1423  *
1424  * generic_make_request() does not return any status.  The
1425  * success/failure status of the request, along with notification of
1426  * completion, is delivered asynchronously through the bio->bi_end_io
1427  * function described (one day) else where.
1428  *
1429  * The caller of generic_make_request must make sure that bi_io_vec
1430  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1431  * set to describe the device address, and the
1432  * bi_end_io and optionally bi_private are set to describe how
1433  * completion notification should be signaled.
1434  *
1435  * generic_make_request and the drivers it calls may use bi_next if this
1436  * bio happens to be merged with someone else, and may change bi_dev and
1437  * bi_sector for remaps as it sees fit.  So the values of these fields
1438  * should NOT be depended on after the call to generic_make_request.
1439  */
1440 static inline void __generic_make_request(struct bio *bio)
1441 {
1442 	struct request_queue *q;
1443 	sector_t old_sector;
1444 	int ret, nr_sectors = bio_sectors(bio);
1445 	dev_t old_dev;
1446 	int err = -EIO;
1447 
1448 	might_sleep();
1449 
1450 	if (bio_check_eod(bio, nr_sectors))
1451 		goto end_io;
1452 
1453 	/*
1454 	 * Resolve the mapping until finished. (drivers are
1455 	 * still free to implement/resolve their own stacking
1456 	 * by explicitly returning 0)
1457 	 *
1458 	 * NOTE: we don't repeat the blk_size check for each new device.
1459 	 * Stacking drivers are expected to know what they are doing.
1460 	 */
1461 	old_sector = -1;
1462 	old_dev = 0;
1463 	do {
1464 		char b[BDEVNAME_SIZE];
1465 
1466 		q = bdev_get_queue(bio->bi_bdev);
1467 		if (unlikely(!q)) {
1468 			printk(KERN_ERR
1469 			       "generic_make_request: Trying to access "
1470 				"nonexistent block-device %s (%Lu)\n",
1471 				bdevname(bio->bi_bdev, b),
1472 				(long long) bio->bi_sector);
1473 			goto end_io;
1474 		}
1475 
1476 		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1477 			     nr_sectors > queue_max_hw_sectors(q))) {
1478 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1479 			       bdevname(bio->bi_bdev, b),
1480 			       bio_sectors(bio),
1481 			       queue_max_hw_sectors(q));
1482 			goto end_io;
1483 		}
1484 
1485 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1486 			goto end_io;
1487 
1488 		if (should_fail_request(bio))
1489 			goto end_io;
1490 
1491 		/*
1492 		 * If this device has partitions, remap block n
1493 		 * of partition p to block n+start(p) of the disk.
1494 		 */
1495 		blk_partition_remap(bio);
1496 
1497 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1498 			goto end_io;
1499 
1500 		if (old_sector != -1)
1501 			trace_block_bio_remap(q, bio, old_dev, old_sector);
1502 
1503 		old_sector = bio->bi_sector;
1504 		old_dev = bio->bi_bdev->bd_dev;
1505 
1506 		if (bio_check_eod(bio, nr_sectors))
1507 			goto end_io;
1508 
1509 		/*
1510 		 * Filter flush bio's early so that make_request based
1511 		 * drivers without flush support don't have to worry
1512 		 * about them.
1513 		 */
1514 		if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1515 			bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1516 			if (!nr_sectors) {
1517 				err = 0;
1518 				goto end_io;
1519 			}
1520 		}
1521 
1522 		if ((bio->bi_rw & REQ_DISCARD) &&
1523 		    (!blk_queue_discard(q) ||
1524 		     ((bio->bi_rw & REQ_SECURE) &&
1525 		      !blk_queue_secdiscard(q)))) {
1526 			err = -EOPNOTSUPP;
1527 			goto end_io;
1528 		}
1529 
1530 		if (blk_throtl_bio(q, &bio))
1531 			goto end_io;
1532 
1533 		/*
1534 		 * If bio = NULL, bio has been throttled and will be submitted
1535 		 * later.
1536 		 */
1537 		if (!bio)
1538 			break;
1539 
1540 		trace_block_bio_queue(q, bio);
1541 
1542 		ret = q->make_request_fn(q, bio);
1543 	} while (ret);
1544 
1545 	return;
1546 
1547 end_io:
1548 	bio_endio(bio, err);
1549 }
1550 
1551 /*
1552  * We only want one ->make_request_fn to be active at a time,
1553  * else stack usage with stacked devices could be a problem.
1554  * So use current->bio_list to keep a list of requests
1555  * submited by a make_request_fn function.
1556  * current->bio_list is also used as a flag to say if
1557  * generic_make_request is currently active in this task or not.
1558  * If it is NULL, then no make_request is active.  If it is non-NULL,
1559  * then a make_request is active, and new requests should be added
1560  * at the tail
1561  */
1562 void generic_make_request(struct bio *bio)
1563 {
1564 	struct bio_list bio_list_on_stack;
1565 
1566 	if (current->bio_list) {
1567 		/* make_request is active */
1568 		bio_list_add(current->bio_list, bio);
1569 		return;
1570 	}
1571 	/* following loop may be a bit non-obvious, and so deserves some
1572 	 * explanation.
1573 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1574 	 * ensure that) so we have a list with a single bio.
1575 	 * We pretend that we have just taken it off a longer list, so
1576 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1577 	 * thus initialising the bio_list of new bios to be
1578 	 * added.  __generic_make_request may indeed add some more bios
1579 	 * through a recursive call to generic_make_request.  If it
1580 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1581 	 * from the top.  In this case we really did just take the bio
1582 	 * of the top of the list (no pretending) and so remove it from
1583 	 * bio_list, and call into __generic_make_request again.
