1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 #include <linux/list_sort.h> 31 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/block.h> 34 35 #include "blk.h" 36 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 40 41 static int __make_request(struct request_queue *q, struct bio *bio); 42 43 /* 44 * For the allocated request tables 45 */ 46 static struct kmem_cache *request_cachep; 47 48 /* 49 * For queue allocation 50 */ 51 struct kmem_cache *blk_requestq_cachep; 52 53 /* 54 * Controlling structure to kblockd 55 */ 56 static struct workqueue_struct *kblockd_workqueue; 57 58 static void drive_stat_acct(struct request *rq, int new_io) 59 { 60 struct hd_struct *part; 61 int rw = rq_data_dir(rq); 62 int cpu; 63 64 if (!blk_do_io_stat(rq)) 65 return; 66 67 cpu = part_stat_lock(); 68 69 if (!new_io) { 70 part = rq->part; 71 part_stat_inc(cpu, part, merges[rw]); 72 } else { 73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 74 if (!hd_struct_try_get(part)) { 75 /* 76 * The partition is already being removed, 77 * the request will be accounted on the disk only 78 * 79 * We take a reference on disk->part0 although that 80 * partition will never be deleted, so we can treat 81 * it as any other partition. 82 */ 83 part = &rq->rq_disk->part0; 84 hd_struct_get(part); 85 } 86 part_round_stats(cpu, part); 87 part_inc_in_flight(part, rw); 88 rq->part = part; 89 } 90 91 part_stat_unlock(); 92 } 93 94 void blk_queue_congestion_threshold(struct request_queue *q) 95 { 96 int nr; 97 98 nr = q->nr_requests - (q->nr_requests / 8) + 1; 99 if (nr > q->nr_requests) 100 nr = q->nr_requests; 101 q->nr_congestion_on = nr; 102 103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 104 if (nr < 1) 105 nr = 1; 106 q->nr_congestion_off = nr; 107 } 108 109 /** 110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 111 * @bdev: device 112 * 113 * Locates the passed device's request queue and returns the address of its 114 * backing_dev_info 115 * 116 * Will return NULL if the request queue cannot be located. 117 */ 118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 119 { 120 struct backing_dev_info *ret = NULL; 121 struct request_queue *q = bdev_get_queue(bdev); 122 123 if (q) 124 ret = &q->backing_dev_info; 125 return ret; 126 } 127 EXPORT_SYMBOL(blk_get_backing_dev_info); 128 129 void blk_rq_init(struct request_queue *q, struct request *rq) 130 { 131 memset(rq, 0, sizeof(*rq)); 132 133 INIT_LIST_HEAD(&rq->queuelist); 134 INIT_LIST_HEAD(&rq->timeout_list); 135 rq->cpu = -1; 136 rq->q = q; 137 rq->__sector = (sector_t) -1; 138 INIT_HLIST_NODE(&rq->hash); 139 RB_CLEAR_NODE(&rq->rb_node); 140 rq->cmd = rq->__cmd; 141 rq->cmd_len = BLK_MAX_CDB; 142 rq->tag = -1; 143 rq->ref_count = 1; 144 rq->start_time = jiffies; 145 set_start_time_ns(rq); 146 rq->part = NULL; 147 } 148 EXPORT_SYMBOL(blk_rq_init); 149 150 static void req_bio_endio(struct request *rq, struct bio *bio, 151 unsigned int nbytes, int error) 152 { 153 if (error) 154 clear_bit(BIO_UPTODATE, &bio->bi_flags); 155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 156 error = -EIO; 157 158 if (unlikely(nbytes > bio->bi_size)) { 159 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 160 __func__, nbytes, bio->bi_size); 161 nbytes = bio->bi_size; 162 } 163 164 if (unlikely(rq->cmd_flags & REQ_QUIET)) 165 set_bit(BIO_QUIET, &bio->bi_flags); 166 167 bio->bi_size -= nbytes; 168 bio->bi_sector += (nbytes >> 9); 169 170 if (bio_integrity(bio)) 171 bio_integrity_advance(bio, nbytes); 172 173 /* don't actually finish bio if it's part of flush sequence */ 174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 175 bio_endio(bio, error); 176 } 177 178 void blk_dump_rq_flags(struct request *rq, char *msg) 179 { 180 int bit; 181 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 184 rq->cmd_flags); 185 186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 187 (unsigned long long)blk_rq_pos(rq), 188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 191 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 193 printk(KERN_INFO " cdb: "); 194 for (bit = 0; bit < BLK_MAX_CDB; bit++) 195 printk("%02x ", rq->cmd[bit]); 196 printk("\n"); 197 } 198 } 199 EXPORT_SYMBOL(blk_dump_rq_flags); 200 201 static void blk_delay_work(struct work_struct *work) 202 { 203 struct request_queue *q; 204 205 q = container_of(work, struct request_queue, delay_work.work); 206 spin_lock_irq(q->queue_lock); 207 __blk_run_queue(q); 208 spin_unlock_irq(q->queue_lock); 209 } 210 211 /** 212 * blk_delay_queue - restart queueing after defined interval 213 * @q: The &struct request_queue in question 214 * @msecs: Delay in msecs 215 * 216 * Description: 217 * Sometimes queueing needs to be postponed for a little while, to allow 218 * resources to come back. This function will make sure that queueing is 219 * restarted around the specified time. 220 */ 221 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 222 { 223 queue_delayed_work(kblockd_workqueue, &q->delay_work, 224 msecs_to_jiffies(msecs)); 225 } 226 EXPORT_SYMBOL(blk_delay_queue); 227 228 /** 229 * blk_start_queue - restart a previously stopped queue 230 * @q: The &struct request_queue in question 231 * 232 * Description: 233 * blk_start_queue() will clear the stop flag on the queue, and call 234 * the request_fn for the queue if it was in a stopped state when 235 * entered. Also see blk_stop_queue(). Queue lock must be held. 236 **/ 237 void blk_start_queue(struct request_queue *q) 238 { 239 WARN_ON(!irqs_disabled()); 240 241 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 242 __blk_run_queue(q); 243 } 244 EXPORT_SYMBOL(blk_start_queue); 245 246 /** 247 * blk_stop_queue - stop a queue 248 * @q: The &struct request_queue in question 249 * 250 * Description: 251 * The Linux block layer assumes that a block driver will consume all 252 * entries on the request queue when the request_fn strategy is called. 253 * Often this will not happen, because of hardware limitations (queue 254 * depth settings). If a device driver gets a 'queue full' response, 255 * or if it simply chooses not to queue more I/O at one point, it can 256 * call this function to prevent the request_fn from being called until 257 * the driver has signalled it's ready to go again. This happens by calling 258 * blk_start_queue() to restart queue operations. Queue lock must be held. 259 **/ 260 void blk_stop_queue(struct request_queue *q) 261 { 262 __cancel_delayed_work(&q->delay_work); 263 queue_flag_set(QUEUE_FLAG_STOPPED, q); 264 } 265 EXPORT_SYMBOL(blk_stop_queue); 266 267 /** 268 * blk_sync_queue - cancel any pending callbacks on a queue 269 * @q: the queue 270 * 271 * Description: 272 * The block layer may perform asynchronous callback activity 273 * on a queue, such as calling the unplug function after a timeout. 274 * A block device may call blk_sync_queue to ensure that any 275 * such activity is cancelled, thus allowing it to release resources 276 * that the callbacks might use. The caller must already have made sure 277 * that its ->make_request_fn will not re-add plugging prior to calling 278 * this function. 279 * 280 * This function does not cancel any asynchronous activity arising 281 * out of elevator or throttling code. That would require elevaotor_exit() 282 * and blk_throtl_exit() to be called with queue lock initialized. 283 * 284 */ 285 void blk_sync_queue(struct request_queue *q) 286 { 287 del_timer_sync(&q->timeout); 288 cancel_delayed_work_sync(&q->delay_work); 289 } 290 EXPORT_SYMBOL(blk_sync_queue); 291 292 /** 293 * __blk_run_queue - run a single device queue 294 * @q: The queue to run 295 * 296 * Description: 297 * See @blk_run_queue. This variant must be called with the queue lock 298 * held and interrupts disabled. 299 */ 300 void __blk_run_queue(struct request_queue *q) 301 { 302 if (unlikely(blk_queue_stopped(q))) 303 return; 304 305 q->request_fn(q); 306 } 307 EXPORT_SYMBOL(__blk_run_queue); 308 309 /** 310 * blk_run_queue_async - run a single device queue in workqueue context 311 * @q: The queue to run 312 * 313 * Description: 314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 315 * of us. 316 */ 317 void blk_run_queue_async(struct request_queue *q) 318 { 319 if (likely(!blk_queue_stopped(q))) { 320 __cancel_delayed_work(&q->delay_work); 321 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0); 322 } 323 } 324 EXPORT_SYMBOL(blk_run_queue_async); 325 326 /** 327 * blk_run_queue - run a single device queue 328 * @q: The queue to run 329 * 330 * Description: 331 * Invoke request handling on this queue, if it has pending work to do. 332 * May be used to restart queueing when a request has completed. 333 */ 334 void blk_run_queue(struct request_queue *q) 335 { 336 unsigned long flags; 337 338 spin_lock_irqsave(q->queue_lock, flags); 339 __blk_run_queue(q); 340 spin_unlock_irqrestore(q->queue_lock, flags); 341 } 342 EXPORT_SYMBOL(blk_run_queue); 343 344 void blk_put_queue(struct request_queue *q) 345 { 346 kobject_put(&q->kobj); 347 } 348 EXPORT_SYMBOL(blk_put_queue); 349 350 /* 351 * Note: If a driver supplied the queue lock, it should not zap that lock 352 * unexpectedly as some queue cleanup components like elevator_exit() and 353 * blk_throtl_exit() need queue lock. 354 */ 355 void blk_cleanup_queue(struct request_queue *q) 356 { 357 /* 358 * We know we have process context here, so we can be a little 359 * cautious and ensure that pending block actions on this device 360 * are done before moving on. Going into this function, we should 361 * not have processes doing IO to this device. 