1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/block.h> 39 40 #include "blk.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 48 49 DEFINE_IDA(blk_queue_ida); 50 51 /* 52 * For the allocated request tables 53 */ 54 struct kmem_cache *request_cachep; 55 56 /* 57 * For queue allocation 58 */ 59 struct kmem_cache *blk_requestq_cachep; 60 61 /* 62 * Controlling structure to kblockd 63 */ 64 static struct workqueue_struct *kblockd_workqueue; 65 66 static void blk_clear_congested(struct request_list *rl, int sync) 67 { 68 #ifdef CONFIG_CGROUP_WRITEBACK 69 clear_wb_congested(rl->blkg->wb_congested, sync); 70 #else 71 /* 72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 73 * flip its congestion state for events on other blkcgs. 74 */ 75 if (rl == &rl->q->root_rl) 76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 77 #endif 78 } 79 80 static void blk_set_congested(struct request_list *rl, int sync) 81 { 82 #ifdef CONFIG_CGROUP_WRITEBACK 83 set_wb_congested(rl->blkg->wb_congested, sync); 84 #else 85 /* see blk_clear_congested() */ 86 if (rl == &rl->q->root_rl) 87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 88 #endif 89 } 90 91 void blk_queue_congestion_threshold(struct request_queue *q) 92 { 93 int nr; 94 95 nr = q->nr_requests - (q->nr_requests / 8) + 1; 96 if (nr > q->nr_requests) 97 nr = q->nr_requests; 98 q->nr_congestion_on = nr; 99 100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 101 if (nr < 1) 102 nr = 1; 103 q->nr_congestion_off = nr; 104 } 105 106 /** 107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 108 * @bdev: device 109 * 110 * Locates the passed device's request queue and returns the address of its 111 * backing_dev_info. This function can only be called if @bdev is opened 112 * and the return value is never NULL. 113 */ 114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 115 { 116 struct request_queue *q = bdev_get_queue(bdev); 117 118 return &q->backing_dev_info; 119 } 120 EXPORT_SYMBOL(blk_get_backing_dev_info); 121 122 void blk_rq_init(struct request_queue *q, struct request *rq) 123 { 124 memset(rq, 0, sizeof(*rq)); 125 126 INIT_LIST_HEAD(&rq->queuelist); 127 INIT_LIST_HEAD(&rq->timeout_list); 128 rq->cpu = -1; 129 rq->q = q; 130 rq->__sector = (sector_t) -1; 131 INIT_HLIST_NODE(&rq->hash); 132 RB_CLEAR_NODE(&rq->rb_node); 133 rq->cmd = rq->__cmd; 134 rq->cmd_len = BLK_MAX_CDB; 135 rq->tag = -1; 136 rq->start_time = jiffies; 137 set_start_time_ns(rq); 138 rq->part = NULL; 139 } 140 EXPORT_SYMBOL(blk_rq_init); 141 142 static void req_bio_endio(struct request *rq, struct bio *bio, 143 unsigned int nbytes, int error) 144 { 145 if (error) 146 bio->bi_error = error; 147 148 if (unlikely(rq->cmd_flags & REQ_QUIET)) 149 bio_set_flag(bio, BIO_QUIET); 150 151 bio_advance(bio, nbytes); 152 153 /* don't actually finish bio if it's part of flush sequence */ 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 155 bio_endio(bio); 156 } 157 158 void blk_dump_rq_flags(struct request *rq, char *msg) 159 { 160 int bit; 161 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 164 (unsigned long long) rq->cmd_flags); 165 166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 167 (unsigned long long)blk_rq_pos(rq), 168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 169 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 170 rq->bio, rq->biotail, blk_rq_bytes(rq)); 171 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 173 printk(KERN_INFO " cdb: "); 174 for (bit = 0; bit < BLK_MAX_CDB; bit++) 175 printk("%02x ", rq->cmd[bit]); 176 printk("\n"); 177 } 178 } 179 EXPORT_SYMBOL(blk_dump_rq_flags); 180 181 static void blk_delay_work(struct work_struct *work) 182 { 183 struct request_queue *q; 184 185 q = container_of(work, struct request_queue, delay_work.work); 186 spin_lock_irq(q->queue_lock); 187 __blk_run_queue(q); 188 spin_unlock_irq(q->queue_lock); 189 } 190 191 /** 192 * blk_delay_queue - restart queueing after defined interval 193 * @q: The &struct request_queue in question 194 * @msecs: Delay in msecs 195 * 196 * Description: 197 * Sometimes queueing needs to be postponed for a little while, to allow 198 * resources to come back. This function will make sure that queueing is 199 * restarted around the specified time. Queue lock must be held. 200 */ 201 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 202 { 203 if (likely(!blk_queue_dead(q))) 204 queue_delayed_work(kblockd_workqueue, &q->delay_work, 205 msecs_to_jiffies(msecs)); 206 } 207 EXPORT_SYMBOL(blk_delay_queue); 208 209 /** 210 * blk_start_queue_async - asynchronously restart a previously stopped queue 211 * @q: The &struct request_queue in question 212 * 213 * Description: 214 * blk_start_queue_async() will clear the stop flag on the queue, and 215 * ensure that the request_fn for the queue is run from an async 216 * context. 217 **/ 218 void blk_start_queue_async(struct request_queue *q) 219 { 220 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 221 blk_run_queue_async(q); 222 } 223 EXPORT_SYMBOL(blk_start_queue_async); 224 225 /** 226 * blk_start_queue - restart a previously stopped queue 227 * @q: The &struct request_queue in question 228 * 229 * Description: 230 * blk_start_queue() will clear the stop flag on the queue, and call 231 * the request_fn for the queue if it was in a stopped state when 232 * entered. Also see blk_stop_queue(). Queue lock must be held. 233 **/ 234 void blk_start_queue(struct request_queue *q) 235 { 236 WARN_ON(!irqs_disabled()); 237 238 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 239 __blk_run_queue(q); 240 } 241 EXPORT_SYMBOL(blk_start_queue); 242 243 /** 244 * blk_stop_queue - stop a queue 245 * @q: The &struct request_queue in question 246 * 247 * Description: 248 * The Linux block layer assumes that a block driver will consume all 249 * entries on the request queue when the request_fn strategy is called. 250 * Often this will not happen, because of hardware limitations (queue 251 * depth settings). If a device driver gets a 'queue full' response, 252 * or if it simply chooses not to queue more I/O at one point, it can 253 * call this function to prevent the request_fn from being called until 254 * the driver has signalled it's ready to go again. This happens by calling 255 * blk_start_queue() to restart queue operations. Queue lock must be held. 256 **/ 257 void blk_stop_queue(struct request_queue *q) 258 { 259 cancel_delayed_work(&q->delay_work); 260 queue_flag_set(QUEUE_FLAG_STOPPED, q); 261 } 262 EXPORT_SYMBOL(blk_stop_queue); 263 264 /** 265 * blk_sync_queue - cancel any pending callbacks on a queue 266 * @q: the queue 267 * 268 * Description: 269 * The block layer may perform asynchronous callback activity 270 * on a queue, such as calling the unplug function after a timeout. 271 * A block device may call blk_sync_queue to ensure that any 272 * such activity is cancelled, thus allowing it to release resources 273 * that the callbacks might use. The caller must already have made sure 274 * that its ->make_request_fn will not re-add plugging prior to calling 275 * this function. 276 * 277 * This function does not cancel any asynchronous activity arising 278 * out of elevator or throttling code. That would require elevator_exit() 279 * and blkcg_exit_queue() to be called with queue lock initialized. 280 * 281 */ 282 void blk_sync_queue(struct request_queue *q) 283 { 284 del_timer_sync(&q->timeout); 285 286 if (q->mq_ops) { 287 struct blk_mq_hw_ctx *hctx; 288 int i; 289 290 queue_for_each_hw_ctx(q, hctx, i) { 291 cancel_delayed_work_sync(&hctx->run_work); 292 cancel_delayed_work_sync(&hctx->delay_work); 293 } 294 } else { 295 cancel_delayed_work_sync(&q->delay_work); 296 } 297 } 298 EXPORT_SYMBOL(blk_sync_queue); 299 300 /** 301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 302 * @q: The queue to run 303 * 304 * Description: 305 * Invoke request handling on a queue if there are any pending requests. 306 * May be used to restart request handling after a request has completed. 307 * This variant runs the queue whether or not the queue has been 308 * stopped. Must be called with the queue lock held and interrupts 309 * disabled. See also @blk_run_queue. 310 */ 311 inline void __blk_run_queue_uncond(struct request_queue *q) 312 { 313 if (unlikely(blk_queue_dead(q))) 314 return; 315 316 /* 317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 318 * the queue lock internally. As a result multiple threads may be 319 * running such a request function concurrently. Keep track of the 320 * number of active request_fn invocations such that blk_drain_queue() 321 * can wait until all these request_fn calls have finished. 322 */ 323 q->request_fn_active++; 324 q->request_fn(q); 325 q->request_fn_active--; 326 } 327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 328 329 /** 330 * __blk_run_queue - run a single device queue 331 * @q: The queue to run 332 * 333 * Description: 334 * See @blk_run_queue. This variant must be called with the queue lock 335 * held and interrupts disabled. 336 */ 337 void __blk_run_queue(struct request_queue *q) 338 { 339 if (unlikely(blk_queue_stopped(q))) 340 return; 341 342 __blk_run_queue_uncond(q); 343 } 344 EXPORT_SYMBOL(__blk_run_queue); 345 346 /** 347 * blk_run_queue_async - run a single device queue in workqueue context 348 * @q: The queue to run 349 * 350 * Description: 351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 352 * of us. The caller must hold the queue lock. 353 */ 354 void blk_run_queue_async(struct request_queue *q) 355 { 356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 358 } 359 EXPORT_SYMBOL(blk_run_queue_async); 360 361 /** 362 * blk_run_queue - run a single device queue 363 * @q: The queue to run 364 * 365 * Description: 366 * Invoke request handling on this queue, if it has pending work to do. 367 * May be used to restart queueing when a request has completed. 368 */ 369 void blk_run_queue(struct request_queue *q) 370 { 371 unsigned long flags; 372 373 spin_lock_irqsave(q->queue_lock, flags); 374 __blk_run_queue(q); 375 spin_unlock_irqrestore(q->queue_lock, flags); 376 } 377 EXPORT_SYMBOL(blk_run_queue); 378 379 void blk_put_queue(struct request_queue *q) 380 { 381 kobject_put(&q->kobj); 382 } 383 EXPORT_SYMBOL(blk_put_queue); 384 385 /** 386 * __blk_drain_queue - drain requests from request_queue 387 * @q: queue to drain 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 389 * 390 * Drain requests from @q. If @drain_all is set, all requests are drained. 391 * If not, only ELVPRIV requests are drained. The caller is responsible 392 * for ensuring that no new requests which need to be drained are queued. 393 */ 394 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 395 __releases(q->queue_lock) 396 __acquires(q->queue_lock) 397 { 398 int i; 399 400 lockdep_assert_held(q->queue_lock); 401 402 while (true) { 403 bool drain = false; 404 405 /* 406 * The caller might be trying to drain @q before its 407 * elevator is initialized. 408 */ 409 if (q->elevator) 410 elv_drain_elevator(q); 411 412 blkcg_drain_queue(q); 413 414 /* 415 * This function might be called on a queue which failed 416 * driver init after queue creation or is not yet fully 417 * active yet. Some drivers (e.g. fd and loop) get unhappy 418 * in such cases. Kick queue iff dispatch queue has 419 * something on it and @q has request_fn set. 420 */ 421 if (!list_empty(&q->queue_head) && q->request_fn) 422 __blk_run_queue(q); 423 424 drain |= q->nr_rqs_elvpriv; 425 drain |= q->request_fn_active; 426 427 /* 428 * Unfortunately, requests are queued at and tracked from 429 * multiple places and there's no single counter which can 430 * be drained. Check all the queues and counters. 431 */ 432 if (drain_all) { 433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 434 drain |= !list_empty(&q->queue_head); 435 for (i = 0; i < 2; i++) { 436 drain |= q->nr_rqs[i]; 437 drain |= q->in_flight[i]; 438 if (fq) 439 drain |= !list_empty(&fq->flush_queue[i]); 440 } 441 } 442 443 if (!drain) 444 break; 445 446 spin_unlock_irq(q->queue_lock); 447 448 msleep(10); 449 450 spin_lock_irq(q->queue_lock); 451 } 452 453 /* 454 * With queue marked dead, any woken up waiter will fail the 455 * allocation path, so the wakeup chaining is lost and we're 456 * left with hung waiters. We need to wake up those waiters. 457 */ 458 if (q->request_fn) { 459 struct request_list *rl; 460 461 blk_queue_for_each_rl(rl, q) 462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 463 wake_up_all(&rl->wait[i]); 464 } 465 } 466 467 /** 468 * blk_queue_bypass_start - enter queue bypass mode 469 * @q: queue of interest 470 * 471 * In bypass mode, only the dispatch FIFO queue of @q is used. This 472 * function makes @q enter bypass mode and drains all requests which were 473 * throttled or issued before. On return, it's guaranteed that no request 474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 475 * inside queue or RCU read lock. 476 */ 477 void blk_queue_bypass_start(struct request_queue *q) 478 { 479 spin_lock_irq(q->queue_lock); 480 q->bypass_depth++; 481 queue_flag_set(QUEUE_FLAG_BYPASS, q); 482 spin_unlock_irq(q->queue_lock); 483 484 /* 485 * Queues start drained. Skip actual draining till init is 486 * complete. This avoids lenghty delays during queue init which 487 * can happen many times during boot. 488 */ 489 if (blk_queue_init_done(q)) { 490 spin_lock_irq(q->queue_lock); 491 __blk_drain_queue(q, false); 492 spin_unlock_irq(q->queue_lock); 493 494 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 495 synchronize_rcu(); 496 } 497 } 498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 499 500 /** 501 * blk_queue_bypass_end - leave queue bypass mode 502 * @q: queue of interest 503 * 504 * Leave bypass mode and restore the normal queueing behavior. 