xref: /linux/block/blk-core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39 
40 #include "blk.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 	clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 	/*
72 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 	 * flip its congestion state for events on other blkcgs.
74 	 */
75 	if (rl == &rl->q->root_rl)
76 		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79 
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 	set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 	/* see blk_clear_congested() */
86 	if (rl == &rl->q->root_rl)
87 		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90 
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 	int nr;
94 
95 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 	if (nr > q->nr_requests)
97 		nr = q->nr_requests;
98 	q->nr_congestion_on = nr;
99 
100 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 	if (nr < 1)
102 		nr = 1;
103 	q->nr_congestion_off = nr;
104 }
105 
106 /**
107  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108  * @bdev:	device
109  *
110  * Locates the passed device's request queue and returns the address of its
111  * backing_dev_info.  This function can only be called if @bdev is opened
112  * and the return value is never NULL.
113  */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 	struct request_queue *q = bdev_get_queue(bdev);
117 
118 	return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121 
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 	memset(rq, 0, sizeof(*rq));
125 
126 	INIT_LIST_HEAD(&rq->queuelist);
127 	INIT_LIST_HEAD(&rq->timeout_list);
128 	rq->cpu = -1;
129 	rq->q = q;
130 	rq->__sector = (sector_t) -1;
131 	INIT_HLIST_NODE(&rq->hash);
132 	RB_CLEAR_NODE(&rq->rb_node);
133 	rq->cmd = rq->__cmd;
134 	rq->cmd_len = BLK_MAX_CDB;
135 	rq->tag = -1;
136 	rq->start_time = jiffies;
137 	set_start_time_ns(rq);
138 	rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141 
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 			  unsigned int nbytes, int error)
144 {
145 	if (error)
146 		bio->bi_error = error;
147 
148 	if (unlikely(rq->cmd_flags & REQ_QUIET))
149 		bio_set_flag(bio, BIO_QUIET);
150 
151 	bio_advance(bio, nbytes);
152 
153 	/* don't actually finish bio if it's part of flush sequence */
154 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 		bio_endio(bio);
156 }
157 
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 	int bit;
161 
162 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 		(unsigned long long) rq->cmd_flags);
165 
166 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
167 	       (unsigned long long)blk_rq_pos(rq),
168 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
170 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
171 
172 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 		printk(KERN_INFO "  cdb: ");
174 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 			printk("%02x ", rq->cmd[bit]);
176 		printk("\n");
177 	}
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180 
181 static void blk_delay_work(struct work_struct *work)
182 {
183 	struct request_queue *q;
184 
185 	q = container_of(work, struct request_queue, delay_work.work);
186 	spin_lock_irq(q->queue_lock);
187 	__blk_run_queue(q);
188 	spin_unlock_irq(q->queue_lock);
189 }
190 
191 /**
192  * blk_delay_queue - restart queueing after defined interval
193  * @q:		The &struct request_queue in question
194  * @msecs:	Delay in msecs
195  *
196  * Description:
197  *   Sometimes queueing needs to be postponed for a little while, to allow
198  *   resources to come back. This function will make sure that queueing is
199  *   restarted around the specified time. Queue lock must be held.
200  */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 	if (likely(!blk_queue_dead(q)))
204 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 				   msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208 
209 /**
210  * blk_start_queue_async - asynchronously restart a previously stopped queue
211  * @q:    The &struct request_queue in question
212  *
213  * Description:
214  *   blk_start_queue_async() will clear the stop flag on the queue, and
215  *   ensure that the request_fn for the queue is run from an async
216  *   context.
217  **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 	blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224 
225 /**
226  * blk_start_queue - restart a previously stopped queue
227  * @q:    The &struct request_queue in question
228  *
229  * Description:
230  *   blk_start_queue() will clear the stop flag on the queue, and call
231  *   the request_fn for the queue if it was in a stopped state when
232  *   entered. Also see blk_stop_queue(). Queue lock must be held.
233  **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 	WARN_ON(!irqs_disabled());
237 
238 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 	__blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242 
243 /**
244  * blk_stop_queue - stop a queue
245  * @q:    The &struct request_queue in question
246  *
247  * Description:
248  *   The Linux block layer assumes that a block driver will consume all
249  *   entries on the request queue when the request_fn strategy is called.
250  *   Often this will not happen, because of hardware limitations (queue
251  *   depth settings). If a device driver gets a 'queue full' response,
252  *   or if it simply chooses not to queue more I/O at one point, it can
253  *   call this function to prevent the request_fn from being called until
254  *   the driver has signalled it's ready to go again. This happens by calling
255  *   blk_start_queue() to restart queue operations. Queue lock must be held.
256  **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 	cancel_delayed_work(&q->delay_work);
260 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263 
264 /**
265  * blk_sync_queue - cancel any pending callbacks on a queue
266  * @q: the queue
267  *
268  * Description:
269  *     The block layer may perform asynchronous callback activity
270  *     on a queue, such as calling the unplug function after a timeout.
271  *     A block device may call blk_sync_queue to ensure that any
272  *     such activity is cancelled, thus allowing it to release resources
273  *     that the callbacks might use. The caller must already have made sure
274  *     that its ->make_request_fn will not re-add plugging prior to calling
275  *     this function.
276  *
277  *     This function does not cancel any asynchronous activity arising
278  *     out of elevator or throttling code. That would require elevator_exit()
279  *     and blkcg_exit_queue() to be called with queue lock initialized.
280  *
281  */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 	del_timer_sync(&q->timeout);
285 
286 	if (q->mq_ops) {
287 		struct blk_mq_hw_ctx *hctx;
288 		int i;
289 
290 		queue_for_each_hw_ctx(q, hctx, i) {
291 			cancel_delayed_work_sync(&hctx->run_work);
292 			cancel_delayed_work_sync(&hctx->delay_work);
293 		}
294 	} else {
295 		cancel_delayed_work_sync(&q->delay_work);
296 	}
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299 
300 /**
301  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302  * @q:	The queue to run
303  *
304  * Description:
305  *    Invoke request handling on a queue if there are any pending requests.
306  *    May be used to restart request handling after a request has completed.
307  *    This variant runs the queue whether or not the queue has been
308  *    stopped. Must be called with the queue lock held and interrupts
309  *    disabled. See also @blk_run_queue.
310  */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 	if (unlikely(blk_queue_dead(q)))
314 		return;
315 
316 	/*
317 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 	 * the queue lock internally. As a result multiple threads may be
319 	 * running such a request function concurrently. Keep track of the
320 	 * number of active request_fn invocations such that blk_drain_queue()
321 	 * can wait until all these request_fn calls have finished.
322 	 */
323 	q->request_fn_active++;
324 	q->request_fn(q);
325 	q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328 
329 /**
330  * __blk_run_queue - run a single device queue
331  * @q:	The queue to run
332  *
333  * Description:
334  *    See @blk_run_queue. This variant must be called with the queue lock
335  *    held and interrupts disabled.
336  */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 	if (unlikely(blk_queue_stopped(q)))
340 		return;
341 
342 	__blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345 
346 /**
347  * blk_run_queue_async - run a single device queue in workqueue context
348  * @q:	The queue to run
349  *
350  * Description:
351  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352  *    of us. The caller must hold the queue lock.
353  */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360 
361 /**
362  * blk_run_queue - run a single device queue
363  * @q: The queue to run
364  *
365  * Description:
366  *    Invoke request handling on this queue, if it has pending work to do.
367  *    May be used to restart queueing when a request has completed.
368  */
369 void blk_run_queue(struct request_queue *q)
370 {
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(q->queue_lock, flags);
374 	__blk_run_queue(q);
375 	spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378 
379 void blk_put_queue(struct request_queue *q)
380 {
381 	kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384 
385 /**
386  * __blk_drain_queue - drain requests from request_queue
387  * @q: queue to drain
388  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389  *
390  * Drain requests from @q.  If @drain_all is set, all requests are drained.
391  * If not, only ELVPRIV requests are drained.  The caller is responsible
392  * for ensuring that no new requests which need to be drained are queued.
393  */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 	__releases(q->queue_lock)
396 	__acquires(q->queue_lock)
397 {
398 	int i;
399 
400 	lockdep_assert_held(q->queue_lock);
401 
402 	while (true) {
403 		bool drain = false;
404 
405 		/*
406 		 * The caller might be trying to drain @q before its
407 		 * elevator is initialized.
408 		 */
409 		if (q->elevator)
410 			elv_drain_elevator(q);
411 
412 		blkcg_drain_queue(q);
413 
414 		/*
415 		 * This function might be called on a queue which failed
416 		 * driver init after queue creation or is not yet fully
417 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
418 		 * in such cases.  Kick queue iff dispatch queue has
419 		 * something on it and @q has request_fn set.
420 		 */
421 		if (!list_empty(&q->queue_head) && q->request_fn)
422 			__blk_run_queue(q);
423 
424 		drain |= q->nr_rqs_elvpriv;
425 		drain |= q->request_fn_active;
426 
427 		/*
428 		 * Unfortunately, requests are queued at and tracked from
429 		 * multiple places and there's no single counter which can
430 		 * be drained.  Check all the queues and counters.
431 		 */
432 		if (drain_all) {
433 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 			drain |= !list_empty(&q->queue_head);
435 			for (i = 0; i < 2; i++) {
436 				drain |= q->nr_rqs[i];
437 				drain |= q->in_flight[i];
438 				if (fq)
439 				    drain |= !list_empty(&fq->flush_queue[i]);
440 			}
441 		}
442 
443 		if (!drain)
444 			break;
445 
446 		spin_unlock_irq(q->queue_lock);
447 
448 		msleep(10);
449 
450 		spin_lock_irq(q->queue_lock);
451 	}
452 
453 	/*
454 	 * With queue marked dead, any woken up waiter will fail the
455 	 * allocation path, so the wakeup chaining is lost and we're
456 	 * left with hung waiters. We need to wake up those waiters.
457 	 */
458 	if (q->request_fn) {
459 		struct request_list *rl;
460 
461 		blk_queue_for_each_rl(rl, q)
462 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 				wake_up_all(&rl->wait[i]);
464 	}
465 }
466 
467 /**
468  * blk_queue_bypass_start - enter queue bypass mode
469  * @q: queue of interest
470  *
471  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
472  * function makes @q enter bypass mode and drains all requests which were
473  * throttled or issued before.  On return, it's guaranteed that no request
474  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475  * inside queue or RCU read lock.
476  */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 	spin_lock_irq(q->queue_lock);
480 	q->bypass_depth++;
481 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 	spin_unlock_irq(q->queue_lock);
483 
484 	/*
485 	 * Queues start drained.  Skip actual draining till init is
486 	 * complete.  This avoids lenghty delays during queue init which
487 	 * can happen many times during boot.
488 	 */
489 	if (blk_queue_init_done(q)) {
490 		spin_lock_irq(q->queue_lock);
491 		__blk_drain_queue(q, false);
492 		spin_unlock_irq(q->queue_lock);
493 
494 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
495 		synchronize_rcu();
496 	}
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499 
500 /**
501  * blk_queue_bypass_end - leave queue bypass mode
502  * @q: queue of interest
503  *
504  * Leave bypass mode and restore the normal queueing behavior.
505  */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 	spin_lock_irq(q->queue_lock);
509 	if (!--q->bypass_depth)
510 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 	WARN_ON_ONCE(q->bypass_depth < 0);
512 	spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515 
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519 
520 	if (q->mq_ops)
521 		blk_mq_wake_waiters(q);
522 	else {
523 		struct request_list *rl;
524 
525 		blk_queue_for_each_rl(rl, q) {
526 			if (rl->rq_pool) {
527 				wake_up(&rl->wait[BLK_RW_SYNC]);
528 				wake_up(&rl->wait[BLK_RW_ASYNC]);
529 			}
530 		}
531 	}
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534 
535 /**
536  * blk_cleanup_queue - shutdown a request queue
537  * @q: request queue to shutdown
538  *
539  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540  * put it.  All future requests will be failed immediately with -ENODEV.
541  */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 	spinlock_t *lock = q->queue_lock;
545 
546 	/* mark @q DYING, no new request or merges will be allowed afterwards */
547 	mutex_lock(&q->sysfs_lock);
548 	blk_set_queue_dying(q);
549 	spin_lock_irq(lock);
550 
551 	/*
552 	 * A dying queue is permanently in bypass mode till released.  Note
553 	 * that, unlike blk_queue_bypass_start(), we aren't performing
554 	 * synchronize_rcu() after entering bypass mode to avoid the delay
555 	 * as some drivers create and destroy a lot of queues while
556 	 * probing.  This is still safe because blk_release_queue() will be
557 	 * called only after the queue refcnt drops to zero and nothing,
558 	 * RCU or not, would be traversing the queue by then.
559 	 */
560 	q->bypass_depth++;
561 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
562 
563 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 	queue_flag_set(QUEUE_FLAG_DYING, q);
566 	spin_unlock_irq(lock);
567 	mutex_unlock(&q->sysfs_lock);
568 
569 	/*
570 	 * Drain all requests queued before DYING marking. Set DEAD flag to
571 	 * prevent that q->request_fn() gets invoked after draining finished.