362 */ 363 blk_sync_queue(q); 364 365 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 366 mutex_lock(&q->sysfs_lock); 367 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 368 mutex_unlock(&q->sysfs_lock); 369 370 if (q->elevator) 371 elevator_exit(q->elevator); 372 373 blk_throtl_exit(q); 374 375 blk_put_queue(q); 376 } 377 EXPORT_SYMBOL(blk_cleanup_queue); 378 379 static int blk_init_free_list(struct request_queue *q) 380 { 381 struct request_list *rl = &q->rq; 382 383 if (unlikely(rl->rq_pool)) 384 return 0; 385 386 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 387 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 388 rl->elvpriv = 0; 389 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 390 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 391 392 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 393 mempool_free_slab, request_cachep, q->node); 394 395 if (!rl->rq_pool) 396 return -ENOMEM; 397 398 return 0; 399 } 400 401 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 402 { 403 return blk_alloc_queue_node(gfp_mask, -1); 404 } 405 EXPORT_SYMBOL(blk_alloc_queue); 406 407 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 408 { 409 struct request_queue *q; 410 int err; 411 412 q = kmem_cache_alloc_node(blk_requestq_cachep, 413 gfp_mask | __GFP_ZERO, node_id); 414 if (!q) 415 return NULL; 416 417 q->backing_dev_info.ra_pages = 418 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 419 q->backing_dev_info.state = 0; 420 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 421 q->backing_dev_info.name = "block"; 422 423 err = bdi_init(&q->backing_dev_info); 424 if (err) { 425 kmem_cache_free(blk_requestq_cachep, q); 426 return NULL; 427 } 428 429 if (blk_throtl_init(q)) { 430 kmem_cache_free(blk_requestq_cachep, q); 431 return NULL; 432 } 433 434 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 435 laptop_mode_timer_fn, (unsigned long) q); 436 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 437 INIT_LIST_HEAD(&q->timeout_list); 438 INIT_LIST_HEAD(&q->flush_queue[0]); 439 INIT_LIST_HEAD(&q->flush_queue[1]); 440 INIT_LIST_HEAD(&q->flush_data_in_flight); 441 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 442 443 kobject_init(&q->kobj, &blk_queue_ktype); 444 445 mutex_init(&q->sysfs_lock); 446 spin_lock_init(&q->__queue_lock); 447 448 /* 449 * By default initialize queue_lock to internal lock and driver can 450 * override it later if need be. 451 */ 452 q->queue_lock = &q->__queue_lock; 453 454 return q; 455 } 456 EXPORT_SYMBOL(blk_alloc_queue_node); 457 458 /** 459 * blk_init_queue - prepare a request queue for use with a block device 460 * @rfn: The function to be called to process requests that have been 461 * placed on the queue. 462 * @lock: Request queue spin lock 463 * 464 * Description: 465 * If a block device wishes to use the standard request handling procedures, 466 * which sorts requests and coalesces adjacent requests, then it must 467 * call blk_init_queue(). The function @rfn will be called when there 468 * are requests on the queue that need to be processed. If the device 469 * supports plugging, then @rfn may not be called immediately when requests 470 * are available on the queue, but may be called at some time later instead. 471 * Plugged queues are generally unplugged when a buffer belonging to one 472 * of the requests on the queue is needed, or due to memory pressure. 473 * 474 * @rfn is not required, or even expected, to remove all requests off the 475 * queue, but only as many as it can handle at a time. If it does leave 476 * requests on the queue, it is responsible for arranging that the requests 477 * get dealt with eventually. 478 * 479 * The queue spin lock must be held while manipulating the requests on the 480 * request queue; this lock will be taken also from interrupt context, so irq 481 * disabling is needed for it. 482 * 483 * Function returns a pointer to the initialized request queue, or %NULL if 484 * it didn't succeed. 485 * 486 * Note: 487 * blk_init_queue() must be paired with a blk_cleanup_queue() call 488 * when the block device is deactivated (such as at module unload). 489 **/ 490 491 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 492 { 493 return blk_init_queue_node(rfn, lock, -1); 494 } 495 EXPORT_SYMBOL(blk_init_queue); 496 497 struct request_queue * 498 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 499 { 500 struct request_queue *uninit_q, *q; 501 502 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 503 if (!uninit_q) 504 return NULL; 505 506 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id); 507 if (!q) 508 blk_cleanup_queue(uninit_q); 509 510 return q; 511 } 512 EXPORT_SYMBOL(blk_init_queue_node); 513 514 struct request_queue * 515 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 516 spinlock_t *lock) 517 { 518 return blk_init_allocated_queue_node(q, rfn, lock, -1); 519 } 520 EXPORT_SYMBOL(blk_init_allocated_queue); 521 522 struct request_queue * 523 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 524 spinlock_t *lock, int node_id) 525 { 526 if (!q) 527 return NULL; 528 529 q->node = node_id; 530 if (blk_init_free_list(q)) 531 return NULL; 532 533 q->request_fn = rfn; 534 q->prep_rq_fn = NULL; 535 q->unprep_rq_fn = NULL; 536 q->queue_flags = QUEUE_FLAG_DEFAULT; 537 538 /* Override internal queue lock with supplied lock pointer */ 539 if (lock) 540 q->queue_lock = lock; 541 542 /* 543 * This also sets hw/phys segments, boundary and size 544 */ 545 blk_queue_make_request(q, __make_request); 546 547 q->sg_reserved_size = INT_MAX; 548 549 /* 550 * all done 551 */ 552 if (!elevator_init(q, NULL)) { 553 blk_queue_congestion_threshold(q); 554 return q; 555 } 556 557 return NULL; 558 } 559 EXPORT_SYMBOL(blk_init_allocated_queue_node); 560 561 int blk_get_queue(struct request_queue *q) 562 { 563 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 564 kobject_get(&q->kobj); 565 return 0; 566 } 567 568 return 1; 569 } 570 EXPORT_SYMBOL(blk_get_queue); 571 572 static inline void blk_free_request(struct request_queue *q, struct request *rq) 573 { 574 if (rq->cmd_flags & REQ_ELVPRIV) 575 elv_put_request(q, rq); 576 mempool_free(rq, q->rq.rq_pool); 577 } 578 579 static struct request * 580 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 581 { 582 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 583 584 if (!rq) 585 return NULL; 586 587 blk_rq_init(q, rq); 588 589 rq->cmd_flags = flags | REQ_ALLOCED; 590 591 if (priv) { 592 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 593 mempool_free(rq, q->rq.rq_pool); 594 return NULL; 595 } 596 rq->cmd_flags |= REQ_ELVPRIV; 597 } 598 599 return rq; 600 } 601 602 /* 603 * ioc_batching returns true if the ioc is a valid batching request and 604 * should be given priority access to a request. 605 */ 606 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 607 { 608 if (!ioc) 609 return 0; 610 611 /* 612 * Make sure the process is able to allocate at least 1 request 613 * even if the batch times out, otherwise we could theoretically 614 * lose wakeups. 615 */ 616 return ioc->nr_batch_requests == q->nr_batching || 617 (ioc->nr_batch_requests > 0 618 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 619 } 620 621 /* 622 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 623 * will cause the process to be a "batcher" on all queues in the system. This 624 * is the behaviour we want though - once it gets a wakeup it should be given 625 * a nice run. 626 */ 627 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 628 { 629 if (!ioc || ioc_batching(q, ioc)) 630 return; 631 632 ioc->nr_batch_requests = q->nr_batching; 633 ioc->last_waited = jiffies; 634 } 635 636 static void __freed_request(struct request_queue *q, int sync) 637 { 638 struct request_list *rl = &q->rq; 639 640 if (rl->count[sync] < queue_congestion_off_threshold(q)) 641 blk_clear_queue_congested(q, sync); 642 643 if (rl->count[sync] + 1 <= q->nr_requests) { 644 if (waitqueue_active(&rl->wait[sync])) 645 wake_up(&rl->wait[sync]); 646 647 blk_clear_queue_full(q, sync); 648 } 649 } 650 651 /* 652 * A request has just been released. Account for it, update the full and 653 * congestion status, wake up any waiters. Called under q->queue_lock. 654 */ 655 static void freed_request(struct request_queue *q, int sync, int priv) 656 { 657 struct request_list *rl = &q->rq; 658 659 rl->count[sync]--; 660 if (priv) 661 rl->elvpriv--; 662 663 __freed_request(q, sync); 664 665 if (unlikely(rl->starved[sync ^ 1])) 666 __freed_request(q, sync ^ 1); 667 } 668 669 /* 670 * Determine if elevator data should be initialized when allocating the 671 * request associated with @bio. 672 */ 673 static bool blk_rq_should_init_elevator(struct bio *bio) 674 { 675 if (!bio) 676 return true; 677 678 /* 679 * Flush requests do not use the elevator so skip initialization. 680 * This allows a request to share the flush and elevator data. 681 */ 682 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 683 return false; 684 685 return true; 686 } 687 688 /* 689 * Get a free request, queue_lock must be held. 690 * Returns NULL on failure, with queue_lock held. 691 * Returns !NULL on success, with queue_lock *not held*. 692 */ 693 static struct request *get_request(struct request_queue *q, int rw_flags, 694 struct bio *bio, gfp_t gfp_mask) 695 { 696 struct request *rq = NULL; 697 struct request_list *rl = &q->rq; 698 struct io_context *ioc = NULL; 699 const bool is_sync = rw_is_sync(rw_flags) != 0; 700 int may_queue, priv = 0; 701 702 may_queue = elv_may_queue(q, rw_flags); 703 if (may_queue == ELV_MQUEUE_NO) 704 goto rq_starved; 705 706 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 707 if (rl->count[is_sync]+1 >= q->nr_requests) { 708 ioc = current_io_context(GFP_ATOMIC, q->node); 709 /* 710 * The queue will fill after this allocation, so set 711 * it as full, and mark this process as "batching". 712 * This process will be allowed to complete a batch of 713 * requests, others will be blocked. 