xref: /linux/block/blk-core.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39 
40 #include "blk.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 	clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 	/*
72 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 	 * flip its congestion state for events on other blkcgs.
74 	 */
75 	if (rl == &rl->q->root_rl)
76 		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79 
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 	set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 	/* see blk_clear_congested() */
86 	if (rl == &rl->q->root_rl)
87 		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90 
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 	int nr;
94 
95 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 	if (nr > q->nr_requests)
97 		nr = q->nr_requests;
98 	q->nr_congestion_on = nr;
99 
100 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 	if (nr < 1)
102 		nr = 1;
103 	q->nr_congestion_off = nr;
104 }
105 
106 /**
107  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108  * @bdev:	device
109  *
110  * Locates the passed device's request queue and returns the address of its
111  * backing_dev_info.  This function can only be called if @bdev is opened
112  * and the return value is never NULL.
113  */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 	struct request_queue *q = bdev_get_queue(bdev);
117 
118 	return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121 
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 	memset(rq, 0, sizeof(*rq));
125 
126 	INIT_LIST_HEAD(&rq->queuelist);
127 	INIT_LIST_HEAD(&rq->timeout_list);
128 	rq->cpu = -1;
129 	rq->q = q;
130 	rq->__sector = (sector_t) -1;
131 	INIT_HLIST_NODE(&rq->hash);
132 	RB_CLEAR_NODE(&rq->rb_node);
133 	rq->cmd = rq->__cmd;
134 	rq->cmd_len = BLK_MAX_CDB;
135 	rq->tag = -1;
136 	rq->start_time = jiffies;
137 	set_start_time_ns(rq);
138 	rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141 
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 			  unsigned int nbytes, int error)
144 {
145 	if (error)
146 		bio->bi_error = error;
147 
148 	if (unlikely(rq->cmd_flags & REQ_QUIET))
149 		bio_set_flag(bio, BIO_QUIET);
150 
151 	bio_advance(bio, nbytes);
152 
153 	/* don't actually finish bio if it's part of flush sequence */
154 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 		bio_endio(bio);
156 }
157 
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 	int bit;
161 
162 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 		(unsigned long long) rq->cmd_flags);
165 
166 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
167 	       (unsigned long long)blk_rq_pos(rq),
168 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
170 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
171 
172 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 		printk(KERN_INFO "  cdb: ");
174 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 			printk("%02x ", rq->cmd[bit]);
176 		printk("\n");
177 	}
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180 
181 static void blk_delay_work(struct work_struct *work)
182 {
183 	struct request_queue *q;
184 
185 	q = container_of(work, struct request_queue, delay_work.work);
186 	spin_lock_irq(q->queue_lock);
187 	__blk_run_queue(q);
188 	spin_unlock_irq(q->queue_lock);
189 }
190 
191 /**
192  * blk_delay_queue - restart queueing after defined interval
193  * @q:		The &struct request_queue in question
194  * @msecs:	Delay in msecs
195  *
196  * Description:
197  *   Sometimes queueing needs to be postponed for a little while, to allow
198  *   resources to come back. This function will make sure that queueing is
199  *   restarted around the specified time. Queue lock must be held.
200  */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 	if (likely(!blk_queue_dead(q)))
204 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 				   msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208 
209 /**
210  * blk_start_queue_async - asynchronously restart a previously stopped queue
211  * @q:    The &struct request_queue in question
212  *
213  * Description:
214  *   blk_start_queue_async() will clear the stop flag on the queue, and
215  *   ensure that the request_fn for the queue is run from an async
216  *   context.
217  **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 	blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224 
225 /**
226  * blk_start_queue - restart a previously stopped queue
227  * @q:    The &struct request_queue in question
228  *
229  * Description:
230  *   blk_start_queue() will clear the stop flag on the queue, and call
231  *   the request_fn for the queue if it was in a stopped state when
232  *   entered. Also see blk_stop_queue(). Queue lock must be held.
233  **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 	WARN_ON(!irqs_disabled());
237 
238 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 	__blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242 
243 /**
244  * blk_stop_queue - stop a queue
245  * @q:    The &struct request_queue in question
246  *
247  * Description:
248  *   The Linux block layer assumes that a block driver will consume all
249  *   entries on the request queue when the request_fn strategy is called.
250  *   Often this will not happen, because of hardware limitations (queue
251  *   depth settings). If a device driver gets a 'queue full' response,
252  *   or if it simply chooses not to queue more I/O at one point, it can
253  *   call this function to prevent the request_fn from being called until
254  *   the driver has signalled it's ready to go again. This happens by calling
255  *   blk_start_queue() to restart queue operations. Queue lock must be held.
256  **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 	cancel_delayed_work(&q->delay_work);
260 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263 
264 /**
265  * blk_sync_queue - cancel any pending callbacks on a queue
266  * @q: the queue
267  *
268  * Description:
269  *     The block layer may perform asynchronous callback activity
270  *     on a queue, such as calling the unplug function after a timeout.
271  *     A block device may call blk_sync_queue to ensure that any
272  *     such activity is cancelled, thus allowing it to release resources
273  *     that the callbacks might use. The caller must already have made sure
274  *     that its ->make_request_fn will not re-add plugging prior to calling
275  *     this function.
276  *
277  *     This function does not cancel any asynchronous activity arising
278  *     out of elevator or throttling code. That would require elevator_exit()
279  *     and blkcg_exit_queue() to be called with queue lock initialized.
280  *
281  */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 	del_timer_sync(&q->timeout);
285 
286 	if (q->mq_ops) {
287 		struct blk_mq_hw_ctx *hctx;
288 		int i;
289 
290 		queue_for_each_hw_ctx(q, hctx, i) {
291 			cancel_delayed_work_sync(&hctx->run_work);
292 			cancel_delayed_work_sync(&hctx->delay_work);
293 		}
294 	} else {
295 		cancel_delayed_work_sync(&q->delay_work);
296 	}
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299 
300 /**
301  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302  * @q:	The queue to run
303  *
304  * Description:
305  *    Invoke request handling on a queue if there are any pending requests.
306  *    May be used to restart request handling after a request has completed.
307  *    This variant runs the queue whether or not the queue has been
308  *    stopped. Must be called with the queue lock held and interrupts
309  *    disabled. See also @blk_run_queue.
310  */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 	if (unlikely(blk_queue_dead(q)))
314 		return;
315 
316 	/*
317 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 	 * the queue lock internally. As a result multiple threads may be
319 	 * running such a request function concurrently. Keep track of the
320 	 * number of active request_fn invocations such that blk_drain_queue()
321 	 * can wait until all these request_fn calls have finished.
322 	 */
323 	q->request_fn_active++;
324 	q->request_fn(q);
325 	q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328 
329 /**
330  * __blk_run_queue - run a single device queue
331  * @q:	The queue to run
332  *
333  * Description:
334  *    See @blk_run_queue. This variant must be called with the queue lock
335  *    held and interrupts disabled.
336  */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 	if (unlikely(blk_queue_stopped(q)))
340 		return;
341 
342 	__blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345 
346 /**
347  * blk_run_queue_async - run a single device queue in workqueue context
348  * @q:	The queue to run
349  *
350  * Description:
351  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352  *    of us. The caller must hold the queue lock.
353  */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360 
361 /**
362  * blk_run_queue - run a single device queue
363  * @q: The queue to run
364  *
365  * Description:
366  *    Invoke request handling on this queue, if it has pending work to do.
367  *    May be used to restart queueing when a request has completed.
368  */
369 void blk_run_queue(struct request_queue *q)
370 {
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(q->queue_lock, flags);
374 	__blk_run_queue(q);
375 	spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378 
379 void blk_put_queue(struct request_queue *q)
380 {
381 	kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384 
385 /**
386  * __blk_drain_queue - drain requests from request_queue
387  * @q: queue to drain
388  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389  *
390  * Drain requests from @q.  If @drain_all is set, all requests are drained.
391  * If not, only ELVPRIV requests are drained.  The caller is responsible
392  * for ensuring that no new requests which need to be drained are queued.
393  */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 	__releases(q->queue_lock)
396 	__acquires(q->queue_lock)
397 {
398 	int i;
399 
400 	lockdep_assert_held(q->queue_lock);
401 
402 	while (true) {
403 		bool drain = false;
404 
405 		/*
406 		 * The caller might be trying to drain @q before its
407 		 * elevator is initialized.
408 		 */
409 		if (q->elevator)
410 			elv_drain_elevator(q);
411 
412 		blkcg_drain_queue(q);
413 
414 		/*
415 		 * This function might be called on a queue which failed
416 		 * driver init after queue creation or is not yet fully
417 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
418 		 * in such cases.  Kick queue iff dispatch queue has
419 		 * something on it and @q has request_fn set.
420 		 */
421 		if (!list_empty(&q->queue_head) && q->request_fn)
422 			__blk_run_queue(q);
423 
424 		drain |= q->nr_rqs_elvpriv;
425 		drain |= q->request_fn_active;
426 
427 		/*
428 		 * Unfortunately, requests are queued at and tracked from
429 		 * multiple places and there's no single counter which can
430 		 * be drained.  Check all the queues and counters.
431 		 */
432 		if (drain_all) {
433 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 			drain |= !list_empty(&q->queue_head);
435 			for (i = 0; i < 2; i++) {
436 				drain |= q->nr_rqs[i];
437 				drain |= q->in_flight[i];
438 				if (fq)
439 				    drain |= !list_empty(&fq->flush_queue[i]);
440 			}
441 		}
442 
443 		if (!drain)
444 			break;
445 
446 		spin_unlock_irq(q->queue_lock);
447 
448 		msleep(10);
449 
450 		spin_lock_irq(q->queue_lock);
451 	}
452 
453 	/*
454 	 * With queue marked dead, any woken up waiter will fail the
455 	 * allocation path, so the wakeup chaining is lost and we're
456 	 * left with hung waiters. We need to wake up those waiters.
457 	 */
458 	if (q->request_fn) {
459 		struct request_list *rl;
460 
461 		blk_queue_for_each_rl(rl, q)
462 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 				wake_up_all(&rl->wait[i]);
464 	}
465 }
466 
467 /**
468  * blk_queue_bypass_start - enter queue bypass mode
469  * @q: queue of interest
470  *
471  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
472  * function makes @q enter bypass mode and drains all requests which were
473  * throttled or issued before.  On return, it's guaranteed that no request
474  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475  * inside queue or RCU read lock.
476  */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 	spin_lock_irq(q->queue_lock);
480 	q->bypass_depth++;
481 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 	spin_unlock_irq(q->queue_lock);
483 
484 	/*
485 	 * Queues start drained.  Skip actual draining till init is
486 	 * complete.  This avoids lenghty delays during queue init which
487 	 * can happen many times during boot.
488 	 */
489 	if (blk_queue_init_done(q)) {
490 		spin_lock_irq(q->queue_lock);
491 		__blk_drain_queue(q, false);
492 		spin_unlock_irq(q->queue_lock);
493 
494 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
495 		synchronize_rcu();
496 	}
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499 
500 /**
501  * blk_queue_bypass_end - leave queue bypass mode
502  * @q: queue of interest
503  *
504  * Leave bypass mode and restore the normal queueing behavior.
505  */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 	spin_lock_irq(q->queue_lock);
509 	if (!--q->bypass_depth)
510 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 	WARN_ON_ONCE(q->bypass_depth < 0);
512 	spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515 
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519 
520 	if (q->mq_ops)
521 		blk_mq_wake_waiters(q);
522 	else {
523 		struct request_list *rl;
524 
525 		blk_queue_for_each_rl(rl, q) {
526 			if (rl->rq_pool) {
527 				wake_up(&rl->wait[BLK_RW_SYNC]);
528 				wake_up(&rl->wait[BLK_RW_ASYNC]);
529 			}
530 		}
531 	}
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534 
535 /**
536  * blk_cleanup_queue - shutdown a request queue
537  * @q: request queue to shutdown
538  *
539  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540  * put it.  All future requests will be failed immediately with -ENODEV.
541  */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 	spinlock_t *lock = q->queue_lock;
545 
546 	/* mark @q DYING, no new request or merges will be allowed afterwards */
547 	mutex_lock(&q->sysfs_lock);
548 	blk_set_queue_dying(q);
549 	spin_lock_irq(lock);
550 
551 	/*
552 	 * A dying queue is permanently in bypass mode till released.  Note
553 	 * that, unlike blk_queue_bypass_start(), we aren't performing
554 	 * synchronize_rcu() after entering bypass mode to avoid the delay
555 	 * as some drivers create and destroy a lot of queues while
556 	 * probing.  This is still safe because blk_release_queue() will be
557 	 * called only after the queue refcnt drops to zero and nothing,
558 	 * RCU or not, would be traversing the queue by then.
559 	 */
560 	q->bypass_depth++;
561 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
562 
563 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 	queue_flag_set(QUEUE_FLAG_DYING, q);
566 	spin_unlock_irq(lock);
567 	mutex_unlock(&q->sysfs_lock);
568 
569 	/*
570 	 * Drain all requests queued before DYING marking. Set DEAD flag to
571 	 * prevent that q->request_fn() gets invoked after draining finished.