572 	 */
573 	blk_freeze_queue(q);
574 	spin_lock_irq(lock);
575 	if (!q->mq_ops)
576 		__blk_drain_queue(q, true);
577 	queue_flag_set(QUEUE_FLAG_DEAD, q);
578 	spin_unlock_irq(lock);
579 
580 	/* for synchronous bio-based driver finish in-flight integrity i/o */
581 	blk_flush_integrity();
582 
583 	/* @q won't process any more request, flush async actions */
584 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 	blk_sync_queue(q);
586 
587 	if (q->mq_ops)
588 		blk_mq_free_queue(q);
589 	percpu_ref_exit(&q->q_usage_counter);
590 
591 	spin_lock_irq(lock);
592 	if (q->queue_lock != &q->__queue_lock)
593 		q->queue_lock = &q->__queue_lock;
594 	spin_unlock_irq(lock);
595 
596 	bdi_unregister(&q->backing_dev_info);
597 
598 	/* @q is and will stay empty, shutdown and put */
599 	blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602 
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 	int nid = (int)(long)data;
607 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609 
610 static void free_request_struct(void *element, void *unused)
611 {
612 	kmem_cache_free(request_cachep, element);
613 }
614 
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 		gfp_t gfp_mask)
617 {
618 	if (unlikely(rl->rq_pool))
619 		return 0;
620 
621 	rl->q = q;
622 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626 
627 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 					  free_request_struct,
629 					  (void *)(long)q->node, gfp_mask,
630 					  q->node);
631 	if (!rl->rq_pool)
632 		return -ENOMEM;
633 
634 	return 0;
635 }
636 
637 void blk_exit_rl(struct request_list *rl)
638 {
639 	if (rl->rq_pool)
640 		mempool_destroy(rl->rq_pool);
641 }
642 
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648 
649 int blk_queue_enter(struct request_queue *q, bool nowait)
650 {
651 	while (true) {
652 		int ret;
653 
654 		if (percpu_ref_tryget_live(&q->q_usage_counter))
655 			return 0;
656 
657 		if (nowait)
658 			return -EBUSY;
659 
660 		ret = wait_event_interruptible(q->mq_freeze_wq,
661 				!atomic_read(&q->mq_freeze_depth) ||
662 				blk_queue_dying(q));
663 		if (blk_queue_dying(q))
664 			return -ENODEV;
665 		if (ret)
666 			return ret;
667 	}
668 }
669 
670 void blk_queue_exit(struct request_queue *q)
671 {
672 	percpu_ref_put(&q->q_usage_counter);
673 }
674 
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 	struct request_queue *q =
678 		container_of(ref, struct request_queue, q_usage_counter);
679 
680 	wake_up_all(&q->mq_freeze_wq);
681 }
682 
683 static void blk_rq_timed_out_timer(unsigned long data)
684 {
685 	struct request_queue *q = (struct request_queue *)data;
686 
687 	kblockd_schedule_work(&q->timeout_work);
688 }
689 
690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
691 {
692 	struct request_queue *q;
693 	int err;
694 
695 	q = kmem_cache_alloc_node(blk_requestq_cachep,
696 				gfp_mask | __GFP_ZERO, node_id);
697 	if (!q)
698 		return NULL;
699 
700 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
701 	if (q->id < 0)
702 		goto fail_q;
703 
704 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 	if (!q->bio_split)
706 		goto fail_id;
707 
708 	q->backing_dev_info.ra_pages =
709 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
710 	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
711 	q->backing_dev_info.name = "block";
712 	q->node = node_id;
713 
714 	err = bdi_init(&q->backing_dev_info);
715 	if (err)
716 		goto fail_split;
717 
718 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 		    laptop_mode_timer_fn, (unsigned long) q);
720 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
721 	INIT_LIST_HEAD(&q->queue_head);
722 	INIT_LIST_HEAD(&q->timeout_list);
723 	INIT_LIST_HEAD(&q->icq_list);
724 #ifdef CONFIG_BLK_CGROUP
725 	INIT_LIST_HEAD(&q->blkg_list);
726 #endif
727 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
728 
729 	kobject_init(&q->kobj, &blk_queue_ktype);
730 
731 	mutex_init(&q->sysfs_lock);
732 	spin_lock_init(&q->__queue_lock);
733 
734 	/*
735 	 * By default initialize queue_lock to internal lock and driver can
736 	 * override it later if need be.
737 	 */
738 	q->queue_lock = &q->__queue_lock;
739 
740 	/*
741 	 * A queue starts its life with bypass turned on to avoid
742 	 * unnecessary bypass on/off overhead and nasty surprises during
743 	 * init.  The initial bypass will be finished when the queue is
744 	 * registered by blk_register_queue().
745 	 */
746 	q->bypass_depth = 1;
747 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748 
749 	init_waitqueue_head(&q->mq_freeze_wq);
750 
751 	/*
752 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 	 * See blk_register_queue() for details.
754 	 */
755 	if (percpu_ref_init(&q->q_usage_counter,
756 				blk_queue_usage_counter_release,
757 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
758 		goto fail_bdi;
759 
760 	if (blkcg_init_queue(q))
761 		goto fail_ref;
762 
763 	return q;
764 
765 fail_ref:
766 	percpu_ref_exit(&q->q_usage_counter);
767 fail_bdi:
768 	bdi_destroy(&q->backing_dev_info);
769 fail_split:
770 	bioset_free(q->bio_split);
771 fail_id:
772 	ida_simple_remove(&blk_queue_ida, q->id);
773 fail_q:
774 	kmem_cache_free(blk_requestq_cachep, q);
775 	return NULL;
776 }
777 EXPORT_SYMBOL(blk_alloc_queue_node);
778 
779 /**
780  * blk_init_queue  - prepare a request queue for use with a block device
781  * @rfn:  The function to be called to process requests that have been
782  *        placed on the queue.
783  * @lock: Request queue spin lock
784  *
785  * Description:
786  *    If a block device wishes to use the standard request handling procedures,
787  *    which sorts requests and coalesces adjacent requests, then it must
788  *    call blk_init_queue().  The function @rfn will be called when there
789  *    are requests on the queue that need to be processed.  If the device
790  *    supports plugging, then @rfn may not be called immediately when requests
791  *    are available on the queue, but may be called at some time later instead.
792  *    Plugged queues are generally unplugged when a buffer belonging to one
793  *    of the requests on the queue is needed, or due to memory pressure.
794  *
795  *    @rfn is not required, or even expected, to remove all requests off the
796  *    queue, but only as many as it can handle at a time.  If it does leave
797  *    requests on the queue, it is responsible for arranging that the requests
798  *    get dealt with eventually.
799  *
800  *    The queue spin lock must be held while manipulating the requests on the
801  *    request queue; this lock will be taken also from interrupt context, so irq
802  *    disabling is needed for it.
803  *
804  *    Function returns a pointer to the initialized request queue, or %NULL if
805  *    it didn't succeed.
806  *
807  * Note:
808  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
809  *    when the block device is deactivated (such as at module unload).
810  **/
811 
812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
813 {
814 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
815 }
816 EXPORT_SYMBOL(blk_init_queue);
817 
818 struct request_queue *
819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820 {
821 	struct request_queue *uninit_q, *q;
822 
823 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 	if (!uninit_q)
825 		return NULL;
826 
827 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
828 	if (!q)
829 		blk_cleanup_queue(uninit_q);
830 
831 	return q;
832 }
833 EXPORT_SYMBOL(blk_init_queue_node);
834 
835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
836 
837 struct request_queue *
838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 			 spinlock_t *lock)
840 {
841 	if (!q)
842 		return NULL;
843 
844 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
845 	if (!q->fq)
846 		return NULL;
847 
848 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
849 		goto fail;
850 
851 	INIT_WORK(&q->timeout_work, blk_timeout_work);
852 	q->request_fn		= rfn;
853 	q->prep_rq_fn		= NULL;
854 	q->unprep_rq_fn		= NULL;
855 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
856 
857 	/* Override internal queue lock with supplied lock pointer */
858 	if (lock)
859 		q->queue_lock		= lock;
860 
861 	/*
862 	 * This also sets hw/phys segments, boundary and size
863 	 */
864 	blk_queue_make_request(q, blk_queue_bio);
865 
866 	q->sg_reserved_size = INT_MAX;
867 
868 	/* Protect q->elevator from elevator_change */
869 	mutex_lock(&q->sysfs_lock);
870 
871 	/* init elevator */
872 	if (elevator_init(q, NULL)) {
873 		mutex_unlock(&q->sysfs_lock);
874 		goto fail;
875 	}
876 
877 	mutex_unlock(&q->sysfs_lock);
878 
879 	return q;
880 
881 fail:
882 	blk_free_flush_queue(q->fq);
883 	return NULL;
884 }
885 EXPORT_SYMBOL(blk_init_allocated_queue);
886 
887 bool blk_get_queue(struct request_queue *q)
888 {
889 	if (likely(!blk_queue_dying(q))) {
890 		__blk_get_queue(q);
891 		return true;
892 	}
893 
894 	return false;
895 }
896 EXPORT_SYMBOL(blk_get_queue);
897 
898 static inline void blk_free_request(struct request_list *rl, struct request *rq)
899 {
900 	if (rq->cmd_flags & REQ_ELVPRIV) {
901 		elv_put_request(rl->q, rq);
902 		if (rq->elv.icq)
903 			put_io_context(rq->elv.icq->ioc);
904 	}
905 
906 	mempool_free(rq, rl->rq_pool);
907 }
908 
909 /*
910  * ioc_batching returns true if the ioc is a valid batching request and
911  * should be given priority access to a request.
912  */
913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
914 {
915 	if (!ioc)
916 		return 0;
917 
918 	/*
919 	 * Make sure the process is able to allocate at least 1 request
920 	 * even if the batch times out, otherwise we could theoretically
921 	 * lose wakeups.
922 	 */
923 	return ioc->nr_batch_requests == q->nr_batching ||
924 		(ioc->nr_batch_requests > 0
925 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926 }
927 
928 /*
929  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930  * will cause the process to be a "batcher" on all queues in the system. This
931  * is the behaviour we want though - once it gets a wakeup it should be given
932  * a nice run.
933  */
934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
935 {
936 	if (!ioc || ioc_batching(q, ioc))
937 		return;
938 
939 	ioc->nr_batch_requests = q->nr_batching;
940 	ioc->last_waited = jiffies;
941 }
942 
943 static void __freed_request(struct request_list *rl, int sync)
944 {
945 	struct request_queue *q = rl->q;
946 
947 	if (rl->count[sync] < queue_congestion_off_threshold(q))
948 		blk_clear_congested(rl, sync);
949 
950 	if (rl->count[sync] + 1 <= q->nr_requests) {
951 		if (waitqueue_active(&rl->wait[sync]))
952 			wake_up(&rl->wait[sync]);
953 
954 		blk_clear_rl_full(rl, sync);
955 	}
956 }
957 
958 /*
959  * A request has just been released.  Account for it, update the full and
960  * congestion status, wake up any waiters.   Called under q->queue_lock.
961  */
962 static void freed_request(struct request_list *rl, unsigned int flags)
963 {
964 	struct request_queue *q = rl->q;
965 	int sync = rw_is_sync(flags);
966 
967 	q->nr_rqs[sync]--;
968 	rl->count[sync]--;
969 	if (flags & REQ_ELVPRIV)
970 		q->nr_rqs_elvpriv--;
971 
972 	__freed_request(rl, sync);
973 
974 	if (unlikely(rl->starved[sync ^ 1]))
975 		__freed_request(rl, sync ^ 1);
976 }
977 
978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979 {
980 	struct request_list *rl;
981 	int on_thresh, off_thresh;
982 
983 	spin_lock_irq(q->queue_lock);
984 	q->nr_requests = nr;
985 	blk_queue_congestion_threshold(q);
986 	on_thresh = queue_congestion_on_threshold(q);
987 	off_thresh = queue_congestion_off_threshold(q);
988 
989 	blk_queue_for_each_rl(rl, q) {
990 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 			blk_set_congested(rl, BLK_RW_SYNC);
992 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 			blk_clear_congested(rl, BLK_RW_SYNC);
994 
995 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 			blk_set_congested(rl, BLK_RW_ASYNC);
997 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 			blk_clear_congested(rl, BLK_RW_ASYNC);
999 
1000 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 			blk_set_rl_full(rl, BLK_RW_SYNC);
1002 		} else {
1003 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 			wake_up(&rl->wait[BLK_RW_SYNC]);
1005 		}
1006 
1007 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 		} else {
1010 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 		}
1013 	}
1014 
1015 	spin_unlock_irq(q->queue_lock);
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Determine if elevator data should be initialized when allocating the
1021  * request associated with @bio.
1022  */
1023 static bool blk_rq_should_init_elevator(struct bio *bio)
1024 {
1025 	if (!bio)
1026 		return true;
1027 
1028 	/*
1029 	 * Flush requests do not use the elevator so skip initialization.
1030 	 * This allows a request to share the flush and elevator data.
1031 	 */
1032 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033 		return false;
1034 
1035 	return true;
1036 }
1037 
1038 /**
1039  * rq_ioc - determine io_context for request allocation
1040  * @bio: request being allocated is for this bio (can be %NULL)
1041  *
1042  * Determine io_context to use for request allocation for @bio.  May return
1043  * %NULL if %current->io_context doesn't exist.
1044  */
1045 static struct io_context *rq_ioc(struct bio *bio)
1046 {
1047 #ifdef CONFIG_BLK_CGROUP
1048 	if (bio && bio->bi_ioc)
1049 		return bio->bi_ioc;
1050 #endif
1051 	return current->io_context;
1052 }
1053 
1054 /**
1055  * __get_request - get a free request
1056  * @rl: request list to allocate from
1057  * @rw_flags: RW and SYNC flags
1058  * @bio: bio to allocate request for (can be %NULL)
1059  * @gfp_mask: allocation mask
1060  *
1061  * Get a free request from @q.  This function may fail under memory
1062  * pressure or if @q is dead.