1584 	 *
1585 	 * The loop was structured like this to make only one call to
1586 	 * __generic_make_request (which is important as it is large and
1587 	 * inlined) and to keep the structure simple.
1588 	 */
1589 	BUG_ON(bio->bi_next);
1590 	bio_list_init(&bio_list_on_stack);
1591 	current->bio_list = &bio_list_on_stack;
1592 	do {
1593 		__generic_make_request(bio);
1594 		bio = bio_list_pop(current->bio_list);
1595 	} while (bio);
1596 	current->bio_list = NULL; /* deactivate */
1597 }
1598 EXPORT_SYMBOL(generic_make_request);
1599 
1600 /**
1601  * submit_bio - submit a bio to the block device layer for I/O
1602  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1603  * @bio: The &struct bio which describes the I/O
1604  *
1605  * submit_bio() is very similar in purpose to generic_make_request(), and
1606  * uses that function to do most of the work. Both are fairly rough
1607  * interfaces; @bio must be presetup and ready for I/O.
1608  *
1609  */
1610 void submit_bio(int rw, struct bio *bio)
1611 {
1612 	int count = bio_sectors(bio);
1613 
1614 	bio->bi_rw |= rw;
1615 
1616 	/*
1617 	 * If it's a regular read/write or a barrier with data attached,
1618 	 * go through the normal accounting stuff before submission.
1619 	 */
1620 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1621 		if (rw & WRITE) {
1622 			count_vm_events(PGPGOUT, count);
1623 		} else {
1624 			task_io_account_read(bio->bi_size);
1625 			count_vm_events(PGPGIN, count);
1626 		}
1627 
1628 		if (unlikely(block_dump)) {
1629 			char b[BDEVNAME_SIZE];
1630 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1631 			current->comm, task_pid_nr(current),
1632 				(rw & WRITE) ? "WRITE" : "READ",
1633 				(unsigned long long)bio->bi_sector,
1634 				bdevname(bio->bi_bdev, b),
1635 				count);
1636 		}
1637 	}
1638 
1639 	generic_make_request(bio);
1640 }
1641 EXPORT_SYMBOL(submit_bio);
1642 
1643 /**
1644  * blk_rq_check_limits - Helper function to check a request for the queue limit
1645  * @q:  the queue
1646  * @rq: the request being checked
1647  *
1648  * Description:
1649  *    @rq may have been made based on weaker limitations of upper-level queues
1650  *    in request stacking drivers, and it may violate the limitation of @q.
1651  *    Since the block layer and the underlying device driver trust @rq
1652  *    after it is inserted to @q, it should be checked against @q before
1653  *    the insertion using this generic function.
1654  *
1655  *    This function should also be useful for request stacking drivers
1656  *    in some cases below, so export this function.
1657  *    Request stacking drivers like request-based dm may change the queue
1658  *    limits while requests are in the queue (e.g. dm's table swapping).
1659  *    Such request stacking drivers should check those requests agaist
1660  *    the new queue limits again when they dispatch those requests,
1661  *    although such checkings are also done against the old queue limits
1662  *    when submitting requests.
1663  */
1664 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1665 {
1666 	if (rq->cmd_flags & REQ_DISCARD)
1667 		return 0;
1668 
1669 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1670 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1671 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1672 		return -EIO;
1673 	}
1674 
1675 	/*
1676 	 * queue's settings related to segment counting like q->bounce_pfn
1677 	 * may differ from that of other stacking queues.
1678 	 * Recalculate it to check the request correctly on this queue's
1679 	 * limitation.
1680 	 */
1681 	blk_recalc_rq_segments(rq);
1682 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1683 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1684 		return -EIO;
1685 	}
1686 
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1690 
1691 /**
1692  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1693  * @q:  the queue to submit the request
1694  * @rq: the request being queued
1695  */
1696 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1697 {
1698 	unsigned long flags;
1699 
1700 	if (blk_rq_check_limits(q, rq))
1701 		return -EIO;
1702 
1703 #ifdef CONFIG_FAIL_MAKE_REQUEST
1704 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1705 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1706 		return -EIO;
1707 #endif
1708 
1709 	spin_lock_irqsave(q->queue_lock, flags);
1710 
1711 	/*
1712 	 * Submitting request must be dequeued before calling this function
1713 	 * because it will be linked to another request_queue
1714 	 */
1715 	BUG_ON(blk_queued_rq(rq));
1716 
1717 	add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
1718 	spin_unlock_irqrestore(q->queue_lock, flags);
1719 
1720 	return 0;
1721 }
1722 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1723 
1724 /**
1725  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1726  * @rq: request to examine
1727  *
1728  * Description:
1729  *     A request could be merge of IOs which require different failure
1730  *     handling.  This function determines the number of bytes which
1731  *     can be failed from the beginning of the request without
1732  *     crossing into area which need to be retried further.
1733  *
1734  * Return:
1735  *     The number of bytes to fail.
1736  *
1737  * Context:
1738  *     queue_lock must be held.
1739  */
1740 unsigned int blk_rq_err_bytes(const struct request *rq)
1741 {
1742 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1743 	unsigned int bytes = 0;
1744 	struct bio *bio;
1745 
1746 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1747 		return blk_rq_bytes(rq);
1748 
1749 	/*
1750 	 * Currently the only 'mixing' which can happen is between
1751 	 * different fastfail types.  We can safely fail portions
1752 	 * which have all the failfast bits that the first one has -
1753 	 * the ones which are at least as eager to fail as the first
1754 	 * one.