714 */ 715 if (!blk_queue_full(q, is_sync)) { 716 ioc_set_batching(q, ioc); 717 blk_set_queue_full(q, is_sync); 718 } else { 719 if (may_queue != ELV_MQUEUE_MUST 720 && !ioc_batching(q, ioc)) { 721 /* 722 * The queue is full and the allocating 723 * process is not a "batcher", and not 724 * exempted by the IO scheduler 725 */ 726 goto out; 727 } 728 } 729 } 730 blk_set_queue_congested(q, is_sync); 731 } 732 733 /* 734 * Only allow batching queuers to allocate up to 50% over the defined 735 * limit of requests, otherwise we could have thousands of requests 736 * allocated with any setting of ->nr_requests 737 */ 738 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 739 goto out; 740 741 rl->count[is_sync]++; 742 rl->starved[is_sync] = 0; 743 744 if (blk_rq_should_init_elevator(bio)) { 745 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 746 if (priv) 747 rl->elvpriv++; 748 } 749 750 if (blk_queue_io_stat(q)) 751 rw_flags |= REQ_IO_STAT; 752 spin_unlock_irq(q->queue_lock); 753 754 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 755 if (unlikely(!rq)) { 756 /* 757 * Allocation failed presumably due to memory. Undo anything 758 * we might have messed up. 759 * 760 * Allocating task should really be put onto the front of the 761 * wait queue, but this is pretty rare. 762 */ 763 spin_lock_irq(q->queue_lock); 764 freed_request(q, is_sync, priv); 765 766 /* 767 * in the very unlikely event that allocation failed and no 768 * requests for this direction was pending, mark us starved 769 * so that freeing of a request in the other direction will 770 * notice us. another possible fix would be to split the 771 * rq mempool into READ and WRITE 772 */ 773 rq_starved: 774 if (unlikely(rl->count[is_sync] == 0)) 775 rl->starved[is_sync] = 1; 776 777 goto out; 778 } 779 780 /* 781 * ioc may be NULL here, and ioc_batching will be false. That's 782 * OK, if the queue is under the request limit then requests need 783 * not count toward the nr_batch_requests limit. There will always 784 * be some limit enforced by BLK_BATCH_TIME. 785 */ 786 if (ioc_batching(q, ioc)) 787 ioc->nr_batch_requests--; 788 789 trace_block_getrq(q, bio, rw_flags & 1); 790 out: 791 return rq; 792 } 793 794 /* 795 * No available requests for this queue, wait for some requests to become 796 * available. 797 * 798 * Called with q->queue_lock held, and returns with it unlocked. 799 */ 800 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 801 struct bio *bio) 802 { 803 const bool is_sync = rw_is_sync(rw_flags) != 0; 804 struct request *rq; 805 806 rq = get_request(q, rw_flags, bio, GFP_NOIO); 807 while (!rq) { 808 DEFINE_WAIT(wait); 809 struct io_context *ioc; 810 struct request_list *rl = &q->rq; 811 812 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 813 TASK_UNINTERRUPTIBLE); 814 815 trace_block_sleeprq(q, bio, rw_flags & 1); 816 817 spin_unlock_irq(q->queue_lock); 818 io_schedule(); 819 820 /* 821 * After sleeping, we become a "batching" process and 822 * will be able to allocate at least one request, and 823 * up to a big batch of them for a small period time. 824 * See ioc_batching, ioc_set_batching 825 */ 826 ioc = current_io_context(GFP_NOIO, q->node); 827 ioc_set_batching(q, ioc); 828 829 spin_lock_irq(q->queue_lock); 830 finish_wait(&rl->wait[is_sync], &wait); 831 832 rq = get_request(q, rw_flags, bio, GFP_NOIO); 833 }; 834 835 return rq; 836 } 837 838 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 839 { 840 struct request *rq; 841 842 BUG_ON(rw != READ && rw != WRITE); 843 844 spin_lock_irq(q->queue_lock); 845 if (gfp_mask & __GFP_WAIT) { 846 rq = get_request_wait(q, rw, NULL); 847 } else { 848 rq = get_request(q, rw, NULL, gfp_mask); 849 if (!rq) 850 spin_unlock_irq(q->queue_lock); 851 } 852 /* q->queue_lock is unlocked at this point */ 853 854 return rq; 855 } 856 EXPORT_SYMBOL(blk_get_request); 857 858 /** 859 * blk_make_request - given a bio, allocate a corresponding struct request. 860 * @q: target request queue 861 * @bio: The bio describing the memory mappings that will be submitted for IO. 862 * It may be a chained-bio properly constructed by block/bio layer. 863 * @gfp_mask: gfp flags to be used for memory allocation 864 * 865 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 866 * type commands. Where the struct request needs to be farther initialized by 867 * the caller. It is passed a &struct bio, which describes the memory info of 868 * the I/O transfer. 869 * 870 * The caller of blk_make_request must make sure that bi_io_vec 871 * are set to describe the memory buffers. That bio_data_dir() will return 872 * the needed direction of the request. (And all bio's in the passed bio-chain 873 * are properly set accordingly) 874 * 875 * If called under none-sleepable conditions, mapped bio buffers must not 876 * need bouncing, by calling the appropriate masked or flagged allocator, 877 * suitable for the target device. Otherwise the call to blk_queue_bounce will 878 * BUG. 879 * 880 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 881 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 882 * anything but the first bio in the chain. Otherwise you risk waiting for IO 883 * completion of a bio that hasn't been submitted yet, thus resulting in a 884 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 885 * of bio_alloc(), as that avoids the mempool deadlock. 886 * If possible a big IO should be split into smaller parts when allocation 887 * fails. Partial allocation should not be an error, or you risk a live-lock. 888 */ 889 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 890 gfp_t gfp_mask) 891 { 892 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 893 894 if (unlikely(!rq)) 895 return ERR_PTR(-ENOMEM); 896 897 for_each_bio(bio) { 898 struct bio *bounce_bio = bio; 899 int ret; 900 901 blk_queue_bounce(q, &bounce_bio); 902 ret = blk_rq_append_bio(q, rq, bounce_bio); 903 if (unlikely(ret)) { 904 blk_put_request(rq); 905 return ERR_PTR(ret); 906 } 907 } 908 909 return rq; 910 } 911 EXPORT_SYMBOL(blk_make_request); 912 913 /** 914 * blk_requeue_request - put a request back on queue 915 * @q: request queue where request should be inserted 916 * @rq: request to be inserted 917 * 918 * Description: 919 * Drivers often keep queueing requests until the hardware cannot accept 920 * more, when that condition happens we need to put the request back 921 * on the queue. Must be called with queue lock held. 922 */ 923 void blk_requeue_request(struct request_queue *q, struct request *rq) 924 { 925 blk_delete_timer(rq); 926 blk_clear_rq_complete(rq); 927 trace_block_rq_requeue(q, rq); 928 929 if (blk_rq_tagged(rq)) 930 blk_queue_end_tag(q, rq); 931 932 BUG_ON(blk_queued_rq(rq)); 933 934 elv_requeue_request(q, rq); 935 } 936 EXPORT_SYMBOL(blk_requeue_request); 937 938 static void add_acct_request(struct request_queue *q, struct request *rq, 939 int where) 940 { 941 drive_stat_acct(rq, 1); 942 __elv_add_request(q, rq, where); 943 } 944 945 /** 946 * blk_insert_request - insert a special request into a request queue 947 * @q: request queue where request should be inserted 948 * @rq: request to be inserted 949 * @at_head: insert request at head or tail of queue 950 * @data: private data 951 * 952 * Description: 953 * Many block devices need to execute commands asynchronously, so they don't 954 * block the whole kernel from preemption during request execution. This is 955 * accomplished normally by inserting aritficial requests tagged as 956 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 957 * be scheduled for actual execution by the request queue. 958 * 959 * We have the option of inserting the head or the tail of the queue. 960 * Typically we use the tail for new ioctls and so forth. We use the head 961 * of the queue for things like a QUEUE_FULL message from a device, or a 962 * host that is unable to accept a particular command. 963 */ 964 void blk_insert_request(struct request_queue *q, struct request *rq, 965 int at_head, void *data) 966 { 967 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 968 unsigned long flags; 969 970 /* 971 * tell I/O scheduler that this isn't a regular read/write (ie it 972 * must not attempt merges on this) and that it acts as a soft 973 * barrier 974 */ 975 rq->cmd_type = REQ_TYPE_SPECIAL; 976 977 rq->special = data; 978 979 spin_lock_irqsave(q->queue_lock, flags); 980 981 /* 982 * If command is tagged, release the tag 983 */ 984 if (blk_rq_tagged(rq)) 985 blk_queue_end_tag(q, rq); 986 987 add_acct_request(q, rq, where); 988 __blk_run_queue(q); 989 spin_unlock_irqrestore(q->queue_lock, flags); 990 } 991 EXPORT_SYMBOL(blk_insert_request); 992 993 static void part_round_stats_single(int cpu, struct hd_struct *part, 994 unsigned long now) 995 { 996 if (now == part->stamp) 997 return; 998 999 if (part_in_flight(part)) { 1000 __part_stat_add(cpu, part, time_in_queue, 1001 part_in_flight(part) * (now - part->stamp)); 1002 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1003 } 1004 part->stamp = now; 1005 } 1006 1007 /** 1008 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1009 * @cpu: cpu number for stats access 1010 * @part: target partition 1011 * 1012 * The average IO queue length and utilisation statistics are maintained 1013 * by observing the current state of the queue length and the amount of 1014 * time it has been in this state for. 1015 * 1016 * Normally, that accounting is done on IO completion, but that can result 1017 * in more than a second's worth of IO being accounted for within any one 1018 * second, leading to >100% utilisation. To deal with that, we call this 1019 * function to do a round-off before returning the results when reading 1020 * /proc/diskstats. This accounts immediately for all queue usage up to 1021 * the current jiffies and restarts the counters again. 1022 */ 1023 void part_round_stats(int cpu, struct hd_struct *part) 1024 { 1025 unsigned long now = jiffies; 1026 1027 if (part->partno) 1028 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1029 part_round_stats_single(cpu, part, now); 1030 } 1031 EXPORT_SYMBOL_GPL(part_round_stats); 1032 1033 /* 1034 * queue lock must be held 1035 */ 1036 void __blk_put_request(struct request_queue *q, struct request *req) 1037 { 1038 if (unlikely(!q)) 1039 return; 1040 if (unlikely(--req->ref_count)) 1041 return; 1042 1043 elv_completed_request(q, req); 1044 1045 /* this is a bio leak */ 1046 WARN_ON(req->bio != NULL); 1047 1048 /* 1049 * Request may not have originated from ll_rw_blk. if not, 1050 * it didn't come out of our reserved rq pools 1051 */ 1052 if (req->cmd_flags & REQ_ALLOCED) { 1053 int is_sync = rq_is_sync(req) != 0; 1054 int priv = req->cmd_flags & REQ_ELVPRIV; 1055 1056 BUG_ON(!list_empty(&req->queuelist)); 1057 BUG_ON(!hlist_unhashed(&req->hash)); 1058 1059 blk_free_request(q, req); 1060 freed_request(q, is_sync, priv); 1061 } 1062 } 1063 EXPORT_SYMBOL_GPL(__blk_put_request); 1064 1065 void blk_put_request(struct request *req) 1066 { 1067 unsigned long flags; 1068 struct request_queue *q = req->q; 1069 1070 spin_lock_irqsave(q->queue_lock, flags); 1071 __blk_put_request(q, req); 1072 spin_unlock_irqrestore(q->queue_lock, flags); 1073 } 1074 EXPORT_SYMBOL(blk_put_request); 1075 1076 /** 1077 * blk_add_request_payload - add a payload to a request 1078 * @rq: request to update 1079 * @page: page backing the payload 1080 * @len: length of the payload. 