572 	 */
573 	blk_freeze_queue(q);
574 	spin_lock_irq(lock);
575 	if (!q->mq_ops)
576 		__blk_drain_queue(q, true);
577 	queue_flag_set(QUEUE_FLAG_DEAD, q);
578 	spin_unlock_irq(lock);
579 
580 	/* for synchronous bio-based driver finish in-flight integrity i/o */
581 	blk_flush_integrity();
582 
583 	/* @q won't process any more request, flush async actions */
584 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 	blk_sync_queue(q);
586 
587 	if (q->mq_ops)
588 		blk_mq_free_queue(q);
589 	percpu_ref_exit(&q->q_usage_counter);
590 
591 	spin_lock_irq(lock);
592 	if (q->queue_lock != &q->__queue_lock)
593 		q->queue_lock = &q->__queue_lock;
594 	spin_unlock_irq(lock);
595 
596 	bdi_unregister(&q->backing_dev_info);
597 
598 	/* @q is and will stay empty, shutdown and put */
599 	blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602 
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 	int nid = (int)(long)data;
607 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609 
610 static void free_request_struct(void *element, void *unused)
611 {
612 	kmem_cache_free(request_cachep, element);
613 }
614 
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 		gfp_t gfp_mask)
617 {
618 	if (unlikely(rl->rq_pool))
619 		return 0;
620 
621 	rl->q = q;
622 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626 
627 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 					  free_request_struct,
629 					  (void *)(long)q->node, gfp_mask,
630 					  q->node);
631 	if (!rl->rq_pool)
632 		return -ENOMEM;
633 
634 	return 0;
635 }
636 
637 void blk_exit_rl(struct request_list *rl)
638 {
639 	if (rl->rq_pool)
640 		mempool_destroy(rl->rq_pool);
641 }
642 
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648 
649 int blk_queue_enter(struct request_queue *q, bool nowait)
650 {
651 	while (true) {
652 		int ret;
653 
654 		if (percpu_ref_tryget_live(&q->q_usage_counter))
655 			return 0;
656 
657 		if (nowait)
658 			return -EBUSY;
659 
660 		ret = wait_event_interruptible(q->mq_freeze_wq,
661 				!atomic_read(&q->mq_freeze_depth) ||
662 				blk_queue_dying(q));
663 		if (blk_queue_dying(q))
664 			return -ENODEV;
665 		if (ret)
666 			return ret;
667 	}
668 }
669 
670 void blk_queue_exit(struct request_queue *q)
671 {
672 	percpu_ref_put(&q->q_usage_counter);
673 }
674 
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 	struct request_queue *q =
678 		container_of(ref, struct request_queue, q_usage_counter);
679 
680 	wake_up_all(&q->mq_freeze_wq);
681 }
682 
683 static void blk_rq_timed_out_timer(unsigned long data)
684 {
685 	struct request_queue *q = (struct request_queue *)data;
686 
687 	kblockd_schedule_work(&q->timeout_work);
688 }
689 
690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
691 {
692 	struct request_queue *q;
693 	int err;
694 
695 	q = kmem_cache_alloc_node(blk_requestq_cachep,
696 				gfp_mask | __GFP_ZERO, node_id);
697 	if (!q)
698 		return NULL;
699 
700 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
701 	if (q->id < 0)
702 		goto fail_q;
703 
704 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 	if (!q->bio_split)
706 		goto fail_id;
707 
708 	q->backing_dev_info.ra_pages =
709 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
710 	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
711 	q->backing_dev_info.name = "block";
712 	q->node = node_id;
713 
714 	err = bdi_init(&q->backing_dev_info);
715 	if (err)
716 		goto fail_split;
717 
718 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 		    laptop_mode_timer_fn, (unsigned long) q);
720 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
721 	INIT_LIST_HEAD(&q->queue_head);
722 	INIT_LIST_HEAD(&q->timeout_list);
723 	INIT_LIST_HEAD(&q->icq_list);
724 #ifdef CONFIG_BLK_CGROUP
725 	INIT_LIST_HEAD(&q->blkg_list);
726 #endif
727 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
728 
729 	kobject_init(&q->kobj, &blk_queue_ktype);
730 
731 	mutex_init(&q->sysfs_lock);
732 	spin_lock_init(&q->__queue_lock);
733 
734 	/*
735 	 * By default initialize queue_lock to internal lock and driver can
736 	 * override it later if need be.
737 	 */
738 	q->queue_lock = &q->__queue_lock;
739 
740 	/*
741 	 * A queue starts its life with bypass turned on to avoid
742 	 * unnecessary bypass on/off overhead and nasty surprises during
743 	 * init.  The initial bypass will be finished when the queue is
744 	 * registered by blk_register_queue().
745 	 */
746 	q->bypass_depth = 1;
747 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748 
749 	init_waitqueue_head(&q->mq_freeze_wq);
750 
751 	/*
752 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 	 * See blk_register_queue() for details.
754 	 */
755 	if (percpu_ref_init(&q->q_usage_counter,
756 				blk_queue_usage_counter_release,
757 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
758 		goto fail_bdi;
759 
760 	if (blkcg_init_queue(q))
761 		goto fail_ref;
762 
763 	return q;
764 
765 fail_ref:
766 	percpu_ref_exit(&q->q_usage_counter);
767 fail_bdi:
768 	bdi_destroy(&q->backing_dev_info);
769 fail_split:
770 	bioset_free(q->bio_split);
771 fail_id:
772 	ida_simple_remove(&blk_queue_ida, q->id);
773 fail_q:
774 	kmem_cache_free(blk_requestq_cachep, q);
775 	return NULL;
776 }
777 EXPORT_SYMBOL(blk_alloc_queue_node);
778 
779 /**
780  * blk_init_queue  - prepare a request queue for use with a block device
781  * @rfn:  The function to be called to process requests that have been
782  *        placed on the queue.
783  * @lock: Request queue spin lock
784  *
785  * Description:
786  *    If a block device wishes to use the standard request handling procedures,
787  *    which sorts requests and coalesces adjacent requests, then it must
788  *    call blk_init_queue().  The function @rfn will be called when there
789  *    are requests on the queue that need to be processed.  If the device
790  *    supports plugging, then @rfn may not be called immediately when requests
791  *    are available on the queue, but may be called at some time later instead.
792  *    Plugged queues are generally unplugged when a buffer belonging to one
793  *    of the requests on the queue is needed, or due to memory pressure.
794  *
795  *    @rfn is not required, or even expected, to remove all requests off the
796  *    queue, but only as many as it can handle at a time.  If it does leave
797  *    requests on the queue, it is responsible for arranging that the requests
798  *    get dealt with eventually.
799  *
800  *    The queue spin lock must be held while manipulating the requests on the
801  *    request queue; this lock will be taken also from interrupt context, so irq
802  *    disabling is needed for it.
803  *
804  *    Function returns a pointer to the initialized request queue, or %NULL if
805  *    it didn't succeed.
806  *
807  * Note:
808  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
809  *    when the block device is deactivated (such as at module unload).
810  **/
811 
812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
813 {
814 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
815 }
816 EXPORT_SYMBOL(blk_init_queue);
817 
818 struct request_queue *
819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820 {
821 	struct request_queue *uninit_q, *q;
822 
823 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 	if (!uninit_q)
825 		return NULL;
826 
827 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
828 	if (!q)
829 		blk_cleanup_queue(uninit_q);
830 
831 	return q;
832 }
833 EXPORT_SYMBOL(blk_init_queue_node);
834 
835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
836 
837 struct request_queue *
838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 			 spinlock_t *lock)
840 {
841 	if (!q)
842 		return NULL;
843 
844 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
845 	if (!q->fq)
846 		return NULL;
847 
848 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
849 		goto fail;
850 
851 	INIT_WORK(&q->timeout_work, blk_timeout_work);
852 	q->request_fn		= rfn;
853 	q->prep_rq_fn		= NULL;
854 	q->unprep_rq_fn		= NULL;
855 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
856 
857 	/* Override internal queue lock with supplied lock pointer */
858 	if (lock)
859 		q->queue_lock		= lock;
860 
861 	/*
862 	 * This also sets hw/phys segments, boundary and size
863 	 */
864 	blk_queue_make_request(q, blk_queue_bio);
865 
866 	q->sg_reserved_size = INT_MAX;
867 
868 	/* Protect q->elevator from elevator_change */
869 	mutex_lock(&q->sysfs_lock);
870 
871 	/* init elevator */
872 	if (elevator_init(q, NULL)) {
873 		mutex_unlock(&q->sysfs_lock);
874 		goto fail;
875 	}
876 
877 	mutex_unlock(&q->sysfs_lock);
878 
879 	return q;
880 
881 fail:
882 	blk_free_flush_queue(q->fq);
883 	return NULL;
884 }
885 EXPORT_SYMBOL(blk_init_allocated_queue);
886 
887 bool blk_get_queue(struct request_queue *q)
888 {
889 	if (likely(!blk_queue_dying(q))) {
890 		__blk_get_queue(q);
891 		return true;
892 	}
893 
894 	return false;
895 }
896 EXPORT_SYMBOL(blk_get_queue);
897 
898 static inline void blk_free_request(struct request_list *rl, struct request *rq)
899 {
900 	if (rq->cmd_flags & REQ_ELVPRIV) {
901 		elv_put_request(rl->q, rq);
902 		if (rq->elv.icq)
903 			put_io_context(rq->elv.icq->ioc);
904 	}
905 
906 	mempool_free(rq, rl->rq_pool);
907 }
908 
909 /*
910  * ioc_batching returns true if the ioc is a valid batching request and
911  * should be given priority access to a request.
912  */
913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
914 {
915 	if (!ioc)
916 		return 0;
917 
918 	/*
919 	 * Make sure the process is able to allocate at least 1 request
920 	 * even if the batch times out, otherwise we could theoretically
921 	 * lose wakeups.
922 	 */
923 	return ioc->nr_batch_requests == q->nr_batching ||
924 		(ioc->nr_batch_requests > 0
925 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926 }
927 
928 /*
929  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930  * will cause the process to be a "batcher" on all queues in the system. This
931  * is the behaviour we want though - once it gets a wakeup it should be given
932  * a nice run.
933  */
934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
935 {
936 	if (!ioc || ioc_batching(q, ioc))
937 		return;
938 
939 	ioc->nr_batch_requests = q->nr_batching;
940 	ioc->last_waited = jiffies;
941 }
942 
943 static void __freed_request(struct request_list *rl, int sync)
944 {
945 	struct request_queue *q = rl->q;
946 
947 	if (rl->count[sync] < queue_congestion_off_threshold(q))
948 		blk_clear_congested(rl, sync);
949 
950 	if (rl->count[sync] + 1 <= q->nr_requests) {
951 		if (waitqueue_active(&rl->wait[sync]))
952 			wake_up(&rl->wait[sync]);
953 
954 		blk_clear_rl_full(rl, sync);
955 	}
956 }
957 
958 /*
959  * A request has just been released.  Account for it, update the full and
960  * congestion status, wake up any waiters.   Called under q->queue_lock.
961  */
962 static void freed_request(struct request_list *rl, unsigned int flags)
963 {
964 	struct request_queue *q = rl->q;
965 	int sync = rw_is_sync(flags);
966 
967 	q->nr_rqs[sync]--;
968 	rl->count[sync]--;
969 	if (flags & REQ_ELVPRIV)
970 		q->nr_rqs_elvpriv--;
971 
972 	__freed_request(rl, sync);
973 
974 	if (unlikely(rl->starved[sync ^ 1]))
975 		__freed_request(rl, sync ^ 1);
976 }
977 
978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979 {
980 	struct request_list *rl;
981 	int on_thresh, off_thresh;
982 
983 	spin_lock_irq(q->queue_lock);
984 	q->nr_requests = nr;
985 	blk_queue_congestion_threshold(q);
986 	on_thresh = queue_congestion_on_threshold(q);
987 	off_thresh = queue_congestion_off_threshold(q);
988 
989 	blk_queue_for_each_rl(rl, q) {
990 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 			blk_set_congested(rl, BLK_RW_SYNC);
992 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 			blk_clear_congested(rl, BLK_RW_SYNC);
994 
995 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 			blk_set_congested(rl, BLK_RW_ASYNC);
997 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 			blk_clear_congested(rl, BLK_RW_ASYNC);
999 
1000 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 			blk_set_rl_full(rl, BLK_RW_SYNC);
1002 		} else {
1003 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 			wake_up(&rl->wait[BLK_RW_SYNC]);
1005 		}
1006 
1007 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 		} else {
1010 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 		}
1013 	}
1014 
1015 	spin_unlock_irq(q->queue_lock);
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Determine if elevator data should be initialized when allocating the
1021  * request associated with @bio.
1022  */
1023 static bool blk_rq_should_init_elevator(struct bio *bio)
1024 {
1025 	if (!bio)
1026 		return true;
1027 
1028 	/*
1029 	 * Flush requests do not use the elevator so skip initialization.
1030 	 * This allows a request to share the flush and elevator data.
1031 	 */
1032 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033 		return false;
1034 
1035 	return true;
1036 }
1037 
1038 /**
1039  * rq_ioc - determine io_context for request allocation
1040  * @bio: request being allocated is for this bio (can be %NULL)
1041  *
1042  * Determine io_context to use for request allocation for @bio.  May return
1043  * %NULL if %current->io_context doesn't exist.
1044  */
1045 static struct io_context *rq_ioc(struct bio *bio)
1046 {
1047 #ifdef CONFIG_BLK_CGROUP
1048 	if (bio && bio->bi_ioc)
1049 		return bio->bi_ioc;
1050 #endif
1051 	return current->io_context;
1052 }
1053 
1054 /**
1055  * __get_request - get a free request
1056  * @rl: request list to allocate from
1057  * @rw_flags: RW and SYNC flags
1058  * @bio: bio to allocate request for (can be %NULL)
1059  * @gfp_mask: allocation mask
1060  *
1061  * Get a free request from @q.  This function may fail under memory
1062  * pressure or if @q is dead.