505 */ 506 void blk_queue_bypass_end(struct request_queue *q) 507 { 508 spin_lock_irq(q->queue_lock); 509 if (!--q->bypass_depth) 510 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 511 WARN_ON_ONCE(q->bypass_depth < 0); 512 spin_unlock_irq(q->queue_lock); 513 } 514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 515 516 void blk_set_queue_dying(struct request_queue *q) 517 { 518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 519 520 if (q->mq_ops) 521 blk_mq_wake_waiters(q); 522 else { 523 struct request_list *rl; 524 525 blk_queue_for_each_rl(rl, q) { 526 if (rl->rq_pool) { 527 wake_up(&rl->wait[BLK_RW_SYNC]); 528 wake_up(&rl->wait[BLK_RW_ASYNC]); 529 } 530 } 531 } 532 } 533 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 534 535 /** 536 * blk_cleanup_queue - shutdown a request queue 537 * @q: request queue to shutdown 538 * 539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 540 * put it. All future requests will be failed immediately with -ENODEV. 541 */ 542 void blk_cleanup_queue(struct request_queue *q) 543 { 544 spinlock_t *lock = q->queue_lock; 545 546 /* mark @q DYING, no new request or merges will be allowed afterwards */ 547 mutex_lock(&q->sysfs_lock); 548 blk_set_queue_dying(q); 549 spin_lock_irq(lock); 550 551 /* 552 * A dying queue is permanently in bypass mode till released. Note 553 * that, unlike blk_queue_bypass_start(), we aren't performing 554 * synchronize_rcu() after entering bypass mode to avoid the delay 555 * as some drivers create and destroy a lot of queues while 556 * probing. This is still safe because blk_release_queue() will be 557 * called only after the queue refcnt drops to zero and nothing, 558 * RCU or not, would be traversing the queue by then. 559 */ 560 q->bypass_depth++; 561 queue_flag_set(QUEUE_FLAG_BYPASS, q); 562 563 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 565 queue_flag_set(QUEUE_FLAG_DYING, q); 566 spin_unlock_irq(lock); 567 mutex_unlock(&q->sysfs_lock); 568 569 /* 570 * Drain all requests queued before DYING marking. Set DEAD flag to 571 * prevent that q->request_fn() gets invoked after draining finished. 572 */ 573 blk_freeze_queue(q); 574 spin_lock_irq(lock); 575 if (!q->mq_ops) 576 __blk_drain_queue(q, true); 577 queue_flag_set(QUEUE_FLAG_DEAD, q); 578 spin_unlock_irq(lock); 579 580 /* for synchronous bio-based driver finish in-flight integrity i/o */ 581 blk_flush_integrity(); 582 583 /* @q won't process any more request, flush async actions */ 584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 585 blk_sync_queue(q); 586 587 if (q->mq_ops) 588 blk_mq_free_queue(q); 589 percpu_ref_exit(&q->q_usage_counter); 590 591 spin_lock_irq(lock); 592 if (q->queue_lock != &q->__queue_lock) 593 q->queue_lock = &q->__queue_lock; 594 spin_unlock_irq(lock); 595 596 bdi_unregister(&q->backing_dev_info); 597 598 /* @q is and will stay empty, shutdown and put */ 599 blk_put_queue(q); 600 } 601 EXPORT_SYMBOL(blk_cleanup_queue); 602 603 /* Allocate memory local to the request queue */ 604 static void *alloc_request_struct(gfp_t gfp_mask, void *data) 605 { 606 int nid = (int)(long)data; 607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid); 608 } 609 610 static void free_request_struct(void *element, void *unused) 611 { 612 kmem_cache_free(request_cachep, element); 613 } 614 615 int blk_init_rl(struct request_list *rl, struct request_queue *q, 616 gfp_t gfp_mask) 617 { 618 if (unlikely(rl->rq_pool)) 619 return 0; 620 621 rl->q = q; 622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 626 627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct, 628 free_request_struct, 629 (void *)(long)q->node, gfp_mask, 630 q->node); 631 if (!rl->rq_pool) 632 return -ENOMEM; 633 634 return 0; 635 } 636 637 void blk_exit_rl(struct request_list *rl) 638 { 639 if (rl->rq_pool) 640 mempool_destroy(rl->rq_pool); 641 } 642 643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 644 { 645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 646 } 647 EXPORT_SYMBOL(blk_alloc_queue); 648 649 int blk_queue_enter(struct request_queue *q, bool nowait) 650 { 651 while (true) { 652 int ret; 653 654 if (percpu_ref_tryget_live(&q->q_usage_counter)) 655 return 0; 656 657 if (nowait) 658 return -EBUSY; 659 660 ret = wait_event_interruptible(q->mq_freeze_wq, 661 !atomic_read(&q->mq_freeze_depth) || 662 blk_queue_dying(q)); 663 if (blk_queue_dying(q)) 664 return -ENODEV; 665 if (ret) 666 return ret; 667 } 668 } 669 670 void blk_queue_exit(struct request_queue *q) 671 { 672 percpu_ref_put(&q->q_usage_counter); 673 } 674 675 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 676 { 677 struct request_queue *q = 678 container_of(ref, struct request_queue, q_usage_counter); 679 680 wake_up_all(&q->mq_freeze_wq); 681 } 682 683 static void blk_rq_timed_out_timer(unsigned long data) 684 { 685 struct request_queue *q = (struct request_queue *)data; 686 687 kblockd_schedule_work(&q->timeout_work); 688 } 689 690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 691 { 692 struct request_queue *q; 693 int err; 694 695 q = kmem_cache_alloc_node(blk_requestq_cachep, 696 gfp_mask | __GFP_ZERO, node_id); 697 if (!q) 698 return NULL; 699 700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 701 if (q->id < 0) 702 goto fail_q; 703 704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 705 if (!q->bio_split) 706 goto fail_id; 707 708 q->backing_dev_info.ra_pages = 709 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK; 711 q->backing_dev_info.name = "block"; 712 q->node = node_id; 713 714 err = bdi_init(&q->backing_dev_info); 715 if (err) 716 goto fail_split; 717 718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 719 laptop_mode_timer_fn, (unsigned long) q); 720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 721 INIT_LIST_HEAD(&q->queue_head); 722 INIT_LIST_HEAD(&q->timeout_list); 723 INIT_LIST_HEAD(&q->icq_list); 724 #ifdef CONFIG_BLK_CGROUP 725 INIT_LIST_HEAD(&q->blkg_list); 726 #endif 727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 728 729 kobject_init(&q->kobj, &blk_queue_ktype); 730 731 mutex_init(&q->sysfs_lock); 732 spin_lock_init(&q->__queue_lock); 733 734 /* 735 * By default initialize queue_lock to internal lock and driver can 736 * override it later if need be. 737 */ 738 q->queue_lock = &q->__queue_lock; 739 740 /* 741 * A queue starts its life with bypass turned on to avoid 742 * unnecessary bypass on/off overhead and nasty surprises during 743 * init. The initial bypass will be finished when the queue is 744 * registered by blk_register_queue(). 745 */ 746 q->bypass_depth = 1; 747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 748 749 init_waitqueue_head(&q->mq_freeze_wq); 750 751 /* 752 * Init percpu_ref in atomic mode so that it's faster to shutdown. 753 * See blk_register_queue() for details. 754 */ 755 if (percpu_ref_init(&q->q_usage_counter, 756 blk_queue_usage_counter_release, 757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 758 goto fail_bdi; 759 760 if (blkcg_init_queue(q)) 761 goto fail_ref; 762 763 return q; 764 765 fail_ref: 766 percpu_ref_exit(&q->q_usage_counter); 767 fail_bdi: 768 bdi_destroy(&q->backing_dev_info); 769 fail_split: 770 bioset_free(q->bio_split); 771 fail_id: 772 ida_simple_remove(&blk_queue_ida, q->id); 773 fail_q: 774 kmem_cache_free(blk_requestq_cachep, q); 775 return NULL; 776 } 777 EXPORT_SYMBOL(blk_alloc_queue_node); 778 779 /** 780 * blk_init_queue - prepare a request queue for use with a block device 781 * @rfn: The function to be called to process requests that have been 782 * placed on the queue. 783 * @lock: Request queue spin lock 784 * 785 * Description: 786 * If a block device wishes to use the standard request handling procedures, 787 * which sorts requests and coalesces adjacent requests, then it must 788 * call blk_init_queue(). The function @rfn will be called when there 789 * are requests on the queue that need to be processed. If the device 790 * supports plugging, then @rfn may not be called immediately when requests 791 * are available on the queue, but may be called at some time later instead. 792 * Plugged queues are generally unplugged when a buffer belonging to one 793 * of the requests on the queue is needed, or due to memory pressure. 794 * 795 * @rfn is not required, or even expected, to remove all requests off the 796 * queue, but only as many as it can handle at a time. If it does leave 797 * requests on the queue, it is responsible for arranging that the requests 798 * get dealt with eventually. 799 * 800 * The queue spin lock must be held while manipulating the requests on the 801 * request queue; this lock will be taken also from interrupt context, so irq 802 * disabling is needed for it. 803 * 804 * Function returns a pointer to the initialized request queue, or %NULL if 805 * it didn't succeed. 806 * 807 * Note: 808 * blk_init_queue() must be paired with a blk_cleanup_queue() call 809 * when the block device is deactivated (such as at module unload). 810 **/ 811 812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 813 { 814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 815 } 816 EXPORT_SYMBOL(blk_init_queue); 817 818 struct request_queue * 819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 820 { 821 struct request_queue *uninit_q, *q; 822 823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 824 if (!uninit_q) 825 return NULL; 826 827 q = blk_init_allocated_queue(uninit_q, rfn, lock); 828 if (!q) 829 blk_cleanup_queue(uninit_q); 830 831 return q; 832 } 833 EXPORT_SYMBOL(blk_init_queue_node); 834 835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 836 837 struct request_queue * 838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 839 spinlock_t *lock) 840 { 841 if (!q) 842 return NULL; 843 844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0); 845 if (!q->fq) 846 return NULL; 847 848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 849 goto fail; 850 851 INIT_WORK(&q->timeout_work, blk_timeout_work); 852 q->request_fn = rfn; 853 q->prep_rq_fn = NULL; 854 q->unprep_rq_fn = NULL; 855 q->queue_flags |= QUEUE_FLAG_DEFAULT; 856 857 /* Override internal queue lock with supplied lock pointer */ 858 if (lock) 859 q->queue_lock = lock; 860 861 /* 862 * This also sets hw/phys segments, boundary and size 863 */ 864 blk_queue_make_request(q, blk_queue_bio); 865 866 q->sg_reserved_size = INT_MAX; 867 868 /* Protect q->elevator from elevator_change */ 869 mutex_lock(&q->sysfs_lock); 870 871 /* init elevator */ 872 if (elevator_init(q, NULL)) { 873 mutex_unlock(&q->sysfs_lock); 874 goto fail; 875 } 876 877 mutex_unlock(&q->sysfs_lock); 878 879 return q; 880 881 fail: 882 blk_free_flush_queue(q->fq); 883 return NULL; 884 } 885 EXPORT_SYMBOL(blk_init_allocated_queue); 886 887 bool blk_get_queue(struct request_queue *q) 888 { 889 if (likely(!blk_queue_dying(q))) { 890 __blk_get_queue(q); 891 return true; 892 } 893 894 return false; 895 } 896 EXPORT_SYMBOL(blk_get_queue); 897 898 static inline void blk_free_request(struct request_list *rl, struct request *rq) 899 { 900 if (rq->cmd_flags & REQ_ELVPRIV) { 901 elv_put_request(rl->q, rq); 902 if (rq->elv.icq) 903 put_io_context(rq->elv.icq->ioc); 904 } 905 906 mempool_free(rq, rl->rq_pool); 907 } 908 909 /* 910 * ioc_batching returns true if the ioc is a valid batching request and 911 * should be given priority access to a request. 912 */ 913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 914 { 915 if (!ioc) 916 return 0; 917 918 /* 919 * Make sure the process is able to allocate at least 1 request 920 * even if the batch times out, otherwise we could theoretically 921 * lose wakeups. 