1755 	 */
1756 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1757 		if ((bio->bi_rw & ff) != ff)
1758 			break;
1759 		bytes += bio->bi_size;
1760 	}
1761 
1762 	/* this could lead to infinite loop */
1763 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1764 	return bytes;
1765 }
1766 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1767 
1768 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1769 {
1770 	if (blk_do_io_stat(req)) {
1771 		const int rw = rq_data_dir(req);
1772 		struct hd_struct *part;
1773 		int cpu;
1774 
1775 		cpu = part_stat_lock();
1776 		part = req->part;
1777 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1778 		part_stat_unlock();
1779 	}
1780 }
1781 
1782 static void blk_account_io_done(struct request *req)
1783 {
1784 	/*
1785 	 * Account IO completion.  flush_rq isn't accounted as a
1786 	 * normal IO on queueing nor completion.  Accounting the
1787 	 * containing request is enough.
1788 	 */
1789 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1790 		unsigned long duration = jiffies - req->start_time;
1791 		const int rw = rq_data_dir(req);
1792 		struct hd_struct *part;
1793 		int cpu;
1794 
1795 		cpu = part_stat_lock();
1796 		part = req->part;
1797 
1798 		part_stat_inc(cpu, part, ios[rw]);
1799 		part_stat_add(cpu, part, ticks[rw], duration);
1800 		part_round_stats(cpu, part);
1801 		part_dec_in_flight(part, rw);
1802 
1803 		hd_struct_put(part);
1804 		part_stat_unlock();
1805 	}
1806 }
1807 
1808 /**
1809  * blk_peek_request - peek at the top of a request queue
1810  * @q: request queue to peek at
1811  *
1812  * Description:
1813  *     Return the request at the top of @q.  The returned request
1814  *     should be started using blk_start_request() before LLD starts
1815  *     processing it.
1816  *
1817  * Return:
1818  *     Pointer to the request at the top of @q if available.  Null
1819  *     otherwise.
1820  *
1821  * Context:
1822  *     queue_lock must be held.
1823  */
1824 struct request *blk_peek_request(struct request_queue *q)
1825 {
1826 	struct request *rq;
1827 	int ret;
1828 
1829 	while ((rq = __elv_next_request(q)) != NULL) {
1830 		if (!(rq->cmd_flags & REQ_STARTED)) {
1831 			/*
1832 			 * This is the first time the device driver
1833 			 * sees this request (possibly after
1834 			 * requeueing).  Notify IO scheduler.
1835 			 */
1836 			if (rq->cmd_flags & REQ_SORTED)
1837 				elv_activate_rq(q, rq);
1838 
1839 			/*
1840 			 * just mark as started even if we don't start
1841 			 * it, a request that has been delayed should
1842 			 * not be passed by new incoming requests
1843 			 */
1844 			rq->cmd_flags |= REQ_STARTED;
1845 			trace_block_rq_issue(q, rq);
1846 		}
1847 
1848 		if (!q->boundary_rq || q->boundary_rq == rq) {
1849 			q->end_sector = rq_end_sector(rq);
1850 			q->boundary_rq = NULL;
1851 		}
1852 
1853 		if (rq->cmd_flags & REQ_DONTPREP)
1854 			break;
1855 
1856 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1857 			/*
1858 			 * make sure space for the drain appears we
1859 			 * know we can do this because max_hw_segments
1860 			 * has been adjusted to be one fewer than the
1861 			 * device can handle
1862 			 */
1863 			rq->nr_phys_segments++;
1864 		}
1865 
1866 		if (!q->prep_rq_fn)
1867 			break;
1868 
1869 		ret = q->prep_rq_fn(q, rq);
1870 		if (ret == BLKPREP_OK) {
1871 			break;
1872 		} else if (ret == BLKPREP_DEFER) {
1873 			/*
1874 			 * the request may have been (partially) prepped.
1875 			 * we need to keep this request in the front to
1876 			 * avoid resource deadlock.  REQ_STARTED will
1877 			 * prevent other fs requests from passing this one.
1878 			 */
1879 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1880 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1881 				/*
1882 				 * remove the space for the drain we added
1883 				 * so that we don't add it again
1884 				 */
1885 				--rq->nr_phys_segments;
1886 			}
1887 
1888 			rq = NULL;
1889 			break;
1890 		} else if (ret == BLKPREP_KILL) {
1891 			rq->cmd_flags |= REQ_QUIET;
1892 			/*
1893 			 * Mark this request as started so we don't trigger
1894 			 * any debug logic in the end I/O path.
1895 			 */
1896 			blk_start_request(rq);
1897 			__blk_end_request_all(rq, -EIO);
1898 		} else {
1899 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1900 			break;
1901 		}
1902 	}
1903 
1904 	return rq;
1905 }
1906 EXPORT_SYMBOL(blk_peek_request);
1907 
1908 void blk_dequeue_request(struct request *rq)
1909 {
1910 	struct request_queue *q = rq->q;
1911 
1912 	BUG_ON(list_empty(&rq->queuelist));
1913 	BUG_ON(ELV_ON_HASH(rq));
1914 
1915 	list_del_init(&rq->queuelist);
1916 
1917 	/*
1918 	 * the time frame between a request being removed from the lists
1919 	 * and to it is freed is accounted as io that is in progress at
1920 	 * the driver side.