1063  *
1064  * Must be called with @q->queue_lock held and,
1065  * Returns ERR_PTR on failure, with @q->queue_lock held.
1066  * Returns request pointer on success, with @q->queue_lock *not held*.
1067  */
1068 static struct request *__get_request(struct request_list *rl, int rw_flags,
1069 				     struct bio *bio, gfp_t gfp_mask)
1070 {
1071 	struct request_queue *q = rl->q;
1072 	struct request *rq;
1073 	struct elevator_type *et = q->elevator->type;
1074 	struct io_context *ioc = rq_ioc(bio);
1075 	struct io_cq *icq = NULL;
1076 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1077 	int may_queue;
1078 
1079 	if (unlikely(blk_queue_dying(q)))
1080 		return ERR_PTR(-ENODEV);
1081 
1082 	may_queue = elv_may_queue(q, rw_flags);
1083 	if (may_queue == ELV_MQUEUE_NO)
1084 		goto rq_starved;
1085 
1086 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1087 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1088 			/*
1089 			 * The queue will fill after this allocation, so set
1090 			 * it as full, and mark this process as "batching".
1091 			 * This process will be allowed to complete a batch of
1092 			 * requests, others will be blocked.
1093 			 */
1094 			if (!blk_rl_full(rl, is_sync)) {
1095 				ioc_set_batching(q, ioc);
1096 				blk_set_rl_full(rl, is_sync);
1097 			} else {
1098 				if (may_queue != ELV_MQUEUE_MUST
1099 						&& !ioc_batching(q, ioc)) {
1100 					/*
1101 					 * The queue is full and the allocating
1102 					 * process is not a "batcher", and not
1103 					 * exempted by the IO scheduler
1104 					 */
1105 					return ERR_PTR(-ENOMEM);
1106 				}
1107 			}
1108 		}
1109 		blk_set_congested(rl, is_sync);
1110 	}
1111 
1112 	/*
1113 	 * Only allow batching queuers to allocate up to 50% over the defined
1114 	 * limit of requests, otherwise we could have thousands of requests
1115 	 * allocated with any setting of ->nr_requests
1116 	 */
1117 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1118 		return ERR_PTR(-ENOMEM);
1119 
1120 	q->nr_rqs[is_sync]++;
1121 	rl->count[is_sync]++;
1122 	rl->starved[is_sync] = 0;
1123 
1124 	/*
1125 	 * Decide whether the new request will be managed by elevator.  If
1126 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1127 	 * prevent the current elevator from being destroyed until the new
1128 	 * request is freed.  This guarantees icq's won't be destroyed and
1129 	 * makes creating new ones safe.
1130 	 *
1131 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1132 	 * it will be created after releasing queue_lock.
1133 	 */
1134 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1135 		rw_flags |= REQ_ELVPRIV;
1136 		q->nr_rqs_elvpriv++;
1137 		if (et->icq_cache && ioc)
1138 			icq = ioc_lookup_icq(ioc, q);
1139 	}
1140 
1141 	if (blk_queue_io_stat(q))
1142 		rw_flags |= REQ_IO_STAT;
1143 	spin_unlock_irq(q->queue_lock);
1144 
1145 	/* allocate and init request */
1146 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1147 	if (!rq)
1148 		goto fail_alloc;
1149 
1150 	blk_rq_init(q, rq);
1151 	blk_rq_set_rl(rq, rl);
1152 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1153 
1154 	/* init elvpriv */
1155 	if (rw_flags & REQ_ELVPRIV) {
1156 		if (unlikely(et->icq_cache && !icq)) {
1157 			if (ioc)
1158 				icq = ioc_create_icq(ioc, q, gfp_mask);
1159 			if (!icq)
1160 				goto fail_elvpriv;
1161 		}
1162 
1163 		rq->elv.icq = icq;
1164 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1165 			goto fail_elvpriv;
1166 
1167 		/* @rq->elv.icq holds io_context until @rq is freed */
1168 		if (icq)
1169 			get_io_context(icq->ioc);
1170 	}
1171 out:
1172 	/*
1173 	 * ioc may be NULL here, and ioc_batching will be false. That's
1174 	 * OK, if the queue is under the request limit then requests need
1175 	 * not count toward the nr_batch_requests limit. There will always
1176 	 * be some limit enforced by BLK_BATCH_TIME.
1177 	 */
1178 	if (ioc_batching(q, ioc))
1179 		ioc->nr_batch_requests--;
1180 
1181 	trace_block_getrq(q, bio, rw_flags & 1);
1182 	return rq;
1183 
1184 fail_elvpriv:
1185 	/*
1186 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1187 	 * and may fail indefinitely under memory pressure and thus
1188 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1189 	 * disturb iosched and blkcg but weird is bettern than dead.
1190 	 */
1191 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1192 			   __func__, dev_name(q->backing_dev_info.dev));
1193 
1194 	rq->cmd_flags &= ~REQ_ELVPRIV;
1195 	rq->elv.icq = NULL;
1196 
1197 	spin_lock_irq(q->queue_lock);
1198 	q->nr_rqs_elvpriv--;
1199 	spin_unlock_irq(q->queue_lock);
1200 	goto out;
1201 
1202 fail_alloc:
1203 	/*
1204 	 * Allocation failed presumably due to memory. Undo anything we
1205 	 * might have messed up.
1206 	 *
1207 	 * Allocating task should really be put onto the front of the wait
1208 	 * queue, but this is pretty rare.
1209 	 */
1210 	spin_lock_irq(q->queue_lock);
1211 	freed_request(rl, rw_flags);
1212 
1213 	/*
1214 	 * in the very unlikely event that allocation failed and no
1215 	 * requests for this direction was pending, mark us starved so that
1216 	 * freeing of a request in the other direction will notice
1217 	 * us. another possible fix would be to split the rq mempool into
1218 	 * READ and WRITE
1219 	 */
1220 rq_starved:
1221 	if (unlikely(rl->count[is_sync] == 0))
1222 		rl->starved[is_sync] = 1;
1223 	return ERR_PTR(-ENOMEM);
1224 }
1225 
1226 /**
1227  * get_request - get a free request
1228  * @q: request_queue to allocate request from
1229  * @rw_flags: RW and SYNC flags
1230  * @bio: bio to allocate request for (can be %NULL)
1231  * @gfp_mask: allocation mask
1232  *
1233  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1234  * this function keeps retrying under memory pressure and fails iff @q is dead.
1235  *
1236  * Must be called with @q->queue_lock held and,
1237  * Returns ERR_PTR on failure, with @q->queue_lock held.
1238  * Returns request pointer on success, with @q->queue_lock *not held*.
1239  */
1240 static struct request *get_request(struct request_queue *q, int rw_flags,
1241 				   struct bio *bio, gfp_t gfp_mask)
1242 {
1243 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1244 	DEFINE_WAIT(wait);
1245 	struct request_list *rl;
1246 	struct request *rq;
1247 
1248 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1249 retry:
1250 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1251 	if (!IS_ERR(rq))
1252 		return rq;
1253 
1254 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1255 		blk_put_rl(rl);
1256 		return rq;
1257 	}
1258 
1259 	/* wait on @rl and retry */
1260 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1261 				  TASK_UNINTERRUPTIBLE);
1262 
1263 	trace_block_sleeprq(q, bio, rw_flags & 1);
1264 
1265 	spin_unlock_irq(q->queue_lock);
1266 	io_schedule();
1267 
1268 	/*
1269 	 * After sleeping, we become a "batching" process and will be able
1270 	 * to allocate at least one request, and up to a big batch of them
1271 	 * for a small period time.  See ioc_batching, ioc_set_batching
1272 	 */
1273 	ioc_set_batching(q, current->io_context);
1274 
1275 	spin_lock_irq(q->queue_lock);
1276 	finish_wait(&rl->wait[is_sync], &wait);
1277 
1278 	goto retry;
1279 }
1280 
1281 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1282 		gfp_t gfp_mask)
1283 {
1284 	struct request *rq;
1285 
1286 	BUG_ON(rw != READ && rw != WRITE);
1287 
1288 	/* create ioc upfront */
1289 	create_io_context(gfp_mask, q->node);
1290 
1291 	spin_lock_irq(q->queue_lock);
1292 	rq = get_request(q, rw, NULL, gfp_mask);
1293 	if (IS_ERR(rq))
1294 		spin_unlock_irq(q->queue_lock);
1295 	/* q->queue_lock is unlocked at this point */
1296 
1297 	return rq;
1298 }
1299 
1300 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301 {
1302 	if (q->mq_ops)
1303 		return blk_mq_alloc_request(q, rw,
1304 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305 				0 : BLK_MQ_REQ_NOWAIT);
1306 	else
1307 		return blk_old_get_request(q, rw, gfp_mask);
1308 }
1309 EXPORT_SYMBOL(blk_get_request);
1310 
1311 /**
1312  * blk_make_request - given a bio, allocate a corresponding struct request.
1313  * @q: target request queue
1314  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1315  *        It may be a chained-bio properly constructed by block/bio layer.
1316  * @gfp_mask: gfp flags to be used for memory allocation
1317  *
1318  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1319  * type commands. Where the struct request needs to be farther initialized by
1320  * the caller. It is passed a &struct bio, which describes the memory info of
1321  * the I/O transfer.
1322  *
1323  * The caller of blk_make_request must make sure that bi_io_vec
1324  * are set to describe the memory buffers. That bio_data_dir() will return
1325  * the needed direction of the request. (And all bio's in the passed bio-chain
1326  * are properly set accordingly)
1327  *
1328  * If called under none-sleepable conditions, mapped bio buffers must not
1329  * need bouncing, by calling the appropriate masked or flagged allocator,
1330  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1331  * BUG.
1332  *
1333  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1334  * given to how you allocate bios. In particular, you cannot use
1335  * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1336  * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1337  * thus resulting in a deadlock. Alternatively bios should be allocated using
1338  * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1339  * If possible a big IO should be split into smaller parts when allocation
1340  * fails. Partial allocation should not be an error, or you risk a live-lock.
1341  */
1342 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1343 				 gfp_t gfp_mask)
1344 {
1345 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1346 
1347 	if (IS_ERR(rq))
1348 		return rq;
1349 
1350 	blk_rq_set_block_pc(rq);
1351 
1352 	for_each_bio(bio) {
1353 		struct bio *bounce_bio = bio;
1354 		int ret;
1355 
1356 		blk_queue_bounce(q, &bounce_bio);
1357 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1358 		if (unlikely(ret)) {
1359 			blk_put_request(rq);
1360 			return ERR_PTR(ret);
1361 		}
1362 	}
1363 
1364 	return rq;
1365 }
1366 EXPORT_SYMBOL(blk_make_request);
1367 
1368 /**
1369  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1370  * @rq:		request to be initialized
1371  *
1372  */
1373 void blk_rq_set_block_pc(struct request *rq)
1374 {
1375 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1376 	rq->__data_len = 0;
1377 	rq->__sector = (sector_t) -1;
1378 	rq->bio = rq->biotail = NULL;
1379 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1380 }
1381 EXPORT_SYMBOL(blk_rq_set_block_pc);
1382 
1383 /**
1384  * blk_requeue_request - put a request back on queue
1385  * @q:		request queue where request should be inserted
1386  * @rq:		request to be inserted
1387  *
1388  * Description:
1389  *    Drivers often keep queueing requests until the hardware cannot accept
1390  *    more, when that condition happens we need to put the request back
1391  *    on the queue. Must be called with queue lock held.
1392  */
1393 void blk_requeue_request(struct request_queue *q, struct request *rq)
1394 {
1395 	blk_delete_timer(rq);
1396 	blk_clear_rq_complete(rq);
1397 	trace_block_rq_requeue(q, rq);
1398 
1399 	if (rq->cmd_flags & REQ_QUEUED)
1400 		blk_queue_end_tag(q, rq);
1401 
1402 	BUG_ON(blk_queued_rq(rq));
1403 
1404 	elv_requeue_request(q, rq);
1405 }
1406 EXPORT_SYMBOL(blk_requeue_request);
1407 
1408 static void add_acct_request(struct request_queue *q, struct request *rq,
1409 			     int where)
1410 {
1411 	blk_account_io_start(rq, true);
1412 	__elv_add_request(q, rq, where);
1413 }
1414 
1415 static void part_round_stats_single(int cpu, struct hd_struct *part,
1416 				    unsigned long now)
1417 {
1418 	int inflight;
1419 
1420 	if (now == part->stamp)
1421 		return;
1422 
1423 	inflight = part_in_flight(part);
1424 	if (inflight) {
1425 		__part_stat_add(cpu, part, time_in_queue,
1426 				inflight * (now - part->stamp));
1427 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1428 	}
1429 	part->stamp = now;
1430 }
1431 
1432 /**
1433  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1434  * @cpu: cpu number for stats access
1435  * @part: target partition
1436  *
1437  * The average IO queue length and utilisation statistics are maintained
1438  * by observing the current state of the queue length and the amount of
1439  * time it has been in this state for.
1440  *
1441  * Normally, that accounting is done on IO completion, but that can result
1442  * in more than a second's worth of IO being accounted for within any one
1443  * second, leading to >100% utilisation.  To deal with that, we call this
1444  * function to do a round-off before returning the results when reading
1445  * /proc/diskstats.  This accounts immediately for all queue usage up to
1446  * the current jiffies and restarts the counters again.