922 */ 923 return ioc->nr_batch_requests == q->nr_batching || 924 (ioc->nr_batch_requests > 0 925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 926 } 927 928 /* 929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 930 * will cause the process to be a "batcher" on all queues in the system. This 931 * is the behaviour we want though - once it gets a wakeup it should be given 932 * a nice run. 933 */ 934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 935 { 936 if (!ioc || ioc_batching(q, ioc)) 937 return; 938 939 ioc->nr_batch_requests = q->nr_batching; 940 ioc->last_waited = jiffies; 941 } 942 943 static void __freed_request(struct request_list *rl, int sync) 944 { 945 struct request_queue *q = rl->q; 946 947 if (rl->count[sync] < queue_congestion_off_threshold(q)) 948 blk_clear_congested(rl, sync); 949 950 if (rl->count[sync] + 1 <= q->nr_requests) { 951 if (waitqueue_active(&rl->wait[sync])) 952 wake_up(&rl->wait[sync]); 953 954 blk_clear_rl_full(rl, sync); 955 } 956 } 957 958 /* 959 * A request has just been released. Account for it, update the full and 960 * congestion status, wake up any waiters. Called under q->queue_lock. 961 */ 962 static void freed_request(struct request_list *rl, unsigned int flags) 963 { 964 struct request_queue *q = rl->q; 965 int sync = rw_is_sync(flags); 966 967 q->nr_rqs[sync]--; 968 rl->count[sync]--; 969 if (flags & REQ_ELVPRIV) 970 q->nr_rqs_elvpriv--; 971 972 __freed_request(rl, sync); 973 974 if (unlikely(rl->starved[sync ^ 1])) 975 __freed_request(rl, sync ^ 1); 976 } 977 978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 979 { 980 struct request_list *rl; 981 int on_thresh, off_thresh; 982 983 spin_lock_irq(q->queue_lock); 984 q->nr_requests = nr; 985 blk_queue_congestion_threshold(q); 986 on_thresh = queue_congestion_on_threshold(q); 987 off_thresh = queue_congestion_off_threshold(q); 988 989 blk_queue_for_each_rl(rl, q) { 990 if (rl->count[BLK_RW_SYNC] >= on_thresh) 991 blk_set_congested(rl, BLK_RW_SYNC); 992 else if (rl->count[BLK_RW_SYNC] < off_thresh) 993 blk_clear_congested(rl, BLK_RW_SYNC); 994 995 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 996 blk_set_congested(rl, BLK_RW_ASYNC); 997 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 998 blk_clear_congested(rl, BLK_RW_ASYNC); 999 1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1001 blk_set_rl_full(rl, BLK_RW_SYNC); 1002 } else { 1003 blk_clear_rl_full(rl, BLK_RW_SYNC); 1004 wake_up(&rl->wait[BLK_RW_SYNC]); 1005 } 1006 1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1008 blk_set_rl_full(rl, BLK_RW_ASYNC); 1009 } else { 1010 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1011 wake_up(&rl->wait[BLK_RW_ASYNC]); 1012 } 1013 } 1014 1015 spin_unlock_irq(q->queue_lock); 1016 return 0; 1017 } 1018 1019 /* 1020 * Determine if elevator data should be initialized when allocating the 1021 * request associated with @bio. 1022 */ 1023 static bool blk_rq_should_init_elevator(struct bio *bio) 1024 { 1025 if (!bio) 1026 return true; 1027 1028 /* 1029 * Flush requests do not use the elevator so skip initialization. 1030 * This allows a request to share the flush and elevator data. 1031 */ 1032 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 1033 return false; 1034 1035 return true; 1036 } 1037 1038 /** 1039 * rq_ioc - determine io_context for request allocation 1040 * @bio: request being allocated is for this bio (can be %NULL) 1041 * 1042 * Determine io_context to use for request allocation for @bio. May return 1043 * %NULL if %current->io_context doesn't exist. 1044 */ 1045 static struct io_context *rq_ioc(struct bio *bio) 1046 { 1047 #ifdef CONFIG_BLK_CGROUP 1048 if (bio && bio->bi_ioc) 1049 return bio->bi_ioc; 1050 #endif 1051 return current->io_context; 1052 } 1053 1054 /** 1055 * __get_request - get a free request 1056 * @rl: request list to allocate from 1057 * @rw_flags: RW and SYNC flags 1058 * @bio: bio to allocate request for (can be %NULL) 1059 * @gfp_mask: allocation mask 1060 * 1061 * Get a free request from @q. This function may fail under memory 1062 * pressure or if @q is dead. 1063 * 1064 * Must be called with @q->queue_lock held and, 1065 * Returns ERR_PTR on failure, with @q->queue_lock held. 1066 * Returns request pointer on success, with @q->queue_lock *not held*. 1067 */ 1068 static struct request *__get_request(struct request_list *rl, int rw_flags, 1069 struct bio *bio, gfp_t gfp_mask) 1070 { 1071 struct request_queue *q = rl->q; 1072 struct request *rq; 1073 struct elevator_type *et = q->elevator->type; 1074 struct io_context *ioc = rq_ioc(bio); 1075 struct io_cq *icq = NULL; 1076 const bool is_sync = rw_is_sync(rw_flags) != 0; 1077 int may_queue; 1078 1079 if (unlikely(blk_queue_dying(q))) 1080 return ERR_PTR(-ENODEV); 1081 1082 may_queue = elv_may_queue(q, rw_flags); 1083 if (may_queue == ELV_MQUEUE_NO) 1084 goto rq_starved; 1085 1086 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1087 if (rl->count[is_sync]+1 >= q->nr_requests) { 1088 /* 1089 * The queue will fill after this allocation, so set 1090 * it as full, and mark this process as "batching". 1091 * This process will be allowed to complete a batch of 1092 * requests, others will be blocked. 1093 */ 1094 if (!blk_rl_full(rl, is_sync)) { 1095 ioc_set_batching(q, ioc); 1096 blk_set_rl_full(rl, is_sync); 1097 } else { 1098 if (may_queue != ELV_MQUEUE_MUST 1099 && !ioc_batching(q, ioc)) { 1100 /* 1101 * The queue is full and the allocating 1102 * process is not a "batcher", and not 1103 * exempted by the IO scheduler 1104 */ 1105 return ERR_PTR(-ENOMEM); 1106 } 1107 } 1108 } 1109 blk_set_congested(rl, is_sync); 1110 } 1111 1112 /* 1113 * Only allow batching queuers to allocate up to 50% over the defined 1114 * limit of requests, otherwise we could have thousands of requests 1115 * allocated with any setting of ->nr_requests 1116 */ 1117 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1118 return ERR_PTR(-ENOMEM); 1119 1120 q->nr_rqs[is_sync]++; 1121 rl->count[is_sync]++; 1122 rl->starved[is_sync] = 0; 1123 1124 /* 1125 * Decide whether the new request will be managed by elevator. If 1126 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 1127 * prevent the current elevator from being destroyed until the new 1128 * request is freed. This guarantees icq's won't be destroyed and 1129 * makes creating new ones safe. 1130 * 1131 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1132 * it will be created after releasing queue_lock. 1133 */ 1134 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1135 rw_flags |= REQ_ELVPRIV; 1136 q->nr_rqs_elvpriv++; 1137 if (et->icq_cache && ioc) 1138 icq = ioc_lookup_icq(ioc, q); 1139 } 1140 1141 if (blk_queue_io_stat(q)) 1142 rw_flags |= REQ_IO_STAT; 1143 spin_unlock_irq(q->queue_lock); 1144 1145 /* allocate and init request */ 1146 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1147 if (!rq) 1148 goto fail_alloc; 1149 1150 blk_rq_init(q, rq); 1151 blk_rq_set_rl(rq, rl); 1152 rq->cmd_flags = rw_flags | REQ_ALLOCED; 1153 1154 /* init elvpriv */ 1155 if (rw_flags & REQ_ELVPRIV) { 1156 if (unlikely(et->icq_cache && !icq)) { 1157 if (ioc) 1158 icq = ioc_create_icq(ioc, q, gfp_mask); 1159 if (!icq) 1160 goto fail_elvpriv; 1161 } 1162 1163 rq->elv.icq = icq; 1164 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1165 goto fail_elvpriv; 1166 1167 /* @rq->elv.icq holds io_context until @rq is freed */ 1168 if (icq) 1169 get_io_context(icq->ioc); 1170 } 1171 out: 1172 /* 1173 * ioc may be NULL here, and ioc_batching will be false. That's 1174 * OK, if the queue is under the request limit then requests need 1175 * not count toward the nr_batch_requests limit. There will always 1176 * be some limit enforced by BLK_BATCH_TIME. 1177 */ 1178 if (ioc_batching(q, ioc)) 1179 ioc->nr_batch_requests--; 1180 1181 trace_block_getrq(q, bio, rw_flags & 1); 1182 return rq; 1183 1184 fail_elvpriv: 1185 /* 1186 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1187 * and may fail indefinitely under memory pressure and thus 1188 * shouldn't stall IO. Treat this request as !elvpriv. This will 1189 * disturb iosched and blkcg but weird is bettern than dead. 1190 */ 1191 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1192 __func__, dev_name(q->backing_dev_info.dev)); 1193 1194 rq->cmd_flags &= ~REQ_ELVPRIV; 1195 rq->elv.icq = NULL; 1196 1197 spin_lock_irq(q->queue_lock); 1198 q->nr_rqs_elvpriv--; 1199 spin_unlock_irq(q->queue_lock); 1200 goto out; 1201 1202 fail_alloc: 1203 /* 1204 * Allocation failed presumably due to memory. Undo anything we 1205 * might have messed up. 1206 * 1207 * Allocating task should really be put onto the front of the wait 1208 * queue, but this is pretty rare. 1209 */ 1210 spin_lock_irq(q->queue_lock); 1211 freed_request(rl, rw_flags); 1212 1213 /* 1214 * in the very unlikely event that allocation failed and no 1215 * requests for this direction was pending, mark us starved so that 1216 * freeing of a request in the other direction will notice 1217 * us. another possible fix would be to split the rq mempool into 1218 * READ and WRITE 1219 */ 1220 rq_starved: 1221 if (unlikely(rl->count[is_sync] == 0)) 1222 rl->starved[is_sync] = 1; 1223 return ERR_PTR(-ENOMEM); 1224 } 1225 1226 /** 1227 * get_request - get a free request 1228 * @q: request_queue to allocate request from 1229 * @rw_flags: RW and SYNC flags 1230 * @bio: bio to allocate request for (can be %NULL) 1231 * @gfp_mask: allocation mask 1232 * 1233 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1234 * this function keeps retrying under memory pressure and fails iff @q is dead. 1235 * 1236 * Must be called with @q->queue_lock held and, 1237 * Returns ERR_PTR on failure, with @q->queue_lock held. 1238 * Returns request pointer on success, with @q->queue_lock *not held*. 1239 */ 1240 static struct request *get_request(struct request_queue *q, int rw_flags, 1241 struct bio *bio, gfp_t gfp_mask) 1242 { 1243 const bool is_sync = rw_is_sync(rw_flags) != 0; 1244 DEFINE_WAIT(wait); 1245 struct request_list *rl; 1246 struct request *rq; 1247 1248 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1249 retry: 1250 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1251 if (!IS_ERR(rq)) 1252 return rq; 1253 1254 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1255 blk_put_rl(rl); 1256 return rq; 1257 } 1258 1259 /* wait on @rl and retry */ 1260 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1261 TASK_UNINTERRUPTIBLE); 1262 1263 trace_block_sleeprq(q, bio, rw_flags & 1); 1264 1265 spin_unlock_irq(q->queue_lock); 1266 io_schedule(); 1267 1268 /* 1269 * After sleeping, we become a "batching" process and will be able 1270 * to allocate at least one request, and up to a big batch of them 1271 * for a small period time. See ioc_batching, ioc_set_batching 1272 */ 1273 ioc_set_batching(q, current->io_context); 1274 1275 spin_lock_irq(q->queue_lock); 1276 finish_wait(&rl->wait[is_sync], &wait); 1277 1278 goto retry; 1279 } 1280 1281 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1282 gfp_t gfp_mask) 1283 { 1284 struct request *rq; 1285 1286 BUG_ON(rw != READ && rw != WRITE); 1287 1288 /* create ioc upfront */ 1289 create_io_context(gfp_mask, q->node); 1290 1291 spin_lock_irq(q->queue_lock); 1292 rq = get_request(q, rw, NULL, gfp_mask); 1293 if (IS_ERR(rq)) 1294 spin_unlock_irq(q->queue_lock); 1295 /* q->queue_lock is unlocked at this point */ 1296 1297 return rq; 1298 } 1299 1300 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1301 { 1302 if (q->mq_ops) 1303 return blk_mq_alloc_request(q, rw, 1304 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1305 0 : BLK_MQ_REQ_NOWAIT); 1306 else 1307 return blk_old_get_request(q, rw, gfp_mask); 1308 } 1309 EXPORT_SYMBOL(blk_get_request); 1310 1311 /** 1312 * blk_make_request - given a bio, allocate a corresponding struct request. 1313 * @q: target request queue 1314 * @bio: The bio describing the memory mappings that will be submitted for IO. 1315 * It may be a chained-bio properly constructed by block/bio layer. 1316 * @gfp_mask: gfp flags to be used for memory allocation 1317 * 1318 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1319 * type commands. Where the struct request needs to be farther initialized by 1320 * the caller. It is passed a &struct bio, which describes the memory info of 1321 * the I/O transfer. 