1921 	 */
1922 	if (blk_account_rq(rq)) {
1923 		q->in_flight[rq_is_sync(rq)]++;
1924 		set_io_start_time_ns(rq);
1925 	}
1926 }
1927 
1928 /**
1929  * blk_start_request - start request processing on the driver
1930  * @req: request to dequeue
1931  *
1932  * Description:
1933  *     Dequeue @req and start timeout timer on it.  This hands off the
1934  *     request to the driver.
1935  *
1936  *     Block internal functions which don't want to start timer should
1937  *     call blk_dequeue_request().
1938  *
1939  * Context:
1940  *     queue_lock must be held.
1941  */
1942 void blk_start_request(struct request *req)
1943 {
1944 	blk_dequeue_request(req);
1945 
1946 	/*
1947 	 * We are now handing the request to the hardware, initialize
1948 	 * resid_len to full count and add the timeout handler.
1949 	 */
1950 	req->resid_len = blk_rq_bytes(req);
1951 	if (unlikely(blk_bidi_rq(req)))
1952 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1953 
1954 	blk_add_timer(req);
1955 }
1956 EXPORT_SYMBOL(blk_start_request);
1957 
1958 /**
1959  * blk_fetch_request - fetch a request from a request queue
1960  * @q: request queue to fetch a request from
1961  *
1962  * Description:
1963  *     Return the request at the top of @q.  The request is started on
1964  *     return and LLD can start processing it immediately.
1965  *
1966  * Return:
1967  *     Pointer to the request at the top of @q if available.  Null
1968  *     otherwise.
1969  *
1970  * Context:
1971  *     queue_lock must be held.
1972  */
1973 struct request *blk_fetch_request(struct request_queue *q)
1974 {
1975 	struct request *rq;
1976 
1977 	rq = blk_peek_request(q);
1978 	if (rq)
1979 		blk_start_request(rq);
1980 	return rq;
1981 }
1982 EXPORT_SYMBOL(blk_fetch_request);
1983 
1984 /**
1985  * blk_update_request - Special helper function for request stacking drivers
1986  * @req:      the request being processed
1987  * @error:    %0 for success, < %0 for error
1988  * @nr_bytes: number of bytes to complete @req
1989  *
1990  * Description:
1991  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1992  *     the request structure even if @req doesn't have leftover.
1993  *     If @req has leftover, sets it up for the next range of segments.
1994  *
1995  *     This special helper function is only for request stacking drivers
1996  *     (e.g. request-based dm) so that they can handle partial completion.
1997  *     Actual device drivers should use blk_end_request instead.
1998  *
1999  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2000  *     %false return from this function.
2001  *
2002  * Return:
2003  *     %false - this request doesn't have any more data
2004  *     %true  - this request has more data
2005  **/
2006 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2007 {
2008 	int total_bytes, bio_nbytes, next_idx = 0;
2009 	struct bio *bio;
2010 
2011 	if (!req->bio)
2012 		return false;
2013 
2014 	trace_block_rq_complete(req->q, req);
2015 
2016 	/*
2017 	 * For fs requests, rq is just carrier of independent bio's
2018 	 * and each partial completion should be handled separately.
2019 	 * Reset per-request error on each partial completion.
2020 	 *
2021 	 * TODO: tj: This is too subtle.  It would be better to let
2022 	 * low level drivers do what they see fit.
2023 	 */
2024 	if (req->cmd_type == REQ_TYPE_FS)
2025 		req->errors = 0;
2026 
2027 	if (error && req->cmd_type == REQ_TYPE_FS &&
2028 	    !(req->cmd_flags & REQ_QUIET)) {
2029 		char *error_type;
2030 
2031 		switch (error) {
2032 		case -ENOLINK:
2033 			error_type = "recoverable transport";
2034 			break;
2035 		case -EREMOTEIO:
2036 			error_type = "critical target";
2037 			break;
2038 		case -EBADE:
2039 			error_type = "critical nexus";
2040 			break;
2041 		case -EIO:
2042 		default:
2043 			error_type = "I/O";
2044 			break;
2045 		}
2046 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2047 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2048 		       (unsigned long long)blk_rq_pos(req));
2049 	}
2050 
2051 	blk_account_io_completion(req, nr_bytes);
2052 
2053 	total_bytes = bio_nbytes = 0;
2054 	while ((bio = req->bio) != NULL) {
2055 		int nbytes;
2056 
2057 		if (nr_bytes >= bio->bi_size) {
2058 			req->bio = bio->bi_next;
2059 			nbytes = bio->bi_size;
2060 			req_bio_endio(req, bio, nbytes, error);
2061 			next_idx = 0;
2062 			bio_nbytes = 0;
2063 		} else {
2064 			int idx = bio->bi_idx + next_idx;
2065 
2066 			if (unlikely(idx >= bio->bi_vcnt)) {
2067 				blk_dump_rq_flags(req, "__end_that");
2068 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2069 				       __func__, idx, bio->bi_vcnt);
2070 				break;
2071 			}
2072 
2073 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2074 			BIO_BUG_ON(nbytes > bio->bi_size);
2075 
2076 			/*
2077 			 * not a complete bvec done
2078 			 */
2079 			if (unlikely(nbytes > nr_bytes)) {
2080 				bio_nbytes += nr_bytes;
2081 				total_bytes += nr_bytes;
2082 				break;
2083 			}
2084 
2085 			/*
2086 			 * advance to the next vector
2087 			 */
2088 			next_idx++;
2089 			bio_nbytes += nbytes;
2090 		}
2091 
2092 		total_bytes += nbytes;
2093 		nr_bytes -= nbytes;
2094 
2095 		bio = req->bio;
2096 		if (bio) {
2097 			/*
2098 			 * end more in this run, or just return 'not-done'
2099 			 */
2100 			if (unlikely(nr_bytes <= 0))
2101 				break;
2102 		}
2103 	}
2104 
2105 	/*
2106 	 * completely done
2107 	 */
2108 	if (!req->bio) {
2109 		/*
2110 		 * Reset counters so that the request stacking driver
2111 		 * can find how many bytes remain in the request
2112 		 * later.