1447  */
1448 void part_round_stats(int cpu, struct hd_struct *part)
1449 {
1450 	unsigned long now = jiffies;
1451 
1452 	if (part->partno)
1453 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1454 	part_round_stats_single(cpu, part, now);
1455 }
1456 EXPORT_SYMBOL_GPL(part_round_stats);
1457 
1458 #ifdef CONFIG_PM
1459 static void blk_pm_put_request(struct request *rq)
1460 {
1461 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1462 		pm_runtime_mark_last_busy(rq->q->dev);
1463 }
1464 #else
1465 static inline void blk_pm_put_request(struct request *rq) {}
1466 #endif
1467 
1468 /*
1469  * queue lock must be held
1470  */
1471 void __blk_put_request(struct request_queue *q, struct request *req)
1472 {
1473 	if (unlikely(!q))
1474 		return;
1475 
1476 	if (q->mq_ops) {
1477 		blk_mq_free_request(req);
1478 		return;
1479 	}
1480 
1481 	blk_pm_put_request(req);
1482 
1483 	elv_completed_request(q, req);
1484 
1485 	/* this is a bio leak */
1486 	WARN_ON(req->bio != NULL);
1487 
1488 	/*
1489 	 * Request may not have originated from ll_rw_blk. if not,
1490 	 * it didn't come out of our reserved rq pools
1491 	 */
1492 	if (req->cmd_flags & REQ_ALLOCED) {
1493 		unsigned int flags = req->cmd_flags;
1494 		struct request_list *rl = blk_rq_rl(req);
1495 
1496 		BUG_ON(!list_empty(&req->queuelist));
1497 		BUG_ON(ELV_ON_HASH(req));
1498 
1499 		blk_free_request(rl, req);
1500 		freed_request(rl, flags);
1501 		blk_put_rl(rl);
1502 	}
1503 }
1504 EXPORT_SYMBOL_GPL(__blk_put_request);
1505 
1506 void blk_put_request(struct request *req)
1507 {
1508 	struct request_queue *q = req->q;
1509 
1510 	if (q->mq_ops)
1511 		blk_mq_free_request(req);
1512 	else {
1513 		unsigned long flags;
1514 
1515 		spin_lock_irqsave(q->queue_lock, flags);
1516 		__blk_put_request(q, req);
1517 		spin_unlock_irqrestore(q->queue_lock, flags);
1518 	}
1519 }
1520 EXPORT_SYMBOL(blk_put_request);
1521 
1522 /**
1523  * blk_add_request_payload - add a payload to a request
1524  * @rq: request to update
1525  * @page: page backing the payload
1526  * @len: length of the payload.
1527  *
1528  * This allows to later add a payload to an already submitted request by
1529  * a block driver.  The driver needs to take care of freeing the payload
1530  * itself.
1531  *
1532  * Note that this is a quite horrible hack and nothing but handling of
1533  * discard requests should ever use it.
1534  */
1535 void blk_add_request_payload(struct request *rq, struct page *page,
1536 		unsigned int len)
1537 {
1538 	struct bio *bio = rq->bio;
1539 
1540 	bio->bi_io_vec->bv_page = page;
1541 	bio->bi_io_vec->bv_offset = 0;
1542 	bio->bi_io_vec->bv_len = len;
1543 
1544 	bio->bi_iter.bi_size = len;
1545 	bio->bi_vcnt = 1;
1546 	bio->bi_phys_segments = 1;
1547 
1548 	rq->__data_len = rq->resid_len = len;
1549 	rq->nr_phys_segments = 1;
1550 }
1551 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1552 
1553 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1554 			    struct bio *bio)
1555 {
1556 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1557 
1558 	if (!ll_back_merge_fn(q, req, bio))
1559 		return false;
1560 
1561 	trace_block_bio_backmerge(q, req, bio);
1562 
1563 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1564 		blk_rq_set_mixed_merge(req);
1565 
1566 	req->biotail->bi_next = bio;
1567 	req->biotail = bio;
1568 	req->__data_len += bio->bi_iter.bi_size;
1569 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1570 
1571 	blk_account_io_start(req, false);
1572 	return true;
1573 }
1574 
1575 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1576 			     struct bio *bio)
1577 {
1578 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1579 
1580 	if (!ll_front_merge_fn(q, req, bio))
1581 		return false;
1582 
1583 	trace_block_bio_frontmerge(q, req, bio);
1584 
1585 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1586 		blk_rq_set_mixed_merge(req);
1587 
1588 	bio->bi_next = req->bio;
1589 	req->bio = bio;
1590 
1591 	req->__sector = bio->bi_iter.bi_sector;
1592 	req->__data_len += bio->bi_iter.bi_size;
1593 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1594 
1595 	blk_account_io_start(req, false);
1596 	return true;
1597 }
1598 
1599 /**
1600  * blk_attempt_plug_merge - try to merge with %current's plugged list
1601  * @q: request_queue new bio is being queued at
1602  * @bio: new bio being queued
1603  * @request_count: out parameter for number of traversed plugged requests
1604  * @same_queue_rq: pointer to &struct request that gets filled in when
1605  * another request associated with @q is found on the plug list
1606  * (optional, may be %NULL)
1607  *
1608  * Determine whether @bio being queued on @q can be merged with a request
1609  * on %current's plugged list.  Returns %true if merge was successful,
1610  * otherwise %false.
1611  *
1612  * Plugging coalesces IOs from the same issuer for the same purpose without
1613  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1614  * than scheduling, and the request, while may have elvpriv data, is not
1615  * added on the elevator at this point.  In addition, we don't have
1616  * reliable access to the elevator outside queue lock.  Only check basic
1617  * merging parameters without querying the elevator.
1618  *
1619  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1620  */
1621 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1622 			    unsigned int *request_count,
1623 			    struct request **same_queue_rq)
1624 {
1625 	struct blk_plug *plug;
1626 	struct request *rq;
1627 	bool ret = false;
1628 	struct list_head *plug_list;
1629 
1630 	plug = current->plug;
1631 	if (!plug)
1632 		goto out;
1633 	*request_count = 0;
1634 
1635 	if (q->mq_ops)
1636 		plug_list = &plug->mq_list;
1637 	else
1638 		plug_list = &plug->list;
1639 
1640 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1641 		int el_ret;
1642 
1643 		if (rq->q == q) {
1644 			(*request_count)++;
1645 			/*
1646 			 * Only blk-mq multiple hardware queues case checks the
1647 			 * rq in the same queue, there should be only one such
1648 			 * rq in a queue
1649 			 **/
1650 			if (same_queue_rq)
1651 				*same_queue_rq = rq;
1652 		}
1653 
1654 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1655 			continue;
1656 
1657 		el_ret = blk_try_merge(rq, bio);
1658 		if (el_ret == ELEVATOR_BACK_MERGE) {
1659 			ret = bio_attempt_back_merge(q, rq, bio);
1660 			if (ret)
1661 				break;
1662 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1663 			ret = bio_attempt_front_merge(q, rq, bio);
1664 			if (ret)
1665 				break;
1666 		}
1667 	}
1668 out:
1669 	return ret;
1670 }
1671 
1672 unsigned int blk_plug_queued_count(struct request_queue *q)
1673 {
1674 	struct blk_plug *plug;
1675 	struct request *rq;
1676 	struct list_head *plug_list;
1677 	unsigned int ret = 0;
1678 
1679 	plug = current->plug;
1680 	if (!plug)
1681 		goto out;
1682 
1683 	if (q->mq_ops)
1684 		plug_list = &plug->mq_list;
1685 	else
1686 		plug_list = &plug->list;
1687 
1688 	list_for_each_entry(rq, plug_list, queuelist) {
1689 		if (rq->q == q)
1690 			ret++;
1691 	}
1692 out:
1693 	return ret;
1694 }
1695 
1696 void init_request_from_bio(struct request *req, struct bio *bio)
1697 {
1698 	req->cmd_type = REQ_TYPE_FS;
1699 
1700 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1701 	if (bio->bi_rw & REQ_RAHEAD)
1702 		req->cmd_flags |= REQ_FAILFAST_MASK;
1703 
1704 	req->errors = 0;
1705 	req->__sector = bio->bi_iter.bi_sector;
1706 	req->ioprio = bio_prio(bio);
1707 	blk_rq_bio_prep(req->q, req, bio);
1708 }
1709 
1710 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1711 {
1712 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1713 	struct blk_plug *plug;
1714 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1715 	struct request *req;
1716 	unsigned int request_count = 0;
1717 
1718 	/*
1719 	 * low level driver can indicate that it wants pages above a
1720 	 * certain limit bounced to low memory (ie for highmem, or even
1721 	 * ISA dma in theory)
1722 	 */
1723 	blk_queue_bounce(q, &bio);
1724 
1725 	blk_queue_split(q, &bio, q->bio_split);
1726 
1727 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1728 		bio->bi_error = -EIO;
1729 		bio_endio(bio);
1730 		return BLK_QC_T_NONE;
1731 	}
1732 
1733 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1734 		spin_lock_irq(q->queue_lock);
1735 		where = ELEVATOR_INSERT_FLUSH;
1736 		goto get_rq;
1737 	}
1738 
1739 	/*
1740 	 * Check if we can merge with the plugged list before grabbing
1741 	 * any locks.
1742 	 */
1743 	if (!blk_queue_nomerges(q)) {
1744 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1745 			return BLK_QC_T_NONE;
1746 	} else
1747 		request_count = blk_plug_queued_count(q);
1748 
1749 	spin_lock_irq(q->queue_lock);
1750 
1751 	el_ret = elv_merge(q, &req, bio);
1752 	if (el_ret == ELEVATOR_BACK_MERGE) {
1753 		if (bio_attempt_back_merge(q, req, bio)) {
1754 			elv_bio_merged(q, req, bio);
1755 			if (!attempt_back_merge(q, req))
1756 				elv_merged_request(q, req, el_ret);
1757 			goto out_unlock;
1758 		}
1759 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1760 		if (bio_attempt_front_merge(q, req, bio)) {
1761 			elv_bio_merged(q, req, bio);
1762 			if (!attempt_front_merge(q, req))
1763 				elv_merged_request(q, req, el_ret);
1764 			goto out_unlock;
1765 		}
1766 	}
1767 
1768 get_rq:
1769 	/*
1770 	 * This sync check and mask will be re-done in init_request_from_bio(),
1771 	 * but we need to set it earlier to expose the sync flag to the
1772 	 * rq allocator and io schedulers.
1773 	 */
1774 	rw_flags = bio_data_dir(bio);
1775 	if (sync)
1776 		rw_flags |= REQ_SYNC;
1777 
1778 	/*
1779 	 * Grab a free request. This is might sleep but can not fail.
1780 	 * Returns with the queue unlocked.
1781 	 */
1782 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1783 	if (IS_ERR(req)) {
1784 		bio->bi_error = PTR_ERR(req);
1785 		bio_endio(bio);
1786 		goto out_unlock;
1787 	}
1788 
1789 	/*
1790 	 * After dropping the lock and possibly sleeping here, our request
1791 	 * may now be mergeable after it had proven unmergeable (above).
1792 	 * We don't worry about that case for efficiency. It won't happen
1793 	 * often, and the elevators are able to handle it.
1794 	 */
1795 	init_request_from_bio(req, bio);
1796 
1797 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1798 		req->cpu = raw_smp_processor_id();
1799 
1800 	plug = current->plug;
1801 	if (plug) {
1802 		/*
1803 		 * If this is the first request added after a plug, fire
1804 		 * of a plug trace.
1805 		 */
1806 		if (!request_count)
1807 			trace_block_plug(q);
1808 		else {
1809 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1810 				blk_flush_plug_list(plug, false);
1811 				trace_block_plug(q);
1812 			}
1813 		}
1814 		list_add_tail(&req->queuelist, &plug->list);
1815 		blk_account_io_start(req, true);
1816 	} else {
1817 		spin_lock_irq(q->queue_lock);
1818 		add_acct_request(q, req, where);
1819 		__blk_run_queue(q);
1820 out_unlock:
1821 		spin_unlock_irq(q->queue_lock);
1822 	}
1823 
1824 	return BLK_QC_T_NONE;
1825 }
1826 
1827 /*
1828  * If bio->bi_dev is a partition, remap the location
1829  */
1830 static inline void blk_partition_remap(struct bio *bio)
1831 {
1832 	struct block_device *bdev = bio->bi_bdev;
1833 
1834 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1835 		struct hd_struct *p = bdev->bd_part;
1836 
1837 		bio->bi_iter.bi_sector += p->start_sect;
1838 		bio->bi_bdev = bdev->bd_contains;
1839 
1840 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1841 				      bdev->bd_dev,
1842 				      bio->bi_iter.bi_sector - p->start_sect);
1843 	}
1844 }
1845 
1846 static void handle_bad_sector(struct bio *bio)
1847 {
1848 	char b[BDEVNAME_SIZE];
1849 
1850 	printk(KERN_INFO "attempt to access beyond end of device\n");
1851 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1852 			bdevname(bio->bi_bdev, b),
1853 			bio->bi_rw,
1854 			(unsigned long long)bio_end_sector(bio),
1855 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1856 }
1857 
1858 #ifdef CONFIG_FAIL_MAKE_REQUEST
1859 
1860 static DECLARE_FAULT_ATTR(fail_make_request);
1861 
1862 static int __init setup_fail_make_request(char *str)
1863 {
1864 	return setup_fault_attr(&fail_make_request, str);
1865 }
1866 __setup("fail_make_request=", setup_fail_make_request);
1867 
1868 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1869 {
1870 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1871 }
1872 
1873 static int __init fail_make_request_debugfs(void)
1874 {
1875 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1876 						NULL, &fail_make_request);
1877 
1878 	return PTR_ERR_OR_ZERO(dir);
1879 }
1880 
1881 late_initcall(fail_make_request_debugfs);
1882 
1883 #else /* CONFIG_FAIL_MAKE_REQUEST */
1884 
1885 static inline bool should_fail_request(struct hd_struct *part,
1886 					unsigned int bytes)
1887 {
1888 	return false;
1889 }
1890 
1891 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1892 
1893 /*
1894  * Check whether this bio extends beyond the end of the device.