1322 * 1323 * The caller of blk_make_request must make sure that bi_io_vec 1324 * are set to describe the memory buffers. That bio_data_dir() will return 1325 * the needed direction of the request. (And all bio's in the passed bio-chain 1326 * are properly set accordingly) 1327 * 1328 * If called under none-sleepable conditions, mapped bio buffers must not 1329 * need bouncing, by calling the appropriate masked or flagged allocator, 1330 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1331 * BUG. 1332 * 1333 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1334 * given to how you allocate bios. In particular, you cannot use 1335 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise 1336 * you risk waiting for IO completion of a bio that hasn't been submitted yet, 1337 * thus resulting in a deadlock. Alternatively bios should be allocated using 1338 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock. 1339 * If possible a big IO should be split into smaller parts when allocation 1340 * fails. Partial allocation should not be an error, or you risk a live-lock. 1341 */ 1342 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1343 gfp_t gfp_mask) 1344 { 1345 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1346 1347 if (IS_ERR(rq)) 1348 return rq; 1349 1350 blk_rq_set_block_pc(rq); 1351 1352 for_each_bio(bio) { 1353 struct bio *bounce_bio = bio; 1354 int ret; 1355 1356 blk_queue_bounce(q, &bounce_bio); 1357 ret = blk_rq_append_bio(q, rq, bounce_bio); 1358 if (unlikely(ret)) { 1359 blk_put_request(rq); 1360 return ERR_PTR(ret); 1361 } 1362 } 1363 1364 return rq; 1365 } 1366 EXPORT_SYMBOL(blk_make_request); 1367 1368 /** 1369 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC 1370 * @rq: request to be initialized 1371 * 1372 */ 1373 void blk_rq_set_block_pc(struct request *rq) 1374 { 1375 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1376 rq->__data_len = 0; 1377 rq->__sector = (sector_t) -1; 1378 rq->bio = rq->biotail = NULL; 1379 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1380 } 1381 EXPORT_SYMBOL(blk_rq_set_block_pc); 1382 1383 /** 1384 * blk_requeue_request - put a request back on queue 1385 * @q: request queue where request should be inserted 1386 * @rq: request to be inserted 1387 * 1388 * Description: 1389 * Drivers often keep queueing requests until the hardware cannot accept 1390 * more, when that condition happens we need to put the request back 1391 * on the queue. Must be called with queue lock held. 1392 */ 1393 void blk_requeue_request(struct request_queue *q, struct request *rq) 1394 { 1395 blk_delete_timer(rq); 1396 blk_clear_rq_complete(rq); 1397 trace_block_rq_requeue(q, rq); 1398 1399 if (rq->cmd_flags & REQ_QUEUED) 1400 blk_queue_end_tag(q, rq); 1401 1402 BUG_ON(blk_queued_rq(rq)); 1403 1404 elv_requeue_request(q, rq); 1405 } 1406 EXPORT_SYMBOL(blk_requeue_request); 1407 1408 static void add_acct_request(struct request_queue *q, struct request *rq, 1409 int where) 1410 { 1411 blk_account_io_start(rq, true); 1412 __elv_add_request(q, rq, where); 1413 } 1414 1415 static void part_round_stats_single(int cpu, struct hd_struct *part, 1416 unsigned long now) 1417 { 1418 int inflight; 1419 1420 if (now == part->stamp) 1421 return; 1422 1423 inflight = part_in_flight(part); 1424 if (inflight) { 1425 __part_stat_add(cpu, part, time_in_queue, 1426 inflight * (now - part->stamp)); 1427 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1428 } 1429 part->stamp = now; 1430 } 1431 1432 /** 1433 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1434 * @cpu: cpu number for stats access 1435 * @part: target partition 1436 * 1437 * The average IO queue length and utilisation statistics are maintained 1438 * by observing the current state of the queue length and the amount of 1439 * time it has been in this state for. 1440 * 1441 * Normally, that accounting is done on IO completion, but that can result 1442 * in more than a second's worth of IO being accounted for within any one 1443 * second, leading to >100% utilisation. To deal with that, we call this 1444 * function to do a round-off before returning the results when reading 1445 * /proc/diskstats. This accounts immediately for all queue usage up to 1446 * the current jiffies and restarts the counters again. 1447 */ 1448 void part_round_stats(int cpu, struct hd_struct *part) 1449 { 1450 unsigned long now = jiffies; 1451 1452 if (part->partno) 1453 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1454 part_round_stats_single(cpu, part, now); 1455 } 1456 EXPORT_SYMBOL_GPL(part_round_stats); 1457 1458 #ifdef CONFIG_PM 1459 static void blk_pm_put_request(struct request *rq) 1460 { 1461 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1462 pm_runtime_mark_last_busy(rq->q->dev); 1463 } 1464 #else 1465 static inline void blk_pm_put_request(struct request *rq) {} 1466 #endif 1467 1468 /* 1469 * queue lock must be held 1470 */ 1471 void __blk_put_request(struct request_queue *q, struct request *req) 1472 { 1473 if (unlikely(!q)) 1474 return; 1475 1476 if (q->mq_ops) { 1477 blk_mq_free_request(req); 1478 return; 1479 } 1480 1481 blk_pm_put_request(req); 1482 1483 elv_completed_request(q, req); 1484 1485 /* this is a bio leak */ 1486 WARN_ON(req->bio != NULL); 1487 1488 /* 1489 * Request may not have originated from ll_rw_blk. if not, 1490 * it didn't come out of our reserved rq pools 1491 */ 1492 if (req->cmd_flags & REQ_ALLOCED) { 1493 unsigned int flags = req->cmd_flags; 1494 struct request_list *rl = blk_rq_rl(req); 1495 1496 BUG_ON(!list_empty(&req->queuelist)); 1497 BUG_ON(ELV_ON_HASH(req)); 1498 1499 blk_free_request(rl, req); 1500 freed_request(rl, flags); 1501 blk_put_rl(rl); 1502 } 1503 } 1504 EXPORT_SYMBOL_GPL(__blk_put_request); 1505 1506 void blk_put_request(struct request *req) 1507 { 1508 struct request_queue *q = req->q; 1509 1510 if (q->mq_ops) 1511 blk_mq_free_request(req); 1512 else { 1513 unsigned long flags; 1514 1515 spin_lock_irqsave(q->queue_lock, flags); 1516 __blk_put_request(q, req); 1517 spin_unlock_irqrestore(q->queue_lock, flags); 1518 } 1519 } 1520 EXPORT_SYMBOL(blk_put_request); 1521 1522 /** 1523 * blk_add_request_payload - add a payload to a request 1524 * @rq: request to update 1525 * @page: page backing the payload 1526 * @len: length of the payload. 1527 * 1528 * This allows to later add a payload to an already submitted request by 1529 * a block driver. The driver needs to take care of freeing the payload 1530 * itself. 1531 * 1532 * Note that this is a quite horrible hack and nothing but handling of 1533 * discard requests should ever use it. 1534 */ 1535 void blk_add_request_payload(struct request *rq, struct page *page, 1536 unsigned int len) 1537 { 1538 struct bio *bio = rq->bio; 1539 1540 bio->bi_io_vec->bv_page = page; 1541 bio->bi_io_vec->bv_offset = 0; 1542 bio->bi_io_vec->bv_len = len; 1543 1544 bio->bi_iter.bi_size = len; 1545 bio->bi_vcnt = 1; 1546 bio->bi_phys_segments = 1; 1547 1548 rq->__data_len = rq->resid_len = len; 1549 rq->nr_phys_segments = 1; 1550 } 1551 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1552 1553 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1554 struct bio *bio) 1555 { 1556 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1557 1558 if (!ll_back_merge_fn(q, req, bio)) 1559 return false; 1560 1561 trace_block_bio_backmerge(q, req, bio); 1562 1563 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1564 blk_rq_set_mixed_merge(req); 1565 1566 req->biotail->bi_next = bio; 1567 req->biotail = bio; 1568 req->__data_len += bio->bi_iter.bi_size; 1569 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1570 1571 blk_account_io_start(req, false); 1572 return true; 1573 } 1574 1575 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1576 struct bio *bio) 1577 { 1578 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1579 1580 if (!ll_front_merge_fn(q, req, bio)) 1581 return false; 1582 1583 trace_block_bio_frontmerge(q, req, bio); 1584 1585 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1586 blk_rq_set_mixed_merge(req); 1587 1588 bio->bi_next = req->bio; 1589 req->bio = bio; 1590 1591 req->__sector = bio->bi_iter.bi_sector; 1592 req->__data_len += bio->bi_iter.bi_size; 1593 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1594 1595 blk_account_io_start(req, false); 1596 return true; 1597 } 1598 1599 /** 1600 * blk_attempt_plug_merge - try to merge with %current's plugged list 1601 * @q: request_queue new bio is being queued at 1602 * @bio: new bio being queued 1603 * @request_count: out parameter for number of traversed plugged requests 1604 * @same_queue_rq: pointer to &struct request that gets filled in when 1605 * another request associated with @q is found on the plug list 1606 * (optional, may be %NULL) 1607 * 1608 * Determine whether @bio being queued on @q can be merged with a request 1609 * on %current's plugged list. Returns %true if merge was successful, 1610 * otherwise %false. 1611 * 1612 * Plugging coalesces IOs from the same issuer for the same purpose without 1613 * going through @q->queue_lock. As such it's more of an issuing mechanism 1614 * than scheduling, and the request, while may have elvpriv data, is not 1615 * added on the elevator at this point. In addition, we don't have 1616 * reliable access to the elevator outside queue lock. Only check basic 1617 * merging parameters without querying the elevator. 1618 * 1619 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1620 */ 1621 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1622 unsigned int *request_count, 1623 struct request **same_queue_rq) 1624 { 1625 struct blk_plug *plug; 1626 struct request *rq; 1627 bool ret = false; 1628 struct list_head *plug_list; 1629 1630 plug = current->plug; 1631 if (!plug) 1632 goto out; 1633 *request_count = 0; 1634 1635 if (q->mq_ops) 1636 plug_list = &plug->mq_list; 1637 else 1638 plug_list = &plug->list; 1639 1640 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1641 int el_ret; 1642 1643 if (rq->q == q) { 1644 (*request_count)++; 1645 /* 1646 * Only blk-mq multiple hardware queues case checks the 1647 * rq in the same queue, there should be only one such 1648 * rq in a queue 1649 **/ 1650 if (same_queue_rq) 1651 *same_queue_rq = rq; 1652 } 1653 1654 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1655 continue; 1656 1657 el_ret = blk_try_merge(rq, bio); 1658 if (el_ret == ELEVATOR_BACK_MERGE) { 1659 ret = bio_attempt_back_merge(q, rq, bio); 1660 if (ret) 1661 break; 1662 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1663 ret = bio_attempt_front_merge(q, rq, bio); 1664 if (ret) 1665 break; 1666 } 1667 } 1668 out: 1669 return ret; 1670 } 1671 1672 unsigned int blk_plug_queued_count(struct request_queue *q) 1673 { 1674 struct blk_plug *plug; 1675 struct request *rq; 1676 struct list_head *plug_list; 1677 unsigned int ret = 0; 1678 1679 plug = current->plug; 1680 if (!plug) 1681 goto out; 1682 1683 if (q->mq_ops) 1684 plug_list = &plug->mq_list; 1685 else 1686 plug_list = &plug->list; 1687 1688 list_for_each_entry(rq, plug_list, queuelist) { 1689 if (rq->q == q) 1690 ret++; 1691 } 1692 out: 1693 return ret; 1694 } 1695 1696 void init_request_from_bio(struct request *req, struct bio *bio) 1697 { 1698 req->cmd_type = REQ_TYPE_FS; 1699 1700 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1701 if (bio->bi_rw & REQ_RAHEAD) 1702 req->cmd_flags |= REQ_FAILFAST_MASK; 1703 1704 req->errors = 0; 1705 req->__sector = bio->bi_iter.bi_sector; 1706 req->ioprio = bio_prio(bio); 1707 blk_rq_bio_prep(req->q, req, bio); 1708 } 1709 1710 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1711 { 1712 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1713 struct blk_plug *plug; 1714 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1715 struct request *req; 1716 unsigned int request_count = 0; 1717 1718 /* 1719 * low level driver can indicate that it wants pages above a 1720 * certain limit bounced to low memory (ie for highmem, or even 1721 * ISA dma in theory) 1722 */ 1723 blk_queue_bounce(q, &bio); 1724 1725 blk_queue_split(q, &bio, q->bio_split); 1726 1727 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1728 bio->bi_error = -EIO; 1729 bio_endio(bio); 1730 return BLK_QC_T_NONE; 1731 } 1732 1733 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1734 spin_lock_irq(q->queue_lock); 1735 where = ELEVATOR_INSERT_FLUSH; 1736 goto get_rq; 1737 } 1738 1739 /* 1740 * Check if we can merge with the plugged list before grabbing 1741 * any locks. 1742 */ 1743 if (!blk_queue_nomerges(q)) { 1744 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1745 return BLK_QC_T_NONE; 1746 } else 1747 request_count = blk_plug_queued_count(q); 1748 1749 spin_lock_irq(q->queue_lock); 1750 1751 el_ret = elv_merge(q, &req, bio); 1752 if (el_ret == ELEVATOR_BACK_MERGE) { 1753 if (bio_attempt_back_merge(q, req, bio)) { 1754 elv_bio_merged(q, req, bio); 1755 if (!attempt_back_merge(q, req)) 1756 elv_merged_request(q, req, el_ret); 1757 goto out_unlock; 1758 } 1759 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1760 if (bio_attempt_front_merge(q, req, bio)) { 1761 elv_bio_merged(q, req, bio); 1762 if (!attempt_front_merge(q, req)) 1763 elv_merged_request(q, req, el_ret); 1764 goto out_unlock; 1765 } 1766 } 1767 1768 get_rq: 1769 /* 1770 * This sync check and mask will be re-done in init_request_from_bio(), 1771 * but we need to set it earlier to expose the sync flag to the 1772 * rq allocator and io schedulers. 1773 */ 1774 rw_flags = bio_data_dir(bio); 1775 if (sync) 1776 rw_flags |= REQ_SYNC; 1777 1778 /* 1779 * Grab a free request. This is might sleep but can not fail. 1780 * Returns with the queue unlocked. 1781 */ 1782 req = get_request(q, rw_flags, bio, GFP_NOIO); 1783 if (IS_ERR(req)) { 1784 bio->bi_error = PTR_ERR(req); 1785 bio_endio(bio); 1786 goto out_unlock; 1787 } 1788 1789 /* 1790 * After dropping the lock and possibly sleeping here, our request 1791 * may now be mergeable after it had proven unmergeable (above). 1792 * We don't worry about that case for efficiency. It won't happen 1793 * often, and the elevators are able to handle it. 1794 */ 1795 init_request_from_bio(req, bio); 1796 1797 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1798 req->cpu = raw_smp_processor_id(); 1799 1800 plug = current->plug; 1801 if (plug) { 1802 /* 1803 * If this is the first request added after a plug, fire 1804 * of a plug trace. 