2113 		 */
2114 		req->__data_len = 0;
2115 		return false;
2116 	}
2117 
2118 	/*
2119 	 * if the request wasn't completed, update state
2120 	 */
2121 	if (bio_nbytes) {
2122 		req_bio_endio(req, bio, bio_nbytes, error);
2123 		bio->bi_idx += next_idx;
2124 		bio_iovec(bio)->bv_offset += nr_bytes;
2125 		bio_iovec(bio)->bv_len -= nr_bytes;
2126 	}
2127 
2128 	req->__data_len -= total_bytes;
2129 	req->buffer = bio_data(req->bio);
2130 
2131 	/* update sector only for requests with clear definition of sector */
2132 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2133 		req->__sector += total_bytes >> 9;
2134 
2135 	/* mixed attributes always follow the first bio */
2136 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2137 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2138 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2139 	}
2140 
2141 	/*
2142 	 * If total number of sectors is less than the first segment
2143 	 * size, something has gone terribly wrong.
2144 	 */
2145 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2146 		blk_dump_rq_flags(req, "request botched");
2147 		req->__data_len = blk_rq_cur_bytes(req);
2148 	}
2149 
2150 	/* recalculate the number of segments */
2151 	blk_recalc_rq_segments(req);
2152 
2153 	return true;
2154 }
2155 EXPORT_SYMBOL_GPL(blk_update_request);
2156 
2157 static bool blk_update_bidi_request(struct request *rq, int error,
2158 				    unsigned int nr_bytes,
2159 				    unsigned int bidi_bytes)
2160 {
2161 	if (blk_update_request(rq, error, nr_bytes))
2162 		return true;
2163 
2164 	/* Bidi request must be completed as a whole */
2165 	if (unlikely(blk_bidi_rq(rq)) &&
2166 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2167 		return true;
2168 
2169 	if (blk_queue_add_random(rq->q))
2170 		add_disk_randomness(rq->rq_disk);
2171 
2172 	return false;
2173 }
2174 
2175 /**
2176  * blk_unprep_request - unprepare a request
2177  * @req:	the request
2178  *
2179  * This function makes a request ready for complete resubmission (or
2180  * completion).  It happens only after all error handling is complete,
2181  * so represents the appropriate moment to deallocate any resources
2182  * that were allocated to the request in the prep_rq_fn.  The queue
2183  * lock is held when calling this.
2184  */
2185 void blk_unprep_request(struct request *req)
2186 {
2187 	struct request_queue *q = req->q;
2188 
2189 	req->cmd_flags &= ~REQ_DONTPREP;
2190 	if (q->unprep_rq_fn)
2191 		q->unprep_rq_fn(q, req);
2192 }
2193 EXPORT_SYMBOL_GPL(blk_unprep_request);
2194 
2195 /*
2196  * queue lock must be held
2197  */
2198 static void blk_finish_request(struct request *req, int error)
2199 {
2200 	if (blk_rq_tagged(req))
2201 		blk_queue_end_tag(req->q, req);
2202 
2203 	BUG_ON(blk_queued_rq(req));
2204 
2205 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2206 		laptop_io_completion(&req->q->backing_dev_info);
2207 
2208 	blk_delete_timer(req);
2209 
2210 	if (req->cmd_flags & REQ_DONTPREP)
2211 		blk_unprep_request(req);
2212 
2213 
2214 	blk_account_io_done(req);
2215 
2216 	if (req->end_io)
2217 		req->end_io(req, error);
2218 	else {
2219 		if (blk_bidi_rq(req))
2220 			__blk_put_request(req->next_rq->q, req->next_rq);
2221 
2222 		__blk_put_request(req->q, req);
2223 	}
2224 }
2225 
2226 /**
2227  * blk_end_bidi_request - Complete a bidi request
2228  * @rq:         the request to complete
2229  * @error:      %0 for success, < %0 for error
2230  * @nr_bytes:   number of bytes to complete @rq
2231  * @bidi_bytes: number of bytes to complete @rq->next_rq
2232  *
2233  * Description:
2234  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2235  *     Drivers that supports bidi can safely call this member for any
2236  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2237  *     just ignored.
2238  *
2239  * Return:
2240  *     %false - we are done with this request
2241  *     %true  - still buffers pending for this request
2242  **/
2243 static bool blk_end_bidi_request(struct request *rq, int error,
2244 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2245 {
2246 	struct request_queue *q = rq->q;
2247 	unsigned long flags;
2248 
2249 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2250 		return true;
2251 
2252 	spin_lock_irqsave(q->queue_lock, flags);
2253 	blk_finish_request(rq, error);
2254 	spin_unlock_irqrestore(q->queue_lock, flags);
2255 
2256 	return false;
2257 }
2258 
2259 /**
2260  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2261  * @rq:         the request to complete
2262  * @error:      %0 for success, < %0 for error
2263  * @nr_bytes:   number of bytes to complete @rq
2264  * @bidi_bytes: number of bytes to complete @rq->next_rq
2265  *
2266  * Description:
2267  *     Identical to blk_end_bidi_request() except that queue lock is
2268  *     assumed to be locked on entry and remains so on return.