1895  */
1896 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1897 {
1898 	sector_t maxsector;
1899 
1900 	if (!nr_sectors)
1901 		return 0;
1902 
1903 	/* Test device or partition size, when known. */
1904 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1905 	if (maxsector) {
1906 		sector_t sector = bio->bi_iter.bi_sector;
1907 
1908 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1909 			/*
1910 			 * This may well happen - the kernel calls bread()
1911 			 * without checking the size of the device, e.g., when
1912 			 * mounting a device.
1913 			 */
1914 			handle_bad_sector(bio);
1915 			return 1;
1916 		}
1917 	}
1918 
1919 	return 0;
1920 }
1921 
1922 static noinline_for_stack bool
1923 generic_make_request_checks(struct bio *bio)
1924 {
1925 	struct request_queue *q;
1926 	int nr_sectors = bio_sectors(bio);
1927 	int err = -EIO;
1928 	char b[BDEVNAME_SIZE];
1929 	struct hd_struct *part;
1930 
1931 	might_sleep();
1932 
1933 	if (bio_check_eod(bio, nr_sectors))
1934 		goto end_io;
1935 
1936 	q = bdev_get_queue(bio->bi_bdev);
1937 	if (unlikely(!q)) {
1938 		printk(KERN_ERR
1939 		       "generic_make_request: Trying to access "
1940 			"nonexistent block-device %s (%Lu)\n",
1941 			bdevname(bio->bi_bdev, b),
1942 			(long long) bio->bi_iter.bi_sector);
1943 		goto end_io;
1944 	}
1945 
1946 	part = bio->bi_bdev->bd_part;
1947 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1948 	    should_fail_request(&part_to_disk(part)->part0,
1949 				bio->bi_iter.bi_size))
1950 		goto end_io;
1951 
1952 	/*
1953 	 * If this device has partitions, remap block n
1954 	 * of partition p to block n+start(p) of the disk.
1955 	 */
1956 	blk_partition_remap(bio);
1957 
1958 	if (bio_check_eod(bio, nr_sectors))
1959 		goto end_io;
1960 
1961 	/*
1962 	 * Filter flush bio's early so that make_request based
1963 	 * drivers without flush support don't have to worry
1964 	 * about them.
1965 	 */
1966 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1967 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1968 		if (!nr_sectors) {
1969 			err = 0;
1970 			goto end_io;
1971 		}
1972 	}
1973 
1974 	if ((bio->bi_rw & REQ_DISCARD) &&
1975 	    (!blk_queue_discard(q) ||
1976 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1977 		err = -EOPNOTSUPP;
1978 		goto end_io;
1979 	}
1980 
1981 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1982 		err = -EOPNOTSUPP;
1983 		goto end_io;
1984 	}
1985 
1986 	/*
1987 	 * Various block parts want %current->io_context and lazy ioc
1988 	 * allocation ends up trading a lot of pain for a small amount of
1989 	 * memory.  Just allocate it upfront.  This may fail and block
1990 	 * layer knows how to live with it.
1991 	 */
1992 	create_io_context(GFP_ATOMIC, q->node);
1993 
1994 	if (!blkcg_bio_issue_check(q, bio))
1995 		return false;
1996 
1997 	trace_block_bio_queue(q, bio);
1998 	return true;
1999 
2000 end_io:
2001 	bio->bi_error = err;
2002 	bio_endio(bio);
2003 	return false;
2004 }
2005 
2006 /**
2007  * generic_make_request - hand a buffer to its device driver for I/O
2008  * @bio:  The bio describing the location in memory and on the device.
2009  *
2010  * generic_make_request() is used to make I/O requests of block
2011  * devices. It is passed a &struct bio, which describes the I/O that needs
2012  * to be done.
2013  *
2014  * generic_make_request() does not return any status.  The
2015  * success/failure status of the request, along with notification of
2016  * completion, is delivered asynchronously through the bio->bi_end_io
2017  * function described (one day) else where.
2018  *
2019  * The caller of generic_make_request must make sure that bi_io_vec
2020  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2021  * set to describe the device address, and the
2022  * bi_end_io and optionally bi_private are set to describe how
2023  * completion notification should be signaled.
2024  *
2025  * generic_make_request and the drivers it calls may use bi_next if this
2026  * bio happens to be merged with someone else, and may resubmit the bio to
2027  * a lower device by calling into generic_make_request recursively, which
2028  * means the bio should NOT be touched after the call to ->make_request_fn.
2029  */
2030 blk_qc_t generic_make_request(struct bio *bio)
2031 {
2032 	struct bio_list bio_list_on_stack;
2033 	blk_qc_t ret = BLK_QC_T_NONE;
2034 
2035 	if (!generic_make_request_checks(bio))
2036 		goto out;
2037 
2038 	/*
2039 	 * We only want one ->make_request_fn to be active at a time, else
2040 	 * stack usage with stacked devices could be a problem.  So use
2041 	 * current->bio_list to keep a list of requests submited by a
2042 	 * make_request_fn function.  current->bio_list is also used as a
2043 	 * flag to say if generic_make_request is currently active in this
2044 	 * task or not.  If it is NULL, then no make_request is active.  If
2045 	 * it is non-NULL, then a make_request is active, and new requests
2046 	 * should be added at the tail
2047 	 */
2048 	if (current->bio_list) {
2049 		bio_list_add(current->bio_list, bio);
2050 		goto out;
2051 	}
2052 
2053 	/* following loop may be a bit non-obvious, and so deserves some
2054 	 * explanation.
2055 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2056 	 * ensure that) so we have a list with a single bio.
2057 	 * We pretend that we have just taken it off a longer list, so
2058 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2059 	 * thus initialising the bio_list of new bios to be
2060 	 * added.  ->make_request() may indeed add some more bios
2061 	 * through a recursive call to generic_make_request.  If it
2062 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2063 	 * from the top.  In this case we really did just take the bio
2064 	 * of the top of the list (no pretending) and so remove it from
2065 	 * bio_list, and call into ->make_request() again.
2066 	 */
2067 	BUG_ON(bio->bi_next);
2068 	bio_list_init(&bio_list_on_stack);
2069 	current->bio_list = &bio_list_on_stack;
2070 	do {
2071 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2072 
2073 		if (likely(blk_queue_enter(q, false) == 0)) {
2074 			ret = q->make_request_fn(q, bio);
2075 
2076 			blk_queue_exit(q);
2077 
2078 			bio = bio_list_pop(current->bio_list);
2079 		} else {
2080 			struct bio *bio_next = bio_list_pop(current->bio_list);
2081 
2082 			bio_io_error(bio);
2083 			bio = bio_next;
2084 		}
2085 	} while (bio);
2086 	current->bio_list = NULL; /* deactivate */
2087 
2088 out:
2089 	return ret;
2090 }
2091 EXPORT_SYMBOL(generic_make_request);
2092 
2093 /**
2094  * submit_bio - submit a bio to the block device layer for I/O
2095  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2096  * @bio: The &struct bio which describes the I/O
2097  *
2098  * submit_bio() is very similar in purpose to generic_make_request(), and
2099  * uses that function to do most of the work. Both are fairly rough
2100  * interfaces; @bio must be presetup and ready for I/O.
2101  *
2102  */
2103 blk_qc_t submit_bio(int rw, struct bio *bio)
2104 {
2105 	bio->bi_rw |= rw;
2106 
2107 	/*
2108 	 * If it's a regular read/write or a barrier with data attached,
2109 	 * go through the normal accounting stuff before submission.
2110 	 */
2111 	if (bio_has_data(bio)) {
2112 		unsigned int count;
2113 
2114 		if (unlikely(rw & REQ_WRITE_SAME))
2115 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2116 		else
2117 			count = bio_sectors(bio);
2118 
2119 		if (rw & WRITE) {
2120 			count_vm_events(PGPGOUT, count);
2121 		} else {
2122 			task_io_account_read(bio->bi_iter.bi_size);
2123 			count_vm_events(PGPGIN, count);
2124 		}
2125 
2126 		if (unlikely(block_dump)) {
2127 			char b[BDEVNAME_SIZE];
2128 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2129 			current->comm, task_pid_nr(current),
2130 				(rw & WRITE) ? "WRITE" : "READ",
2131 				(unsigned long long)bio->bi_iter.bi_sector,
2132 				bdevname(bio->bi_bdev, b),
2133 				count);
2134 		}
2135 	}
2136 
2137 	return generic_make_request(bio);
2138 }
2139 EXPORT_SYMBOL(submit_bio);
2140 
2141 /**
2142  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2143  *                              for new the queue limits
2144  * @q:  the queue
2145  * @rq: the request being checked
2146  *
2147  * Description:
2148  *    @rq may have been made based on weaker limitations of upper-level queues
2149  *    in request stacking drivers, and it may violate the limitation of @q.
2150  *    Since the block layer and the underlying device driver trust @rq
2151  *    after it is inserted to @q, it should be checked against @q before
2152  *    the insertion using this generic function.
2153  *
2154  *    Request stacking drivers like request-based dm may change the queue
2155  *    limits when retrying requests on other queues. Those requests need
2156  *    to be checked against the new queue limits again during dispatch.
2157  */
2158 static int blk_cloned_rq_check_limits(struct request_queue *q,
2159 				      struct request *rq)
2160 {
2161 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2162 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2163 		return -EIO;
2164 	}
2165 
2166 	/*
2167 	 * queue's settings related to segment counting like q->bounce_pfn
2168 	 * may differ from that of other stacking queues.
2169 	 * Recalculate it to check the request correctly on this queue's
2170 	 * limitation.
2171 	 */
2172 	blk_recalc_rq_segments(rq);
2173 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2174 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2175 		return -EIO;
2176 	}
2177 
2178 	return 0;
2179 }
2180 
2181 /**
2182  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2183  * @q:  the queue to submit the request
2184  * @rq: the request being queued
2185  */
2186 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2187 {
2188 	unsigned long flags;
2189 	int where = ELEVATOR_INSERT_BACK;
2190 
2191 	if (blk_cloned_rq_check_limits(q, rq))
2192 		return -EIO;
2193 
2194 	if (rq->rq_disk &&
2195 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2196 		return -EIO;
2197 
2198 	if (q->mq_ops) {
2199 		if (blk_queue_io_stat(q))
2200 			blk_account_io_start(rq, true);
2201 		blk_mq_insert_request(rq, false, true, false);
2202 		return 0;
2203 	}
2204 
2205 	spin_lock_irqsave(q->queue_lock, flags);
2206 	if (unlikely(blk_queue_dying(q))) {
2207 		spin_unlock_irqrestore(q->queue_lock, flags);
2208 		return -ENODEV;
2209 	}
2210 
2211 	/*
2212 	 * Submitting request must be dequeued before calling this function
2213 	 * because it will be linked to another request_queue
2214 	 */
2215 	BUG_ON(blk_queued_rq(rq));
2216 
2217 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2218 		where = ELEVATOR_INSERT_FLUSH;
2219 
2220 	add_acct_request(q, rq, where);
2221 	if (where == ELEVATOR_INSERT_FLUSH)
2222 		__blk_run_queue(q);
2223 	spin_unlock_irqrestore(q->queue_lock, flags);
2224 
2225 	return 0;
2226 }
2227 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2228 
2229 /**
2230  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2231  * @rq: request to examine
2232  *
2233  * Description:
2234  *     A request could be merge of IOs which require different failure
2235  *     handling.  This function determines the number of bytes which
2236  *     can be failed from the beginning of the request without
2237  *     crossing into area which need to be retried further.
2238  *
2239  * Return:
2240  *     The number of bytes to fail.
2241  *
2242  * Context:
2243  *     queue_lock must be held.
2244  */
2245 unsigned int blk_rq_err_bytes(const struct request *rq)
2246 {
2247 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2248 	unsigned int bytes = 0;
2249 	struct bio *bio;
2250 
2251 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2252 		return blk_rq_bytes(rq);
2253 
2254 	/*
2255 	 * Currently the only 'mixing' which can happen is between
2256 	 * different fastfail types.  We can safely fail portions
2257 	 * which have all the failfast bits that the first one has -
2258 	 * the ones which are at least as eager to fail as the first
2259 	 * one.
2260 	 */
2261 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2262 		if ((bio->bi_rw & ff) != ff)
2263 			break;
2264 		bytes += bio->bi_iter.bi_size;
2265 	}
2266 
2267 	/* this could lead to infinite loop */
2268 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2269 	return bytes;
2270 }
2271 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2272 
2273 void blk_account_io_completion(struct request *req, unsigned int bytes)
2274 {
2275 	if (blk_do_io_stat(req)) {
2276 		const int rw = rq_data_dir(req);
2277 		struct hd_struct *part;
2278 		int cpu;
2279 
2280 		cpu = part_stat_lock();
2281 		part = req->part;
2282 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2283 		part_stat_unlock();
2284 	}
2285 }
2286 
2287 void blk_account_io_done(struct request *req)
2288 {
2289 	/*
2290 	 * Account IO completion.  flush_rq isn't accounted as a
2291 	 * normal IO on queueing nor completion.  Accounting the
2292 	 * containing request is enough.