1063  *
1064  * Must be called with @q->queue_lock held and,
1065  * Returns ERR_PTR on failure, with @q->queue_lock held.
1066  * Returns request pointer on success, with @q->queue_lock *not held*.
1067  */
1068 static struct request *__get_request(struct request_list *rl, int rw_flags,
1069 				     struct bio *bio, gfp_t gfp_mask)
1070 {
1071 	struct request_queue *q = rl->q;
1072 	struct request *rq;
1073 	struct elevator_type *et = q->elevator->type;
1074 	struct io_context *ioc = rq_ioc(bio);
1075 	struct io_cq *icq = NULL;
1076 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1077 	int may_queue;
1078 
1079 	if (unlikely(blk_queue_dying(q)))
1080 		return ERR_PTR(-ENODEV);
1081 
1082 	may_queue = elv_may_queue(q, rw_flags);
1083 	if (may_queue == ELV_MQUEUE_NO)
1084 		goto rq_starved;
1085 
1086 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1087 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1088 			/*
1089 			 * The queue will fill after this allocation, so set
1090 			 * it as full, and mark this process as "batching".
1091 			 * This process will be allowed to complete a batch of
1092 			 * requests, others will be blocked.
1093 			 */
1094 			if (!blk_rl_full(rl, is_sync)) {
1095 				ioc_set_batching(q, ioc);
1096 				blk_set_rl_full(rl, is_sync);
1097 			} else {
1098 				if (may_queue != ELV_MQUEUE_MUST
1099 						&& !ioc_batching(q, ioc)) {
1100 					/*
1101 					 * The queue is full and the allocating
1102 					 * process is not a "batcher", and not
1103 					 * exempted by the IO scheduler
1104 					 */
1105 					return ERR_PTR(-ENOMEM);
1106 				}
1107 			}
1108 		}
1109 		blk_set_congested(rl, is_sync);
1110 	}
1111 
1112 	/*
1113 	 * Only allow batching queuers to allocate up to 50% over the defined
1114 	 * limit of requests, otherwise we could have thousands of requests
1115 	 * allocated with any setting of ->nr_requests
1116 	 */
1117 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1118 		return ERR_PTR(-ENOMEM);
1119 
1120 	q->nr_rqs[is_sync]++;
1121 	rl->count[is_sync]++;
1122 	rl->starved[is_sync] = 0;
1123 
1124 	/*
1125 	 * Decide whether the new request will be managed by elevator.  If
1126 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1127 	 * prevent the current elevator from being destroyed until the new
1128 	 * request is freed.  This guarantees icq's won't be destroyed and
1129 	 * makes creating new ones safe.
1130 	 *
1131 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1132 	 * it will be created after releasing queue_lock.
1133 	 */
1134 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1135 		rw_flags |= REQ_ELVPRIV;
1136 		q->nr_rqs_elvpriv++;
1137 		if (et->icq_cache && ioc)
1138 			icq = ioc_lookup_icq(ioc, q);
1139 	}
1140 
1141 	if (blk_queue_io_stat(q))
1142 		rw_flags |= REQ_IO_STAT;
1143 	spin_unlock_irq(q->queue_lock);
1144 
1145 	/* allocate and init request */
1146 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1147 	if (!rq)
1148 		goto fail_alloc;
1149 
1150 	blk_rq_init(q, rq);
1151 	blk_rq_set_rl(rq, rl);
1152 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1153 
1154 	/* init elvpriv */
1155 	if (rw_flags & REQ_ELVPRIV) {
1156 		if (unlikely(et->icq_cache && !icq)) {
1157 			if (ioc)
1158 				icq = ioc_create_icq(ioc, q, gfp_mask);
1159 			if (!icq)
1160 				goto fail_elvpriv;
1161 		}
1162 
1163 		rq->elv.icq = icq;
1164 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1165 			goto fail_elvpriv;
1166 
1167 		/* @rq->elv.icq holds io_context until @rq is freed */
1168 		if (icq)
1169 			get_io_context(icq->ioc);
1170 	}
1171 out:
1172 	/*
1173 	 * ioc may be NULL here, and ioc_batching will be false. That's
1174 	 * OK, if the queue is under the request limit then requests need
1175 	 * not count toward the nr_batch_requests limit. There will always
1176 	 * be some limit enforced by BLK_BATCH_TIME.
1177 	 */
1178 	if (ioc_batching(q, ioc))
1179 		ioc->nr_batch_requests--;
1180 
1181 	trace_block_getrq(q, bio, rw_flags & 1);
1182 	return rq;
1183 
1184 fail_elvpriv:
1185 	/*
1186 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1187 	 * and may fail indefinitely under memory pressure and thus
1188 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1189 	 * disturb iosched and blkcg but weird is bettern than dead.
1190 	 */
1191 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1192 			   __func__, dev_name(q->backing_dev_info.dev));
1193 
1194 	rq->cmd_flags &= ~REQ_ELVPRIV;
1195 	rq->elv.icq = NULL;
1196 
1197 	spin_lock_irq(q->queue_lock);
1198 	q->nr_rqs_elvpriv--;
1199 	spin_unlock_irq(q->queue_lock);
1200 	goto out;
1201 
1202 fail_alloc:
1203 	/*
1204 	 * Allocation failed presumably due to memory. Undo anything we
1205 	 * might have messed up.
1206 	 *
1207 	 * Allocating task should really be put onto the front of the wait
1208 	 * queue, but this is pretty rare.
1209 	 */
1210 	spin_lock_irq(q->queue_lock);
1211 	freed_request(rl, rw_flags);
1212 
1213 	/*
1214 	 * in the very unlikely event that allocation failed and no
1215 	 * requests for this direction was pending, mark us starved so that
1216 	 * freeing of a request in the other direction will notice
1217 	 * us. another possible fix would be to split the rq mempool into
1218 	 * READ and WRITE
1219 	 */
1220 rq_starved:
1221 	if (unlikely(rl->count[is_sync] == 0))
1222 		rl->starved[is_sync] = 1;
1223 	return ERR_PTR(-ENOMEM);
1224 }
1225 
1226 /**
1227  * get_request - get a free request
1228  * @q: request_queue to allocate request from
1229  * @rw_flags: RW and SYNC flags
1230  * @bio: bio to allocate request for (can be %NULL)
1231  * @gfp_mask: allocation mask
1232  *
1233  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1234  * this function keeps retrying under memory pressure and fails iff @q is dead.
1235  *
1236  * Must be called with @q->queue_lock held and,
1237  * Returns ERR_PTR on failure, with @q->queue_lock held.
1238  * Returns request pointer on success, with @q->queue_lock *not held*.
1239  */
1240 static struct request *get_request(struct request_queue *q, int rw_flags,
1241 				   struct bio *bio, gfp_t gfp_mask)
1242 {
1243 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1244 	DEFINE_WAIT(wait);
1245 	struct request_list *rl;
1246 	struct request *rq;
1247 
1248 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1249 retry:
1250 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1251 	if (!IS_ERR(rq))
1252 		return rq;
1253 
1254 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1255 		blk_put_rl(rl);
1256 		return rq;
1257 	}
1258 
1259 	/* wait on @rl and retry */
1260 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1261 				  TASK_UNINTERRUPTIBLE);
1262 
1263 	trace_block_sleeprq(q, bio, rw_flags & 1);
1264 
1265 	spin_unlock_irq(q->queue_lock);
1266 	io_schedule();
1267 
1268 	/*
1269 	 * After sleeping, we become a "batching" process and will be able
1270 	 * to allocate at least one request, and up to a big batch of them
1271 	 * for a small period time.  See ioc_batching, ioc_set_batching
1272 	 */
1273 	ioc_set_batching(q, current->io_context);
1274 
1275 	spin_lock_irq(q->queue_lock);
1276 	finish_wait(&rl->wait[is_sync], &wait);
1277 
1278 	goto retry;
1279 }
1280 
1281 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1282 		gfp_t gfp_mask)
1283 {
1284 	struct request *rq;
1285 
1286 	BUG_ON(rw != READ && rw != WRITE);
1287 
1288 	/* create ioc upfront */
1289 	create_io_context(gfp_mask, q->node);
1290 
1291 	spin_lock_irq(q->queue_lock);
1292 	rq = get_request(q, rw, NULL, gfp_mask);
1293 	if (IS_ERR(rq))
1294 		spin_unlock_irq(q->queue_lock);
1295 	/* q->queue_lock is unlocked at this point */
1296 
1297 	return rq;
1298 }
1299 
1300 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301 {
1302 	if (q->mq_ops)
1303 		return blk_mq_alloc_request(q, rw,
1304 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305 				0 : BLK_MQ_REQ_NOWAIT);
1306 	else
1307 		return blk_old_get_request(q, rw, gfp_mask);
1308 }
1309 EXPORT_SYMBOL(blk_get_request);
1310 
1311 /**
1312  * blk_make_request - given a bio, allocate a corresponding struct request.
1313  * @q: target request queue
1314  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1315  *        It may be a chained-bio properly constructed by block/bio layer.
1316  * @gfp_mask: gfp flags to be used for memory allocation
1317  *
1318  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1319  * type commands. Where the struct request needs to be farther initialized by
1320  * the caller. It is passed a &struct bio, which describes the memory info of
1321  * the I/O transfer.
1322  *
1323  * The caller of blk_make_request must make sure that bi_io_vec
1324  * are set to describe the memory buffers. That bio_data_dir() will return
1325  * the needed direction of the request. (And all bio's in the passed bio-chain
1326  * are properly set accordingly)
1327  *
1328  * If called under none-sleepable conditions, mapped bio buffers must not
1329  * need bouncing, by calling the appropriate masked or flagged allocator,
1330  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1331  * BUG.
1332  *
1333  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1334  * given to how you allocate bios. In particular, you cannot use
1335  * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1336  * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1337  * thus resulting in a deadlock. Alternatively bios should be allocated using
1338  * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1339  * If possible a big IO should be split into smaller parts when allocation
1340  * fails. Partial allocation should not be an error, or you risk a live-lock.
1341  */
1342 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1343 				 gfp_t gfp_mask)
1344 {
1345 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1346 
1347 	if (IS_ERR(rq))
1348 		return rq;
1349 
1350 	blk_rq_set_block_pc(rq);
1351 
1352 	for_each_bio(bio) {
1353 		struct bio *bounce_bio = bio;
1354 		int ret;
1355 
1356 		blk_queue_bounce(q, &bounce_bio);
1357 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1358 		if (unlikely(ret)) {
1359 			blk_put_request(rq);
1360 			return ERR_PTR(ret);
1361 		}
1362 	}
1363 
1364 	return rq;
1365 }
1366 EXPORT_SYMBOL(blk_make_request);
1367 
1368 /**
1369  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1370  * @rq:		request to be initialized
1371  *
1372  */
1373 void blk_rq_set_block_pc(struct request *rq)
1374 {
1375 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1376 	rq->__data_len = 0;
1377 	rq->__sector = (sector_t) -1;
1378 	rq->bio = rq->biotail = NULL;
1379 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1380 }
1381 EXPORT_SYMBOL(blk_rq_set_block_pc);
1382 
1383 /**
1384  * blk_requeue_request - put a request back on queue
1385  * @q:		request queue where request should be inserted
1386  * @rq:		request to be inserted
1387  *
1388  * Description:
1389  *    Drivers often keep queueing requests until the hardware cannot accept
1390  *    more, when that condition happens we need to put the request back
1391  *    on the queue. Must be called with queue lock held.
1392  */
1393 void blk_requeue_request(struct request_queue *q, struct request *rq)
1394 {
1395 	blk_delete_timer(rq);
1396 	blk_clear_rq_complete(rq);
1397 	trace_block_rq_requeue(q, rq);
1398 
1399 	if (rq->cmd_flags & REQ_QUEUED)
1400 		blk_queue_end_tag(q, rq);
1401 
1402 	BUG_ON(blk_queued_rq(rq));
1403 
1404 	elv_requeue_request(q, rq);
1405 }
1406 EXPORT_SYMBOL(blk_requeue_request);
1407 
1408 static void add_acct_request(struct request_queue *q, struct request *rq,
1409 			     int where)
1410 {
1411 	blk_account_io_start(rq, true);
1412 	__elv_add_request(q, rq, where);
1413 }
1414 
1415 static void part_round_stats_single(int cpu, struct hd_struct *part,
1416 				    unsigned long now)
1417 {
1418 	int inflight;
1419 
1420 	if (now == part->stamp)
1421 		return;
1422 
1423 	inflight = part_in_flight(part);
1424 	if (inflight) {
1425 		__part_stat_add(cpu, part, time_in_queue,
1426 				inflight * (now - part->stamp));
1427 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1428 	}
1429 	part->stamp = now;
1430 }
1431 
1432 /**
1433  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1434  * @cpu: cpu number for stats access
1435  * @part: target partition
1436  *
1437  * The average IO queue length and utilisation statistics are maintained
1438  * by observing the current state of the queue length and the amount of
1439  * time it has been in this state for.
1440  *
1441  * Normally, that accounting is done on IO completion, but that can result
1442  * in more than a second's worth of IO being accounted for within any one
1443  * second, leading to >100% utilisation.  To deal with that, we call this
1444  * function to do a round-off before returning the results when reading
1445  * /proc/diskstats.  This accounts immediately for all queue usage up to
1446  * the current jiffies and restarts the counters again.