2269  *
2270  * Return:
2271  *     %false - we are done with this request
2272  *     %true  - still buffers pending for this request
2273  **/
2274 static bool __blk_end_bidi_request(struct request *rq, int error,
2275 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2276 {
2277 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2278 		return true;
2279 
2280 	blk_finish_request(rq, error);
2281 
2282 	return false;
2283 }
2284 
2285 /**
2286  * blk_end_request - Helper function for drivers to complete the request.
2287  * @rq:       the request being processed
2288  * @error:    %0 for success, < %0 for error
2289  * @nr_bytes: number of bytes to complete
2290  *
2291  * Description:
2292  *     Ends I/O on a number of bytes attached to @rq.
2293  *     If @rq has leftover, sets it up for the next range of segments.
2294  *
2295  * Return:
2296  *     %false - we are done with this request
2297  *     %true  - still buffers pending for this request
2298  **/
2299 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2300 {
2301 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2302 }
2303 EXPORT_SYMBOL(blk_end_request);
2304 
2305 /**
2306  * blk_end_request_all - Helper function for drives to finish the request.
2307  * @rq: the request to finish
2308  * @error: %0 for success, < %0 for error
2309  *
2310  * Description:
2311  *     Completely finish @rq.
2312  */
2313 void blk_end_request_all(struct request *rq, int error)
2314 {
2315 	bool pending;
2316 	unsigned int bidi_bytes = 0;
2317 
2318 	if (unlikely(blk_bidi_rq(rq)))
2319 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2320 
2321 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2322 	BUG_ON(pending);
2323 }
2324 EXPORT_SYMBOL(blk_end_request_all);
2325 
2326 /**
2327  * blk_end_request_cur - Helper function to finish the current request chunk.
2328  * @rq: the request to finish the current chunk for
2329  * @error: %0 for success, < %0 for error
2330  *
2331  * Description:
2332  *     Complete the current consecutively mapped chunk from @rq.
2333  *
2334  * Return:
2335  *     %false - we are done with this request
2336  *     %true  - still buffers pending for this request
2337  */
2338 bool blk_end_request_cur(struct request *rq, int error)
2339 {
2340 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2341 }
2342 EXPORT_SYMBOL(blk_end_request_cur);
2343 
2344 /**
2345  * blk_end_request_err - Finish a request till the next failure boundary.
2346  * @rq: the request to finish till the next failure boundary for
2347  * @error: must be negative errno
2348  *
2349  * Description:
2350  *     Complete @rq till the next failure boundary.
2351  *
2352  * Return:
2353  *     %false - we are done with this request
2354  *     %true  - still buffers pending for this request
2355  */
2356 bool blk_end_request_err(struct request *rq, int error)
2357 {
2358 	WARN_ON(error >= 0);
2359 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2360 }
2361 EXPORT_SYMBOL_GPL(blk_end_request_err);
2362 
2363 /**
2364  * __blk_end_request - Helper function for drivers to complete the request.
2365  * @rq:       the request being processed
2366  * @error:    %0 for success, < %0 for error
2367  * @nr_bytes: number of bytes to complete
2368  *
2369  * Description:
2370  *     Must be called with queue lock held unlike blk_end_request().
2371  *
2372  * Return:
2373  *     %false - we are done with this request
2374  *     %true  - still buffers pending for this request
2375  **/
2376 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2377 {
2378 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2379 }
2380 EXPORT_SYMBOL(__blk_end_request);
2381 
2382 /**
2383  * __blk_end_request_all - Helper function for drives to finish the request.
2384  * @rq: the request to finish
2385  * @error: %0 for success, < %0 for error
2386  *
2387  * Description:
2388  *     Completely finish @rq.  Must be called with queue lock held.
2389  */
2390 void __blk_end_request_all(struct request *rq, int error)
2391 {
2392 	bool pending;
2393 	unsigned int bidi_bytes = 0;
2394 
2395 	if (unlikely(blk_bidi_rq(rq)))
2396 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2397 
2398 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2399 	BUG_ON(pending);
2400 }
2401 EXPORT_SYMBOL(__blk_end_request_all);
2402 
2403 /**
2404  * __blk_end_request_cur - Helper function to finish the current request chunk.
2405  * @rq: the request to finish the current chunk for
2406  * @error: %0 for success, < %0 for error
2407  *
2408  * Description:
2409  *     Complete the current consecutively mapped chunk from @rq.  Must
2410  *     be called with queue lock held.
2411  *
2412  * Return:
2413  *     %false - we are done with this request
2414  *     %true  - still buffers pending for this request
2415  */
2416 bool __blk_end_request_cur(struct request *rq, int error)
2417 {
2418 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2419 }
2420 EXPORT_SYMBOL(__blk_end_request_cur);
2421 
2422 /**
2423  * __blk_end_request_err - Finish a request till the next failure boundary.
2424  * @rq: the request to finish till the next failure boundary for
2425  * @error: must be negative errno
2426  *
2427  * Description:
2428  *     Complete @rq till the next failure boundary.  Must be called
2429  *     with queue lock held.