1805 */ 1806 if (!request_count) 1807 trace_block_plug(q); 1808 else { 1809 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1810 blk_flush_plug_list(plug, false); 1811 trace_block_plug(q); 1812 } 1813 } 1814 list_add_tail(&req->queuelist, &plug->list); 1815 blk_account_io_start(req, true); 1816 } else { 1817 spin_lock_irq(q->queue_lock); 1818 add_acct_request(q, req, where); 1819 __blk_run_queue(q); 1820 out_unlock: 1821 spin_unlock_irq(q->queue_lock); 1822 } 1823 1824 return BLK_QC_T_NONE; 1825 } 1826 1827 /* 1828 * If bio->bi_dev is a partition, remap the location 1829 */ 1830 static inline void blk_partition_remap(struct bio *bio) 1831 { 1832 struct block_device *bdev = bio->bi_bdev; 1833 1834 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1835 struct hd_struct *p = bdev->bd_part; 1836 1837 bio->bi_iter.bi_sector += p->start_sect; 1838 bio->bi_bdev = bdev->bd_contains; 1839 1840 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1841 bdev->bd_dev, 1842 bio->bi_iter.bi_sector - p->start_sect); 1843 } 1844 } 1845 1846 static void handle_bad_sector(struct bio *bio) 1847 { 1848 char b[BDEVNAME_SIZE]; 1849 1850 printk(KERN_INFO "attempt to access beyond end of device\n"); 1851 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1852 bdevname(bio->bi_bdev, b), 1853 bio->bi_rw, 1854 (unsigned long long)bio_end_sector(bio), 1855 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1856 } 1857 1858 #ifdef CONFIG_FAIL_MAKE_REQUEST 1859 1860 static DECLARE_FAULT_ATTR(fail_make_request); 1861 1862 static int __init setup_fail_make_request(char *str) 1863 { 1864 return setup_fault_attr(&fail_make_request, str); 1865 } 1866 __setup("fail_make_request=", setup_fail_make_request); 1867 1868 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1869 { 1870 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1871 } 1872 1873 static int __init fail_make_request_debugfs(void) 1874 { 1875 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1876 NULL, &fail_make_request); 1877 1878 return PTR_ERR_OR_ZERO(dir); 1879 } 1880 1881 late_initcall(fail_make_request_debugfs); 1882 1883 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1884 1885 static inline bool should_fail_request(struct hd_struct *part, 1886 unsigned int bytes) 1887 { 1888 return false; 1889 } 1890 1891 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1892 1893 /* 1894 * Check whether this bio extends beyond the end of the device. 1895 */ 1896 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1897 { 1898 sector_t maxsector; 1899 1900 if (!nr_sectors) 1901 return 0; 1902 1903 /* Test device or partition size, when known. */ 1904 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1905 if (maxsector) { 1906 sector_t sector = bio->bi_iter.bi_sector; 1907 1908 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1909 /* 1910 * This may well happen - the kernel calls bread() 1911 * without checking the size of the device, e.g., when 1912 * mounting a device. 1913 */ 1914 handle_bad_sector(bio); 1915 return 1; 1916 } 1917 } 1918 1919 return 0; 1920 } 1921 1922 static noinline_for_stack bool 1923 generic_make_request_checks(struct bio *bio) 1924 { 1925 struct request_queue *q; 1926 int nr_sectors = bio_sectors(bio); 1927 int err = -EIO; 1928 char b[BDEVNAME_SIZE]; 1929 struct hd_struct *part; 1930 1931 might_sleep(); 1932 1933 if (bio_check_eod(bio, nr_sectors)) 1934 goto end_io; 1935 1936 q = bdev_get_queue(bio->bi_bdev); 1937 if (unlikely(!q)) { 1938 printk(KERN_ERR 1939 "generic_make_request: Trying to access " 1940 "nonexistent block-device %s (%Lu)\n", 1941 bdevname(bio->bi_bdev, b), 1942 (long long) bio->bi_iter.bi_sector); 1943 goto end_io; 1944 } 1945 1946 part = bio->bi_bdev->bd_part; 1947 if (should_fail_request(part, bio->bi_iter.bi_size) || 1948 should_fail_request(&part_to_disk(part)->part0, 1949 bio->bi_iter.bi_size)) 1950 goto end_io; 1951 1952 /* 1953 * If this device has partitions, remap block n 1954 * of partition p to block n+start(p) of the disk. 1955 */ 1956 blk_partition_remap(bio); 1957 1958 if (bio_check_eod(bio, nr_sectors)) 1959 goto end_io; 1960 1961 /* 1962 * Filter flush bio's early so that make_request based 1963 * drivers without flush support don't have to worry 1964 * about them. 1965 */ 1966 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1967 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1968 if (!nr_sectors) { 1969 err = 0; 1970 goto end_io; 1971 } 1972 } 1973 1974 if ((bio->bi_rw & REQ_DISCARD) && 1975 (!blk_queue_discard(q) || 1976 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1977 err = -EOPNOTSUPP; 1978 goto end_io; 1979 } 1980 1981 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1982 err = -EOPNOTSUPP; 1983 goto end_io; 1984 } 1985 1986 /* 1987 * Various block parts want %current->io_context and lazy ioc 1988 * allocation ends up trading a lot of pain for a small amount of 1989 * memory. Just allocate it upfront. This may fail and block 1990 * layer knows how to live with it. 1991 */ 1992 create_io_context(GFP_ATOMIC, q->node); 1993 1994 if (!blkcg_bio_issue_check(q, bio)) 1995 return false; 1996 1997 trace_block_bio_queue(q, bio); 1998 return true; 1999 2000 end_io: 2001 bio->bi_error = err; 2002 bio_endio(bio); 2003 return false; 2004 } 2005 2006 /** 2007 * generic_make_request - hand a buffer to its device driver for I/O 2008 * @bio: The bio describing the location in memory and on the device. 2009 * 2010 * generic_make_request() is used to make I/O requests of block 2011 * devices. It is passed a &struct bio, which describes the I/O that needs 2012 * to be done. 2013 * 2014 * generic_make_request() does not return any status. The 2015 * success/failure status of the request, along with notification of 2016 * completion, is delivered asynchronously through the bio->bi_end_io 2017 * function described (one day) else where. 2018 * 2019 * The caller of generic_make_request must make sure that bi_io_vec 2020 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2021 * set to describe the device address, and the 2022 * bi_end_io and optionally bi_private are set to describe how 2023 * completion notification should be signaled. 2024 * 2025 * generic_make_request and the drivers it calls may use bi_next if this 2026 * bio happens to be merged with someone else, and may resubmit the bio to 2027 * a lower device by calling into generic_make_request recursively, which 2028 * means the bio should NOT be touched after the call to ->make_request_fn. 2029 */ 2030 blk_qc_t generic_make_request(struct bio *bio) 2031 { 2032 struct bio_list bio_list_on_stack; 2033 blk_qc_t ret = BLK_QC_T_NONE; 2034 2035 if (!generic_make_request_checks(bio)) 2036 goto out; 2037 2038 /* 2039 * We only want one ->make_request_fn to be active at a time, else 2040 * stack usage with stacked devices could be a problem. So use 2041 * current->bio_list to keep a list of requests submited by a 2042 * make_request_fn function. current->bio_list is also used as a 2043 * flag to say if generic_make_request is currently active in this 2044 * task or not. If it is NULL, then no make_request is active. If 2045 * it is non-NULL, then a make_request is active, and new requests 2046 * should be added at the tail 2047 */ 2048 if (current->bio_list) { 2049 bio_list_add(current->bio_list, bio); 2050 goto out; 2051 } 2052 2053 /* following loop may be a bit non-obvious, and so deserves some 2054 * explanation. 2055 * Before entering the loop, bio->bi_next is NULL (as all callers 2056 * ensure that) so we have a list with a single bio. 2057 * We pretend that we have just taken it off a longer list, so 2058 * we assign bio_list to a pointer to the bio_list_on_stack, 2059 * thus initialising the bio_list of new bios to be 2060 * added. ->make_request() may indeed add some more bios 2061 * through a recursive call to generic_make_request. If it 2062 * did, we find a non-NULL value in bio_list and re-enter the loop 2063 * from the top. In this case we really did just take the bio 2064 * of the top of the list (no pretending) and so remove it from 2065 * bio_list, and call into ->make_request() again. 2066 */ 2067 BUG_ON(bio->bi_next); 2068 bio_list_init(&bio_list_on_stack); 2069 current->bio_list = &bio_list_on_stack; 2070 do { 2071 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2072 2073 if (likely(blk_queue_enter(q, false) == 0)) { 2074 ret = q->make_request_fn(q, bio); 2075 2076 blk_queue_exit(q); 2077 2078 bio = bio_list_pop(current->bio_list); 2079 } else { 2080 struct bio *bio_next = bio_list_pop(current->bio_list); 2081 2082 bio_io_error(bio); 2083 bio = bio_next; 2084 } 2085 } while (bio); 2086 current->bio_list = NULL; /* deactivate */ 2087 2088 out: 2089 return ret; 2090 } 2091 EXPORT_SYMBOL(generic_make_request); 2092 2093 /** 2094 * submit_bio - submit a bio to the block device layer for I/O 2095 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 2096 * @bio: The &struct bio which describes the I/O 2097 * 2098 * submit_bio() is very similar in purpose to generic_make_request(), and 2099 * uses that function to do most of the work. Both are fairly rough 2100 * interfaces; @bio must be presetup and ready for I/O. 2101 * 2102 */ 2103 blk_qc_t submit_bio(int rw, struct bio *bio) 2104 { 2105 bio->bi_rw |= rw; 2106 2107 /* 2108 * If it's a regular read/write or a barrier with data attached, 2109 * go through the normal accounting stuff before submission. 2110 */ 2111 if (bio_has_data(bio)) { 2112 unsigned int count; 2113 2114 if (unlikely(rw & REQ_WRITE_SAME)) 2115 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2116 else 2117 count = bio_sectors(bio); 2118 2119 if (rw & WRITE) { 2120 count_vm_events(PGPGOUT, count); 2121 } else { 2122 task_io_account_read(bio->bi_iter.bi_size); 2123 count_vm_events(PGPGIN, count); 2124 } 2125 2126 if (unlikely(block_dump)) { 2127 char b[BDEVNAME_SIZE]; 2128 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2129 current->comm, task_pid_nr(current), 2130 (rw & WRITE) ? "WRITE" : "READ", 2131 (unsigned long long)bio->bi_iter.bi_sector, 2132 bdevname(bio->bi_bdev, b), 2133 count); 2134 } 2135 } 2136 2137 return generic_make_request(bio); 2138 } 2139 EXPORT_SYMBOL(submit_bio); 2140 2141 /** 2142 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2143 * for new the queue limits 2144 * @q: the queue 2145 * @rq: the request being checked 2146 * 2147 * Description: 2148 * @rq may have been made based on weaker limitations of upper-level queues 2149 * in request stacking drivers, and it may violate the limitation of @q. 2150 * Since the block layer and the underlying device driver trust @rq 2151 * after it is inserted to @q, it should be checked against @q before 2152 * the insertion using this generic function. 2153 * 2154 * Request stacking drivers like request-based dm may change the queue 2155 * limits when retrying requests on other queues. Those requests need 2156 * to be checked against the new queue limits again during dispatch. 2157 */ 2158 static int blk_cloned_rq_check_limits(struct request_queue *q, 2159 struct request *rq) 2160 { 2161 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 2162 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2163 return -EIO; 2164 } 2165 2166 /* 2167 * queue's settings related to segment counting like q->bounce_pfn 2168 * may differ from that of other stacking queues. 2169 * Recalculate it to check the request correctly on this queue's 2170 * limitation. 2171 */ 2172 blk_recalc_rq_segments(rq); 2173 if (rq->nr_phys_segments > queue_max_segments(q)) { 2174 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2175 return -EIO; 2176 } 2177 2178 return 0; 2179 } 2180 2181 /** 2182 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2183 * @q: the queue to submit the request 2184 * @rq: the request being queued 2185 */ 2186 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2187 { 2188 unsigned long flags; 2189 int where = ELEVATOR_INSERT_BACK; 2190 2191 if (blk_cloned_rq_check_limits(q, rq)) 2192 return -EIO; 2193 2194 if (rq->rq_disk && 2195 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2196 return -EIO; 2197 2198 if (q->mq_ops) { 2199 if (blk_queue_io_stat(q)) 2200 blk_account_io_start(rq, true); 2201 blk_mq_insert_request(rq, false, true, false); 2202 return 0; 2203 } 2204 2205 spin_lock_irqsave(q->queue_lock, flags); 2206 if (unlikely(blk_queue_dying(q))) { 2207 spin_unlock_irqrestore(q->queue_lock, flags); 2208 return -ENODEV; 2209 } 2210 2211 /* 2212 * Submitting request must be dequeued before calling this function 2213 * because it will be linked to another request_queue 2214 */ 2215 BUG_ON(blk_queued_rq(rq)); 2216 2217 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 2218 where = ELEVATOR_INSERT_FLUSH; 2219 2220 add_acct_request(q, rq, where); 2221 if (where == ELEVATOR_INSERT_FLUSH) 2222 __blk_run_queue(q); 2223 spin_unlock_irqrestore(q->queue_lock, flags); 2224 2225 return 0; 2226 } 2227 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2228 2229 /** 2230 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2231 * @rq: request to examine 2232 * 2233 * Description: 2234 * A request could be merge of IOs which require different failure 2235 * handling. This function determines the number of bytes which 2236 * can be failed from the beginning of the request without 2237 * crossing into area which need to be retried further. 