1447  */
1448 void part_round_stats(int cpu, struct hd_struct *part)
1449 {
1450 	unsigned long now = jiffies;
1451 
1452 	if (part->partno)
1453 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1454 	part_round_stats_single(cpu, part, now);
1455 }
1456 EXPORT_SYMBOL_GPL(part_round_stats);
1457 
1458 #ifdef CONFIG_PM
1459 static void blk_pm_put_request(struct request *rq)
1460 {
1461 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1462 		pm_runtime_mark_last_busy(rq->q->dev);
1463 }
1464 #else
1465 static inline void blk_pm_put_request(struct request *rq) {}
1466 #endif
1467 
1468 /*
1469  * queue lock must be held
1470  */
1471 void __blk_put_request(struct request_queue *q, struct request *req)
1472 {
1473 	if (unlikely(!q))
1474 		return;
1475 
1476 	if (q->mq_ops) {
1477 		blk_mq_free_request(req);
1478 		return;
1479 	}
1480 
1481 	blk_pm_put_request(req);
1482 
1483 	elv_completed_request(q, req);
1484 
1485 	/* this is a bio leak */
1486 	WARN_ON(req->bio != NULL);
1487 
1488 	/*
1489 	 * Request may not have originated from ll_rw_blk. if not,
1490 	 * it didn't come out of our reserved rq pools
1491 	 */
1492 	if (req->cmd_flags & REQ_ALLOCED) {
1493 		unsigned int flags = req->cmd_flags;
1494 		struct request_list *rl = blk_rq_rl(req);
1495 
1496 		BUG_ON(!list_empty(&req->queuelist));
1497 		BUG_ON(ELV_ON_HASH(req));
1498 
1499 		blk_free_request(rl, req);
1500 		freed_request(rl, flags);
1501 		blk_put_rl(rl);
1502 	}
1503 }
1504 EXPORT_SYMBOL_GPL(__blk_put_request);
1505 
1506 void blk_put_request(struct request *req)
1507 {
1508 	struct request_queue *q = req->q;
1509 
1510 	if (q->mq_ops)
1511 		blk_mq_free_request(req);
1512 	else {
1513 		unsigned long flags;
1514 
1515 		spin_lock_irqsave(q->queue_lock, flags);
1516 		__blk_put_request(q, req);
1517 		spin_unlock_irqrestore(q->queue_lock, flags);
1518 	}
1519 }
1520 EXPORT_SYMBOL(blk_put_request);
1521 
1522 /**
1523  * blk_add_request_payload - add a payload to a request
1524  * @rq: request to update
1525  * @page: page backing the payload
1526  * @offset: offset in page
1527  * @len: length of the payload.
1528  *
1529  * This allows to later add a payload to an already submitted request by
1530  * a block driver.  The driver needs to take care of freeing the payload
1531  * itself.
1532  *
1533  * Note that this is a quite horrible hack and nothing but handling of
1534  * discard requests should ever use it.
1535  */
1536 void blk_add_request_payload(struct request *rq, struct page *page,
1537 		int offset, unsigned int len)
1538 {
1539 	struct bio *bio = rq->bio;
1540 
1541 	bio->bi_io_vec->bv_page = page;
1542 	bio->bi_io_vec->bv_offset = offset;
1543 	bio->bi_io_vec->bv_len = len;
1544 
1545 	bio->bi_iter.bi_size = len;
1546 	bio->bi_vcnt = 1;
1547 	bio->bi_phys_segments = 1;
1548 
1549 	rq->__data_len = rq->resid_len = len;
1550 	rq->nr_phys_segments = 1;
1551 }
1552 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1553 
1554 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1555 			    struct bio *bio)
1556 {
1557 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1558 
1559 	if (!ll_back_merge_fn(q, req, bio))
1560 		return false;
1561 
1562 	trace_block_bio_backmerge(q, req, bio);
1563 
1564 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1565 		blk_rq_set_mixed_merge(req);
1566 
1567 	req->biotail->bi_next = bio;
1568 	req->biotail = bio;
1569 	req->__data_len += bio->bi_iter.bi_size;
1570 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1571 
1572 	blk_account_io_start(req, false);
1573 	return true;
1574 }
1575 
1576 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1577 			     struct bio *bio)
1578 {
1579 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1580 
1581 	if (!ll_front_merge_fn(q, req, bio))
1582 		return false;
1583 
1584 	trace_block_bio_frontmerge(q, req, bio);
1585 
1586 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1587 		blk_rq_set_mixed_merge(req);
1588 
1589 	bio->bi_next = req->bio;
1590 	req->bio = bio;
1591 
1592 	req->__sector = bio->bi_iter.bi_sector;
1593 	req->__data_len += bio->bi_iter.bi_size;
1594 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1595 
1596 	blk_account_io_start(req, false);
1597 	return true;
1598 }
1599 
1600 /**
1601  * blk_attempt_plug_merge - try to merge with %current's plugged list
1602  * @q: request_queue new bio is being queued at
1603  * @bio: new bio being queued
1604  * @request_count: out parameter for number of traversed plugged requests
1605  * @same_queue_rq: pointer to &struct request that gets filled in when
1606  * another request associated with @q is found on the plug list
1607  * (optional, may be %NULL)
1608  *
1609  * Determine whether @bio being queued on @q can be merged with a request
1610  * on %current's plugged list.  Returns %true if merge was successful,
1611  * otherwise %false.
1612  *
1613  * Plugging coalesces IOs from the same issuer for the same purpose without
1614  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1615  * than scheduling, and the request, while may have elvpriv data, is not
1616  * added on the elevator at this point.  In addition, we don't have
1617  * reliable access to the elevator outside queue lock.  Only check basic
1618  * merging parameters without querying the elevator.
1619  *
1620  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1621  */
1622 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1623 			    unsigned int *request_count,
1624 			    struct request **same_queue_rq)
1625 {
1626 	struct blk_plug *plug;
1627 	struct request *rq;
1628 	bool ret = false;
1629 	struct list_head *plug_list;
1630 
1631 	plug = current->plug;
1632 	if (!plug)
1633 		goto out;
1634 	*request_count = 0;
1635 
1636 	if (q->mq_ops)
1637 		plug_list = &plug->mq_list;
1638 	else
1639 		plug_list = &plug->list;
1640 
1641 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1642 		int el_ret;
1643 
1644 		if (rq->q == q) {
1645 			(*request_count)++;
1646 			/*
1647 			 * Only blk-mq multiple hardware queues case checks the
1648 			 * rq in the same queue, there should be only one such
1649 			 * rq in a queue
1650 			 **/
1651 			if (same_queue_rq)
1652 				*same_queue_rq = rq;
1653 		}
1654 
1655 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1656 			continue;
1657 
1658 		el_ret = blk_try_merge(rq, bio);
1659 		if (el_ret == ELEVATOR_BACK_MERGE) {
1660 			ret = bio_attempt_back_merge(q, rq, bio);
1661 			if (ret)
1662 				break;
1663 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1664 			ret = bio_attempt_front_merge(q, rq, bio);
1665 			if (ret)
1666 				break;
1667 		}
1668 	}
1669 out:
1670 	return ret;
1671 }
1672 
1673 unsigned int blk_plug_queued_count(struct request_queue *q)
1674 {
1675 	struct blk_plug *plug;
1676 	struct request *rq;
1677 	struct list_head *plug_list;
1678 	unsigned int ret = 0;
1679 
1680 	plug = current->plug;
1681 	if (!plug)
1682 		goto out;
1683 
1684 	if (q->mq_ops)
1685 		plug_list = &plug->mq_list;
1686 	else
1687 		plug_list = &plug->list;
1688 
1689 	list_for_each_entry(rq, plug_list, queuelist) {
1690 		if (rq->q == q)
1691 			ret++;
1692 	}
1693 out:
1694 	return ret;
1695 }
1696 
1697 void init_request_from_bio(struct request *req, struct bio *bio)
1698 {
1699 	req->cmd_type = REQ_TYPE_FS;
1700 
1701 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1702 	if (bio->bi_rw & REQ_RAHEAD)
1703 		req->cmd_flags |= REQ_FAILFAST_MASK;
1704 
1705 	req->errors = 0;
1706 	req->__sector = bio->bi_iter.bi_sector;
1707 	req->ioprio = bio_prio(bio);
1708 	blk_rq_bio_prep(req->q, req, bio);
1709 }
1710 
1711 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1712 {
1713 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1714 	struct blk_plug *plug;
1715 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1716 	struct request *req;
1717 	unsigned int request_count = 0;
1718 
1719 	/*
1720 	 * low level driver can indicate that it wants pages above a
1721 	 * certain limit bounced to low memory (ie for highmem, or even
1722 	 * ISA dma in theory)
1723 	 */
1724 	blk_queue_bounce(q, &bio);
1725 
1726 	blk_queue_split(q, &bio, q->bio_split);
1727 
1728 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1729 		bio->bi_error = -EIO;
1730 		bio_endio(bio);
1731 		return BLK_QC_T_NONE;
1732 	}
1733 
1734 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1735 		spin_lock_irq(q->queue_lock);
1736 		where = ELEVATOR_INSERT_FLUSH;
1737 		goto get_rq;
1738 	}
1739 
1740 	/*
1741 	 * Check if we can merge with the plugged list before grabbing
1742 	 * any locks.
1743 	 */
1744 	if (!blk_queue_nomerges(q)) {
1745 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1746 			return BLK_QC_T_NONE;
1747 	} else
1748 		request_count = blk_plug_queued_count(q);
1749 
1750 	spin_lock_irq(q->queue_lock);
1751 
1752 	el_ret = elv_merge(q, &req, bio);
1753 	if (el_ret == ELEVATOR_BACK_MERGE) {
1754 		if (bio_attempt_back_merge(q, req, bio)) {
1755 			elv_bio_merged(q, req, bio);
1756 			if (!attempt_back_merge(q, req))
1757 				elv_merged_request(q, req, el_ret);
1758 			goto out_unlock;
1759 		}
1760 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1761 		if (bio_attempt_front_merge(q, req, bio)) {
1762 			elv_bio_merged(q, req, bio);
1763 			if (!attempt_front_merge(q, req))
1764 				elv_merged_request(q, req, el_ret);
1765 			goto out_unlock;
1766 		}
1767 	}
1768 
1769 get_rq:
1770 	/*
1771 	 * This sync check and mask will be re-done in init_request_from_bio(),
1772 	 * but we need to set it earlier to expose the sync flag to the
1773 	 * rq allocator and io schedulers.
1774 	 */
1775 	rw_flags = bio_data_dir(bio);
1776 	if (sync)
1777 		rw_flags |= REQ_SYNC;
1778 
1779 	/*
1780 	 * Grab a free request. This is might sleep but can not fail.
1781 	 * Returns with the queue unlocked.
1782 	 */
1783 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1784 	if (IS_ERR(req)) {
1785 		bio->bi_error = PTR_ERR(req);
1786 		bio_endio(bio);
1787 		goto out_unlock;
1788 	}
1789 
1790 	/*
1791 	 * After dropping the lock and possibly sleeping here, our request
1792 	 * may now be mergeable after it had proven unmergeable (above).
1793 	 * We don't worry about that case for efficiency. It won't happen
1794 	 * often, and the elevators are able to handle it.
1795 	 */
1796 	init_request_from_bio(req, bio);
1797 
1798 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1799 		req->cpu = raw_smp_processor_id();
1800 
1801 	plug = current->plug;
1802 	if (plug) {
1803 		/*
1804 		 * If this is the first request added after a plug, fire
1805 		 * of a plug trace.
1806 		 */
1807 		if (!request_count)
1808 			trace_block_plug(q);
1809 		else {
1810 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1811 				blk_flush_plug_list(plug, false);
1812 				trace_block_plug(q);
1813 			}
1814 		}
1815 		list_add_tail(&req->queuelist, &plug->list);
1816 		blk_account_io_start(req, true);
1817 	} else {
1818 		spin_lock_irq(q->queue_lock);
1819 		add_acct_request(q, req, where);
1820 		__blk_run_queue(q);
1821 out_unlock:
1822 		spin_unlock_irq(q->queue_lock);
1823 	}
1824 
1825 	return BLK_QC_T_NONE;
1826 }
1827 
1828 /*
1829  * If bio->bi_dev is a partition, remap the location
1830  */
1831 static inline void blk_partition_remap(struct bio *bio)
1832 {
1833 	struct block_device *bdev = bio->bi_bdev;
1834 
1835 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1836 		struct hd_struct *p = bdev->bd_part;
1837 
1838 		bio->bi_iter.bi_sector += p->start_sect;
1839 		bio->bi_bdev = bdev->bd_contains;
1840 
1841 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1842 				      bdev->bd_dev,
1843 				      bio->bi_iter.bi_sector - p->start_sect);
1844 	}
1845 }
1846 
1847 static void handle_bad_sector(struct bio *bio)
1848 {
1849 	char b[BDEVNAME_SIZE];
1850 
1851 	printk(KERN_INFO "attempt to access beyond end of device\n");
1852 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1853 			bdevname(bio->bi_bdev, b),
1854 			bio->bi_rw,
1855 			(unsigned long long)bio_end_sector(bio),
1856 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1857 }
1858 
1859 #ifdef CONFIG_FAIL_MAKE_REQUEST
1860 
1861 static DECLARE_FAULT_ATTR(fail_make_request);
1862 
1863 static int __init setup_fail_make_request(char *str)
1864 {
1865 	return setup_fault_attr(&fail_make_request, str);
1866 }
1867 __setup("fail_make_request=", setup_fail_make_request);
1868 
1869 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1870 {
1871 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1872 }
1873 
1874 static int __init fail_make_request_debugfs(void)
1875 {
1876 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1877 						NULL, &fail_make_request);
1878 
1879 	return PTR_ERR_OR_ZERO(dir);
1880 }
1881 
1882 late_initcall(fail_make_request_debugfs);
1883 
1884 #else /* CONFIG_FAIL_MAKE_REQUEST */
1885 
1886 static inline bool should_fail_request(struct hd_struct *part,
1887 					unsigned int bytes)
1888 {
1889 	return false;
1890 }
1891 
1892 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1893 
1894 /*
1895  * Check whether this bio extends beyond the end of the device.