2293 	 */
2294 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2295 		unsigned long duration = jiffies - req->start_time;
2296 		const int rw = rq_data_dir(req);
2297 		struct hd_struct *part;
2298 		int cpu;
2299 
2300 		cpu = part_stat_lock();
2301 		part = req->part;
2302 
2303 		part_stat_inc(cpu, part, ios[rw]);
2304 		part_stat_add(cpu, part, ticks[rw], duration);
2305 		part_round_stats(cpu, part);
2306 		part_dec_in_flight(part, rw);
2307 
2308 		hd_struct_put(part);
2309 		part_stat_unlock();
2310 	}
2311 }
2312 
2313 #ifdef CONFIG_PM
2314 /*
2315  * Don't process normal requests when queue is suspended
2316  * or in the process of suspending/resuming
2317  */
2318 static struct request *blk_pm_peek_request(struct request_queue *q,
2319 					   struct request *rq)
2320 {
2321 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2322 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2323 		return NULL;
2324 	else
2325 		return rq;
2326 }
2327 #else
2328 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2329 						  struct request *rq)
2330 {
2331 	return rq;
2332 }
2333 #endif
2334 
2335 void blk_account_io_start(struct request *rq, bool new_io)
2336 {
2337 	struct hd_struct *part;
2338 	int rw = rq_data_dir(rq);
2339 	int cpu;
2340 
2341 	if (!blk_do_io_stat(rq))
2342 		return;
2343 
2344 	cpu = part_stat_lock();
2345 
2346 	if (!new_io) {
2347 		part = rq->part;
2348 		part_stat_inc(cpu, part, merges[rw]);
2349 	} else {
2350 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2351 		if (!hd_struct_try_get(part)) {
2352 			/*
2353 			 * The partition is already being removed,
2354 			 * the request will be accounted on the disk only
2355 			 *
2356 			 * We take a reference on disk->part0 although that
2357 			 * partition will never be deleted, so we can treat
2358 			 * it as any other partition.
2359 			 */
2360 			part = &rq->rq_disk->part0;
2361 			hd_struct_get(part);
2362 		}
2363 		part_round_stats(cpu, part);
2364 		part_inc_in_flight(part, rw);
2365 		rq->part = part;
2366 	}
2367 
2368 	part_stat_unlock();
2369 }
2370 
2371 /**
2372  * blk_peek_request - peek at the top of a request queue
2373  * @q: request queue to peek at
2374  *
2375  * Description:
2376  *     Return the request at the top of @q.  The returned request
2377  *     should be started using blk_start_request() before LLD starts
2378  *     processing it.
2379  *
2380  * Return:
2381  *     Pointer to the request at the top of @q if available.  Null
2382  *     otherwise.
2383  *
2384  * Context:
2385  *     queue_lock must be held.
2386  */
2387 struct request *blk_peek_request(struct request_queue *q)
2388 {
2389 	struct request *rq;
2390 	int ret;
2391 
2392 	while ((rq = __elv_next_request(q)) != NULL) {
2393 
2394 		rq = blk_pm_peek_request(q, rq);
2395 		if (!rq)
2396 			break;
2397 
2398 		if (!(rq->cmd_flags & REQ_STARTED)) {
2399 			/*
2400 			 * This is the first time the device driver
2401 			 * sees this request (possibly after
2402 			 * requeueing).  Notify IO scheduler.
2403 			 */
2404 			if (rq->cmd_flags & REQ_SORTED)
2405 				elv_activate_rq(q, rq);
2406 
2407 			/*
2408 			 * just mark as started even if we don't start
2409 			 * it, a request that has been delayed should
2410 			 * not be passed by new incoming requests
2411 			 */
2412 			rq->cmd_flags |= REQ_STARTED;
2413 			trace_block_rq_issue(q, rq);
2414 		}
2415 
2416 		if (!q->boundary_rq || q->boundary_rq == rq) {
2417 			q->end_sector = rq_end_sector(rq);
2418 			q->boundary_rq = NULL;
2419 		}
2420 
2421 		if (rq->cmd_flags & REQ_DONTPREP)
2422 			break;
2423 
2424 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2425 			/*
2426 			 * make sure space for the drain appears we
2427 			 * know we can do this because max_hw_segments
2428 			 * has been adjusted to be one fewer than the
2429 			 * device can handle
2430 			 */
2431 			rq->nr_phys_segments++;
2432 		}
2433 
2434 		if (!q->prep_rq_fn)
2435 			break;
2436 
2437 		ret = q->prep_rq_fn(q, rq);
2438 		if (ret == BLKPREP_OK) {
2439 			break;
2440 		} else if (ret == BLKPREP_DEFER) {
2441 			/*
2442 			 * the request may have been (partially) prepped.
2443 			 * we need to keep this request in the front to
2444 			 * avoid resource deadlock.  REQ_STARTED will
2445 			 * prevent other fs requests from passing this one.
2446 			 */
2447 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2448 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2449 				/*
2450 				 * remove the space for the drain we added
2451 				 * so that we don't add it again
2452 				 */
2453 				--rq->nr_phys_segments;
2454 			}
2455 
2456 			rq = NULL;
2457 			break;
2458 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2459 			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2460 
2461 			rq->cmd_flags |= REQ_QUIET;
2462 			/*
2463 			 * Mark this request as started so we don't trigger
2464 			 * any debug logic in the end I/O path.
2465 			 */
2466 			blk_start_request(rq);
2467 			__blk_end_request_all(rq, err);
2468 		} else {
2469 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2470 			break;
2471 		}
2472 	}
2473 
2474 	return rq;
2475 }
2476 EXPORT_SYMBOL(blk_peek_request);
2477 
2478 void blk_dequeue_request(struct request *rq)
2479 {
2480 	struct request_queue *q = rq->q;
2481 
2482 	BUG_ON(list_empty(&rq->queuelist));
2483 	BUG_ON(ELV_ON_HASH(rq));
2484 
2485 	list_del_init(&rq->queuelist);
2486 
2487 	/*
2488 	 * the time frame between a request being removed from the lists
2489 	 * and to it is freed is accounted as io that is in progress at
2490 	 * the driver side.
2491 	 */
2492 	if (blk_account_rq(rq)) {
2493 		q->in_flight[rq_is_sync(rq)]++;
2494 		set_io_start_time_ns(rq);
2495 	}
2496 }
2497 
2498 /**
2499  * blk_start_request - start request processing on the driver
2500  * @req: request to dequeue
2501  *
2502  * Description:
2503  *     Dequeue @req and start timeout timer on it.  This hands off the
2504  *     request to the driver.
2505  *
2506  *     Block internal functions which don't want to start timer should
2507  *     call blk_dequeue_request().
2508  *
2509  * Context:
2510  *     queue_lock must be held.
2511  */
2512 void blk_start_request(struct request *req)
2513 {
2514 	blk_dequeue_request(req);
2515 
2516 	/*
2517 	 * We are now handing the request to the hardware, initialize
2518 	 * resid_len to full count and add the timeout handler.
2519 	 */
2520 	req->resid_len = blk_rq_bytes(req);
2521 	if (unlikely(blk_bidi_rq(req)))
2522 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2523 
2524 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2525 	blk_add_timer(req);
2526 }
2527 EXPORT_SYMBOL(blk_start_request);
2528 
2529 /**
2530  * blk_fetch_request - fetch a request from a request queue
2531  * @q: request queue to fetch a request from
2532  *
2533  * Description:
2534  *     Return the request at the top of @q.  The request is started on
2535  *     return and LLD can start processing it immediately.
2536  *
2537  * Return:
2538  *     Pointer to the request at the top of @q if available.  Null
2539  *     otherwise.
2540  *
2541  * Context:
2542  *     queue_lock must be held.
2543  */
2544 struct request *blk_fetch_request(struct request_queue *q)
2545 {
2546 	struct request *rq;
2547 
2548 	rq = blk_peek_request(q);
2549 	if (rq)
2550 		blk_start_request(rq);
2551 	return rq;
2552 }
2553 EXPORT_SYMBOL(blk_fetch_request);
2554 
2555 /**
2556  * blk_update_request - Special helper function for request stacking drivers
2557  * @req:      the request being processed
2558  * @error:    %0 for success, < %0 for error
2559  * @nr_bytes: number of bytes to complete @req
2560  *
2561  * Description:
2562  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2563  *     the request structure even if @req doesn't have leftover.
2564  *     If @req has leftover, sets it up for the next range of segments.
2565  *
2566  *     This special helper function is only for request stacking drivers
2567  *     (e.g. request-based dm) so that they can handle partial completion.
2568  *     Actual device drivers should use blk_end_request instead.
2569  *
2570  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2571  *     %false return from this function.
2572  *
2573  * Return:
2574  *     %false - this request doesn't have any more data
2575  *     %true  - this request has more data
2576  **/
2577 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2578 {
2579 	int total_bytes;
2580 
2581 	trace_block_rq_complete(req->q, req, nr_bytes);
2582 
2583 	if (!req->bio)
2584 		return false;
2585 
2586 	/*
2587 	 * For fs requests, rq is just carrier of independent bio's
2588 	 * and each partial completion should be handled separately.
2589 	 * Reset per-request error on each partial completion.
2590 	 *
2591 	 * TODO: tj: This is too subtle.  It would be better to let
2592 	 * low level drivers do what they see fit.
2593 	 */
2594 	if (req->cmd_type == REQ_TYPE_FS)
2595 		req->errors = 0;
2596 
2597 	if (error && req->cmd_type == REQ_TYPE_FS &&
2598 	    !(req->cmd_flags & REQ_QUIET)) {
2599 		char *error_type;
2600 
2601 		switch (error) {
2602 		case -ENOLINK:
2603 			error_type = "recoverable transport";
2604 			break;
2605 		case -EREMOTEIO:
2606 			error_type = "critical target";
2607 			break;
2608 		case -EBADE:
2609 			error_type = "critical nexus";
2610 			break;
2611 		case -ETIMEDOUT:
2612 			error_type = "timeout";
2613 			break;
2614 		case -ENOSPC:
2615 			error_type = "critical space allocation";
2616 			break;
2617 		case -ENODATA:
2618 			error_type = "critical medium";
2619 			break;
2620 		case -EIO:
2621 		default:
2622 			error_type = "I/O";
2623 			break;
2624 		}
2625 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2626 				   __func__, error_type, req->rq_disk ?
2627 				   req->rq_disk->disk_name : "?",
2628 				   (unsigned long long)blk_rq_pos(req));
2629 
2630 	}
2631 
2632 	blk_account_io_completion(req, nr_bytes);
2633 
2634 	total_bytes = 0;
2635 	while (req->bio) {
2636 		struct bio *bio = req->bio;
2637 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2638 
2639 		if (bio_bytes == bio->bi_iter.bi_size)
2640 			req->bio = bio->bi_next;
2641 
2642 		req_bio_endio(req, bio, bio_bytes, error);
2643 
2644 		total_bytes += bio_bytes;
2645 		nr_bytes -= bio_bytes;
2646 
2647 		if (!nr_bytes)
2648 			break;
2649 	}
2650 
2651 	/*
2652 	 * completely done
2653 	 */
2654 	if (!req->bio) {
2655 		/*
2656 		 * Reset counters so that the request stacking driver
2657 		 * can find how many bytes remain in the request
2658 		 * later.
2659 		 */
2660 		req->__data_len = 0;
2661 		return false;
2662 	}
2663 
2664 	req->__data_len -= total_bytes;
2665 
2666 	/* update sector only for requests with clear definition of sector */
2667 	if (req->cmd_type == REQ_TYPE_FS)
2668 		req->__sector += total_bytes >> 9;
2669 
2670 	/* mixed attributes always follow the first bio */
2671 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2672 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2673 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2674 	}
2675 
2676 	/*
2677 	 * If total number of sectors is less than the first segment
2678 	 * size, something has gone terribly wrong.
2679 	 */
2680 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2681 		blk_dump_rq_flags(req, "request botched");
2682 		req->__data_len = blk_rq_cur_bytes(req);
2683 	}
2684 
2685 	/* recalculate the number of segments */
2686 	blk_recalc_rq_segments(req);
2687 
2688 	return true;
2689 }
2690 EXPORT_SYMBOL_GPL(blk_update_request);
2691 
2692 static bool blk_update_bidi_request(struct request *rq, int error,
2693 				    unsigned int nr_bytes,
2694 				    unsigned int bidi_bytes)
2695 {
2696 	if (blk_update_request(rq, error, nr_bytes))
2697 		return true;
2698 
2699 	/* Bidi request must be completed as a whole */
2700 	if (unlikely(blk_bidi_rq(rq)) &&
2701 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2702 		return true;
2703 
2704 	if (blk_queue_add_random(rq->q))
2705 		add_disk_randomness(rq->rq_disk);
2706 
2707 	return false;
2708 }
2709 
2710 /**
2711  * blk_unprep_request - unprepare a request
2712  * @req:	the request
2713  *
2714  * This function makes a request ready for complete resubmission (or
2715  * completion).  It happens only after all error handling is complete,
2716  * so represents the appropriate moment to deallocate any resources
2717  * that were allocated to the request in the prep_rq_fn.  The queue
2718  * lock is held when calling this.