2430  *
2431  * Return:
2432  *     %false - we are done with this request
2433  *     %true  - still buffers pending for this request
2434  */
2435 bool __blk_end_request_err(struct request *rq, int error)
2436 {
2437 	WARN_ON(error >= 0);
2438 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2439 }
2440 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2441 
2442 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2443 		     struct bio *bio)
2444 {
2445 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2446 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2447 
2448 	if (bio_has_data(bio)) {
2449 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2450 		rq->buffer = bio_data(bio);
2451 	}
2452 	rq->__data_len = bio->bi_size;
2453 	rq->bio = rq->biotail = bio;
2454 
2455 	if (bio->bi_bdev)
2456 		rq->rq_disk = bio->bi_bdev->bd_disk;
2457 }
2458 
2459 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2460 /**
2461  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2462  * @rq: the request to be flushed
2463  *
2464  * Description:
2465  *     Flush all pages in @rq.
2466  */
2467 void rq_flush_dcache_pages(struct request *rq)
2468 {
2469 	struct req_iterator iter;
2470 	struct bio_vec *bvec;
2471 
2472 	rq_for_each_segment(bvec, rq, iter)
2473 		flush_dcache_page(bvec->bv_page);
2474 }
2475 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2476 #endif
2477 
2478 /**
2479  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2480  * @q : the queue of the device being checked
2481  *
2482  * Description:
2483  *    Check if underlying low-level drivers of a device are busy.
2484  *    If the drivers want to export their busy state, they must set own
2485  *    exporting function using blk_queue_lld_busy() first.
2486  *
2487  *    Basically, this function is used only by request stacking drivers
2488  *    to stop dispatching requests to underlying devices when underlying
2489  *    devices are busy.  This behavior helps more I/O merging on the queue
2490  *    of the request stacking driver and prevents I/O throughput regression
2491  *    on burst I/O load.
2492  *
2493  * Return:
2494  *    0 - Not busy (The request stacking driver should dispatch request)
2495  *    1 - Busy (The request stacking driver should stop dispatching request)
2496  */
2497 int blk_lld_busy(struct request_queue *q)
2498 {
2499 	if (q->lld_busy_fn)
2500 		return q->lld_busy_fn(q);
2501 
2502 	return 0;
2503 }
2504 EXPORT_SYMBOL_GPL(blk_lld_busy);
2505 
2506 /**
2507  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2508  * @rq: the clone request to be cleaned up
2509  *
2510  * Description:
2511  *     Free all bios in @rq for a cloned request.
2512  */
2513 void blk_rq_unprep_clone(struct request *rq)
2514 {
2515 	struct bio *bio;
2516 
2517 	while ((bio = rq->bio) != NULL) {
2518 		rq->bio = bio->bi_next;
2519 
2520 		bio_put(bio);
2521 	}
2522 }
2523 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2524 
2525 /*
2526  * Copy attributes of the original request to the clone request.
2527  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2528  */
2529 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2530 {
2531 	dst->cpu = src->cpu;
2532 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2533 	dst->cmd_type = src->cmd_type;
2534 	dst->__sector = blk_rq_pos(src);
2535 	dst->__data_len = blk_rq_bytes(src);
2536 	dst->nr_phys_segments = src->nr_phys_segments;
2537 	dst->ioprio = src->ioprio;
2538 	dst->extra_len = src->extra_len;
2539 }
2540 
2541 /**
2542  * blk_rq_prep_clone - Helper function to setup clone request
2543  * @rq: the request to be setup
2544  * @rq_src: original request to be cloned
2545  * @bs: bio_set that bios for clone are allocated from
2546  * @gfp_mask: memory allocation mask for bio
2547  * @bio_ctr: setup function to be called for each clone bio.
2548  *           Returns %0 for success, non %0 for failure.
2549  * @data: private data to be passed to @bio_ctr
2550  *
2551  * Description:
2552  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2553  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2554  *     are not copied, and copying such parts is the caller's responsibility.
2555  *     Also, pages which the original bios are pointing to are not copied
2556  *     and the cloned bios just point same pages.
2557  *     So cloned bios must be completed before original bios, which means
2558  *     the caller must complete @rq before @rq_src.
2559  */
2560 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2561 		      struct bio_set *bs, gfp_t gfp_mask,
2562 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2563 		      void *data)
2564 {
2565 	struct bio *bio, *bio_src;
2566 
2567 	if (!bs)
2568 		bs = fs_bio_set;
2569 
2570 	blk_rq_init(NULL, rq);
2571 
2572 	__rq_for_each_bio(bio_src, rq_src) {
2573 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2574 		if (!bio)
2575 			goto free_and_out;
2576 
2577 		__bio_clone(bio, bio_src);
2578 
2579 		if (bio_integrity(bio_src) &&
2580 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2581 			goto free_and_out;
2582 
2583 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2584 			goto free_and_out;
2585 
2586 		if (rq->bio) {
2587 			rq->biotail->bi_next = bio;
2588 			rq->biotail = bio;
2589 		} else
2590 			rq->bio = rq->biotail = bio;
2591 	}
2592 
2593 	__blk_rq_prep_clone(rq, rq_src);
2594 
2595 	return 0;
2596 
2597 free_and_out:
2598 	if (bio)
2599 		bio_free(bio, bs);
2600 	blk_rq_unprep_clone(rq);
2601 
2602 	return -ENOMEM;
2603 }
2604 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2605 
2606 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2607 {
2608 	return queue_work(kblockd_workqueue, work);
2609 }
2610 EXPORT_SYMBOL(kblockd_schedule_work);
2611 
2612 int kblockd_schedule_delayed_work(struct request_queue *q,
2613 			struct delayed_work *dwork, unsigned long delay)
2614 {
2615 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2616 }
2617 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2618 
2619 #define PLUG_MAGIC	0x91827364
2620 
2621 void blk_start_plug(struct blk_plug *plug)
2622 {
2623 	struct task_struct *tsk = current;
2624 
2625 	plug->magic = PLUG_MAGIC;
2626 	INIT_LIST_HEAD(&plug->list);
2627 	INIT_LIST_HEAD(&plug->cb_list);
2628 	plug->should_sort = 0;
2629 
2630 	/*
2631 	 * If this is a nested plug, don't actually assign it. It will be
2632 	 * flushed on its own.