1081 * 1082 * This allows to later add a payload to an already submitted request by 1083 * a block driver. The driver needs to take care of freeing the payload 1084 * itself. 1085 * 1086 * Note that this is a quite horrible hack and nothing but handling of 1087 * discard requests should ever use it. 1088 */ 1089 void blk_add_request_payload(struct request *rq, struct page *page, 1090 unsigned int len) 1091 { 1092 struct bio *bio = rq->bio; 1093 1094 bio->bi_io_vec->bv_page = page; 1095 bio->bi_io_vec->bv_offset = 0; 1096 bio->bi_io_vec->bv_len = len; 1097 1098 bio->bi_size = len; 1099 bio->bi_vcnt = 1; 1100 bio->bi_phys_segments = 1; 1101 1102 rq->__data_len = rq->resid_len = len; 1103 rq->nr_phys_segments = 1; 1104 rq->buffer = bio_data(bio); 1105 } 1106 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1107 1108 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1109 struct bio *bio) 1110 { 1111 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1112 1113 if (!ll_back_merge_fn(q, req, bio)) 1114 return false; 1115 1116 trace_block_bio_backmerge(q, bio); 1117 1118 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1119 blk_rq_set_mixed_merge(req); 1120 1121 req->biotail->bi_next = bio; 1122 req->biotail = bio; 1123 req->__data_len += bio->bi_size; 1124 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1125 1126 drive_stat_acct(req, 0); 1127 elv_bio_merged(q, req, bio); 1128 return true; 1129 } 1130 1131 static bool bio_attempt_front_merge(struct request_queue *q, 1132 struct request *req, struct bio *bio) 1133 { 1134 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1135 1136 if (!ll_front_merge_fn(q, req, bio)) 1137 return false; 1138 1139 trace_block_bio_frontmerge(q, bio); 1140 1141 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1142 blk_rq_set_mixed_merge(req); 1143 1144 bio->bi_next = req->bio; 1145 req->bio = bio; 1146 1147 /* 1148 * may not be valid. if the low level driver said 1149 * it didn't need a bounce buffer then it better 1150 * not touch req->buffer either... 1151 */ 1152 req->buffer = bio_data(bio); 1153 req->__sector = bio->bi_sector; 1154 req->__data_len += bio->bi_size; 1155 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1156 1157 drive_stat_acct(req, 0); 1158 elv_bio_merged(q, req, bio); 1159 return true; 1160 } 1161 1162 /* 1163 * Attempts to merge with the plugged list in the current process. Returns 1164 * true if merge was successful, otherwise false. 1165 */ 1166 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q, 1167 struct bio *bio) 1168 { 1169 struct blk_plug *plug; 1170 struct request *rq; 1171 bool ret = false; 1172 1173 plug = tsk->plug; 1174 if (!plug) 1175 goto out; 1176 1177 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1178 int el_ret; 1179 1180 if (rq->q != q) 1181 continue; 1182 1183 el_ret = elv_try_merge(rq, bio); 1184 if (el_ret == ELEVATOR_BACK_MERGE) { 1185 ret = bio_attempt_back_merge(q, rq, bio); 1186 if (ret) 1187 break; 1188 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1189 ret = bio_attempt_front_merge(q, rq, bio); 1190 if (ret) 1191 break; 1192 } 1193 } 1194 out: 1195 return ret; 1196 } 1197 1198 void init_request_from_bio(struct request *req, struct bio *bio) 1199 { 1200 req->cpu = bio->bi_comp_cpu; 1201 req->cmd_type = REQ_TYPE_FS; 1202 1203 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1204 if (bio->bi_rw & REQ_RAHEAD) 1205 req->cmd_flags |= REQ_FAILFAST_MASK; 1206 1207 req->errors = 0; 1208 req->__sector = bio->bi_sector; 1209 req->ioprio = bio_prio(bio); 1210 blk_rq_bio_prep(req->q, req, bio); 1211 } 1212 1213 static int __make_request(struct request_queue *q, struct bio *bio) 1214 { 1215 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1216 struct blk_plug *plug; 1217 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1218 struct request *req; 1219 1220 /* 1221 * low level driver can indicate that it wants pages above a 1222 * certain limit bounced to low memory (ie for highmem, or even 1223 * ISA dma in theory) 1224 */ 1225 blk_queue_bounce(q, &bio); 1226 1227 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1228 spin_lock_irq(q->queue_lock); 1229 where = ELEVATOR_INSERT_FLUSH; 1230 goto get_rq; 1231 } 1232 1233 /* 1234 * Check if we can merge with the plugged list before grabbing 1235 * any locks. 1236 */ 1237 if (attempt_plug_merge(current, q, bio)) 1238 goto out; 1239 1240 spin_lock_irq(q->queue_lock); 1241 1242 el_ret = elv_merge(q, &req, bio); 1243 if (el_ret == ELEVATOR_BACK_MERGE) { 1244 if (bio_attempt_back_merge(q, req, bio)) { 1245 if (!attempt_back_merge(q, req)) 1246 elv_merged_request(q, req, el_ret); 1247 goto out_unlock; 1248 } 1249 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1250 if (bio_attempt_front_merge(q, req, bio)) { 1251 if (!attempt_front_merge(q, req)) 1252 elv_merged_request(q, req, el_ret); 1253 goto out_unlock; 1254 } 1255 } 1256 1257 get_rq: 1258 /* 1259 * This sync check and mask will be re-done in init_request_from_bio(), 1260 * but we need to set it earlier to expose the sync flag to the 1261 * rq allocator and io schedulers. 1262 */ 1263 rw_flags = bio_data_dir(bio); 1264 if (sync) 1265 rw_flags |= REQ_SYNC; 1266 1267 /* 1268 * Grab a free request. This is might sleep but can not fail. 1269 * Returns with the queue unlocked. 1270 */ 1271 req = get_request_wait(q, rw_flags, bio); 1272 1273 /* 1274 * After dropping the lock and possibly sleeping here, our request 1275 * may now be mergeable after it had proven unmergeable (above). 1276 * We don't worry about that case for efficiency. It won't happen 1277 * often, and the elevators are able to handle it. 1278 */ 1279 init_request_from_bio(req, bio); 1280 1281 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1282 bio_flagged(bio, BIO_CPU_AFFINE)) { 1283 req->cpu = blk_cpu_to_group(get_cpu()); 1284 put_cpu(); 1285 } 1286 1287 plug = current->plug; 1288 if (plug) { 1289 /* 1290 * If this is the first request added after a plug, fire 1291 * of a plug trace. If others have been added before, check 1292 * if we have multiple devices in this plug. If so, make a 1293 * note to sort the list before dispatch. 1294 */ 1295 if (list_empty(&plug->list)) 1296 trace_block_plug(q); 1297 else if (!plug->should_sort) { 1298 struct request *__rq; 1299 1300 __rq = list_entry_rq(plug->list.prev); 1301 if (__rq->q != q) 1302 plug->should_sort = 1; 1303 } 1304 list_add_tail(&req->queuelist, &plug->list); 1305 drive_stat_acct(req, 1); 1306 } else { 1307 spin_lock_irq(q->queue_lock); 1308 add_acct_request(q, req, where); 1309 __blk_run_queue(q); 1310 out_unlock: 1311 spin_unlock_irq(q->queue_lock); 1312 } 1313 out: 1314 return 0; 1315 } 1316 1317 /* 1318 * If bio->bi_dev is a partition, remap the location 1319 */ 1320 static inline void blk_partition_remap(struct bio *bio) 1321 { 1322 struct block_device *bdev = bio->bi_bdev; 1323 1324 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1325 struct hd_struct *p = bdev->bd_part; 1326 1327 bio->bi_sector += p->start_sect; 1328 bio->bi_bdev = bdev->bd_contains; 1329 1330 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1331 bdev->bd_dev, 1332 bio->bi_sector - p->start_sect); 1333 } 1334 } 1335 1336 static void handle_bad_sector(struct bio *bio) 1337 { 1338 char b[BDEVNAME_SIZE]; 1339 1340 printk(KERN_INFO "attempt to access beyond end of device\n"); 1341 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1342 bdevname(bio->bi_bdev, b), 1343 bio->bi_rw, 1344 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1345 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1346 1347 set_bit(BIO_EOF, &bio->bi_flags); 1348 } 1349 1350 #ifdef CONFIG_FAIL_MAKE_REQUEST 1351 1352 static DECLARE_FAULT_ATTR(fail_make_request); 1353 1354 static int __init setup_fail_make_request(char *str) 1355 { 1356 return setup_fault_attr(&fail_make_request, str); 1357 } 1358 __setup("fail_make_request=", setup_fail_make_request); 1359 1360 static int should_fail_request(struct bio *bio) 1361 { 1362 struct hd_struct *part = bio->bi_bdev->bd_part; 1363 1364 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1365 return should_fail(&fail_make_request, bio->bi_size); 1366 1367 return 0; 1368 } 1369 1370 static int __init fail_make_request_debugfs(void) 1371 { 1372 return init_fault_attr_dentries(&fail_make_request, 1373 "fail_make_request"); 1374 } 1375 1376 late_initcall(fail_make_request_debugfs); 1377 1378 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1379 1380 static inline int should_fail_request(struct bio *bio) 1381 { 1382 return 0; 1383 } 1384 1385 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1386 1387 /* 1388 * Check whether this bio extends beyond the end of the device. 1389 */ 1390 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1391 { 1392 sector_t maxsector; 1393 1394 if (!nr_sectors) 1395 return 0; 1396 1397 /* Test device or partition size, when known. */ 1398 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1399 if (maxsector) { 1400 sector_t sector = bio->bi_sector; 1401 1402 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1403 /* 1404 * This may well happen - the kernel calls bread() 1405 * without checking the size of the device, e.g., when 1406 * mounting a device. 1407 */ 1408 handle_bad_sector(bio); 1409 return 1; 1410 } 1411 } 1412 1413 return 0; 1414 } 1415 1416 /** 1417 * generic_make_request - hand a buffer to its device driver for I/O 1418 * @bio: The bio describing the location in memory and on the device. 