1896  */
1897 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1898 {
1899 	sector_t maxsector;
1900 
1901 	if (!nr_sectors)
1902 		return 0;
1903 
1904 	/* Test device or partition size, when known. */
1905 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1906 	if (maxsector) {
1907 		sector_t sector = bio->bi_iter.bi_sector;
1908 
1909 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1910 			/*
1911 			 * This may well happen - the kernel calls bread()
1912 			 * without checking the size of the device, e.g., when
1913 			 * mounting a device.
1914 			 */
1915 			handle_bad_sector(bio);
1916 			return 1;
1917 		}
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 static noinline_for_stack bool
1924 generic_make_request_checks(struct bio *bio)
1925 {
1926 	struct request_queue *q;
1927 	int nr_sectors = bio_sectors(bio);
1928 	int err = -EIO;
1929 	char b[BDEVNAME_SIZE];
1930 	struct hd_struct *part;
1931 
1932 	might_sleep();
1933 
1934 	if (bio_check_eod(bio, nr_sectors))
1935 		goto end_io;
1936 
1937 	q = bdev_get_queue(bio->bi_bdev);
1938 	if (unlikely(!q)) {
1939 		printk(KERN_ERR
1940 		       "generic_make_request: Trying to access "
1941 			"nonexistent block-device %s (%Lu)\n",
1942 			bdevname(bio->bi_bdev, b),
1943 			(long long) bio->bi_iter.bi_sector);
1944 		goto end_io;
1945 	}
1946 
1947 	part = bio->bi_bdev->bd_part;
1948 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1949 	    should_fail_request(&part_to_disk(part)->part0,
1950 				bio->bi_iter.bi_size))
1951 		goto end_io;
1952 
1953 	/*
1954 	 * If this device has partitions, remap block n
1955 	 * of partition p to block n+start(p) of the disk.
1956 	 */
1957 	blk_partition_remap(bio);
1958 
1959 	if (bio_check_eod(bio, nr_sectors))
1960 		goto end_io;
1961 
1962 	/*
1963 	 * Filter flush bio's early so that make_request based
1964 	 * drivers without flush support don't have to worry
1965 	 * about them.
1966 	 */
1967 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
1968 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1969 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1970 		if (!nr_sectors) {
1971 			err = 0;
1972 			goto end_io;
1973 		}
1974 	}
1975 
1976 	if ((bio->bi_rw & REQ_DISCARD) &&
1977 	    (!blk_queue_discard(q) ||
1978 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1979 		err = -EOPNOTSUPP;
1980 		goto end_io;
1981 	}
1982 
1983 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1984 		err = -EOPNOTSUPP;
1985 		goto end_io;
1986 	}
1987 
1988 	/*
1989 	 * Various block parts want %current->io_context and lazy ioc
1990 	 * allocation ends up trading a lot of pain for a small amount of
1991 	 * memory.  Just allocate it upfront.  This may fail and block
1992 	 * layer knows how to live with it.
1993 	 */
1994 	create_io_context(GFP_ATOMIC, q->node);
1995 
1996 	if (!blkcg_bio_issue_check(q, bio))
1997 		return false;
1998 
1999 	trace_block_bio_queue(q, bio);
2000 	return true;
2001 
2002 end_io:
2003 	bio->bi_error = err;
2004 	bio_endio(bio);
2005 	return false;
2006 }
2007 
2008 /**
2009  * generic_make_request - hand a buffer to its device driver for I/O
2010  * @bio:  The bio describing the location in memory and on the device.
2011  *
2012  * generic_make_request() is used to make I/O requests of block
2013  * devices. It is passed a &struct bio, which describes the I/O that needs
2014  * to be done.
2015  *
2016  * generic_make_request() does not return any status.  The
2017  * success/failure status of the request, along with notification of
2018  * completion, is delivered asynchronously through the bio->bi_end_io
2019  * function described (one day) else where.
2020  *
2021  * The caller of generic_make_request must make sure that bi_io_vec
2022  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2023  * set to describe the device address, and the
2024  * bi_end_io and optionally bi_private are set to describe how
2025  * completion notification should be signaled.
2026  *
2027  * generic_make_request and the drivers it calls may use bi_next if this
2028  * bio happens to be merged with someone else, and may resubmit the bio to
2029  * a lower device by calling into generic_make_request recursively, which
2030  * means the bio should NOT be touched after the call to ->make_request_fn.
2031  */
2032 blk_qc_t generic_make_request(struct bio *bio)
2033 {
2034 	struct bio_list bio_list_on_stack;
2035 	blk_qc_t ret = BLK_QC_T_NONE;
2036 
2037 	if (!generic_make_request_checks(bio))
2038 		goto out;
2039 
2040 	/*
2041 	 * We only want one ->make_request_fn to be active at a time, else
2042 	 * stack usage with stacked devices could be a problem.  So use
2043 	 * current->bio_list to keep a list of requests submited by a
2044 	 * make_request_fn function.  current->bio_list is also used as a
2045 	 * flag to say if generic_make_request is currently active in this
2046 	 * task or not.  If it is NULL, then no make_request is active.  If
2047 	 * it is non-NULL, then a make_request is active, and new requests
2048 	 * should be added at the tail
2049 	 */
2050 	if (current->bio_list) {
2051 		bio_list_add(current->bio_list, bio);
2052 		goto out;
2053 	}
2054 
2055 	/* following loop may be a bit non-obvious, and so deserves some
2056 	 * explanation.
2057 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2058 	 * ensure that) so we have a list with a single bio.
2059 	 * We pretend that we have just taken it off a longer list, so
2060 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2061 	 * thus initialising the bio_list of new bios to be
2062 	 * added.  ->make_request() may indeed add some more bios
2063 	 * through a recursive call to generic_make_request.  If it
2064 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2065 	 * from the top.  In this case we really did just take the bio
2066 	 * of the top of the list (no pretending) and so remove it from
2067 	 * bio_list, and call into ->make_request() again.
2068 	 */
2069 	BUG_ON(bio->bi_next);
2070 	bio_list_init(&bio_list_on_stack);
2071 	current->bio_list = &bio_list_on_stack;
2072 	do {
2073 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2074 
2075 		if (likely(blk_queue_enter(q, false) == 0)) {
2076 			ret = q->make_request_fn(q, bio);
2077 
2078 			blk_queue_exit(q);
2079 
2080 			bio = bio_list_pop(current->bio_list);
2081 		} else {
2082 			struct bio *bio_next = bio_list_pop(current->bio_list);
2083 
2084 			bio_io_error(bio);
2085 			bio = bio_next;
2086 		}
2087 	} while (bio);
2088 	current->bio_list = NULL; /* deactivate */
2089 
2090 out:
2091 	return ret;
2092 }
2093 EXPORT_SYMBOL(generic_make_request);
2094 
2095 /**
2096  * submit_bio - submit a bio to the block device layer for I/O
2097  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2098  * @bio: The &struct bio which describes the I/O
2099  *
2100  * submit_bio() is very similar in purpose to generic_make_request(), and
2101  * uses that function to do most of the work. Both are fairly rough
2102  * interfaces; @bio must be presetup and ready for I/O.
2103  *
2104  */
2105 blk_qc_t submit_bio(int rw, struct bio *bio)
2106 {
2107 	bio->bi_rw |= rw;
2108 
2109 	/*
2110 	 * If it's a regular read/write or a barrier with data attached,
2111 	 * go through the normal accounting stuff before submission.
2112 	 */
2113 	if (bio_has_data(bio)) {
2114 		unsigned int count;
2115 
2116 		if (unlikely(rw & REQ_WRITE_SAME))
2117 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2118 		else
2119 			count = bio_sectors(bio);
2120 
2121 		if (rw & WRITE) {
2122 			count_vm_events(PGPGOUT, count);
2123 		} else {
2124 			task_io_account_read(bio->bi_iter.bi_size);
2125 			count_vm_events(PGPGIN, count);
2126 		}
2127 
2128 		if (unlikely(block_dump)) {
2129 			char b[BDEVNAME_SIZE];
2130 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2131 			current->comm, task_pid_nr(current),
2132 				(rw & WRITE) ? "WRITE" : "READ",
2133 				(unsigned long long)bio->bi_iter.bi_sector,
2134 				bdevname(bio->bi_bdev, b),
2135 				count);
2136 		}
2137 	}
2138 
2139 	return generic_make_request(bio);
2140 }
2141 EXPORT_SYMBOL(submit_bio);
2142 
2143 /**
2144  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2145  *                              for new the queue limits
2146  * @q:  the queue
2147  * @rq: the request being checked
2148  *
2149  * Description:
2150  *    @rq may have been made based on weaker limitations of upper-level queues
2151  *    in request stacking drivers, and it may violate the limitation of @q.
2152  *    Since the block layer and the underlying device driver trust @rq
2153  *    after it is inserted to @q, it should be checked against @q before
2154  *    the insertion using this generic function.
2155  *
2156  *    Request stacking drivers like request-based dm may change the queue
2157  *    limits when retrying requests on other queues. Those requests need
2158  *    to be checked against the new queue limits again during dispatch.
2159  */
2160 static int blk_cloned_rq_check_limits(struct request_queue *q,
2161 				      struct request *rq)
2162 {
2163 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2164 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2165 		return -EIO;
2166 	}
2167 
2168 	/*
2169 	 * queue's settings related to segment counting like q->bounce_pfn
2170 	 * may differ from that of other stacking queues.
2171 	 * Recalculate it to check the request correctly on this queue's
2172 	 * limitation.
2173 	 */
2174 	blk_recalc_rq_segments(rq);
2175 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2176 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2177 		return -EIO;
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 /**
2184  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2185  * @q:  the queue to submit the request
2186  * @rq: the request being queued
2187  */
2188 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2189 {
2190 	unsigned long flags;
2191 	int where = ELEVATOR_INSERT_BACK;
2192 
2193 	if (blk_cloned_rq_check_limits(q, rq))
2194 		return -EIO;
2195 
2196 	if (rq->rq_disk &&
2197 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2198 		return -EIO;
2199 
2200 	if (q->mq_ops) {
2201 		if (blk_queue_io_stat(q))
2202 			blk_account_io_start(rq, true);
2203 		blk_mq_insert_request(rq, false, true, false);
2204 		return 0;
2205 	}
2206 
2207 	spin_lock_irqsave(q->queue_lock, flags);
2208 	if (unlikely(blk_queue_dying(q))) {
2209 		spin_unlock_irqrestore(q->queue_lock, flags);
2210 		return -ENODEV;
2211 	}
2212 
2213 	/*
2214 	 * Submitting request must be dequeued before calling this function
2215 	 * because it will be linked to another request_queue
2216 	 */
2217 	BUG_ON(blk_queued_rq(rq));
2218 
2219 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2220 		where = ELEVATOR_INSERT_FLUSH;
2221 
2222 	add_acct_request(q, rq, where);
2223 	if (where == ELEVATOR_INSERT_FLUSH)
2224 		__blk_run_queue(q);
2225 	spin_unlock_irqrestore(q->queue_lock, flags);
2226 
2227 	return 0;
2228 }
2229 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2230 
2231 /**
2232  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2233  * @rq: request to examine
2234  *
2235  * Description:
2236  *     A request could be merge of IOs which require different failure
2237  *     handling.  This function determines the number of bytes which
2238  *     can be failed from the beginning of the request without
2239  *     crossing into area which need to be retried further.
2240  *
2241  * Return:
2242  *     The number of bytes to fail.
2243  *
2244  * Context:
2245  *     queue_lock must be held.
2246  */
2247 unsigned int blk_rq_err_bytes(const struct request *rq)
2248 {
2249 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2250 	unsigned int bytes = 0;
2251 	struct bio *bio;
2252 
2253 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2254 		return blk_rq_bytes(rq);
2255 
2256 	/*
2257 	 * Currently the only 'mixing' which can happen is between
2258 	 * different fastfail types.  We can safely fail portions
2259 	 * which have all the failfast bits that the first one has -
2260 	 * the ones which are at least as eager to fail as the first
2261 	 * one.
2262 	 */
2263 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2264 		if ((bio->bi_rw & ff) != ff)
2265 			break;
2266 		bytes += bio->bi_iter.bi_size;
2267 	}
2268 
2269 	/* this could lead to infinite loop */
2270 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2271 	return bytes;
2272 }
2273 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2274 
2275 void blk_account_io_completion(struct request *req, unsigned int bytes)
2276 {
2277 	if (blk_do_io_stat(req)) {
2278 		const int rw = rq_data_dir(req);
2279 		struct hd_struct *part;
2280 		int cpu;
2281 
2282 		cpu = part_stat_lock();
2283 		part = req->part;
2284 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2285 		part_stat_unlock();
2286 	}
2287 }
2288 
2289 void blk_account_io_done(struct request *req)
2290 {
2291 	/*
2292 	 * Account IO completion.  flush_rq isn't accounted as a
2293 	 * normal IO on queueing nor completion.  Accounting the
2294 	 * containing request is enough.