2238 * 2239 * Return: 2240 * The number of bytes to fail. 2241 * 2242 * Context: 2243 * queue_lock must be held. 2244 */ 2245 unsigned int blk_rq_err_bytes(const struct request *rq) 2246 { 2247 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2248 unsigned int bytes = 0; 2249 struct bio *bio; 2250 2251 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2252 return blk_rq_bytes(rq); 2253 2254 /* 2255 * Currently the only 'mixing' which can happen is between 2256 * different fastfail types. We can safely fail portions 2257 * which have all the failfast bits that the first one has - 2258 * the ones which are at least as eager to fail as the first 2259 * one. 2260 */ 2261 for (bio = rq->bio; bio; bio = bio->bi_next) { 2262 if ((bio->bi_rw & ff) != ff) 2263 break; 2264 bytes += bio->bi_iter.bi_size; 2265 } 2266 2267 /* this could lead to infinite loop */ 2268 BUG_ON(blk_rq_bytes(rq) && !bytes); 2269 return bytes; 2270 } 2271 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2272 2273 void blk_account_io_completion(struct request *req, unsigned int bytes) 2274 { 2275 if (blk_do_io_stat(req)) { 2276 const int rw = rq_data_dir(req); 2277 struct hd_struct *part; 2278 int cpu; 2279 2280 cpu = part_stat_lock(); 2281 part = req->part; 2282 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2283 part_stat_unlock(); 2284 } 2285 } 2286 2287 void blk_account_io_done(struct request *req) 2288 { 2289 /* 2290 * Account IO completion. flush_rq isn't accounted as a 2291 * normal IO on queueing nor completion. Accounting the 2292 * containing request is enough. 2293 */ 2294 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2295 unsigned long duration = jiffies - req->start_time; 2296 const int rw = rq_data_dir(req); 2297 struct hd_struct *part; 2298 int cpu; 2299 2300 cpu = part_stat_lock(); 2301 part = req->part; 2302 2303 part_stat_inc(cpu, part, ios[rw]); 2304 part_stat_add(cpu, part, ticks[rw], duration); 2305 part_round_stats(cpu, part); 2306 part_dec_in_flight(part, rw); 2307 2308 hd_struct_put(part); 2309 part_stat_unlock(); 2310 } 2311 } 2312 2313 #ifdef CONFIG_PM 2314 /* 2315 * Don't process normal requests when queue is suspended 2316 * or in the process of suspending/resuming 2317 */ 2318 static struct request *blk_pm_peek_request(struct request_queue *q, 2319 struct request *rq) 2320 { 2321 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2322 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2323 return NULL; 2324 else 2325 return rq; 2326 } 2327 #else 2328 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2329 struct request *rq) 2330 { 2331 return rq; 2332 } 2333 #endif 2334 2335 void blk_account_io_start(struct request *rq, bool new_io) 2336 { 2337 struct hd_struct *part; 2338 int rw = rq_data_dir(rq); 2339 int cpu; 2340 2341 if (!blk_do_io_stat(rq)) 2342 return; 2343 2344 cpu = part_stat_lock(); 2345 2346 if (!new_io) { 2347 part = rq->part; 2348 part_stat_inc(cpu, part, merges[rw]); 2349 } else { 2350 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2351 if (!hd_struct_try_get(part)) { 2352 /* 2353 * The partition is already being removed, 2354 * the request will be accounted on the disk only 2355 * 2356 * We take a reference on disk->part0 although that 2357 * partition will never be deleted, so we can treat 2358 * it as any other partition. 2359 */ 2360 part = &rq->rq_disk->part0; 2361 hd_struct_get(part); 2362 } 2363 part_round_stats(cpu, part); 2364 part_inc_in_flight(part, rw); 2365 rq->part = part; 2366 } 2367 2368 part_stat_unlock(); 2369 } 2370 2371 /** 2372 * blk_peek_request - peek at the top of a request queue 2373 * @q: request queue to peek at 2374 * 2375 * Description: 2376 * Return the request at the top of @q. The returned request 2377 * should be started using blk_start_request() before LLD starts 2378 * processing it. 2379 * 2380 * Return: 2381 * Pointer to the request at the top of @q if available. Null 2382 * otherwise. 2383 * 2384 * Context: 2385 * queue_lock must be held. 2386 */ 2387 struct request *blk_peek_request(struct request_queue *q) 2388 { 2389 struct request *rq; 2390 int ret; 2391 2392 while ((rq = __elv_next_request(q)) != NULL) { 2393 2394 rq = blk_pm_peek_request(q, rq); 2395 if (!rq) 2396 break; 2397 2398 if (!(rq->cmd_flags & REQ_STARTED)) { 2399 /* 2400 * This is the first time the device driver 2401 * sees this request (possibly after 2402 * requeueing). Notify IO scheduler. 2403 */ 2404 if (rq->cmd_flags & REQ_SORTED) 2405 elv_activate_rq(q, rq); 2406 2407 /* 2408 * just mark as started even if we don't start 2409 * it, a request that has been delayed should 2410 * not be passed by new incoming requests 2411 */ 2412 rq->cmd_flags |= REQ_STARTED; 2413 trace_block_rq_issue(q, rq); 2414 } 2415 2416 if (!q->boundary_rq || q->boundary_rq == rq) { 2417 q->end_sector = rq_end_sector(rq); 2418 q->boundary_rq = NULL; 2419 } 2420 2421 if (rq->cmd_flags & REQ_DONTPREP) 2422 break; 2423 2424 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2425 /* 2426 * make sure space for the drain appears we 2427 * know we can do this because max_hw_segments 2428 * has been adjusted to be one fewer than the 2429 * device can handle 2430 */ 2431 rq->nr_phys_segments++; 2432 } 2433 2434 if (!q->prep_rq_fn) 2435 break; 2436 2437 ret = q->prep_rq_fn(q, rq); 2438 if (ret == BLKPREP_OK) { 2439 break; 2440 } else if (ret == BLKPREP_DEFER) { 2441 /* 2442 * the request may have been (partially) prepped. 2443 * we need to keep this request in the front to 2444 * avoid resource deadlock. REQ_STARTED will 2445 * prevent other fs requests from passing this one. 2446 */ 2447 if (q->dma_drain_size && blk_rq_bytes(rq) && 2448 !(rq->cmd_flags & REQ_DONTPREP)) { 2449 /* 2450 * remove the space for the drain we added 2451 * so that we don't add it again 2452 */ 2453 --rq->nr_phys_segments; 2454 } 2455 2456 rq = NULL; 2457 break; 2458 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2459 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO; 2460 2461 rq->cmd_flags |= REQ_QUIET; 2462 /* 2463 * Mark this request as started so we don't trigger 2464 * any debug logic in the end I/O path. 2465 */ 2466 blk_start_request(rq); 2467 __blk_end_request_all(rq, err); 2468 } else { 2469 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2470 break; 2471 } 2472 } 2473 2474 return rq; 2475 } 2476 EXPORT_SYMBOL(blk_peek_request); 2477 2478 void blk_dequeue_request(struct request *rq) 2479 { 2480 struct request_queue *q = rq->q; 2481 2482 BUG_ON(list_empty(&rq->queuelist)); 2483 BUG_ON(ELV_ON_HASH(rq)); 2484 2485 list_del_init(&rq->queuelist); 2486 2487 /* 2488 * the time frame between a request being removed from the lists 2489 * and to it is freed is accounted as io that is in progress at 2490 * the driver side. 2491 */ 2492 if (blk_account_rq(rq)) { 2493 q->in_flight[rq_is_sync(rq)]++; 2494 set_io_start_time_ns(rq); 2495 } 2496 } 2497 2498 /** 2499 * blk_start_request - start request processing on the driver 2500 * @req: request to dequeue 2501 * 2502 * Description: 2503 * Dequeue @req and start timeout timer on it. This hands off the 2504 * request to the driver. 2505 * 2506 * Block internal functions which don't want to start timer should 2507 * call blk_dequeue_request(). 2508 * 2509 * Context: 2510 * queue_lock must be held. 2511 */ 2512 void blk_start_request(struct request *req) 2513 { 2514 blk_dequeue_request(req); 2515 2516 /* 2517 * We are now handing the request to the hardware, initialize 2518 * resid_len to full count and add the timeout handler. 2519 */ 2520 req->resid_len = blk_rq_bytes(req); 2521 if (unlikely(blk_bidi_rq(req))) 2522 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2523 2524 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2525 blk_add_timer(req); 2526 } 2527 EXPORT_SYMBOL(blk_start_request); 2528 2529 /** 2530 * blk_fetch_request - fetch a request from a request queue 2531 * @q: request queue to fetch a request from 2532 * 2533 * Description: 2534 * Return the request at the top of @q. The request is started on 2535 * return and LLD can start processing it immediately. 2536 * 2537 * Return: 2538 * Pointer to the request at the top of @q if available. Null 2539 * otherwise. 2540 * 2541 * Context: 2542 * queue_lock must be held. 2543 */ 2544 struct request *blk_fetch_request(struct request_queue *q) 2545 { 2546 struct request *rq; 2547 2548 rq = blk_peek_request(q); 2549 if (rq) 2550 blk_start_request(rq); 2551 return rq; 2552 } 2553 EXPORT_SYMBOL(blk_fetch_request); 2554 2555 /** 2556 * blk_update_request - Special helper function for request stacking drivers 2557 * @req: the request being processed 2558 * @error: %0 for success, < %0 for error 2559 * @nr_bytes: number of bytes to complete @req 2560 * 2561 * Description: 2562 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2563 * the request structure even if @req doesn't have leftover. 2564 * If @req has leftover, sets it up for the next range of segments. 2565 * 2566 * This special helper function is only for request stacking drivers 2567 * (e.g. request-based dm) so that they can handle partial completion. 2568 * Actual device drivers should use blk_end_request instead. 2569 * 2570 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2571 * %false return from this function. 2572 * 2573 * Return: 2574 * %false - this request doesn't have any more data 2575 * %true - this request has more data 2576 **/ 2577 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2578 { 2579 int total_bytes; 2580 2581 trace_block_rq_complete(req->q, req, nr_bytes); 2582 2583 if (!req->bio) 2584 return false; 2585 2586 /* 2587 * For fs requests, rq is just carrier of independent bio's 2588 * and each partial completion should be handled separately. 2589 * Reset per-request error on each partial completion. 2590 * 2591 * TODO: tj: This is too subtle. It would be better to let 2592 * low level drivers do what they see fit. 2593 */ 2594 if (req->cmd_type == REQ_TYPE_FS) 2595 req->errors = 0; 2596 2597 if (error && req->cmd_type == REQ_TYPE_FS && 2598 !(req->cmd_flags & REQ_QUIET)) { 2599 char *error_type; 2600 2601 switch (error) { 2602 case -ENOLINK: 2603 error_type = "recoverable transport"; 2604 break; 2605 case -EREMOTEIO: 2606 error_type = "critical target"; 2607 break; 2608 case -EBADE: 2609 error_type = "critical nexus"; 2610 break; 2611 case -ETIMEDOUT: 2612 error_type = "timeout"; 2613 break; 2614 case -ENOSPC: 2615 error_type = "critical space allocation"; 2616 break; 2617 case -ENODATA: 2618 error_type = "critical medium"; 2619 break; 2620 case -EIO: 2621 default: 2622 error_type = "I/O"; 2623 break; 2624 } 2625 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2626 __func__, error_type, req->rq_disk ? 2627 req->rq_disk->disk_name : "?", 2628 (unsigned long long)blk_rq_pos(req)); 2629 2630 } 2631 2632 blk_account_io_completion(req, nr_bytes); 2633 2634 total_bytes = 0; 2635 while (req->bio) { 2636 struct bio *bio = req->bio; 2637 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2638 2639 if (bio_bytes == bio->bi_iter.bi_size) 2640 req->bio = bio->bi_next; 2641 2642 req_bio_endio(req, bio, bio_bytes, error); 2643 2644 total_bytes += bio_bytes; 2645 nr_bytes -= bio_bytes; 2646 2647 if (!nr_bytes) 2648 break; 2649 } 2650 2651 /* 2652 * completely done 2653 */ 2654 if (!req->bio) { 2655 /* 2656 * Reset counters so that the request stacking driver 2657 * can find how many bytes remain in the request 2658 * later. 2659 */ 2660 req->__data_len = 0; 2661 return false; 2662 } 2663 2664 req->__data_len -= total_bytes; 2665 2666 /* update sector only for requests with clear definition of sector */ 2667 if (req->cmd_type == REQ_TYPE_FS) 2668 req->__sector += total_bytes >> 9; 2669 2670 /* mixed attributes always follow the first bio */ 2671 if (req->cmd_flags & REQ_MIXED_MERGE) { 2672 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2673 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2674 } 2675 2676 /* 2677 * If total number of sectors is less than the first segment 2678 * size, something has gone terribly wrong. 