1419 * 1420 * generic_make_request() is used to make I/O requests of block 1421 * devices. It is passed a &struct bio, which describes the I/O that needs 1422 * to be done. 1423 * 1424 * generic_make_request() does not return any status. The 1425 * success/failure status of the request, along with notification of 1426 * completion, is delivered asynchronously through the bio->bi_end_io 1427 * function described (one day) else where. 1428 * 1429 * The caller of generic_make_request must make sure that bi_io_vec 1430 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1431 * set to describe the device address, and the 1432 * bi_end_io and optionally bi_private are set to describe how 1433 * completion notification should be signaled. 1434 * 1435 * generic_make_request and the drivers it calls may use bi_next if this 1436 * bio happens to be merged with someone else, and may change bi_dev and 1437 * bi_sector for remaps as it sees fit. So the values of these fields 1438 * should NOT be depended on after the call to generic_make_request. 1439 */ 1440 static inline void __generic_make_request(struct bio *bio) 1441 { 1442 struct request_queue *q; 1443 sector_t old_sector; 1444 int ret, nr_sectors = bio_sectors(bio); 1445 dev_t old_dev; 1446 int err = -EIO; 1447 1448 might_sleep(); 1449 1450 if (bio_check_eod(bio, nr_sectors)) 1451 goto end_io; 1452 1453 /* 1454 * Resolve the mapping until finished. (drivers are 1455 * still free to implement/resolve their own stacking 1456 * by explicitly returning 0) 1457 * 1458 * NOTE: we don't repeat the blk_size check for each new device. 1459 * Stacking drivers are expected to know what they are doing. 1460 */ 1461 old_sector = -1; 1462 old_dev = 0; 1463 do { 1464 char b[BDEVNAME_SIZE]; 1465 1466 q = bdev_get_queue(bio->bi_bdev); 1467 if (unlikely(!q)) { 1468 printk(KERN_ERR 1469 "generic_make_request: Trying to access " 1470 "nonexistent block-device %s (%Lu)\n", 1471 bdevname(bio->bi_bdev, b), 1472 (long long) bio->bi_sector); 1473 goto end_io; 1474 } 1475 1476 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1477 nr_sectors > queue_max_hw_sectors(q))) { 1478 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1479 bdevname(bio->bi_bdev, b), 1480 bio_sectors(bio), 1481 queue_max_hw_sectors(q)); 1482 goto end_io; 1483 } 1484 1485 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1486 goto end_io; 1487 1488 if (should_fail_request(bio)) 1489 goto end_io; 1490 1491 /* 1492 * If this device has partitions, remap block n 1493 * of partition p to block n+start(p) of the disk. 1494 */ 1495 blk_partition_remap(bio); 1496 1497 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1498 goto end_io; 1499 1500 if (old_sector != -1) 1501 trace_block_bio_remap(q, bio, old_dev, old_sector); 1502 1503 old_sector = bio->bi_sector; 1504 old_dev = bio->bi_bdev->bd_dev; 1505 1506 if (bio_check_eod(bio, nr_sectors)) 1507 goto end_io; 1508 1509 /* 1510 * Filter flush bio's early so that make_request based 1511 * drivers without flush support don't have to worry 1512 * about them. 1513 */ 1514 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1515 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1516 if (!nr_sectors) { 1517 err = 0; 1518 goto end_io; 1519 } 1520 } 1521 1522 if ((bio->bi_rw & REQ_DISCARD) && 1523 (!blk_queue_discard(q) || 1524 ((bio->bi_rw & REQ_SECURE) && 1525 !blk_queue_secdiscard(q)))) { 1526 err = -EOPNOTSUPP; 1527 goto end_io; 1528 } 1529 1530 if (blk_throtl_bio(q, &bio)) 1531 goto end_io; 1532 1533 /* 1534 * If bio = NULL, bio has been throttled and will be submitted 1535 * later. 1536 */ 1537 if (!bio) 1538 break; 1539 1540 trace_block_bio_queue(q, bio); 1541 1542 ret = q->make_request_fn(q, bio); 1543 } while (ret); 1544 1545 return; 1546 1547 end_io: 1548 bio_endio(bio, err); 1549 } 1550 1551 /* 1552 * We only want one ->make_request_fn to be active at a time, 1553 * else stack usage with stacked devices could be a problem. 1554 * So use current->bio_list to keep a list of requests 1555 * submited by a make_request_fn function. 1556 * current->bio_list is also used as a flag to say if 1557 * generic_make_request is currently active in this task or not. 1558 * If it is NULL, then no make_request is active. If it is non-NULL, 1559 * then a make_request is active, and new requests should be added 1560 * at the tail 1561 */ 1562 void generic_make_request(struct bio *bio) 1563 { 1564 struct bio_list bio_list_on_stack; 1565 1566 if (current->bio_list) { 1567 /* make_request is active */ 1568 bio_list_add(current->bio_list, bio); 1569 return; 1570 } 1571 /* following loop may be a bit non-obvious, and so deserves some 1572 * explanation. 1573 * Before entering the loop, bio->bi_next is NULL (as all callers 1574 * ensure that) so we have a list with a single bio. 1575 * We pretend that we have just taken it off a longer list, so 1576 * we assign bio_list to a pointer to the bio_list_on_stack, 1577 * thus initialising the bio_list of new bios to be 1578 * added. __generic_make_request may indeed add some more bios 1579 * through a recursive call to generic_make_request. If it 1580 * did, we find a non-NULL value in bio_list and re-enter the loop 1581 * from the top. In this case we really did just take the bio 1582 * of the top of the list (no pretending) and so remove it from 1583 * bio_list, and call into __generic_make_request again. 1584 * 1585 * The loop was structured like this to make only one call to 1586 * __generic_make_request (which is important as it is large and 1587 * inlined) and to keep the structure simple. 1588 */ 1589 BUG_ON(bio->bi_next); 1590 bio_list_init(&bio_list_on_stack); 1591 current->bio_list = &bio_list_on_stack; 1592 do { 1593 __generic_make_request(bio); 1594 bio = bio_list_pop(current->bio_list); 1595 } while (bio); 1596 current->bio_list = NULL; /* deactivate */ 1597 } 1598 EXPORT_SYMBOL(generic_make_request); 1599 1600 /** 1601 * submit_bio - submit a bio to the block device layer for I/O 1602 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1603 * @bio: The &struct bio which describes the I/O 1604 * 1605 * submit_bio() is very similar in purpose to generic_make_request(), and 1606 * uses that function to do most of the work. Both are fairly rough 1607 * interfaces; @bio must be presetup and ready for I/O. 1608 * 1609 */ 1610 void submit_bio(int rw, struct bio *bio) 1611 { 1612 int count = bio_sectors(bio); 1613 1614 bio->bi_rw |= rw; 1615 1616 /* 1617 * If it's a regular read/write or a barrier with data attached, 1618 * go through the normal accounting stuff before submission. 1619 */ 1620 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1621 if (rw & WRITE) { 1622 count_vm_events(PGPGOUT, count); 1623 } else { 1624 task_io_account_read(bio->bi_size); 1625 count_vm_events(PGPGIN, count); 1626 } 1627 1628 if (unlikely(block_dump)) { 1629 char b[BDEVNAME_SIZE]; 1630 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1631 current->comm, task_pid_nr(current), 1632 (rw & WRITE) ? "WRITE" : "READ", 1633 (unsigned long long)bio->bi_sector, 1634 bdevname(bio->bi_bdev, b), 1635 count); 1636 } 1637 } 1638 1639 generic_make_request(bio); 1640 } 1641 EXPORT_SYMBOL(submit_bio); 1642 1643 /** 1644 * blk_rq_check_limits - Helper function to check a request for the queue limit 1645 * @q: the queue 1646 * @rq: the request being checked 1647 * 1648 * Description: 1649 * @rq may have been made based on weaker limitations of upper-level queues 1650 * in request stacking drivers, and it may violate the limitation of @q. 1651 * Since the block layer and the underlying device driver trust @rq 1652 * after it is inserted to @q, it should be checked against @q before 1653 * the insertion using this generic function. 1654 * 1655 * This function should also be useful for request stacking drivers 1656 * in some cases below, so export this function. 1657 * Request stacking drivers like request-based dm may change the queue 1658 * limits while requests are in the queue (e.g. dm's table swapping). 1659 * Such request stacking drivers should check those requests agaist 1660 * the new queue limits again when they dispatch those requests, 1661 * although such checkings are also done against the old queue limits 1662 * when submitting requests. 1663 */ 1664 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1665 { 1666 if (rq->cmd_flags & REQ_DISCARD) 1667 return 0; 1668 1669 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1670 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1671 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1672 return -EIO; 1673 } 1674 1675 /* 1676 * queue's settings related to segment counting like q->bounce_pfn 1677 * may differ from that of other stacking queues. 1678 * Recalculate it to check the request correctly on this queue's 1679 * limitation. 1680 */ 1681 blk_recalc_rq_segments(rq); 1682 if (rq->nr_phys_segments > queue_max_segments(q)) { 1683 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1684 return -EIO; 1685 } 1686 1687 return 0; 1688 } 1689 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1690 1691 /** 1692 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1693 * @q: the queue to submit the request 1694 * @rq: the request being queued 1695 */ 1696 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1697 { 1698 unsigned long flags; 1699 1700 if (blk_rq_check_limits(q, rq)) 1701 return -EIO; 1702 1703 #ifdef CONFIG_FAIL_MAKE_REQUEST 1704 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1705 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1706 return -EIO; 1707 #endif 1708 1709 spin_lock_irqsave(q->queue_lock, flags); 1710 1711 /* 1712 * Submitting request must be dequeued before calling this function 1713 * because it will be linked to another request_queue 1714 */ 1715 BUG_ON(blk_queued_rq(rq)); 1716 1717 add_acct_request(q, rq, ELEVATOR_INSERT_BACK); 1718 spin_unlock_irqrestore(q->queue_lock, flags); 1719 1720 return 0; 1721 } 1722 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1723 1724 /** 1725 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1726 * @rq: request to examine 1727 * 1728 * Description: 1729 * A request could be merge of IOs which require different failure 1730 * handling. This function determines the number of bytes which 1731 * can be failed from the beginning of the request without 1732 * crossing into area which need to be retried further. 