2719  */
2720 void blk_unprep_request(struct request *req)
2721 {
2722 	struct request_queue *q = req->q;
2723 
2724 	req->cmd_flags &= ~REQ_DONTPREP;
2725 	if (q->unprep_rq_fn)
2726 		q->unprep_rq_fn(q, req);
2727 }
2728 EXPORT_SYMBOL_GPL(blk_unprep_request);
2729 
2730 /*
2731  * queue lock must be held
2732  */
2733 void blk_finish_request(struct request *req, int error)
2734 {
2735 	if (req->cmd_flags & REQ_QUEUED)
2736 		blk_queue_end_tag(req->q, req);
2737 
2738 	BUG_ON(blk_queued_rq(req));
2739 
2740 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2741 		laptop_io_completion(&req->q->backing_dev_info);
2742 
2743 	blk_delete_timer(req);
2744 
2745 	if (req->cmd_flags & REQ_DONTPREP)
2746 		blk_unprep_request(req);
2747 
2748 	blk_account_io_done(req);
2749 
2750 	if (req->end_io)
2751 		req->end_io(req, error);
2752 	else {
2753 		if (blk_bidi_rq(req))
2754 			__blk_put_request(req->next_rq->q, req->next_rq);
2755 
2756 		__blk_put_request(req->q, req);
2757 	}
2758 }
2759 EXPORT_SYMBOL(blk_finish_request);
2760 
2761 /**
2762  * blk_end_bidi_request - Complete a bidi request
2763  * @rq:         the request to complete
2764  * @error:      %0 for success, < %0 for error
2765  * @nr_bytes:   number of bytes to complete @rq
2766  * @bidi_bytes: number of bytes to complete @rq->next_rq
2767  *
2768  * Description:
2769  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2770  *     Drivers that supports bidi can safely call this member for any
2771  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2772  *     just ignored.
2773  *
2774  * Return:
2775  *     %false - we are done with this request
2776  *     %true  - still buffers pending for this request
2777  **/
2778 static bool blk_end_bidi_request(struct request *rq, int error,
2779 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2780 {
2781 	struct request_queue *q = rq->q;
2782 	unsigned long flags;
2783 
2784 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2785 		return true;
2786 
2787 	spin_lock_irqsave(q->queue_lock, flags);
2788 	blk_finish_request(rq, error);
2789 	spin_unlock_irqrestore(q->queue_lock, flags);
2790 
2791 	return false;
2792 }
2793 
2794 /**
2795  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2796  * @rq:         the request to complete
2797  * @error:      %0 for success, < %0 for error
2798  * @nr_bytes:   number of bytes to complete @rq
2799  * @bidi_bytes: number of bytes to complete @rq->next_rq
2800  *
2801  * Description:
2802  *     Identical to blk_end_bidi_request() except that queue lock is
2803  *     assumed to be locked on entry and remains so on return.
2804  *
2805  * Return:
2806  *     %false - we are done with this request
2807  *     %true  - still buffers pending for this request
2808  **/
2809 bool __blk_end_bidi_request(struct request *rq, int error,
2810 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2811 {
2812 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2813 		return true;
2814 
2815 	blk_finish_request(rq, error);
2816 
2817 	return false;
2818 }
2819 
2820 /**
2821  * blk_end_request - Helper function for drivers to complete the request.
2822  * @rq:       the request being processed
2823  * @error:    %0 for success, < %0 for error
2824  * @nr_bytes: number of bytes to complete
2825  *
2826  * Description:
2827  *     Ends I/O on a number of bytes attached to @rq.
2828  *     If @rq has leftover, sets it up for the next range of segments.
2829  *
2830  * Return:
2831  *     %false - we are done with this request
2832  *     %true  - still buffers pending for this request
2833  **/
2834 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2835 {
2836 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2837 }
2838 EXPORT_SYMBOL(blk_end_request);
2839 
2840 /**
2841  * blk_end_request_all - Helper function for drives to finish the request.
2842  * @rq: the request to finish
2843  * @error: %0 for success, < %0 for error
2844  *
2845  * Description:
2846  *     Completely finish @rq.
2847  */
2848 void blk_end_request_all(struct request *rq, int error)
2849 {
2850 	bool pending;
2851 	unsigned int bidi_bytes = 0;
2852 
2853 	if (unlikely(blk_bidi_rq(rq)))
2854 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2855 
2856 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2857 	BUG_ON(pending);
2858 }
2859 EXPORT_SYMBOL(blk_end_request_all);
2860 
2861 /**
2862  * blk_end_request_cur - Helper function to finish the current request chunk.
2863  * @rq: the request to finish the current chunk for
2864  * @error: %0 for success, < %0 for error
2865  *
2866  * Description:
2867  *     Complete the current consecutively mapped chunk from @rq.
2868  *
2869  * Return:
2870  *     %false - we are done with this request
2871  *     %true  - still buffers pending for this request
2872  */
2873 bool blk_end_request_cur(struct request *rq, int error)
2874 {
2875 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2876 }
2877 EXPORT_SYMBOL(blk_end_request_cur);
2878 
2879 /**
2880  * blk_end_request_err - Finish a request till the next failure boundary.
2881  * @rq: the request to finish till the next failure boundary for
2882  * @error: must be negative errno
2883  *
2884  * Description:
2885  *     Complete @rq till the next failure boundary.
2886  *
2887  * Return:
2888  *     %false - we are done with this request
2889  *     %true  - still buffers pending for this request
2890  */
2891 bool blk_end_request_err(struct request *rq, int error)
2892 {
2893 	WARN_ON(error >= 0);
2894 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2895 }
2896 EXPORT_SYMBOL_GPL(blk_end_request_err);
2897 
2898 /**
2899  * __blk_end_request - Helper function for drivers to complete the request.
2900  * @rq:       the request being processed
2901  * @error:    %0 for success, < %0 for error
2902  * @nr_bytes: number of bytes to complete
2903  *
2904  * Description:
2905  *     Must be called with queue lock held unlike blk_end_request().
2906  *
2907  * Return:
2908  *     %false - we are done with this request
2909  *     %true  - still buffers pending for this request
2910  **/
2911 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2912 {
2913 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2914 }
2915 EXPORT_SYMBOL(__blk_end_request);
2916 
2917 /**
2918  * __blk_end_request_all - Helper function for drives to finish the request.
2919  * @rq: the request to finish
2920  * @error: %0 for success, < %0 for error
2921  *
2922  * Description:
2923  *     Completely finish @rq.  Must be called with queue lock held.
2924  */
2925 void __blk_end_request_all(struct request *rq, int error)
2926 {
2927 	bool pending;
2928 	unsigned int bidi_bytes = 0;
2929 
2930 	if (unlikely(blk_bidi_rq(rq)))
2931 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2932 
2933 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2934 	BUG_ON(pending);
2935 }
2936 EXPORT_SYMBOL(__blk_end_request_all);
2937 
2938 /**
2939  * __blk_end_request_cur - Helper function to finish the current request chunk.
2940  * @rq: the request to finish the current chunk for
2941  * @error: %0 for success, < %0 for error
2942  *
2943  * Description:
2944  *     Complete the current consecutively mapped chunk from @rq.  Must
2945  *     be called with queue lock held.
2946  *
2947  * Return:
2948  *     %false - we are done with this request
2949  *     %true  - still buffers pending for this request
2950  */
2951 bool __blk_end_request_cur(struct request *rq, int error)
2952 {
2953 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2954 }
2955 EXPORT_SYMBOL(__blk_end_request_cur);
2956 
2957 /**
2958  * __blk_end_request_err - Finish a request till the next failure boundary.
2959  * @rq: the request to finish till the next failure boundary for
2960  * @error: must be negative errno
2961  *
2962  * Description:
2963  *     Complete @rq till the next failure boundary.  Must be called
2964  *     with queue lock held.
2965  *
2966  * Return:
2967  *     %false - we are done with this request
2968  *     %true  - still buffers pending for this request
2969  */
2970 bool __blk_end_request_err(struct request *rq, int error)
2971 {
2972 	WARN_ON(error >= 0);
2973 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2974 }
2975 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2976 
2977 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2978 		     struct bio *bio)
2979 {
2980 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2981 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2982 
2983 	if (bio_has_data(bio))
2984 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2985 
2986 	rq->__data_len = bio->bi_iter.bi_size;
2987 	rq->bio = rq->biotail = bio;
2988 
2989 	if (bio->bi_bdev)
2990 		rq->rq_disk = bio->bi_bdev->bd_disk;
2991 }
2992 
2993 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2994 /**
2995  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2996  * @rq: the request to be flushed
2997  *
2998  * Description:
2999  *     Flush all pages in @rq.
3000  */
3001 void rq_flush_dcache_pages(struct request *rq)
3002 {
3003 	struct req_iterator iter;
3004 	struct bio_vec bvec;
3005 
3006 	rq_for_each_segment(bvec, rq, iter)
3007 		flush_dcache_page(bvec.bv_page);
3008 }
3009 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3010 #endif
3011 
3012 /**
3013  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3014  * @q : the queue of the device being checked
3015  *
3016  * Description:
3017  *    Check if underlying low-level drivers of a device are busy.
3018  *    If the drivers want to export their busy state, they must set own
3019  *    exporting function using blk_queue_lld_busy() first.
3020  *
3021  *    Basically, this function is used only by request stacking drivers
3022  *    to stop dispatching requests to underlying devices when underlying
3023  *    devices are busy.  This behavior helps more I/O merging on the queue
3024  *    of the request stacking driver and prevents I/O throughput regression
3025  *    on burst I/O load.
3026  *
3027  * Return:
3028  *    0 - Not busy (The request stacking driver should dispatch request)
3029  *    1 - Busy (The request stacking driver should stop dispatching request)
3030  */
3031 int blk_lld_busy(struct request_queue *q)
3032 {
3033 	if (q->lld_busy_fn)
3034 		return q->lld_busy_fn(q);
3035 
3036 	return 0;
3037 }
3038 EXPORT_SYMBOL_GPL(blk_lld_busy);
3039 
3040 /**
3041  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3042  * @rq: the clone request to be cleaned up
3043  *
3044  * Description:
3045  *     Free all bios in @rq for a cloned request.
3046  */
3047 void blk_rq_unprep_clone(struct request *rq)
3048 {
3049 	struct bio *bio;
3050 
3051 	while ((bio = rq->bio) != NULL) {
3052 		rq->bio = bio->bi_next;
3053 
3054 		bio_put(bio);
3055 	}
3056 }
3057 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3058 
3059 /*
3060  * Copy attributes of the original request to the clone request.
3061  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3062  */
3063 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3064 {
3065 	dst->cpu = src->cpu;
3066 	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3067 	dst->cmd_type = src->cmd_type;
3068 	dst->__sector = blk_rq_pos(src);
3069 	dst->__data_len = blk_rq_bytes(src);
3070 	dst->nr_phys_segments = src->nr_phys_segments;
3071 	dst->ioprio = src->ioprio;
3072 	dst->extra_len = src->extra_len;
3073 }
3074 
3075 /**
3076  * blk_rq_prep_clone - Helper function to setup clone request
3077  * @rq: the request to be setup
3078  * @rq_src: original request to be cloned
3079  * @bs: bio_set that bios for clone are allocated from
3080  * @gfp_mask: memory allocation mask for bio
3081  * @bio_ctr: setup function to be called for each clone bio.
3082  *           Returns %0 for success, non %0 for failure.
3083  * @data: private data to be passed to @bio_ctr
3084  *
3085  * Description:
3086  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3087  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3088  *     are not copied, and copying such parts is the caller's responsibility.
3089  *     Also, pages which the original bios are pointing to are not copied
3090  *     and the cloned bios just point same pages.
3091  *     So cloned bios must be completed before original bios, which means
3092  *     the caller must complete @rq before @rq_src.
3093  */
3094 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3095 		      struct bio_set *bs, gfp_t gfp_mask,
3096 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3097 		      void *data)
3098 {
3099 	struct bio *bio, *bio_src;
3100 
3101 	if (!bs)
3102 		bs = fs_bio_set;
3103 
3104 	__rq_for_each_bio(bio_src, rq_src) {
3105 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3106 		if (!bio)
3107 			goto free_and_out;
3108 
3109 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3110 			goto free_and_out;
3111 
3112 		if (rq->bio) {
3113 			rq->biotail->bi_next = bio;
3114 			rq->biotail = bio;
3115 		} else
3116 			rq->bio = rq->biotail = bio;
3117 	}
3118 
3119 	__blk_rq_prep_clone(rq, rq_src);
3120 
3121 	return 0;
3122 
3123 free_and_out:
3124 	if (bio)
3125 		bio_put(bio);
3126 	blk_rq_unprep_clone(rq);
3127 
3128 	return -ENOMEM;
3129 }
3130 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3131 
3132 int kblockd_schedule_work(struct work_struct *work)
3133 {
3134 	return queue_work(kblockd_workqueue, work);
3135 }
3136 EXPORT_SYMBOL(kblockd_schedule_work);
3137 
3138 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3139 				  unsigned long delay)
3140 {
3141 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3142 }
3143 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3144 
3145 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3146 				     unsigned long delay)
3147 {
3148 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3149 }
3150 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3151 
3152 /**
3153  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3154  * @plug:	The &struct blk_plug that needs to be initialized
3155  *
3156  * Description:
3157  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3158  *   pending I/O should the task end up blocking between blk_start_plug() and
3159  *   blk_finish_plug(). This is important from a performance perspective, but
3160  *   also ensures that we don't deadlock. For instance, if the task is blocking
3161  *   for a memory allocation, memory reclaim could end up wanting to free a
3162  *   page belonging to that request that is currently residing in our private
3163  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3164  *   this kind of deadlock.