2679 */ 2680 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2681 blk_dump_rq_flags(req, "request botched"); 2682 req->__data_len = blk_rq_cur_bytes(req); 2683 } 2684 2685 /* recalculate the number of segments */ 2686 blk_recalc_rq_segments(req); 2687 2688 return true; 2689 } 2690 EXPORT_SYMBOL_GPL(blk_update_request); 2691 2692 static bool blk_update_bidi_request(struct request *rq, int error, 2693 unsigned int nr_bytes, 2694 unsigned int bidi_bytes) 2695 { 2696 if (blk_update_request(rq, error, nr_bytes)) 2697 return true; 2698 2699 /* Bidi request must be completed as a whole */ 2700 if (unlikely(blk_bidi_rq(rq)) && 2701 blk_update_request(rq->next_rq, error, bidi_bytes)) 2702 return true; 2703 2704 if (blk_queue_add_random(rq->q)) 2705 add_disk_randomness(rq->rq_disk); 2706 2707 return false; 2708 } 2709 2710 /** 2711 * blk_unprep_request - unprepare a request 2712 * @req: the request 2713 * 2714 * This function makes a request ready for complete resubmission (or 2715 * completion). It happens only after all error handling is complete, 2716 * so represents the appropriate moment to deallocate any resources 2717 * that were allocated to the request in the prep_rq_fn. The queue 2718 * lock is held when calling this. 2719 */ 2720 void blk_unprep_request(struct request *req) 2721 { 2722 struct request_queue *q = req->q; 2723 2724 req->cmd_flags &= ~REQ_DONTPREP; 2725 if (q->unprep_rq_fn) 2726 q->unprep_rq_fn(q, req); 2727 } 2728 EXPORT_SYMBOL_GPL(blk_unprep_request); 2729 2730 /* 2731 * queue lock must be held 2732 */ 2733 void blk_finish_request(struct request *req, int error) 2734 { 2735 if (req->cmd_flags & REQ_QUEUED) 2736 blk_queue_end_tag(req->q, req); 2737 2738 BUG_ON(blk_queued_rq(req)); 2739 2740 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2741 laptop_io_completion(&req->q->backing_dev_info); 2742 2743 blk_delete_timer(req); 2744 2745 if (req->cmd_flags & REQ_DONTPREP) 2746 blk_unprep_request(req); 2747 2748 blk_account_io_done(req); 2749 2750 if (req->end_io) 2751 req->end_io(req, error); 2752 else { 2753 if (blk_bidi_rq(req)) 2754 __blk_put_request(req->next_rq->q, req->next_rq); 2755 2756 __blk_put_request(req->q, req); 2757 } 2758 } 2759 EXPORT_SYMBOL(blk_finish_request); 2760 2761 /** 2762 * blk_end_bidi_request - Complete a bidi request 2763 * @rq: the request to complete 2764 * @error: %0 for success, < %0 for error 2765 * @nr_bytes: number of bytes to complete @rq 2766 * @bidi_bytes: number of bytes to complete @rq->next_rq 2767 * 2768 * Description: 2769 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2770 * Drivers that supports bidi can safely call this member for any 2771 * type of request, bidi or uni. In the later case @bidi_bytes is 2772 * just ignored. 2773 * 2774 * Return: 2775 * %false - we are done with this request 2776 * %true - still buffers pending for this request 2777 **/ 2778 static bool blk_end_bidi_request(struct request *rq, int error, 2779 unsigned int nr_bytes, unsigned int bidi_bytes) 2780 { 2781 struct request_queue *q = rq->q; 2782 unsigned long flags; 2783 2784 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2785 return true; 2786 2787 spin_lock_irqsave(q->queue_lock, flags); 2788 blk_finish_request(rq, error); 2789 spin_unlock_irqrestore(q->queue_lock, flags); 2790 2791 return false; 2792 } 2793 2794 /** 2795 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2796 * @rq: the request to complete 2797 * @error: %0 for success, < %0 for error 2798 * @nr_bytes: number of bytes to complete @rq 2799 * @bidi_bytes: number of bytes to complete @rq->next_rq 2800 * 2801 * Description: 2802 * Identical to blk_end_bidi_request() except that queue lock is 2803 * assumed to be locked on entry and remains so on return. 2804 * 2805 * Return: 2806 * %false - we are done with this request 2807 * %true - still buffers pending for this request 2808 **/ 2809 bool __blk_end_bidi_request(struct request *rq, int error, 2810 unsigned int nr_bytes, unsigned int bidi_bytes) 2811 { 2812 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2813 return true; 2814 2815 blk_finish_request(rq, error); 2816 2817 return false; 2818 } 2819 2820 /** 2821 * blk_end_request - Helper function for drivers to complete the request. 2822 * @rq: the request being processed 2823 * @error: %0 for success, < %0 for error 2824 * @nr_bytes: number of bytes to complete 2825 * 2826 * Description: 2827 * Ends I/O on a number of bytes attached to @rq. 2828 * If @rq has leftover, sets it up for the next range of segments. 2829 * 2830 * Return: 2831 * %false - we are done with this request 2832 * %true - still buffers pending for this request 2833 **/ 2834 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2835 { 2836 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2837 } 2838 EXPORT_SYMBOL(blk_end_request); 2839 2840 /** 2841 * blk_end_request_all - Helper function for drives to finish the request. 2842 * @rq: the request to finish 2843 * @error: %0 for success, < %0 for error 2844 * 2845 * Description: 2846 * Completely finish @rq. 2847 */ 2848 void blk_end_request_all(struct request *rq, int error) 2849 { 2850 bool pending; 2851 unsigned int bidi_bytes = 0; 2852 2853 if (unlikely(blk_bidi_rq(rq))) 2854 bidi_bytes = blk_rq_bytes(rq->next_rq); 2855 2856 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2857 BUG_ON(pending); 2858 } 2859 EXPORT_SYMBOL(blk_end_request_all); 2860 2861 /** 2862 * blk_end_request_cur - Helper function to finish the current request chunk. 2863 * @rq: the request to finish the current chunk for 2864 * @error: %0 for success, < %0 for error 2865 * 2866 * Description: 2867 * Complete the current consecutively mapped chunk from @rq. 2868 * 2869 * Return: 2870 * %false - we are done with this request 2871 * %true - still buffers pending for this request 2872 */ 2873 bool blk_end_request_cur(struct request *rq, int error) 2874 { 2875 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2876 } 2877 EXPORT_SYMBOL(blk_end_request_cur); 2878 2879 /** 2880 * blk_end_request_err - Finish a request till the next failure boundary. 2881 * @rq: the request to finish till the next failure boundary for 2882 * @error: must be negative errno 2883 * 2884 * Description: 2885 * Complete @rq till the next failure boundary. 2886 * 2887 * Return: 2888 * %false - we are done with this request 2889 * %true - still buffers pending for this request 2890 */ 2891 bool blk_end_request_err(struct request *rq, int error) 2892 { 2893 WARN_ON(error >= 0); 2894 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2895 } 2896 EXPORT_SYMBOL_GPL(blk_end_request_err); 2897 2898 /** 2899 * __blk_end_request - Helper function for drivers to complete the request. 2900 * @rq: the request being processed 2901 * @error: %0 for success, < %0 for error 2902 * @nr_bytes: number of bytes to complete 2903 * 2904 * Description: 2905 * Must be called with queue lock held unlike blk_end_request(). 2906 * 2907 * Return: 2908 * %false - we are done with this request 2909 * %true - still buffers pending for this request 2910 **/ 2911 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2912 { 2913 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2914 } 2915 EXPORT_SYMBOL(__blk_end_request); 2916 2917 /** 2918 * __blk_end_request_all - Helper function for drives to finish the request. 2919 * @rq: the request to finish 2920 * @error: %0 for success, < %0 for error 2921 * 2922 * Description: 2923 * Completely finish @rq. Must be called with queue lock held. 2924 */ 2925 void __blk_end_request_all(struct request *rq, int error) 2926 { 2927 bool pending; 2928 unsigned int bidi_bytes = 0; 2929 2930 if (unlikely(blk_bidi_rq(rq))) 2931 bidi_bytes = blk_rq_bytes(rq->next_rq); 2932 2933 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2934 BUG_ON(pending); 2935 } 2936 EXPORT_SYMBOL(__blk_end_request_all); 2937 2938 /** 2939 * __blk_end_request_cur - Helper function to finish the current request chunk. 2940 * @rq: the request to finish the current chunk for 2941 * @error: %0 for success, < %0 for error 2942 * 2943 * Description: 2944 * Complete the current consecutively mapped chunk from @rq. Must 2945 * be called with queue lock held. 2946 * 2947 * Return: 2948 * %false - we are done with this request 2949 * %true - still buffers pending for this request 2950 */ 2951 bool __blk_end_request_cur(struct request *rq, int error) 2952 { 2953 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2954 } 2955 EXPORT_SYMBOL(__blk_end_request_cur); 2956 2957 /** 2958 * __blk_end_request_err - Finish a request till the next failure boundary. 2959 * @rq: the request to finish till the next failure boundary for 2960 * @error: must be negative errno 2961 * 2962 * Description: 2963 * Complete @rq till the next failure boundary. Must be called 2964 * with queue lock held. 2965 * 2966 * Return: 2967 * %false - we are done with this request 2968 * %true - still buffers pending for this request 2969 */ 2970 bool __blk_end_request_err(struct request *rq, int error) 2971 { 2972 WARN_ON(error >= 0); 2973 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2974 } 2975 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2976 2977 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2978 struct bio *bio) 2979 { 2980 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2981 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2982 2983 if (bio_has_data(bio)) 2984 rq->nr_phys_segments = bio_phys_segments(q, bio); 2985 2986 rq->__data_len = bio->bi_iter.bi_size; 2987 rq->bio = rq->biotail = bio; 2988 2989 if (bio->bi_bdev) 2990 rq->rq_disk = bio->bi_bdev->bd_disk; 2991 } 2992 2993 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2994 /** 2995 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2996 * @rq: the request to be flushed 2997 * 2998 * Description: 2999 * Flush all pages in @rq. 3000 */ 3001 void rq_flush_dcache_pages(struct request *rq) 3002 { 3003 struct req_iterator iter; 3004 struct bio_vec bvec; 3005 3006 rq_for_each_segment(bvec, rq, iter) 3007 flush_dcache_page(bvec.bv_page); 3008 } 3009 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3010 #endif 3011 3012 /** 3013 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3014 * @q : the queue of the device being checked 3015 * 3016 * Description: 3017 * Check if underlying low-level drivers of a device are busy. 3018 * If the drivers want to export their busy state, they must set own 3019 * exporting function using blk_queue_lld_busy() first. 3020 * 3021 * Basically, this function is used only by request stacking drivers 3022 * to stop dispatching requests to underlying devices when underlying 3023 * devices are busy. This behavior helps more I/O merging on the queue 3024 * of the request stacking driver and prevents I/O throughput regression 3025 * on burst I/O load. 3026 * 3027 * Return: 3028 * 0 - Not busy (The request stacking driver should dispatch request) 3029 * 1 - Busy (The request stacking driver should stop dispatching request) 3030 */ 3031 int blk_lld_busy(struct request_queue *q) 3032 { 3033 if (q->lld_busy_fn) 3034 return q->lld_busy_fn(q); 3035 3036 return 0; 3037 } 3038 EXPORT_SYMBOL_GPL(blk_lld_busy); 3039 3040 /** 3041 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3042 * @rq: the clone request to be cleaned up 3043 * 3044 * Description: 3045 * Free all bios in @rq for a cloned request. 3046 */ 3047 void blk_rq_unprep_clone(struct request *rq) 3048 { 3049 struct bio *bio; 3050 3051 while ((bio = rq->bio) != NULL) { 3052 rq->bio = bio->bi_next; 3053 3054 bio_put(bio); 3055 } 3056 } 3057 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3058 3059 /* 3060 * Copy attributes of the original request to the clone request. 3061 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3062 */ 3063 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3064 { 3065 dst->cpu = src->cpu; 3066 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 3067 dst->cmd_type = src->cmd_type; 3068 dst->__sector = blk_rq_pos(src); 3069 dst->__data_len = blk_rq_bytes(src); 3070 dst->nr_phys_segments = src->nr_phys_segments; 3071 dst->ioprio = src->ioprio; 3072 dst->extra_len = src->extra_len; 3073 } 3074 3075 /** 3076 * blk_rq_prep_clone - Helper function to setup clone request 3077 * @rq: the request to be setup 3078 * @rq_src: original request to be cloned 3079 * @bs: bio_set that bios for clone are allocated from 3080 * @gfp_mask: memory allocation mask for bio 3081 * @bio_ctr: setup function to be called for each clone bio. 3082 * Returns %0 for success, non %0 for failure. 3083 * @data: private data to be passed to @bio_ctr 3084 * 3085 * Description: 3086 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3087 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3088 * are not copied, and copying such parts is the caller's responsibility. 3089 * Also, pages which the original bios are pointing to are not copied 3090 * and the cloned bios just point same pages. 3091 * So cloned bios must be completed before original bios, which means 3092 * the caller must complete @rq before @rq_src. 3093 */ 3094 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3095 struct bio_set *bs, gfp_t gfp_mask, 3096 int (*bio_ctr)(struct bio *, struct bio *, void *), 3097 void *data) 3098 { 3099 struct bio *bio, *bio_src; 3100 3101 if (!bs) 3102 bs = fs_bio_set; 3103 3104 __rq_for_each_bio(bio_src, rq_src) { 3105 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3106 if (!bio) 3107 goto free_and_out; 3108 3109 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3110 goto free_and_out; 3111 3112 if (rq->bio) { 3113 rq->biotail->bi_next = bio; 3114 rq->biotail = bio; 3115 } else 3116 rq->bio = rq->biotail = bio; 3117 } 3118 3119 __blk_rq_prep_clone(rq, rq_src); 3120 3121 return 0; 3122 3123 free_and_out: 3124 if (bio) 3125 bio_put(bio); 3126 blk_rq_unprep_clone(rq); 3127 3128 return -ENOMEM; 3129 } 3130 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3131 3132 int kblockd_schedule_work(struct work_struct *work) 3133 { 3134 return queue_work(kblockd_workqueue, work); 3135 } 3136 EXPORT_SYMBOL(kblockd_schedule_work); 3137 3138 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3139 unsigned long delay) 3140 { 3141 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3142 } 3143 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3144 3145 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3146 unsigned long delay) 3147 { 3148 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3149 } 3150 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3151 3152 /** 3153 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3154 * @plug: The &struct blk_plug that needs to be initialized 3155 * 3156 * Description: 3157 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3158 * pending I/O should the task end up blocking between blk_start_plug() and 3159 * blk_finish_plug(). This is important from a performance perspective, but 3160 * also ensures that we don't deadlock. For instance, if the task is blocking 3161 * for a memory allocation, memory reclaim could end up wanting to free a 3162 * page belonging to that request that is currently residing in our private 3163 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3164 * this kind of deadlock. 