2295 	 */
2296 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2297 		unsigned long duration = jiffies - req->start_time;
2298 		const int rw = rq_data_dir(req);
2299 		struct hd_struct *part;
2300 		int cpu;
2301 
2302 		cpu = part_stat_lock();
2303 		part = req->part;
2304 
2305 		part_stat_inc(cpu, part, ios[rw]);
2306 		part_stat_add(cpu, part, ticks[rw], duration);
2307 		part_round_stats(cpu, part);
2308 		part_dec_in_flight(part, rw);
2309 
2310 		hd_struct_put(part);
2311 		part_stat_unlock();
2312 	}
2313 }
2314 
2315 #ifdef CONFIG_PM
2316 /*
2317  * Don't process normal requests when queue is suspended
2318  * or in the process of suspending/resuming
2319  */
2320 static struct request *blk_pm_peek_request(struct request_queue *q,
2321 					   struct request *rq)
2322 {
2323 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2324 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2325 		return NULL;
2326 	else
2327 		return rq;
2328 }
2329 #else
2330 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2331 						  struct request *rq)
2332 {
2333 	return rq;
2334 }
2335 #endif
2336 
2337 void blk_account_io_start(struct request *rq, bool new_io)
2338 {
2339 	struct hd_struct *part;
2340 	int rw = rq_data_dir(rq);
2341 	int cpu;
2342 
2343 	if (!blk_do_io_stat(rq))
2344 		return;
2345 
2346 	cpu = part_stat_lock();
2347 
2348 	if (!new_io) {
2349 		part = rq->part;
2350 		part_stat_inc(cpu, part, merges[rw]);
2351 	} else {
2352 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2353 		if (!hd_struct_try_get(part)) {
2354 			/*
2355 			 * The partition is already being removed,
2356 			 * the request will be accounted on the disk only
2357 			 *
2358 			 * We take a reference on disk->part0 although that
2359 			 * partition will never be deleted, so we can treat
2360 			 * it as any other partition.
2361 			 */
2362 			part = &rq->rq_disk->part0;
2363 			hd_struct_get(part);
2364 		}
2365 		part_round_stats(cpu, part);
2366 		part_inc_in_flight(part, rw);
2367 		rq->part = part;
2368 	}
2369 
2370 	part_stat_unlock();
2371 }
2372 
2373 /**
2374  * blk_peek_request - peek at the top of a request queue
2375  * @q: request queue to peek at
2376  *
2377  * Description:
2378  *     Return the request at the top of @q.  The returned request
2379  *     should be started using blk_start_request() before LLD starts
2380  *     processing it.
2381  *
2382  * Return:
2383  *     Pointer to the request at the top of @q if available.  Null
2384  *     otherwise.
2385  *
2386  * Context:
2387  *     queue_lock must be held.
2388  */
2389 struct request *blk_peek_request(struct request_queue *q)
2390 {
2391 	struct request *rq;
2392 	int ret;
2393 
2394 	while ((rq = __elv_next_request(q)) != NULL) {
2395 
2396 		rq = blk_pm_peek_request(q, rq);
2397 		if (!rq)
2398 			break;
2399 
2400 		if (!(rq->cmd_flags & REQ_STARTED)) {
2401 			/*
2402 			 * This is the first time the device driver
2403 			 * sees this request (possibly after
2404 			 * requeueing).  Notify IO scheduler.
2405 			 */
2406 			if (rq->cmd_flags & REQ_SORTED)
2407 				elv_activate_rq(q, rq);
2408 
2409 			/*
2410 			 * just mark as started even if we don't start
2411 			 * it, a request that has been delayed should
2412 			 * not be passed by new incoming requests
2413 			 */
2414 			rq->cmd_flags |= REQ_STARTED;
2415 			trace_block_rq_issue(q, rq);
2416 		}
2417 
2418 		if (!q->boundary_rq || q->boundary_rq == rq) {
2419 			q->end_sector = rq_end_sector(rq);
2420 			q->boundary_rq = NULL;
2421 		}
2422 
2423 		if (rq->cmd_flags & REQ_DONTPREP)
2424 			break;
2425 
2426 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2427 			/*
2428 			 * make sure space for the drain appears we
2429 			 * know we can do this because max_hw_segments
2430 			 * has been adjusted to be one fewer than the
2431 			 * device can handle
2432 			 */
2433 			rq->nr_phys_segments++;
2434 		}
2435 
2436 		if (!q->prep_rq_fn)
2437 			break;
2438 
2439 		ret = q->prep_rq_fn(q, rq);
2440 		if (ret == BLKPREP_OK) {
2441 			break;
2442 		} else if (ret == BLKPREP_DEFER) {
2443 			/*
2444 			 * the request may have been (partially) prepped.
2445 			 * we need to keep this request in the front to
2446 			 * avoid resource deadlock.  REQ_STARTED will
2447 			 * prevent other fs requests from passing this one.
2448 			 */
2449 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2450 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2451 				/*
2452 				 * remove the space for the drain we added
2453 				 * so that we don't add it again
2454 				 */
2455 				--rq->nr_phys_segments;
2456 			}
2457 
2458 			rq = NULL;
2459 			break;
2460 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2461 			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2462 
2463 			rq->cmd_flags |= REQ_QUIET;
2464 			/*
2465 			 * Mark this request as started so we don't trigger
2466 			 * any debug logic in the end I/O path.
2467 			 */
2468 			blk_start_request(rq);
2469 			__blk_end_request_all(rq, err);
2470 		} else {
2471 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2472 			break;
2473 		}
2474 	}
2475 
2476 	return rq;
2477 }
2478 EXPORT_SYMBOL(blk_peek_request);
2479 
2480 void blk_dequeue_request(struct request *rq)
2481 {
2482 	struct request_queue *q = rq->q;
2483 
2484 	BUG_ON(list_empty(&rq->queuelist));
2485 	BUG_ON(ELV_ON_HASH(rq));
2486 
2487 	list_del_init(&rq->queuelist);
2488 
2489 	/*
2490 	 * the time frame between a request being removed from the lists
2491 	 * and to it is freed is accounted as io that is in progress at
2492 	 * the driver side.
2493 	 */
2494 	if (blk_account_rq(rq)) {
2495 		q->in_flight[rq_is_sync(rq)]++;
2496 		set_io_start_time_ns(rq);
2497 	}
2498 }
2499 
2500 /**
2501  * blk_start_request - start request processing on the driver
2502  * @req: request to dequeue
2503  *
2504  * Description:
2505  *     Dequeue @req and start timeout timer on it.  This hands off the
2506  *     request to the driver.
2507  *
2508  *     Block internal functions which don't want to start timer should
2509  *     call blk_dequeue_request().
2510  *
2511  * Context:
2512  *     queue_lock must be held.
2513  */
2514 void blk_start_request(struct request *req)
2515 {
2516 	blk_dequeue_request(req);
2517 
2518 	/*
2519 	 * We are now handing the request to the hardware, initialize
2520 	 * resid_len to full count and add the timeout handler.
2521 	 */
2522 	req->resid_len = blk_rq_bytes(req);
2523 	if (unlikely(blk_bidi_rq(req)))
2524 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2525 
2526 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2527 	blk_add_timer(req);
2528 }
2529 EXPORT_SYMBOL(blk_start_request);
2530 
2531 /**
2532  * blk_fetch_request - fetch a request from a request queue
2533  * @q: request queue to fetch a request from
2534  *
2535  * Description:
2536  *     Return the request at the top of @q.  The request is started on
2537  *     return and LLD can start processing it immediately.
2538  *
2539  * Return:
2540  *     Pointer to the request at the top of @q if available.  Null
2541  *     otherwise.
2542  *
2543  * Context:
2544  *     queue_lock must be held.
2545  */
2546 struct request *blk_fetch_request(struct request_queue *q)
2547 {
2548 	struct request *rq;
2549 
2550 	rq = blk_peek_request(q);
2551 	if (rq)
2552 		blk_start_request(rq);
2553 	return rq;
2554 }
2555 EXPORT_SYMBOL(blk_fetch_request);
2556 
2557 /**
2558  * blk_update_request - Special helper function for request stacking drivers
2559  * @req:      the request being processed
2560  * @error:    %0 for success, < %0 for error
2561  * @nr_bytes: number of bytes to complete @req
2562  *
2563  * Description:
2564  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2565  *     the request structure even if @req doesn't have leftover.
2566  *     If @req has leftover, sets it up for the next range of segments.
2567  *
2568  *     This special helper function is only for request stacking drivers
2569  *     (e.g. request-based dm) so that they can handle partial completion.
2570  *     Actual device drivers should use blk_end_request instead.
2571  *
2572  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2573  *     %false return from this function.
2574  *
2575  * Return:
2576  *     %false - this request doesn't have any more data
2577  *     %true  - this request has more data
2578  **/
2579 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2580 {
2581 	int total_bytes;
2582 
2583 	trace_block_rq_complete(req->q, req, nr_bytes);
2584 
2585 	if (!req->bio)
2586 		return false;
2587 
2588 	/*
2589 	 * For fs requests, rq is just carrier of independent bio's
2590 	 * and each partial completion should be handled separately.
2591 	 * Reset per-request error on each partial completion.
2592 	 *
2593 	 * TODO: tj: This is too subtle.  It would be better to let
2594 	 * low level drivers do what they see fit.
2595 	 */
2596 	if (req->cmd_type == REQ_TYPE_FS)
2597 		req->errors = 0;
2598 
2599 	if (error && req->cmd_type == REQ_TYPE_FS &&
2600 	    !(req->cmd_flags & REQ_QUIET)) {
2601 		char *error_type;
2602 
2603 		switch (error) {
2604 		case -ENOLINK:
2605 			error_type = "recoverable transport";
2606 			break;
2607 		case -EREMOTEIO:
2608 			error_type = "critical target";
2609 			break;
2610 		case -EBADE:
2611 			error_type = "critical nexus";
2612 			break;
2613 		case -ETIMEDOUT:
2614 			error_type = "timeout";
2615 			break;
2616 		case -ENOSPC:
2617 			error_type = "critical space allocation";
2618 			break;
2619 		case -ENODATA:
2620 			error_type = "critical medium";
2621 			break;
2622 		case -EIO:
2623 		default:
2624 			error_type = "I/O";
2625 			break;
2626 		}
2627 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2628 				   __func__, error_type, req->rq_disk ?
2629 				   req->rq_disk->disk_name : "?",
2630 				   (unsigned long long)blk_rq_pos(req));
2631 
2632 	}
2633 
2634 	blk_account_io_completion(req, nr_bytes);
2635 
2636 	total_bytes = 0;
2637 	while (req->bio) {
2638 		struct bio *bio = req->bio;
2639 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2640 
2641 		if (bio_bytes == bio->bi_iter.bi_size)
2642 			req->bio = bio->bi_next;
2643 
2644 		req_bio_endio(req, bio, bio_bytes, error);
2645 
2646 		total_bytes += bio_bytes;
2647 		nr_bytes -= bio_bytes;
2648 
2649 		if (!nr_bytes)
2650 			break;
2651 	}
2652 
2653 	/*
2654 	 * completely done
2655 	 */
2656 	if (!req->bio) {
2657 		/*
2658 		 * Reset counters so that the request stacking driver
2659 		 * can find how many bytes remain in the request
2660 		 * later.
2661 		 */
2662 		req->__data_len = 0;
2663 		return false;
2664 	}
2665 
2666 	req->__data_len -= total_bytes;
2667 
2668 	/* update sector only for requests with clear definition of sector */
2669 	if (req->cmd_type == REQ_TYPE_FS)
2670 		req->__sector += total_bytes >> 9;
2671 
2672 	/* mixed attributes always follow the first bio */
2673 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2674 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2675 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2676 	}
2677 
2678 	/*
2679 	 * If total number of sectors is less than the first segment
2680 	 * size, something has gone terribly wrong.
2681 	 */
2682 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2683 		blk_dump_rq_flags(req, "request botched");
2684 		req->__data_len = blk_rq_cur_bytes(req);
2685 	}
2686 
2687 	/* recalculate the number of segments */
2688 	blk_recalc_rq_segments(req);
2689 
2690 	return true;
2691 }
2692 EXPORT_SYMBOL_GPL(blk_update_request);
2693 
2694 static bool blk_update_bidi_request(struct request *rq, int error,
2695 				    unsigned int nr_bytes,
2696 				    unsigned int bidi_bytes)
2697 {
2698 	if (blk_update_request(rq, error, nr_bytes))
2699 		return true;
2700 
2701 	/* Bidi request must be completed as a whole */
2702 	if (unlikely(blk_bidi_rq(rq)) &&
2703 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2704 		return true;
2705 
2706 	if (blk_queue_add_random(rq->q))
2707 		add_disk_randomness(rq->rq_disk);
2708 
2709 	return false;
2710 }
2711 
2712 /**
2713  * blk_unprep_request - unprepare a request
2714  * @req:	the request
2715  *
2716  * This function makes a request ready for complete resubmission (or
2717  * completion).  It happens only after all error handling is complete,
2718  * so represents the appropriate moment to deallocate any resources
2719  * that were allocated to the request in the prep_rq_fn.  The queue
2720  * lock is held when calling this.