3165  */
3166 void blk_start_plug(struct blk_plug *plug)
3167 {
3168 	struct task_struct *tsk = current;
3169 
3170 	/*
3171 	 * If this is a nested plug, don't actually assign it.
3172 	 */
3173 	if (tsk->plug)
3174 		return;
3175 
3176 	INIT_LIST_HEAD(&plug->list);
3177 	INIT_LIST_HEAD(&plug->mq_list);
3178 	INIT_LIST_HEAD(&plug->cb_list);
3179 	/*
3180 	 * Store ordering should not be needed here, since a potential
3181 	 * preempt will imply a full memory barrier
3182 	 */
3183 	tsk->plug = plug;
3184 }
3185 EXPORT_SYMBOL(blk_start_plug);
3186 
3187 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3188 {
3189 	struct request *rqa = container_of(a, struct request, queuelist);
3190 	struct request *rqb = container_of(b, struct request, queuelist);
3191 
3192 	return !(rqa->q < rqb->q ||
3193 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3194 }
3195 
3196 /*
3197  * If 'from_schedule' is true, then postpone the dispatch of requests
3198  * until a safe kblockd context. We due this to avoid accidental big
3199  * additional stack usage in driver dispatch, in places where the originally
3200  * plugger did not intend it.
3201  */
3202 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3203 			    bool from_schedule)
3204 	__releases(q->queue_lock)
3205 {
3206 	trace_block_unplug(q, depth, !from_schedule);
3207 
3208 	if (from_schedule)
3209 		blk_run_queue_async(q);
3210 	else
3211 		__blk_run_queue(q);
3212 	spin_unlock(q->queue_lock);
3213 }
3214 
3215 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3216 {
3217 	LIST_HEAD(callbacks);
3218 
3219 	while (!list_empty(&plug->cb_list)) {
3220 		list_splice_init(&plug->cb_list, &callbacks);
3221 
3222 		while (!list_empty(&callbacks)) {
3223 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3224 							  struct blk_plug_cb,
3225 							  list);
3226 			list_del(&cb->list);
3227 			cb->callback(cb, from_schedule);
3228 		}
3229 	}
3230 }
3231 
3232 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3233 				      int size)
3234 {
3235 	struct blk_plug *plug = current->plug;
3236 	struct blk_plug_cb *cb;
3237 
3238 	if (!plug)
3239 		return NULL;
3240 
3241 	list_for_each_entry(cb, &plug->cb_list, list)
3242 		if (cb->callback == unplug && cb->data == data)
3243 			return cb;
3244 
3245 	/* Not currently on the callback list */
3246 	BUG_ON(size < sizeof(*cb));
3247 	cb = kzalloc(size, GFP_ATOMIC);
3248 	if (cb) {
3249 		cb->data = data;
3250 		cb->callback = unplug;
3251 		list_add(&cb->list, &plug->cb_list);
3252 	}
3253 	return cb;
3254 }
3255 EXPORT_SYMBOL(blk_check_plugged);
3256 
3257 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3258 {
3259 	struct request_queue *q;
3260 	unsigned long flags;
3261 	struct request *rq;
3262 	LIST_HEAD(list);
3263 	unsigned int depth;
3264 
3265 	flush_plug_callbacks(plug, from_schedule);
3266 
3267 	if (!list_empty(&plug->mq_list))
3268 		blk_mq_flush_plug_list(plug, from_schedule);
3269 
3270 	if (list_empty(&plug->list))
3271 		return;
3272 
3273 	list_splice_init(&plug->list, &list);
3274 
3275 	list_sort(NULL, &list, plug_rq_cmp);
3276 
3277 	q = NULL;
3278 	depth = 0;
3279 
3280 	/*
3281 	 * Save and disable interrupts here, to avoid doing it for every
3282 	 * queue lock we have to take.
3283 	 */
3284 	local_irq_save(flags);
3285 	while (!list_empty(&list)) {
3286 		rq = list_entry_rq(list.next);
3287 		list_del_init(&rq->queuelist);
3288 		BUG_ON(!rq->q);
3289 		if (rq->q != q) {
3290 			/*
3291 			 * This drops the queue lock
3292 			 */
3293 			if (q)
3294 				queue_unplugged(q, depth, from_schedule);
3295 			q = rq->q;
3296 			depth = 0;
3297 			spin_lock(q->queue_lock);
3298 		}
3299 
3300 		/*
3301 		 * Short-circuit if @q is dead
3302 		 */
3303 		if (unlikely(blk_queue_dying(q))) {
3304 			__blk_end_request_all(rq, -ENODEV);
3305 			continue;
3306 		}
3307 
3308 		/*
3309 		 * rq is already accounted, so use raw insert
3310 		 */
3311 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3312 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3313 		else
3314 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3315 
3316 		depth++;
3317 	}
3318 
3319 	/*
3320 	 * This drops the queue lock
3321 	 */
3322 	if (q)
3323 		queue_unplugged(q, depth, from_schedule);
3324 
3325 	local_irq_restore(flags);
3326 }
3327 
3328 void blk_finish_plug(struct blk_plug *plug)
3329 {
3330 	if (plug != current->plug)
3331 		return;
3332 	blk_flush_plug_list(plug, false);
3333 
3334 	current->plug = NULL;
3335 }
3336 EXPORT_SYMBOL(blk_finish_plug);
3337 
3338 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3339 {
3340 	struct blk_plug *plug;
3341 	long state;
3342 
3343 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3344 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3345 		return false;
3346 
3347 	plug = current->plug;
3348 	if (plug)
3349 		blk_flush_plug_list(plug, false);
3350 
3351 	state = current->state;
3352 	while (!need_resched()) {
3353 		unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3354 		struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3355 		int ret;
3356 
3357 		hctx->poll_invoked++;
3358 
3359 		ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3360 		if (ret > 0) {
3361 			hctx->poll_success++;
3362 			set_current_state(TASK_RUNNING);
3363 			return true;
3364 		}
3365 
3366 		if (signal_pending_state(state, current))
3367 			set_current_state(TASK_RUNNING);
3368 
3369 		if (current->state == TASK_RUNNING)
3370 			return true;
3371 		if (ret < 0)
3372 			break;
3373 		cpu_relax();
3374 	}
3375 
3376 	return false;
3377 }
3378 
3379 #ifdef CONFIG_PM
3380 /**
3381  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3382  * @q: the queue of the device
3383  * @dev: the device the queue belongs to
3384  *
3385  * Description:
3386  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3387  *    @dev. Drivers that want to take advantage of request-based runtime PM
3388  *    should call this function after @dev has been initialized, and its
3389  *    request queue @q has been allocated, and runtime PM for it can not happen
3390  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3391  *    cases, driver should call this function before any I/O has taken place.
3392  *
3393  *    This function takes care of setting up using auto suspend for the device,
3394  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3395  *    until an updated value is either set by user or by driver. Drivers do
3396  *    not need to touch other autosuspend settings.
3397  *
3398  *    The block layer runtime PM is request based, so only works for drivers
3399  *    that use request as their IO unit instead of those directly use bio's.
3400  */
3401 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3402 {
3403 	q->dev = dev;
3404 	q->rpm_status = RPM_ACTIVE;
3405 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3406 	pm_runtime_use_autosuspend(q->dev);
3407 }
3408 EXPORT_SYMBOL(blk_pm_runtime_init);
3409 
3410 /**
3411  * blk_pre_runtime_suspend - Pre runtime suspend check
3412  * @q: the queue of the device
3413  *
3414  * Description:
3415  *    This function will check if runtime suspend is allowed for the device
3416  *    by examining if there are any requests pending in the queue. If there
3417  *    are requests pending, the device can not be runtime suspended; otherwise,
3418  *    the queue's status will be updated to SUSPENDING and the driver can
3419  *    proceed to suspend the device.
3420  *
3421  *    For the not allowed case, we mark last busy for the device so that
3422  *    runtime PM core will try to autosuspend it some time later.
3423  *
3424  *    This function should be called near the start of the device's
3425  *    runtime_suspend callback.
3426  *
3427  * Return:
3428  *    0		- OK to runtime suspend the device
3429  *    -EBUSY	- Device should not be runtime suspended
3430  */
3431 int blk_pre_runtime_suspend(struct request_queue *q)
3432 {
3433 	int ret = 0;
3434 
3435 	if (!q->dev)
3436 		return ret;
3437 
3438 	spin_lock_irq(q->queue_lock);
3439 	if (q->nr_pending) {
3440 		ret = -EBUSY;
3441 		pm_runtime_mark_last_busy(q->dev);
3442 	} else {
3443 		q->rpm_status = RPM_SUSPENDING;
3444 	}
3445 	spin_unlock_irq(q->queue_lock);
3446 	return ret;
3447 }
3448 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3449 
3450 /**
3451  * blk_post_runtime_suspend - Post runtime suspend processing
3452  * @q: the queue of the device
3453  * @err: return value of the device's runtime_suspend function
3454  *
3455  * Description:
3456  *    Update the queue's runtime status according to the return value of the
3457  *    device's runtime suspend function and mark last busy for the device so
3458  *    that PM core will try to auto suspend the device at a later time.
3459  *
3460  *    This function should be called near the end of the device's
3461  *    runtime_suspend callback.
3462  */
3463 void blk_post_runtime_suspend(struct request_queue *q, int err)
3464 {
3465 	if (!q->dev)
3466 		return;
3467 
3468 	spin_lock_irq(q->queue_lock);
3469 	if (!err) {
3470 		q->rpm_status = RPM_SUSPENDED;
3471 	} else {
3472 		q->rpm_status = RPM_ACTIVE;
3473 		pm_runtime_mark_last_busy(q->dev);
3474 	}
3475 	spin_unlock_irq(q->queue_lock);
3476 }
3477 EXPORT_SYMBOL(blk_post_runtime_suspend);
3478 
3479 /**
3480  * blk_pre_runtime_resume - Pre runtime resume processing
3481  * @q: the queue of the device
3482  *
3483  * Description:
3484  *    Update the queue's runtime status to RESUMING in preparation for the
3485  *    runtime resume of the device.
3486  *
3487  *    This function should be called near the start of the device's
3488  *    runtime_resume callback.
3489  */
3490 void blk_pre_runtime_resume(struct request_queue *q)
3491 {
3492 	if (!q->dev)
3493 		return;
3494 
3495 	spin_lock_irq(q->queue_lock);
3496 	q->rpm_status = RPM_RESUMING;
3497 	spin_unlock_irq(q->queue_lock);
3498 }
3499 EXPORT_SYMBOL(blk_pre_runtime_resume);
3500 
3501 /**
3502  * blk_post_runtime_resume - Post runtime resume processing
3503  * @q: the queue of the device
3504  * @err: return value of the device's runtime_resume function
3505  *
3506  * Description:
3507  *    Update the queue's runtime status according to the return value of the
3508  *    device's runtime_resume function. If it is successfully resumed, process
3509  *    the requests that are queued into the device's queue when it is resuming
3510  *    and then mark last busy and initiate autosuspend for it.
3511  *
3512  *    This function should be called near the end of the device's
3513  *    runtime_resume callback.
3514  */
3515 void blk_post_runtime_resume(struct request_queue *q, int err)
3516 {
3517 	if (!q->dev)
3518 		return;
3519 
3520 	spin_lock_irq(q->queue_lock);
3521 	if (!err) {
3522 		q->rpm_status = RPM_ACTIVE;
3523 		__blk_run_queue(q);
3524 		pm_runtime_mark_last_busy(q->dev);
3525 		pm_request_autosuspend(q->dev);
3526 	} else {
3527 		q->rpm_status = RPM_SUSPENDED;
3528 	}
3529 	spin_unlock_irq(q->queue_lock);
3530 }
3531 EXPORT_SYMBOL(blk_post_runtime_resume);
3532 
3533 /**
3534  * blk_set_runtime_active - Force runtime status of the queue to be active
3535  * @q: the queue of the device
3536  *
3537  * If the device is left runtime suspended during system suspend the resume
3538  * hook typically resumes the device and corrects runtime status
3539  * accordingly. However, that does not affect the queue runtime PM status
3540  * which is still "suspended". This prevents processing requests from the
3541  * queue.
3542  *
3543  * This function can be used in driver's resume hook to correct queue
3544  * runtime PM status and re-enable peeking requests from the queue. It
3545  * should be called before first request is added to the queue.
3546  */
3547 void blk_set_runtime_active(struct request_queue *q)
3548 {
3549 	spin_lock_irq(q->queue_lock);
3550 	q->rpm_status = RPM_ACTIVE;
3551 	pm_runtime_mark_last_busy(q->dev);
3552 	pm_request_autosuspend(q->dev);
3553 	spin_unlock_irq(q->queue_lock);
3554 }
3555 EXPORT_SYMBOL(blk_set_runtime_active);
3556 #endif
3557 
3558 int __init blk_dev_init(void)
3559 {
3560 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3561 			FIELD_SIZEOF(struct request, cmd_flags));
3562 
3563 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3564 	kblockd_workqueue = alloc_workqueue("kblockd",
3565 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3566 	if (!kblockd_workqueue)
3567 		panic("Failed to create kblockd\n");
3568 
3569 	request_cachep = kmem_cache_create("blkdev_requests",
3570 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3571 
3572 	blk_requestq_cachep = kmem_cache_create("request_queue",
3573 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3574 
3575 	return 0;
3576 }
3577