2633 	 */
2634 	if (!tsk->plug) {
2635 		/*
2636 		 * Store ordering should not be needed here, since a potential
2637 		 * preempt will imply a full memory barrier
2638 		 */
2639 		tsk->plug = plug;
2640 	}
2641 }
2642 EXPORT_SYMBOL(blk_start_plug);
2643 
2644 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2645 {
2646 	struct request *rqa = container_of(a, struct request, queuelist);
2647 	struct request *rqb = container_of(b, struct request, queuelist);
2648 
2649 	return !(rqa->q <= rqb->q);
2650 }
2651 
2652 /*
2653  * If 'from_schedule' is true, then postpone the dispatch of requests
2654  * until a safe kblockd context. We due this to avoid accidental big
2655  * additional stack usage in driver dispatch, in places where the originally
2656  * plugger did not intend it.
2657  */
2658 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2659 			    bool from_schedule)
2660 	__releases(q->queue_lock)
2661 {
2662 	trace_block_unplug(q, depth, !from_schedule);
2663 
2664 	/*
2665 	 * If we are punting this to kblockd, then we can safely drop
2666 	 * the queue_lock before waking kblockd (which needs to take
2667 	 * this lock).
2668 	 */
2669 	if (from_schedule) {
2670 		spin_unlock(q->queue_lock);
2671 		blk_run_queue_async(q);
2672 	} else {
2673 		__blk_run_queue(q);
2674 		spin_unlock(q->queue_lock);
2675 	}
2676 
2677 }
2678 
2679 static void flush_plug_callbacks(struct blk_plug *plug)
2680 {
2681 	LIST_HEAD(callbacks);
2682 
2683 	if (list_empty(&plug->cb_list))
2684 		return;
2685 
2686 	list_splice_init(&plug->cb_list, &callbacks);
2687 
2688 	while (!list_empty(&callbacks)) {
2689 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2690 							  struct blk_plug_cb,
2691 							  list);
2692 		list_del(&cb->list);
2693 		cb->callback(cb);
2694 	}
2695 }
2696 
2697 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2698 {
2699 	struct request_queue *q;
2700 	unsigned long flags;
2701 	struct request *rq;
2702 	LIST_HEAD(list);
2703 	unsigned int depth;
2704 
2705 	BUG_ON(plug->magic != PLUG_MAGIC);
2706 
2707 	flush_plug_callbacks(plug);
2708 	if (list_empty(&plug->list))
2709 		return;
2710 
2711 	list_splice_init(&plug->list, &list);
2712 
2713 	if (plug->should_sort) {
2714 		list_sort(NULL, &list, plug_rq_cmp);
2715 		plug->should_sort = 0;
2716 	}
2717 
2718 	q = NULL;
2719 	depth = 0;
2720 
2721 	/*
2722 	 * Save and disable interrupts here, to avoid doing it for every
2723 	 * queue lock we have to take.
2724 	 */
2725 	local_irq_save(flags);
2726 	while (!list_empty(&list)) {
2727 		rq = list_entry_rq(list.next);
2728 		list_del_init(&rq->queuelist);
2729 		BUG_ON(!rq->q);
2730 		if (rq->q != q) {
2731 			/*
2732 			 * This drops the queue lock
2733 			 */
2734 			if (q)
2735 				queue_unplugged(q, depth, from_schedule);
2736 			q = rq->q;
2737 			depth = 0;
2738 			spin_lock(q->queue_lock);
2739 		}
2740 		/*
2741 		 * rq is already accounted, so use raw insert
2742 		 */
2743 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2744 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2745 		else
2746 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2747 
2748 		depth++;
2749 	}
2750 
2751 	/*
2752 	 * This drops the queue lock
2753 	 */
2754 	if (q)
2755 		queue_unplugged(q, depth, from_schedule);
2756 
2757 	local_irq_restore(flags);
2758 }
2759 
2760 void blk_finish_plug(struct blk_plug *plug)
2761 {
2762 	blk_flush_plug_list(plug, false);
2763 
2764 	if (plug == current->plug)
2765 		current->plug = NULL;
2766 }
2767 EXPORT_SYMBOL(blk_finish_plug);
2768 
2769 int __init blk_dev_init(void)
2770 {
2771 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2772 			sizeof(((struct request *)0)->cmd_flags));
2773 
2774 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2775 	kblockd_workqueue = alloc_workqueue("kblockd",
2776 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2777 	if (!kblockd_workqueue)
2778 		panic("Failed to create kblockd\n");
2779 
2780 	request_cachep = kmem_cache_create("blkdev_requests",
2781 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2782 
2783 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2784 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2785 
2786 	return 0;
2787 }
2788