3165 */ 3166 void blk_start_plug(struct blk_plug *plug) 3167 { 3168 struct task_struct *tsk = current; 3169 3170 /* 3171 * If this is a nested plug, don't actually assign it. 3172 */ 3173 if (tsk->plug) 3174 return; 3175 3176 INIT_LIST_HEAD(&plug->list); 3177 INIT_LIST_HEAD(&plug->mq_list); 3178 INIT_LIST_HEAD(&plug->cb_list); 3179 /* 3180 * Store ordering should not be needed here, since a potential 3181 * preempt will imply a full memory barrier 3182 */ 3183 tsk->plug = plug; 3184 } 3185 EXPORT_SYMBOL(blk_start_plug); 3186 3187 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3188 { 3189 struct request *rqa = container_of(a, struct request, queuelist); 3190 struct request *rqb = container_of(b, struct request, queuelist); 3191 3192 return !(rqa->q < rqb->q || 3193 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3194 } 3195 3196 /* 3197 * If 'from_schedule' is true, then postpone the dispatch of requests 3198 * until a safe kblockd context. We due this to avoid accidental big 3199 * additional stack usage in driver dispatch, in places where the originally 3200 * plugger did not intend it. 3201 */ 3202 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3203 bool from_schedule) 3204 __releases(q->queue_lock) 3205 { 3206 trace_block_unplug(q, depth, !from_schedule); 3207 3208 if (from_schedule) 3209 blk_run_queue_async(q); 3210 else 3211 __blk_run_queue(q); 3212 spin_unlock(q->queue_lock); 3213 } 3214 3215 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3216 { 3217 LIST_HEAD(callbacks); 3218 3219 while (!list_empty(&plug->cb_list)) { 3220 list_splice_init(&plug->cb_list, &callbacks); 3221 3222 while (!list_empty(&callbacks)) { 3223 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3224 struct blk_plug_cb, 3225 list); 3226 list_del(&cb->list); 3227 cb->callback(cb, from_schedule); 3228 } 3229 } 3230 } 3231 3232 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3233 int size) 3234 { 3235 struct blk_plug *plug = current->plug; 3236 struct blk_plug_cb *cb; 3237 3238 if (!plug) 3239 return NULL; 3240 3241 list_for_each_entry(cb, &plug->cb_list, list) 3242 if (cb->callback == unplug && cb->data == data) 3243 return cb; 3244 3245 /* Not currently on the callback list */ 3246 BUG_ON(size < sizeof(*cb)); 3247 cb = kzalloc(size, GFP_ATOMIC); 3248 if (cb) { 3249 cb->data = data; 3250 cb->callback = unplug; 3251 list_add(&cb->list, &plug->cb_list); 3252 } 3253 return cb; 3254 } 3255 EXPORT_SYMBOL(blk_check_plugged); 3256 3257 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3258 { 3259 struct request_queue *q; 3260 unsigned long flags; 3261 struct request *rq; 3262 LIST_HEAD(list); 3263 unsigned int depth; 3264 3265 flush_plug_callbacks(plug, from_schedule); 3266 3267 if (!list_empty(&plug->mq_list)) 3268 blk_mq_flush_plug_list(plug, from_schedule); 3269 3270 if (list_empty(&plug->list)) 3271 return; 3272 3273 list_splice_init(&plug->list, &list); 3274 3275 list_sort(NULL, &list, plug_rq_cmp); 3276 3277 q = NULL; 3278 depth = 0; 3279 3280 /* 3281 * Save and disable interrupts here, to avoid doing it for every 3282 * queue lock we have to take. 3283 */ 3284 local_irq_save(flags); 3285 while (!list_empty(&list)) { 3286 rq = list_entry_rq(list.next); 3287 list_del_init(&rq->queuelist); 3288 BUG_ON(!rq->q); 3289 if (rq->q != q) { 3290 /* 3291 * This drops the queue lock 3292 */ 3293 if (q) 3294 queue_unplugged(q, depth, from_schedule); 3295 q = rq->q; 3296 depth = 0; 3297 spin_lock(q->queue_lock); 3298 } 3299 3300 /* 3301 * Short-circuit if @q is dead 3302 */ 3303 if (unlikely(blk_queue_dying(q))) { 3304 __blk_end_request_all(rq, -ENODEV); 3305 continue; 3306 } 3307 3308 /* 3309 * rq is already accounted, so use raw insert 3310 */ 3311 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3312 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3313 else 3314 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3315 3316 depth++; 3317 } 3318 3319 /* 3320 * This drops the queue lock 3321 */ 3322 if (q) 3323 queue_unplugged(q, depth, from_schedule); 3324 3325 local_irq_restore(flags); 3326 } 3327 3328 void blk_finish_plug(struct blk_plug *plug) 3329 { 3330 if (plug != current->plug) 3331 return; 3332 blk_flush_plug_list(plug, false); 3333 3334 current->plug = NULL; 3335 } 3336 EXPORT_SYMBOL(blk_finish_plug); 3337 3338 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 3339 { 3340 struct blk_plug *plug; 3341 long state; 3342 3343 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 3344 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3345 return false; 3346 3347 plug = current->plug; 3348 if (plug) 3349 blk_flush_plug_list(plug, false); 3350 3351 state = current->state; 3352 while (!need_resched()) { 3353 unsigned int queue_num = blk_qc_t_to_queue_num(cookie); 3354 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num]; 3355 int ret; 3356 3357 hctx->poll_invoked++; 3358 3359 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie)); 3360 if (ret > 0) { 3361 hctx->poll_success++; 3362 set_current_state(TASK_RUNNING); 3363 return true; 3364 } 3365 3366 if (signal_pending_state(state, current)) 3367 set_current_state(TASK_RUNNING); 3368 3369 if (current->state == TASK_RUNNING) 3370 return true; 3371 if (ret < 0) 3372 break; 3373 cpu_relax(); 3374 } 3375 3376 return false; 3377 } 3378 3379 #ifdef CONFIG_PM 3380 /** 3381 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3382 * @q: the queue of the device 3383 * @dev: the device the queue belongs to 3384 * 3385 * Description: 3386 * Initialize runtime-PM-related fields for @q and start auto suspend for 3387 * @dev. Drivers that want to take advantage of request-based runtime PM 3388 * should call this function after @dev has been initialized, and its 3389 * request queue @q has been allocated, and runtime PM for it can not happen 3390 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3391 * cases, driver should call this function before any I/O has taken place. 3392 * 3393 * This function takes care of setting up using auto suspend for the device, 3394 * the autosuspend delay is set to -1 to make runtime suspend impossible 3395 * until an updated value is either set by user or by driver. Drivers do 3396 * not need to touch other autosuspend settings. 3397 * 3398 * The block layer runtime PM is request based, so only works for drivers 3399 * that use request as their IO unit instead of those directly use bio's. 3400 */ 3401 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3402 { 3403 q->dev = dev; 3404 q->rpm_status = RPM_ACTIVE; 3405 pm_runtime_set_autosuspend_delay(q->dev, -1); 3406 pm_runtime_use_autosuspend(q->dev); 3407 } 3408 EXPORT_SYMBOL(blk_pm_runtime_init); 3409 3410 /** 3411 * blk_pre_runtime_suspend - Pre runtime suspend check 3412 * @q: the queue of the device 3413 * 3414 * Description: 3415 * This function will check if runtime suspend is allowed for the device 3416 * by examining if there are any requests pending in the queue. If there 3417 * are requests pending, the device can not be runtime suspended; otherwise, 3418 * the queue's status will be updated to SUSPENDING and the driver can 3419 * proceed to suspend the device. 3420 * 3421 * For the not allowed case, we mark last busy for the device so that 3422 * runtime PM core will try to autosuspend it some time later. 3423 * 3424 * This function should be called near the start of the device's 3425 * runtime_suspend callback. 3426 * 3427 * Return: 3428 * 0 - OK to runtime suspend the device 3429 * -EBUSY - Device should not be runtime suspended 3430 */ 3431 int blk_pre_runtime_suspend(struct request_queue *q) 3432 { 3433 int ret = 0; 3434 3435 if (!q->dev) 3436 return ret; 3437 3438 spin_lock_irq(q->queue_lock); 3439 if (q->nr_pending) { 3440 ret = -EBUSY; 3441 pm_runtime_mark_last_busy(q->dev); 3442 } else { 3443 q->rpm_status = RPM_SUSPENDING; 3444 } 3445 spin_unlock_irq(q->queue_lock); 3446 return ret; 3447 } 3448 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3449 3450 /** 3451 * blk_post_runtime_suspend - Post runtime suspend processing 3452 * @q: the queue of the device 3453 * @err: return value of the device's runtime_suspend function 3454 * 3455 * Description: 3456 * Update the queue's runtime status according to the return value of the 3457 * device's runtime suspend function and mark last busy for the device so 3458 * that PM core will try to auto suspend the device at a later time. 3459 * 3460 * This function should be called near the end of the device's 3461 * runtime_suspend callback. 3462 */ 3463 void blk_post_runtime_suspend(struct request_queue *q, int err) 3464 { 3465 if (!q->dev) 3466 return; 3467 3468 spin_lock_irq(q->queue_lock); 3469 if (!err) { 3470 q->rpm_status = RPM_SUSPENDED; 3471 } else { 3472 q->rpm_status = RPM_ACTIVE; 3473 pm_runtime_mark_last_busy(q->dev); 3474 } 3475 spin_unlock_irq(q->queue_lock); 3476 } 3477 EXPORT_SYMBOL(blk_post_runtime_suspend); 3478 3479 /** 3480 * blk_pre_runtime_resume - Pre runtime resume processing 3481 * @q: the queue of the device 3482 * 3483 * Description: 3484 * Update the queue's runtime status to RESUMING in preparation for the 3485 * runtime resume of the device. 3486 * 3487 * This function should be called near the start of the device's 3488 * runtime_resume callback. 3489 */ 3490 void blk_pre_runtime_resume(struct request_queue *q) 3491 { 3492 if (!q->dev) 3493 return; 3494 3495 spin_lock_irq(q->queue_lock); 3496 q->rpm_status = RPM_RESUMING; 3497 spin_unlock_irq(q->queue_lock); 3498 } 3499 EXPORT_SYMBOL(blk_pre_runtime_resume); 3500 3501 /** 3502 * blk_post_runtime_resume - Post runtime resume processing 3503 * @q: the queue of the device 3504 * @err: return value of the device's runtime_resume function 3505 * 3506 * Description: 3507 * Update the queue's runtime status according to the return value of the 3508 * device's runtime_resume function. If it is successfully resumed, process 3509 * the requests that are queued into the device's queue when it is resuming 3510 * and then mark last busy and initiate autosuspend for it. 3511 * 3512 * This function should be called near the end of the device's 3513 * runtime_resume callback. 3514 */ 3515 void blk_post_runtime_resume(struct request_queue *q, int err) 3516 { 3517 if (!q->dev) 3518 return; 3519 3520 spin_lock_irq(q->queue_lock); 3521 if (!err) { 3522 q->rpm_status = RPM_ACTIVE; 3523 __blk_run_queue(q); 3524 pm_runtime_mark_last_busy(q->dev); 3525 pm_request_autosuspend(q->dev); 3526 } else { 3527 q->rpm_status = RPM_SUSPENDED; 3528 } 3529 spin_unlock_irq(q->queue_lock); 3530 } 3531 EXPORT_SYMBOL(blk_post_runtime_resume); 3532 3533 /** 3534 * blk_set_runtime_active - Force runtime status of the queue to be active 3535 * @q: the queue of the device 3536 * 3537 * If the device is left runtime suspended during system suspend the resume 3538 * hook typically resumes the device and corrects runtime status 3539 * accordingly. However, that does not affect the queue runtime PM status 3540 * which is still "suspended". This prevents processing requests from the 3541 * queue. 3542 * 3543 * This function can be used in driver's resume hook to correct queue 3544 * runtime PM status and re-enable peeking requests from the queue. It 3545 * should be called before first request is added to the queue. 3546 */ 3547 void blk_set_runtime_active(struct request_queue *q) 3548 { 3549 spin_lock_irq(q->queue_lock); 3550 q->rpm_status = RPM_ACTIVE; 3551 pm_runtime_mark_last_busy(q->dev); 3552 pm_request_autosuspend(q->dev); 3553 spin_unlock_irq(q->queue_lock); 3554 } 3555 EXPORT_SYMBOL(blk_set_runtime_active); 3556 #endif 3557 3558 int __init blk_dev_init(void) 3559 { 3560 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3561 FIELD_SIZEOF(struct request, cmd_flags)); 3562 3563 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3564 kblockd_workqueue = alloc_workqueue("kblockd", 3565 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3566 if (!kblockd_workqueue) 3567 panic("Failed to create kblockd\n"); 3568 3569 request_cachep = kmem_cache_create("blkdev_requests", 3570 sizeof(struct request), 0, SLAB_PANIC, NULL); 3571 3572 blk_requestq_cachep = kmem_cache_create("request_queue", 3573 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3574 3575 return 0; 3576 } 3577