2721  */
2722 void blk_unprep_request(struct request *req)
2723 {
2724 	struct request_queue *q = req->q;
2725 
2726 	req->cmd_flags &= ~REQ_DONTPREP;
2727 	if (q->unprep_rq_fn)
2728 		q->unprep_rq_fn(q, req);
2729 }
2730 EXPORT_SYMBOL_GPL(blk_unprep_request);
2731 
2732 /*
2733  * queue lock must be held
2734  */
2735 void blk_finish_request(struct request *req, int error)
2736 {
2737 	if (req->cmd_flags & REQ_QUEUED)
2738 		blk_queue_end_tag(req->q, req);
2739 
2740 	BUG_ON(blk_queued_rq(req));
2741 
2742 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2743 		laptop_io_completion(&req->q->backing_dev_info);
2744 
2745 	blk_delete_timer(req);
2746 
2747 	if (req->cmd_flags & REQ_DONTPREP)
2748 		blk_unprep_request(req);
2749 
2750 	blk_account_io_done(req);
2751 
2752 	if (req->end_io)
2753 		req->end_io(req, error);
2754 	else {
2755 		if (blk_bidi_rq(req))
2756 			__blk_put_request(req->next_rq->q, req->next_rq);
2757 
2758 		__blk_put_request(req->q, req);
2759 	}
2760 }
2761 EXPORT_SYMBOL(blk_finish_request);
2762 
2763 /**
2764  * blk_end_bidi_request - Complete a bidi request
2765  * @rq:         the request to complete
2766  * @error:      %0 for success, < %0 for error
2767  * @nr_bytes:   number of bytes to complete @rq
2768  * @bidi_bytes: number of bytes to complete @rq->next_rq
2769  *
2770  * Description:
2771  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2772  *     Drivers that supports bidi can safely call this member for any
2773  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2774  *     just ignored.
2775  *
2776  * Return:
2777  *     %false - we are done with this request
2778  *     %true  - still buffers pending for this request
2779  **/
2780 static bool blk_end_bidi_request(struct request *rq, int error,
2781 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2782 {
2783 	struct request_queue *q = rq->q;
2784 	unsigned long flags;
2785 
2786 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2787 		return true;
2788 
2789 	spin_lock_irqsave(q->queue_lock, flags);
2790 	blk_finish_request(rq, error);
2791 	spin_unlock_irqrestore(q->queue_lock, flags);
2792 
2793 	return false;
2794 }
2795 
2796 /**
2797  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2798  * @rq:         the request to complete
2799  * @error:      %0 for success, < %0 for error
2800  * @nr_bytes:   number of bytes to complete @rq
2801  * @bidi_bytes: number of bytes to complete @rq->next_rq
2802  *
2803  * Description:
2804  *     Identical to blk_end_bidi_request() except that queue lock is
2805  *     assumed to be locked on entry and remains so on return.
2806  *
2807  * Return:
2808  *     %false - we are done with this request
2809  *     %true  - still buffers pending for this request
2810  **/
2811 bool __blk_end_bidi_request(struct request *rq, int error,
2812 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2813 {
2814 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2815 		return true;
2816 
2817 	blk_finish_request(rq, error);
2818 
2819 	return false;
2820 }
2821 
2822 /**
2823  * blk_end_request - Helper function for drivers to complete the request.
2824  * @rq:       the request being processed
2825  * @error:    %0 for success, < %0 for error
2826  * @nr_bytes: number of bytes to complete
2827  *
2828  * Description:
2829  *     Ends I/O on a number of bytes attached to @rq.
2830  *     If @rq has leftover, sets it up for the next range of segments.
2831  *
2832  * Return:
2833  *     %false - we are done with this request
2834  *     %true  - still buffers pending for this request
2835  **/
2836 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2837 {
2838 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2839 }
2840 EXPORT_SYMBOL(blk_end_request);
2841 
2842 /**
2843  * blk_end_request_all - Helper function for drives to finish the request.
2844  * @rq: the request to finish
2845  * @error: %0 for success, < %0 for error
2846  *
2847  * Description:
2848  *     Completely finish @rq.
2849  */
2850 void blk_end_request_all(struct request *rq, int error)
2851 {
2852 	bool pending;
2853 	unsigned int bidi_bytes = 0;
2854 
2855 	if (unlikely(blk_bidi_rq(rq)))
2856 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2857 
2858 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2859 	BUG_ON(pending);
2860 }
2861 EXPORT_SYMBOL(blk_end_request_all);
2862 
2863 /**
2864  * blk_end_request_cur - Helper function to finish the current request chunk.
2865  * @rq: the request to finish the current chunk for
2866  * @error: %0 for success, < %0 for error
2867  *
2868  * Description:
2869  *     Complete the current consecutively mapped chunk from @rq.
2870  *
2871  * Return:
2872  *     %false - we are done with this request
2873  *     %true  - still buffers pending for this request
2874  */
2875 bool blk_end_request_cur(struct request *rq, int error)
2876 {
2877 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2878 }
2879 EXPORT_SYMBOL(blk_end_request_cur);
2880 
2881 /**
2882  * blk_end_request_err - Finish a request till the next failure boundary.
2883  * @rq: the request to finish till the next failure boundary for
2884  * @error: must be negative errno
2885  *
2886  * Description:
2887  *     Complete @rq till the next failure boundary.
2888  *
2889  * Return:
2890  *     %false - we are done with this request
2891  *     %true  - still buffers pending for this request
2892  */
2893 bool blk_end_request_err(struct request *rq, int error)
2894 {
2895 	WARN_ON(error >= 0);
2896 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2897 }
2898 EXPORT_SYMBOL_GPL(blk_end_request_err);
2899 
2900 /**
2901  * __blk_end_request - Helper function for drivers to complete the request.
2902  * @rq:       the request being processed
2903  * @error:    %0 for success, < %0 for error
2904  * @nr_bytes: number of bytes to complete
2905  *
2906  * Description:
2907  *     Must be called with queue lock held unlike blk_end_request().
2908  *
2909  * Return:
2910  *     %false - we are done with this request
2911  *     %true  - still buffers pending for this request
2912  **/
2913 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2914 {
2915 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2916 }
2917 EXPORT_SYMBOL(__blk_end_request);
2918 
2919 /**
2920  * __blk_end_request_all - Helper function for drives to finish the request.
2921  * @rq: the request to finish
2922  * @error: %0 for success, < %0 for error
2923  *
2924  * Description:
2925  *     Completely finish @rq.  Must be called with queue lock held.
2926  */
2927 void __blk_end_request_all(struct request *rq, int error)
2928 {
2929 	bool pending;
2930 	unsigned int bidi_bytes = 0;
2931 
2932 	if (unlikely(blk_bidi_rq(rq)))
2933 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2934 
2935 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2936 	BUG_ON(pending);
2937 }
2938 EXPORT_SYMBOL(__blk_end_request_all);
2939 
2940 /**
2941  * __blk_end_request_cur - Helper function to finish the current request chunk.
2942  * @rq: the request to finish the current chunk for
2943  * @error: %0 for success, < %0 for error
2944  *
2945  * Description:
2946  *     Complete the current consecutively mapped chunk from @rq.  Must
2947  *     be called with queue lock held.
2948  *
2949  * Return:
2950  *     %false - we are done with this request
2951  *     %true  - still buffers pending for this request
2952  */
2953 bool __blk_end_request_cur(struct request *rq, int error)
2954 {
2955 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2956 }
2957 EXPORT_SYMBOL(__blk_end_request_cur);
2958 
2959 /**
2960  * __blk_end_request_err - Finish a request till the next failure boundary.
2961  * @rq: the request to finish till the next failure boundary for
2962  * @error: must be negative errno
2963  *
2964  * Description:
2965  *     Complete @rq till the next failure boundary.  Must be called
2966  *     with queue lock held.
2967  *
2968  * Return:
2969  *     %false - we are done with this request
2970  *     %true  - still buffers pending for this request
2971  */
2972 bool __blk_end_request_err(struct request *rq, int error)
2973 {
2974 	WARN_ON(error >= 0);
2975 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2976 }
2977 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2978 
2979 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2980 		     struct bio *bio)
2981 {
2982 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2983 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2984 
2985 	if (bio_has_data(bio))
2986 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2987 
2988 	rq->__data_len = bio->bi_iter.bi_size;
2989 	rq->bio = rq->biotail = bio;
2990 
2991 	if (bio->bi_bdev)
2992 		rq->rq_disk = bio->bi_bdev->bd_disk;
2993 }
2994 
2995 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2996 /**
2997  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2998  * @rq: the request to be flushed
2999  *
3000  * Description:
3001  *     Flush all pages in @rq.
3002  */
3003 void rq_flush_dcache_pages(struct request *rq)
3004 {
3005 	struct req_iterator iter;
3006 	struct bio_vec bvec;
3007 
3008 	rq_for_each_segment(bvec, rq, iter)
3009 		flush_dcache_page(bvec.bv_page);
3010 }
3011 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3012 #endif
3013 
3014 /**
3015  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3016  * @q : the queue of the device being checked
3017  *
3018  * Description:
3019  *    Check if underlying low-level drivers of a device are busy.
3020  *    If the drivers want to export their busy state, they must set own
3021  *    exporting function using blk_queue_lld_busy() first.
3022  *
3023  *    Basically, this function is used only by request stacking drivers
3024  *    to stop dispatching requests to underlying devices when underlying
3025  *    devices are busy.  This behavior helps more I/O merging on the queue
3026  *    of the request stacking driver and prevents I/O throughput regression
3027  *    on burst I/O load.
3028  *
3029  * Return:
3030  *    0 - Not busy (The request stacking driver should dispatch request)
3031  *    1 - Busy (The request stacking driver should stop dispatching request)
3032  */
3033 int blk_lld_busy(struct request_queue *q)
3034 {
3035 	if (q->lld_busy_fn)
3036 		return q->lld_busy_fn(q);
3037 
3038 	return 0;
3039 }
3040 EXPORT_SYMBOL_GPL(blk_lld_busy);
3041 
3042 /**
3043  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3044  * @rq: the clone request to be cleaned up
3045  *
3046  * Description:
3047  *     Free all bios in @rq for a cloned request.
3048  */
3049 void blk_rq_unprep_clone(struct request *rq)
3050 {
3051 	struct bio *bio;
3052 
3053 	while ((bio = rq->bio) != NULL) {
3054 		rq->bio = bio->bi_next;
3055 
3056 		bio_put(bio);
3057 	}
3058 }
3059 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3060 
3061 /*
3062  * Copy attributes of the original request to the clone request.
3063  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3064  */
3065 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3066 {
3067 	dst->cpu = src->cpu;
3068 	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3069 	dst->cmd_type = src->cmd_type;
3070 	dst->__sector = blk_rq_pos(src);
3071 	dst->__data_len = blk_rq_bytes(src);
3072 	dst->nr_phys_segments = src->nr_phys_segments;
3073 	dst->ioprio = src->ioprio;
3074 	dst->extra_len = src->extra_len;
3075 }
3076 
3077 /**
3078  * blk_rq_prep_clone - Helper function to setup clone request
3079  * @rq: the request to be setup
3080  * @rq_src: original request to be cloned
3081  * @bs: bio_set that bios for clone are allocated from
3082  * @gfp_mask: memory allocation mask for bio
3083  * @bio_ctr: setup function to be called for each clone bio.
3084  *           Returns %0 for success, non %0 for failure.
3085  * @data: private data to be passed to @bio_ctr
3086  *
3087  * Description:
3088  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3089  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3090  *     are not copied, and copying such parts is the caller's responsibility.
3091  *     Also, pages which the original bios are pointing to are not copied
3092  *     and the cloned bios just point same pages.
3093  *     So cloned bios must be completed before original bios, which means
3094  *     the caller must complete @rq before @rq_src.
3095  */
3096 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3097 		      struct bio_set *bs, gfp_t gfp_mask,
3098 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3099 		      void *data)
3100 {
3101 	struct bio *bio, *bio_src;
3102 
3103 	if (!bs)
3104 		bs = fs_bio_set;
3105 
3106 	__rq_for_each_bio(bio_src, rq_src) {
3107 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3108 		if (!bio)
3109 			goto free_and_out;
3110 
3111 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3112 			goto free_and_out;
3113 
3114 		if (rq->bio) {
3115 			rq->biotail->bi_next = bio;
3116 			rq->biotail = bio;
3117 		} else
3118 			rq->bio = rq->biotail = bio;
3119 	}
3120 
3121 	__blk_rq_prep_clone(rq, rq_src);
3122 
3123 	return 0;
3124 
3125 free_and_out:
3126 	if (bio)
3127 		bio_put(bio);
3128 	blk_rq_unprep_clone(rq);
3129 
3130 	return -ENOMEM;
3131 }
3132 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3133 
3134 int kblockd_schedule_work(struct work_struct *work)
3135 {
3136 	return queue_work(kblockd_workqueue, work);
3137 }
3138 EXPORT_SYMBOL(kblockd_schedule_work);
3139 
3140 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3141 				  unsigned long delay)
3142 {
3143 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3144 }
3145 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3146 
3147 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3148 				     unsigned long delay)
3149 {
3150 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3151 }
3152 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3153 
3154 /**
3155  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3156  * @plug:	The &struct blk_plug that needs to be initialized
3157  *
3158  * Description:
3159  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3160  *   pending I/O should the task end up blocking between blk_start_plug() and
3161  *   blk_finish_plug(). This is important from a performance perspective, but
3162  *   also ensures that we don't deadlock. For instance, if the task is blocking
3163  *   for a memory allocation, memory reclaim could end up wanting to free a
3164  *   page belonging to that request that is currently residing in our private
3165  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3166  *   this kind of deadlock.