1733 * 1734 * Return: 1735 * The number of bytes to fail. 1736 * 1737 * Context: 1738 * queue_lock must be held. 1739 */ 1740 unsigned int blk_rq_err_bytes(const struct request *rq) 1741 { 1742 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1743 unsigned int bytes = 0; 1744 struct bio *bio; 1745 1746 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1747 return blk_rq_bytes(rq); 1748 1749 /* 1750 * Currently the only 'mixing' which can happen is between 1751 * different fastfail types. We can safely fail portions 1752 * which have all the failfast bits that the first one has - 1753 * the ones which are at least as eager to fail as the first 1754 * one. 1755 */ 1756 for (bio = rq->bio; bio; bio = bio->bi_next) { 1757 if ((bio->bi_rw & ff) != ff) 1758 break; 1759 bytes += bio->bi_size; 1760 } 1761 1762 /* this could lead to infinite loop */ 1763 BUG_ON(blk_rq_bytes(rq) && !bytes); 1764 return bytes; 1765 } 1766 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1767 1768 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1769 { 1770 if (blk_do_io_stat(req)) { 1771 const int rw = rq_data_dir(req); 1772 struct hd_struct *part; 1773 int cpu; 1774 1775 cpu = part_stat_lock(); 1776 part = req->part; 1777 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1778 part_stat_unlock(); 1779 } 1780 } 1781 1782 static void blk_account_io_done(struct request *req) 1783 { 1784 /* 1785 * Account IO completion. flush_rq isn't accounted as a 1786 * normal IO on queueing nor completion. Accounting the 1787 * containing request is enough. 1788 */ 1789 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 1790 unsigned long duration = jiffies - req->start_time; 1791 const int rw = rq_data_dir(req); 1792 struct hd_struct *part; 1793 int cpu; 1794 1795 cpu = part_stat_lock(); 1796 part = req->part; 1797 1798 part_stat_inc(cpu, part, ios[rw]); 1799 part_stat_add(cpu, part, ticks[rw], duration); 1800 part_round_stats(cpu, part); 1801 part_dec_in_flight(part, rw); 1802 1803 hd_struct_put(part); 1804 part_stat_unlock(); 1805 } 1806 } 1807 1808 /** 1809 * blk_peek_request - peek at the top of a request queue 1810 * @q: request queue to peek at 1811 * 1812 * Description: 1813 * Return the request at the top of @q. The returned request 1814 * should be started using blk_start_request() before LLD starts 1815 * processing it. 1816 * 1817 * Return: 1818 * Pointer to the request at the top of @q if available. Null 1819 * otherwise. 1820 * 1821 * Context: 1822 * queue_lock must be held. 1823 */ 1824 struct request *blk_peek_request(struct request_queue *q) 1825 { 1826 struct request *rq; 1827 int ret; 1828 1829 while ((rq = __elv_next_request(q)) != NULL) { 1830 if (!(rq->cmd_flags & REQ_STARTED)) { 1831 /* 1832 * This is the first time the device driver 1833 * sees this request (possibly after 1834 * requeueing). Notify IO scheduler. 1835 */ 1836 if (rq->cmd_flags & REQ_SORTED) 1837 elv_activate_rq(q, rq); 1838 1839 /* 1840 * just mark as started even if we don't start 1841 * it, a request that has been delayed should 1842 * not be passed by new incoming requests 1843 */ 1844 rq->cmd_flags |= REQ_STARTED; 1845 trace_block_rq_issue(q, rq); 1846 } 1847 1848 if (!q->boundary_rq || q->boundary_rq == rq) { 1849 q->end_sector = rq_end_sector(rq); 1850 q->boundary_rq = NULL; 1851 } 1852 1853 if (rq->cmd_flags & REQ_DONTPREP) 1854 break; 1855 1856 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1857 /* 1858 * make sure space for the drain appears we 1859 * know we can do this because max_hw_segments 1860 * has been adjusted to be one fewer than the 1861 * device can handle 1862 */ 1863 rq->nr_phys_segments++; 1864 } 1865 1866 if (!q->prep_rq_fn) 1867 break; 1868 1869 ret = q->prep_rq_fn(q, rq); 1870 if (ret == BLKPREP_OK) { 1871 break; 1872 } else if (ret == BLKPREP_DEFER) { 1873 /* 1874 * the request may have been (partially) prepped. 1875 * we need to keep this request in the front to 1876 * avoid resource deadlock. REQ_STARTED will 1877 * prevent other fs requests from passing this one. 1878 */ 1879 if (q->dma_drain_size && blk_rq_bytes(rq) && 1880 !(rq->cmd_flags & REQ_DONTPREP)) { 1881 /* 1882 * remove the space for the drain we added 1883 * so that we don't add it again 1884 */ 1885 --rq->nr_phys_segments; 1886 } 1887 1888 rq = NULL; 1889 break; 1890 } else if (ret == BLKPREP_KILL) { 1891 rq->cmd_flags |= REQ_QUIET; 1892 /* 1893 * Mark this request as started so we don't trigger 1894 * any debug logic in the end I/O path. 1895 */ 1896 blk_start_request(rq); 1897 __blk_end_request_all(rq, -EIO); 1898 } else { 1899 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1900 break; 1901 } 1902 } 1903 1904 return rq; 1905 } 1906 EXPORT_SYMBOL(blk_peek_request); 1907 1908 void blk_dequeue_request(struct request *rq) 1909 { 1910 struct request_queue *q = rq->q; 1911 1912 BUG_ON(list_empty(&rq->queuelist)); 1913 BUG_ON(ELV_ON_HASH(rq)); 1914 1915 list_del_init(&rq->queuelist); 1916 1917 /* 1918 * the time frame between a request being removed from the lists 1919 * and to it is freed is accounted as io that is in progress at 1920 * the driver side. 1921 */ 1922 if (blk_account_rq(rq)) { 1923 q->in_flight[rq_is_sync(rq)]++; 1924 set_io_start_time_ns(rq); 1925 } 1926 } 1927 1928 /** 1929 * blk_start_request - start request processing on the driver 1930 * @req: request to dequeue 1931 * 1932 * Description: 1933 * Dequeue @req and start timeout timer on it. This hands off the 1934 * request to the driver. 1935 * 1936 * Block internal functions which don't want to start timer should 1937 * call blk_dequeue_request(). 1938 * 1939 * Context: 1940 * queue_lock must be held. 1941 */ 1942 void blk_start_request(struct request *req) 1943 { 1944 blk_dequeue_request(req); 1945 1946 /* 1947 * We are now handing the request to the hardware, initialize 1948 * resid_len to full count and add the timeout handler. 1949 */ 1950 req->resid_len = blk_rq_bytes(req); 1951 if (unlikely(blk_bidi_rq(req))) 1952 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1953 1954 blk_add_timer(req); 1955 } 1956 EXPORT_SYMBOL(blk_start_request); 1957 1958 /** 1959 * blk_fetch_request - fetch a request from a request queue 1960 * @q: request queue to fetch a request from 1961 * 1962 * Description: 1963 * Return the request at the top of @q. The request is started on 1964 * return and LLD can start processing it immediately. 1965 * 1966 * Return: 1967 * Pointer to the request at the top of @q if available. Null 1968 * otherwise. 1969 * 1970 * Context: 1971 * queue_lock must be held. 1972 */ 1973 struct request *blk_fetch_request(struct request_queue *q) 1974 { 1975 struct request *rq; 1976 1977 rq = blk_peek_request(q); 1978 if (rq) 1979 blk_start_request(rq); 1980 return rq; 1981 } 1982 EXPORT_SYMBOL(blk_fetch_request); 1983 1984 /** 1985 * blk_update_request - Special helper function for request stacking drivers 1986 * @req: the request being processed 1987 * @error: %0 for success, < %0 for error 1988 * @nr_bytes: number of bytes to complete @req 1989 * 1990 * Description: 1991 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1992 * the request structure even if @req doesn't have leftover. 1993 * If @req has leftover, sets it up for the next range of segments. 1994 * 1995 * This special helper function is only for request stacking drivers 1996 * (e.g. request-based dm) so that they can handle partial completion. 1997 * Actual device drivers should use blk_end_request instead. 1998 * 1999 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2000 * %false return from this function. 2001 * 2002 * Return: 2003 * %false - this request doesn't have any more data 2004 * %true - this request has more data 2005 **/ 2006 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2007 { 2008 int total_bytes, bio_nbytes, next_idx = 0; 2009 struct bio *bio; 2010 2011 if (!req->bio) 2012 return false; 2013 2014 trace_block_rq_complete(req->q, req); 2015 2016 /* 2017 * For fs requests, rq is just carrier of independent bio's 2018 * and each partial completion should be handled separately. 2019 * Reset per-request error on each partial completion. 2020 * 2021 * TODO: tj: This is too subtle. It would be better to let 2022 * low level drivers do what they see fit. 2023 */ 2024 if (req->cmd_type == REQ_TYPE_FS) 2025 req->errors = 0; 2026 2027 if (error && req->cmd_type == REQ_TYPE_FS && 2028 !(req->cmd_flags & REQ_QUIET)) { 2029 char *error_type; 2030 2031 switch (error) { 2032 case -ENOLINK: 2033 error_type = "recoverable transport"; 2034 break; 2035 case -EREMOTEIO: 2036 error_type = "critical target"; 2037 break; 2038 case -EBADE: 2039 error_type = "critical nexus"; 2040 break; 2041 case -EIO: 2042 default: 2043 error_type = "I/O"; 2044 break; 2045 } 2046 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2047 error_type, req->rq_disk ? req->rq_disk->disk_name : "?", 2048 (unsigned long long)blk_rq_pos(req)); 2049 } 2050 2051 blk_account_io_completion(req, nr_bytes); 2052 2053 total_bytes = bio_nbytes = 0; 2054 while ((bio = req->bio) != NULL) { 2055 int nbytes; 2056 2057 if (nr_bytes >= bio->bi_size) { 2058 req->bio = bio->bi_next; 2059 nbytes = bio->bi_size; 2060 req_bio_endio(req, bio, nbytes, error); 2061 next_idx = 0; 2062 bio_nbytes = 0; 2063 } else { 2064 int idx = bio->bi_idx + next_idx; 2065 2066 if (unlikely(idx >= bio->bi_vcnt)) { 2067 blk_dump_rq_flags(req, "__end_that"); 2068 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2069 __func__, idx, bio->bi_vcnt); 2070 break; 2071 } 2072 2073 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2074 BIO_BUG_ON(nbytes > bio->bi_size); 2075 2076 /* 2077 * not a complete bvec done 2078 */ 2079 if (unlikely(nbytes > nr_bytes)) { 2080 bio_nbytes += nr_bytes; 2081 total_bytes += nr_bytes; 2082 break; 2083 } 2084 2085 /* 2086 * advance to the next vector 2087 */ 2088 next_idx++; 2089 bio_nbytes += nbytes; 2090 } 2091 2092 total_bytes += nbytes; 2093 nr_bytes -= nbytes; 2094 2095 bio = req->bio; 2096 if (bio) { 2097 /* 2098 * end more in this run, or just return 'not-done' 2099 */ 2100 if (unlikely(nr_bytes <= 0)) 2101 break; 2102 } 2103 } 2104 2105 /* 2106 * completely done 2107 */ 2108 if (!req->bio) { 2109 /* 2110 * Reset counters so that the request stacking driver 2111 * can find how many bytes remain in the request 2112 * later. 2113 */ 2114 req->__data_len = 0; 2115 return false; 2116 } 2117 2118 /* 2119 * if the request wasn't completed, update state 2120 */ 2121 if (bio_nbytes) { 2122 req_bio_endio(req, bio, bio_nbytes, error); 2123 bio->bi_idx += next_idx; 2124 bio_iovec(bio)->bv_offset += nr_bytes; 2125 bio_iovec(bio)->bv_len -= nr_bytes; 2126 } 2127 2128 req->__data_len -= total_bytes; 2129 req->buffer = bio_data(req->bio); 2130 2131 /* update sector only for requests with clear definition of sector */ 2132 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2133 req->__sector += total_bytes >> 9; 2134 2135 /* mixed attributes always follow the first bio */ 2136 if (req->cmd_flags & REQ_MIXED_MERGE) { 2137 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2138 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2139 } 2140 2141 /* 2142 * If total number of sectors is less than the first segment 2143 * size, something has gone terribly wrong. 2144 */ 2145 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2146 blk_dump_rq_flags(req, "request botched"); 2147 req->__data_len = blk_rq_cur_bytes(req); 2148 } 2149 2150 /* recalculate the number of segments */ 2151 blk_recalc_rq_segments(req); 2152 2153 return true; 2154 } 2155 EXPORT_SYMBOL_GPL(blk_update_request); 2156 2157 static bool blk_update_bidi_request(struct request *rq, int error, 2158 unsigned int nr_bytes, 2159 unsigned int bidi_bytes) 2160 { 2161 if (blk_update_request(rq, error, nr_bytes)) 2162 return true; 2163 2164 /* Bidi request must be completed as a whole */ 2165 if (unlikely(blk_bidi_rq(rq)) && 2166 blk_update_request(rq->next_rq, error, bidi_bytes)) 2167 return true; 2168 2169 if (blk_queue_add_random(rq->q)) 2170 add_disk_randomness(rq->rq_disk); 2171 2172 return false; 2173 } 2174 2175 /** 2176 * blk_unprep_request - unprepare a request 2177 * @req: the request 2178 * 2179 * This function makes a request ready for complete resubmission (or 2180 * completion). It happens only after all error handling is complete, 2181 * so represents the appropriate moment to deallocate any resources 2182 * that were allocated to the request in the prep_rq_fn. The queue 2183 * lock is held when calling this. 2184 */ 2185 void blk_unprep_request(struct request *req) 2186 { 2187 struct request_queue *q = req->q; 2188 2189 req->cmd_flags &= ~REQ_DONTPREP; 2190 if (q->unprep_rq_fn) 2191 q->unprep_rq_fn(q, req); 2192 } 2193 EXPORT_SYMBOL_GPL(blk_unprep_request); 2194 2195 /* 2196 * queue lock must be held 2197 */ 2198 static void blk_finish_request(struct request *req, int error) 2199 { 2200 if (blk_rq_tagged(req)) 2201 blk_queue_end_tag(req->q, req); 2202 2203 BUG_ON(blk_queued_rq(req)); 2204 2205 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2206 laptop_io_completion(&req->q->backing_dev_info); 2207 2208 blk_delete_timer(req); 2209 2210 if (req->cmd_flags & REQ_DONTPREP) 2211 blk_unprep_request(req); 2212 2213 2214 blk_account_io_done(req); 2215 2216 if (req->end_io) 2217 req->end_io(req, error); 2218 else { 2219 if (blk_bidi_rq(req)) 2220 __blk_put_request(req->next_rq->q, req->next_rq); 2221 2222 __blk_put_request(req->q, req); 2223 } 2224 } 2225 2226 /** 2227 * blk_end_bidi_request - Complete a bidi request 2228 * @rq: the request to complete 2229 * @error: %0 for success, < %0 for error 2230 * @nr_bytes: number of bytes to complete @rq 2231 * @bidi_bytes: number of bytes to complete @rq->next_rq 2232 * 2233 * Description: 2234 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2235 * Drivers that supports bidi can safely call this member for any 2236 * type of request, bidi or uni. In the later case @bidi_bytes is 2237 * just ignored. 2238 * 2239 * Return: 2240 * %false - we are done with this request 2241 * %true - still buffers pending for this request 2242 **/ 2243 static bool blk_end_bidi_request(struct request *rq, int error, 2244 unsigned int nr_bytes, unsigned int bidi_bytes) 2245 { 2246 struct request_queue *q = rq->q; 2247 unsigned long flags; 2248 2249 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2250 return true; 2251 2252 spin_lock_irqsave(q->queue_lock, flags); 2253 blk_finish_request(rq, error); 2254 spin_unlock_irqrestore(q->queue_lock, flags); 2255 2256 return false; 2257 } 2258 2259 /** 2260 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2261 * @rq: the request to complete 2262 * @error: %0 for success, < %0 for error 2263 * @nr_bytes: number of bytes to complete @rq 2264 * @bidi_bytes: number of bytes to complete @rq->next_rq 2265 * 2266 * Description: 2267 * Identical to blk_end_bidi_request() except that queue lock is 2268 * assumed to be locked on entry and remains so on return. 2269 * 2270 * Return: 2271 * %false - we are done with this request 2272 * %true - still buffers pending for this request 2273 **/ 2274 static bool __blk_end_bidi_request(struct request *rq, int error, 2275 unsigned int nr_bytes, unsigned int bidi_bytes) 2276 { 2277 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2278 return true; 2279 2280 blk_finish_request(rq, error); 2281 2282 return false; 2283 } 2284 2285 /** 2286 * blk_end_request - Helper function for drivers to complete the request. 2287 * @rq: the request being processed 2288 * @error: %0 for success, < %0 for error 2289 * @nr_bytes: number of bytes to complete 2290 * 2291 * Description: 2292 * Ends I/O on a number of bytes attached to @rq. 2293 * If @rq has leftover, sets it up for the next range of segments. 2294 * 2295 * Return: 2296 * %false - we are done with this request 2297 * %true - still buffers pending for this request 2298 **/ 2299 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2300 { 2301 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2302 } 2303 EXPORT_SYMBOL(blk_end_request); 2304 2305 /** 2306 * blk_end_request_all - Helper function for drives to finish the request. 2307 * @rq: the request to finish 2308 * @error: %0 for success, < %0 for error 2309 * 2310 * Description: 2311 * Completely finish @rq. 2312 */ 2313 void blk_end_request_all(struct request *rq, int error) 2314 { 2315 bool pending; 2316 unsigned int bidi_bytes = 0; 2317 2318 if (unlikely(blk_bidi_rq(rq))) 2319 bidi_bytes = blk_rq_bytes(rq->next_rq); 2320 2321 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2322 BUG_ON(pending); 2323 } 2324 EXPORT_SYMBOL(blk_end_request_all); 2325 2326 /** 2327 * blk_end_request_cur - Helper function to finish the current request chunk. 2328 * @rq: the request to finish the current chunk for 2329 * @error: %0 for success, < %0 for error 2330 * 2331 * Description: 2332 * Complete the current consecutively mapped chunk from @rq. 2333 * 2334 * Return: 2335 * %false - we are done with this request 2336 * %true - still buffers pending for this request 2337 */ 2338 bool blk_end_request_cur(struct request *rq, int error) 2339 { 2340 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2341 } 2342 EXPORT_SYMBOL(blk_end_request_cur); 2343 2344 /** 2345 * blk_end_request_err - Finish a request till the next failure boundary. 2346 * @rq: the request to finish till the next failure boundary for 2347 * @error: must be negative errno 2348 * 2349 * Description: 2350 * Complete @rq till the next failure boundary. 2351 * 2352 * Return: 2353 * %false - we are done with this request 2354 * %true - still buffers pending for this request 2355 */ 2356 bool blk_end_request_err(struct request *rq, int error) 2357 { 2358 WARN_ON(error >= 0); 2359 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2360 } 2361 EXPORT_SYMBOL_GPL(blk_end_request_err); 2362 2363 /** 2364 * __blk_end_request - Helper function for drivers to complete the request. 2365 * @rq: the request being processed 2366 * @error: %0 for success, < %0 for error 2367 * @nr_bytes: number of bytes to complete 2368 * 2369 * Description: 2370 * Must be called with queue lock held unlike blk_end_request(). 2371 * 2372 * Return: 2373 * %false - we are done with this request 2374 * %true - still buffers pending for this request 2375 **/ 2376 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2377 { 2378 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2379 } 2380 EXPORT_SYMBOL(__blk_end_request); 2381 2382 /** 2383 * __blk_end_request_all - Helper function for drives to finish the request. 2384 * @rq: the request to finish 2385 * @error: %0 for success, < %0 for error 2386 * 2387 * Description: 2388 * Completely finish @rq. Must be called with queue lock held. 2389 */ 2390 void __blk_end_request_all(struct request *rq, int error) 2391 { 2392 bool pending; 2393 unsigned int bidi_bytes = 0; 2394 2395 if (unlikely(blk_bidi_rq(rq))) 2396 bidi_bytes = blk_rq_bytes(rq->next_rq); 2397 2398 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2399 BUG_ON(pending); 2400 } 2401 EXPORT_SYMBOL(__blk_end_request_all); 2402 2403 /** 2404 * __blk_end_request_cur - Helper function to finish the current request chunk. 2405 * @rq: the request to finish the current chunk for 2406 * @error: %0 for success, < %0 for error 2407 * 2408 * Description: 2409 * Complete the current consecutively mapped chunk from @rq. Must 2410 * be called with queue lock held. 2411 * 2412 * Return: 2413 * %false - we are done with this request 2414 * %true - still buffers pending for this request 2415 */ 2416 bool __blk_end_request_cur(struct request *rq, int error) 2417 { 2418 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2419 } 2420 EXPORT_SYMBOL(__blk_end_request_cur); 2421 2422 /** 2423 * __blk_end_request_err - Finish a request till the next failure boundary. 