3167  */
3168 void blk_start_plug(struct blk_plug *plug)
3169 {
3170 	struct task_struct *tsk = current;
3171 
3172 	/*
3173 	 * If this is a nested plug, don't actually assign it.
3174 	 */
3175 	if (tsk->plug)
3176 		return;
3177 
3178 	INIT_LIST_HEAD(&plug->list);
3179 	INIT_LIST_HEAD(&plug->mq_list);
3180 	INIT_LIST_HEAD(&plug->cb_list);
3181 	/*
3182 	 * Store ordering should not be needed here, since a potential
3183 	 * preempt will imply a full memory barrier
3184 	 */
3185 	tsk->plug = plug;
3186 }
3187 EXPORT_SYMBOL(blk_start_plug);
3188 
3189 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3190 {
3191 	struct request *rqa = container_of(a, struct request, queuelist);
3192 	struct request *rqb = container_of(b, struct request, queuelist);
3193 
3194 	return !(rqa->q < rqb->q ||
3195 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3196 }
3197 
3198 /*
3199  * If 'from_schedule' is true, then postpone the dispatch of requests
3200  * until a safe kblockd context. We due this to avoid accidental big
3201  * additional stack usage in driver dispatch, in places where the originally
3202  * plugger did not intend it.
3203  */
3204 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3205 			    bool from_schedule)
3206 	__releases(q->queue_lock)
3207 {
3208 	trace_block_unplug(q, depth, !from_schedule);
3209 
3210 	if (from_schedule)
3211 		blk_run_queue_async(q);
3212 	else
3213 		__blk_run_queue(q);
3214 	spin_unlock(q->queue_lock);
3215 }
3216 
3217 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3218 {
3219 	LIST_HEAD(callbacks);
3220 
3221 	while (!list_empty(&plug->cb_list)) {
3222 		list_splice_init(&plug->cb_list, &callbacks);
3223 
3224 		while (!list_empty(&callbacks)) {
3225 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3226 							  struct blk_plug_cb,
3227 							  list);
3228 			list_del(&cb->list);
3229 			cb->callback(cb, from_schedule);
3230 		}
3231 	}
3232 }
3233 
3234 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3235 				      int size)
3236 {
3237 	struct blk_plug *plug = current->plug;
3238 	struct blk_plug_cb *cb;
3239 
3240 	if (!plug)
3241 		return NULL;
3242 
3243 	list_for_each_entry(cb, &plug->cb_list, list)
3244 		if (cb->callback == unplug && cb->data == data)
3245 			return cb;
3246 
3247 	/* Not currently on the callback list */
3248 	BUG_ON(size < sizeof(*cb));
3249 	cb = kzalloc(size, GFP_ATOMIC);
3250 	if (cb) {
3251 		cb->data = data;
3252 		cb->callback = unplug;
3253 		list_add(&cb->list, &plug->cb_list);
3254 	}
3255 	return cb;
3256 }
3257 EXPORT_SYMBOL(blk_check_plugged);
3258 
3259 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3260 {
3261 	struct request_queue *q;
3262 	unsigned long flags;
3263 	struct request *rq;
3264 	LIST_HEAD(list);
3265 	unsigned int depth;
3266 
3267 	flush_plug_callbacks(plug, from_schedule);
3268 
3269 	if (!list_empty(&plug->mq_list))
3270 		blk_mq_flush_plug_list(plug, from_schedule);
3271 
3272 	if (list_empty(&plug->list))
3273 		return;
3274 
3275 	list_splice_init(&plug->list, &list);
3276 
3277 	list_sort(NULL, &list, plug_rq_cmp);
3278 
3279 	q = NULL;
3280 	depth = 0;
3281 
3282 	/*
3283 	 * Save and disable interrupts here, to avoid doing it for every
3284 	 * queue lock we have to take.
3285 	 */
3286 	local_irq_save(flags);
3287 	while (!list_empty(&list)) {
3288 		rq = list_entry_rq(list.next);
3289 		list_del_init(&rq->queuelist);
3290 		BUG_ON(!rq->q);
3291 		if (rq->q != q) {
3292 			/*
3293 			 * This drops the queue lock
3294 			 */
3295 			if (q)
3296 				queue_unplugged(q, depth, from_schedule);
3297 			q = rq->q;
3298 			depth = 0;
3299 			spin_lock(q->queue_lock);
3300 		}
3301 
3302 		/*
3303 		 * Short-circuit if @q is dead
3304 		 */
3305 		if (unlikely(blk_queue_dying(q))) {
3306 			__blk_end_request_all(rq, -ENODEV);
3307 			continue;
3308 		}
3309 
3310 		/*
3311 		 * rq is already accounted, so use raw insert
3312 		 */
3313 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3314 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3315 		else
3316 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3317 
3318 		depth++;
3319 	}
3320 
3321 	/*
3322 	 * This drops the queue lock
3323 	 */
3324 	if (q)
3325 		queue_unplugged(q, depth, from_schedule);
3326 
3327 	local_irq_restore(flags);
3328 }
3329 
3330 void blk_finish_plug(struct blk_plug *plug)
3331 {
3332 	if (plug != current->plug)
3333 		return;
3334 	blk_flush_plug_list(plug, false);
3335 
3336 	current->plug = NULL;
3337 }
3338 EXPORT_SYMBOL(blk_finish_plug);
3339 
3340 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3341 {
3342 	struct blk_plug *plug;
3343 	long state;
3344 
3345 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3346 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3347 		return false;
3348 
3349 	plug = current->plug;
3350 	if (plug)
3351 		blk_flush_plug_list(plug, false);
3352 
3353 	state = current->state;
3354 	while (!need_resched()) {
3355 		unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3356 		struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3357 		int ret;
3358 
3359 		hctx->poll_invoked++;
3360 
3361 		ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3362 		if (ret > 0) {
3363 			hctx->poll_success++;
3364 			set_current_state(TASK_RUNNING);
3365 			return true;
3366 		}
3367 
3368 		if (signal_pending_state(state, current))
3369 			set_current_state(TASK_RUNNING);
3370 
3371 		if (current->state == TASK_RUNNING)
3372 			return true;
3373 		if (ret < 0)
3374 			break;
3375 		cpu_relax();
3376 	}
3377 
3378 	return false;
3379 }
3380 
3381 #ifdef CONFIG_PM
3382 /**
3383  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3384  * @q: the queue of the device
3385  * @dev: the device the queue belongs to
3386  *
3387  * Description:
3388  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3389  *    @dev. Drivers that want to take advantage of request-based runtime PM
3390  *    should call this function after @dev has been initialized, and its
3391  *    request queue @q has been allocated, and runtime PM for it can not happen
3392  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3393  *    cases, driver should call this function before any I/O has taken place.
3394  *
3395  *    This function takes care of setting up using auto suspend for the device,
3396  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3397  *    until an updated value is either set by user or by driver. Drivers do
3398  *    not need to touch other autosuspend settings.
3399  *
3400  *    The block layer runtime PM is request based, so only works for drivers
3401  *    that use request as their IO unit instead of those directly use bio's.
3402  */
3403 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3404 {
3405 	q->dev = dev;
3406 	q->rpm_status = RPM_ACTIVE;
3407 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3408 	pm_runtime_use_autosuspend(q->dev);
3409 }
3410 EXPORT_SYMBOL(blk_pm_runtime_init);
3411 
3412 /**
3413  * blk_pre_runtime_suspend - Pre runtime suspend check
3414  * @q: the queue of the device
3415  *
3416  * Description:
3417  *    This function will check if runtime suspend is allowed for the device
3418  *    by examining if there are any requests pending in the queue. If there
3419  *    are requests pending, the device can not be runtime suspended; otherwise,
3420  *    the queue's status will be updated to SUSPENDING and the driver can
3421  *    proceed to suspend the device.
3422  *
3423  *    For the not allowed case, we mark last busy for the device so that
3424  *    runtime PM core will try to autosuspend it some time later.
3425  *
3426  *    This function should be called near the start of the device's
3427  *    runtime_suspend callback.
3428  *
3429  * Return:
3430  *    0		- OK to runtime suspend the device
3431  *    -EBUSY	- Device should not be runtime suspended
3432  */
3433 int blk_pre_runtime_suspend(struct request_queue *q)
3434 {
3435 	int ret = 0;
3436 
3437 	if (!q->dev)
3438 		return ret;
3439 
3440 	spin_lock_irq(q->queue_lock);
3441 	if (q->nr_pending) {
3442 		ret = -EBUSY;
3443 		pm_runtime_mark_last_busy(q->dev);
3444 	} else {
3445 		q->rpm_status = RPM_SUSPENDING;
3446 	}
3447 	spin_unlock_irq(q->queue_lock);
3448 	return ret;
3449 }
3450 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3451 
3452 /**
3453  * blk_post_runtime_suspend - Post runtime suspend processing
3454  * @q: the queue of the device
3455  * @err: return value of the device's runtime_suspend function
3456  *
3457  * Description:
3458  *    Update the queue's runtime status according to the return value of the
3459  *    device's runtime suspend function and mark last busy for the device so
3460  *    that PM core will try to auto suspend the device at a later time.
3461  *
3462  *    This function should be called near the end of the device's
3463  *    runtime_suspend callback.
3464  */
3465 void blk_post_runtime_suspend(struct request_queue *q, int err)
3466 {
3467 	if (!q->dev)
3468 		return;
3469 
3470 	spin_lock_irq(q->queue_lock);
3471 	if (!err) {
3472 		q->rpm_status = RPM_SUSPENDED;
3473 	} else {
3474 		q->rpm_status = RPM_ACTIVE;
3475 		pm_runtime_mark_last_busy(q->dev);
3476 	}
3477 	spin_unlock_irq(q->queue_lock);
3478 }
3479 EXPORT_SYMBOL(blk_post_runtime_suspend);
3480 
3481 /**
3482  * blk_pre_runtime_resume - Pre runtime resume processing
3483  * @q: the queue of the device
3484  *
3485  * Description:
3486  *    Update the queue's runtime status to RESUMING in preparation for the
3487  *    runtime resume of the device.
3488  *
3489  *    This function should be called near the start of the device's
3490  *    runtime_resume callback.
3491  */
3492 void blk_pre_runtime_resume(struct request_queue *q)
3493 {
3494 	if (!q->dev)
3495 		return;
3496 
3497 	spin_lock_irq(q->queue_lock);
3498 	q->rpm_status = RPM_RESUMING;
3499 	spin_unlock_irq(q->queue_lock);
3500 }
3501 EXPORT_SYMBOL(blk_pre_runtime_resume);
3502 
3503 /**
3504  * blk_post_runtime_resume - Post runtime resume processing
3505  * @q: the queue of the device
3506  * @err: return value of the device's runtime_resume function
3507  *
3508  * Description:
3509  *    Update the queue's runtime status according to the return value of the
3510  *    device's runtime_resume function. If it is successfully resumed, process
3511  *    the requests that are queued into the device's queue when it is resuming
3512  *    and then mark last busy and initiate autosuspend for it.
3513  *
3514  *    This function should be called near the end of the device's
3515  *    runtime_resume callback.
3516  */
3517 void blk_post_runtime_resume(struct request_queue *q, int err)
3518 {
3519 	if (!q->dev)
3520 		return;
3521 
3522 	spin_lock_irq(q->queue_lock);
3523 	if (!err) {
3524 		q->rpm_status = RPM_ACTIVE;
3525 		__blk_run_queue(q);
3526 		pm_runtime_mark_last_busy(q->dev);
3527 		pm_request_autosuspend(q->dev);
3528 	} else {
3529 		q->rpm_status = RPM_SUSPENDED;
3530 	}
3531 	spin_unlock_irq(q->queue_lock);
3532 }
3533 EXPORT_SYMBOL(blk_post_runtime_resume);
3534 
3535 /**
3536  * blk_set_runtime_active - Force runtime status of the queue to be active
3537  * @q: the queue of the device
3538  *
3539  * If the device is left runtime suspended during system suspend the resume
3540  * hook typically resumes the device and corrects runtime status
3541  * accordingly. However, that does not affect the queue runtime PM status
3542  * which is still "suspended". This prevents processing requests from the
3543  * queue.
3544  *
3545  * This function can be used in driver's resume hook to correct queue
3546  * runtime PM status and re-enable peeking requests from the queue. It
3547  * should be called before first request is added to the queue.
3548  */
3549 void blk_set_runtime_active(struct request_queue *q)
3550 {
3551 	spin_lock_irq(q->queue_lock);
3552 	q->rpm_status = RPM_ACTIVE;
3553 	pm_runtime_mark_last_busy(q->dev);
3554 	pm_request_autosuspend(q->dev);
3555 	spin_unlock_irq(q->queue_lock);
3556 }
3557 EXPORT_SYMBOL(blk_set_runtime_active);
3558 #endif
3559 
3560 int __init blk_dev_init(void)
3561 {
3562 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3563 			FIELD_SIZEOF(struct request, cmd_flags));
3564 
3565 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3566 	kblockd_workqueue = alloc_workqueue("kblockd",
3567 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3568 	if (!kblockd_workqueue)
3569 		panic("Failed to create kblockd\n");
3570 
3571 	request_cachep = kmem_cache_create("blkdev_requests",
3572 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3573 
3574 	blk_requestq_cachep = kmem_cache_create("request_queue",
3575 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3576 
3577 	return 0;
3578 }
3579