2424 * @rq: the request to finish till the next failure boundary for 2425 * @error: must be negative errno 2426 * 2427 * Description: 2428 * Complete @rq till the next failure boundary. Must be called 2429 * with queue lock held. 2430 * 2431 * Return: 2432 * %false - we are done with this request 2433 * %true - still buffers pending for this request 2434 */ 2435 bool __blk_end_request_err(struct request *rq, int error) 2436 { 2437 WARN_ON(error >= 0); 2438 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2439 } 2440 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2441 2442 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2443 struct bio *bio) 2444 { 2445 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2446 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2447 2448 if (bio_has_data(bio)) { 2449 rq->nr_phys_segments = bio_phys_segments(q, bio); 2450 rq->buffer = bio_data(bio); 2451 } 2452 rq->__data_len = bio->bi_size; 2453 rq->bio = rq->biotail = bio; 2454 2455 if (bio->bi_bdev) 2456 rq->rq_disk = bio->bi_bdev->bd_disk; 2457 } 2458 2459 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2460 /** 2461 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2462 * @rq: the request to be flushed 2463 * 2464 * Description: 2465 * Flush all pages in @rq. 2466 */ 2467 void rq_flush_dcache_pages(struct request *rq) 2468 { 2469 struct req_iterator iter; 2470 struct bio_vec *bvec; 2471 2472 rq_for_each_segment(bvec, rq, iter) 2473 flush_dcache_page(bvec->bv_page); 2474 } 2475 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2476 #endif 2477 2478 /** 2479 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2480 * @q : the queue of the device being checked 2481 * 2482 * Description: 2483 * Check if underlying low-level drivers of a device are busy. 2484 * If the drivers want to export their busy state, they must set own 2485 * exporting function using blk_queue_lld_busy() first. 2486 * 2487 * Basically, this function is used only by request stacking drivers 2488 * to stop dispatching requests to underlying devices when underlying 2489 * devices are busy. This behavior helps more I/O merging on the queue 2490 * of the request stacking driver and prevents I/O throughput regression 2491 * on burst I/O load. 2492 * 2493 * Return: 2494 * 0 - Not busy (The request stacking driver should dispatch request) 2495 * 1 - Busy (The request stacking driver should stop dispatching request) 2496 */ 2497 int blk_lld_busy(struct request_queue *q) 2498 { 2499 if (q->lld_busy_fn) 2500 return q->lld_busy_fn(q); 2501 2502 return 0; 2503 } 2504 EXPORT_SYMBOL_GPL(blk_lld_busy); 2505 2506 /** 2507 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2508 * @rq: the clone request to be cleaned up 2509 * 2510 * Description: 2511 * Free all bios in @rq for a cloned request. 2512 */ 2513 void blk_rq_unprep_clone(struct request *rq) 2514 { 2515 struct bio *bio; 2516 2517 while ((bio = rq->bio) != NULL) { 2518 rq->bio = bio->bi_next; 2519 2520 bio_put(bio); 2521 } 2522 } 2523 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2524 2525 /* 2526 * Copy attributes of the original request to the clone request. 2527 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2528 */ 2529 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2530 { 2531 dst->cpu = src->cpu; 2532 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2533 dst->cmd_type = src->cmd_type; 2534 dst->__sector = blk_rq_pos(src); 2535 dst->__data_len = blk_rq_bytes(src); 2536 dst->nr_phys_segments = src->nr_phys_segments; 2537 dst->ioprio = src->ioprio; 2538 dst->extra_len = src->extra_len; 2539 } 2540 2541 /** 2542 * blk_rq_prep_clone - Helper function to setup clone request 2543 * @rq: the request to be setup 2544 * @rq_src: original request to be cloned 2545 * @bs: bio_set that bios for clone are allocated from 2546 * @gfp_mask: memory allocation mask for bio 2547 * @bio_ctr: setup function to be called for each clone bio. 2548 * Returns %0 for success, non %0 for failure. 2549 * @data: private data to be passed to @bio_ctr 2550 * 2551 * Description: 2552 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2553 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2554 * are not copied, and copying such parts is the caller's responsibility. 2555 * Also, pages which the original bios are pointing to are not copied 2556 * and the cloned bios just point same pages. 2557 * So cloned bios must be completed before original bios, which means 2558 * the caller must complete @rq before @rq_src. 2559 */ 2560 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2561 struct bio_set *bs, gfp_t gfp_mask, 2562 int (*bio_ctr)(struct bio *, struct bio *, void *), 2563 void *data) 2564 { 2565 struct bio *bio, *bio_src; 2566 2567 if (!bs) 2568 bs = fs_bio_set; 2569 2570 blk_rq_init(NULL, rq); 2571 2572 __rq_for_each_bio(bio_src, rq_src) { 2573 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2574 if (!bio) 2575 goto free_and_out; 2576 2577 __bio_clone(bio, bio_src); 2578 2579 if (bio_integrity(bio_src) && 2580 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2581 goto free_and_out; 2582 2583 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2584 goto free_and_out; 2585 2586 if (rq->bio) { 2587 rq->biotail->bi_next = bio; 2588 rq->biotail = bio; 2589 } else 2590 rq->bio = rq->biotail = bio; 2591 } 2592 2593 __blk_rq_prep_clone(rq, rq_src); 2594 2595 return 0; 2596 2597 free_and_out: 2598 if (bio) 2599 bio_free(bio, bs); 2600 blk_rq_unprep_clone(rq); 2601 2602 return -ENOMEM; 2603 } 2604 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2605 2606 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2607 { 2608 return queue_work(kblockd_workqueue, work); 2609 } 2610 EXPORT_SYMBOL(kblockd_schedule_work); 2611 2612 int kblockd_schedule_delayed_work(struct request_queue *q, 2613 struct delayed_work *dwork, unsigned long delay) 2614 { 2615 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2616 } 2617 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2618 2619 #define PLUG_MAGIC 0x91827364 2620 2621 void blk_start_plug(struct blk_plug *plug) 2622 { 2623 struct task_struct *tsk = current; 2624 2625 plug->magic = PLUG_MAGIC; 2626 INIT_LIST_HEAD(&plug->list); 2627 INIT_LIST_HEAD(&plug->cb_list); 2628 plug->should_sort = 0; 2629 2630 /* 2631 * If this is a nested plug, don't actually assign it. It will be 2632 * flushed on its own. 2633 */ 2634 if (!tsk->plug) { 2635 /* 2636 * Store ordering should not be needed here, since a potential 2637 * preempt will imply a full memory barrier 2638 */ 2639 tsk->plug = plug; 2640 } 2641 } 2642 EXPORT_SYMBOL(blk_start_plug); 2643 2644 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2645 { 2646 struct request *rqa = container_of(a, struct request, queuelist); 2647 struct request *rqb = container_of(b, struct request, queuelist); 2648 2649 return !(rqa->q <= rqb->q); 2650 } 2651 2652 /* 2653 * If 'from_schedule' is true, then postpone the dispatch of requests 2654 * until a safe kblockd context. We due this to avoid accidental big 2655 * additional stack usage in driver dispatch, in places where the originally 2656 * plugger did not intend it. 2657 */ 2658 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2659 bool from_schedule) 2660 __releases(q->queue_lock) 2661 { 2662 trace_block_unplug(q, depth, !from_schedule); 2663 2664 /* 2665 * If we are punting this to kblockd, then we can safely drop 2666 * the queue_lock before waking kblockd (which needs to take 2667 * this lock). 2668 */ 2669 if (from_schedule) { 2670 spin_unlock(q->queue_lock); 2671 blk_run_queue_async(q); 2672 } else { 2673 __blk_run_queue(q); 2674 spin_unlock(q->queue_lock); 2675 } 2676 2677 } 2678 2679 static void flush_plug_callbacks(struct blk_plug *plug) 2680 { 2681 LIST_HEAD(callbacks); 2682 2683 if (list_empty(&plug->cb_list)) 2684 return; 2685 2686 list_splice_init(&plug->cb_list, &callbacks); 2687 2688 while (!list_empty(&callbacks)) { 2689 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2690 struct blk_plug_cb, 2691 list); 2692 list_del(&cb->list); 2693 cb->callback(cb); 2694 } 2695 } 2696 2697 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2698 { 2699 struct request_queue *q; 2700 unsigned long flags; 2701 struct request *rq; 2702 LIST_HEAD(list); 2703 unsigned int depth; 2704 2705 BUG_ON(plug->magic != PLUG_MAGIC); 2706 2707 flush_plug_callbacks(plug); 2708 if (list_empty(&plug->list)) 2709 return; 2710 2711 list_splice_init(&plug->list, &list); 2712 2713 if (plug->should_sort) { 2714 list_sort(NULL, &list, plug_rq_cmp); 2715 plug->should_sort = 0; 2716 } 2717 2718 q = NULL; 2719 depth = 0; 2720 2721 /* 2722 * Save and disable interrupts here, to avoid doing it for every 2723 * queue lock we have to take. 2724 */ 2725 local_irq_save(flags); 2726 while (!list_empty(&list)) { 2727 rq = list_entry_rq(list.next); 2728 list_del_init(&rq->queuelist); 2729 BUG_ON(!rq->q); 2730 if (rq->q != q) { 2731 /* 2732 * This drops the queue lock 2733 */ 2734 if (q) 2735 queue_unplugged(q, depth, from_schedule); 2736 q = rq->q; 2737 depth = 0; 2738 spin_lock(q->queue_lock); 2739 } 2740 /* 2741 * rq is already accounted, so use raw insert 2742 */ 2743 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 2744 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 2745 else 2746 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 2747 2748 depth++; 2749 } 2750 2751 /* 2752 * This drops the queue lock 2753 */ 2754 if (q) 2755 queue_unplugged(q, depth, from_schedule); 2756 2757 local_irq_restore(flags); 2758 } 2759 2760 void blk_finish_plug(struct blk_plug *plug) 2761 { 2762 blk_flush_plug_list(plug, false); 2763 2764 if (plug == current->plug) 2765 current->plug = NULL; 2766 } 2767 EXPORT_SYMBOL(blk_finish_plug); 2768 2769 int __init blk_dev_init(void) 2770 { 2771 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2772 sizeof(((struct request *)0)->cmd_flags)); 2773 2774 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 2775 kblockd_workqueue = alloc_workqueue("kblockd", 2776 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2777 if (!kblockd_workqueue) 2778 panic("Failed to create kblockd\n"); 2779 2780 request_cachep = kmem_cache_create("blkdev_requests", 2781 sizeof(struct request), 0, SLAB_PANIC, NULL); 2782 2783 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2784 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2785 2786 return 0; 2787 } 2788