1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/block.h> 39 40 #include "blk.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 48 49 DEFINE_IDA(blk_queue_ida); 50 51 /* 52 * For the allocated request tables 53 */ 54 struct kmem_cache *request_cachep; 55 56 /* 57 * For queue allocation 58 */ 59 struct kmem_cache *blk_requestq_cachep; 60 61 /* 62 * Controlling structure to kblockd 63 */ 64 static struct workqueue_struct *kblockd_workqueue; 65 66 static void blk_clear_congested(struct request_list *rl, int sync) 67 { 68 #ifdef CONFIG_CGROUP_WRITEBACK 69 clear_wb_congested(rl->blkg->wb_congested, sync); 70 #else 71 /* 72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 73 * flip its congestion state for events on other blkcgs. 74 */ 75 if (rl == &rl->q->root_rl) 76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 77 #endif 78 } 79 80 static void blk_set_congested(struct request_list *rl, int sync) 81 { 82 #ifdef CONFIG_CGROUP_WRITEBACK 83 set_wb_congested(rl->blkg->wb_congested, sync); 84 #else 85 /* see blk_clear_congested() */ 86 if (rl == &rl->q->root_rl) 87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 88 #endif 89 } 90 91 void blk_queue_congestion_threshold(struct request_queue *q) 92 { 93 int nr; 94 95 nr = q->nr_requests - (q->nr_requests / 8) + 1; 96 if (nr > q->nr_requests) 97 nr = q->nr_requests; 98 q->nr_congestion_on = nr; 99 100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 101 if (nr < 1) 102 nr = 1; 103 q->nr_congestion_off = nr; 104 } 105 106 /** 107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 108 * @bdev: device 109 * 110 * Locates the passed device's request queue and returns the address of its 111 * backing_dev_info. This function can only be called if @bdev is opened 112 * and the return value is never NULL. 113 */ 114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 115 { 116 struct request_queue *q = bdev_get_queue(bdev); 117 118 return &q->backing_dev_info; 119 } 120 EXPORT_SYMBOL(blk_get_backing_dev_info); 121 122 void blk_rq_init(struct request_queue *q, struct request *rq) 123 { 124 memset(rq, 0, sizeof(*rq)); 125 126 INIT_LIST_HEAD(&rq->queuelist); 127 INIT_LIST_HEAD(&rq->timeout_list); 128 rq->cpu = -1; 129 rq->q = q; 130 rq->__sector = (sector_t) -1; 131 INIT_HLIST_NODE(&rq->hash); 132 RB_CLEAR_NODE(&rq->rb_node); 133 rq->cmd = rq->__cmd; 134 rq->cmd_len = BLK_MAX_CDB; 135 rq->tag = -1; 136 rq->start_time = jiffies; 137 set_start_time_ns(rq); 138 rq->part = NULL; 139 } 140 EXPORT_SYMBOL(blk_rq_init); 141 142 static void req_bio_endio(struct request *rq, struct bio *bio, 143 unsigned int nbytes, int error) 144 { 145 if (error) 146 bio->bi_error = error; 147 148 if (unlikely(rq->cmd_flags & REQ_QUIET)) 149 bio_set_flag(bio, BIO_QUIET); 150 151 bio_advance(bio, nbytes); 152 153 /* don't actually finish bio if it's part of flush sequence */ 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 155 bio_endio(bio); 156 } 157 158 void blk_dump_rq_flags(struct request *rq, char *msg) 159 { 160 int bit; 161 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 164 (unsigned long long) rq->cmd_flags); 165 166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 167 (unsigned long long)blk_rq_pos(rq), 168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 169 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 170 rq->bio, rq->biotail, blk_rq_bytes(rq)); 171 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 173 printk(KERN_INFO " cdb: "); 174 for (bit = 0; bit < BLK_MAX_CDB; bit++) 175 printk("%02x ", rq->cmd[bit]); 176 printk("\n"); 177 } 178 } 179 EXPORT_SYMBOL(blk_dump_rq_flags); 180 181 static void blk_delay_work(struct work_struct *work) 182 { 183 struct request_queue *q; 184 185 q = container_of(work, struct request_queue, delay_work.work); 186 spin_lock_irq(q->queue_lock); 187 __blk_run_queue(q); 188 spin_unlock_irq(q->queue_lock); 189 } 190 191 /** 192 * blk_delay_queue - restart queueing after defined interval 193 * @q: The &struct request_queue in question 194 * @msecs: Delay in msecs 195 * 196 * Description: 197 * Sometimes queueing needs to be postponed for a little while, to allow 198 * resources to come back. This function will make sure that queueing is 199 * restarted around the specified time. Queue lock must be held. 200 */ 201 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 202 { 203 if (likely(!blk_queue_dead(q))) 204 queue_delayed_work(kblockd_workqueue, &q->delay_work, 205 msecs_to_jiffies(msecs)); 206 } 207 EXPORT_SYMBOL(blk_delay_queue); 208 209 /** 210 * blk_start_queue_async - asynchronously restart a previously stopped queue 211 * @q: The &struct request_queue in question 212 * 213 * Description: 214 * blk_start_queue_async() will clear the stop flag on the queue, and 215 * ensure that the request_fn for the queue is run from an async 216 * context. 217 **/ 218 void blk_start_queue_async(struct request_queue *q) 219 { 220 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 221 blk_run_queue_async(q); 222 } 223 EXPORT_SYMBOL(blk_start_queue_async); 224 225 /** 226 * blk_start_queue - restart a previously stopped queue 227 * @q: The &struct request_queue in question 228 * 229 * Description: 230 * blk_start_queue() will clear the stop flag on the queue, and call 231 * the request_fn for the queue if it was in a stopped state when 232 * entered. Also see blk_stop_queue(). Queue lock must be held. 233 **/ 234 void blk_start_queue(struct request_queue *q) 235 { 236 WARN_ON(!irqs_disabled()); 237 238 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 239 __blk_run_queue(q); 240 } 241 EXPORT_SYMBOL(blk_start_queue); 242 243 /** 244 * blk_stop_queue - stop a queue 245 * @q: The &struct request_queue in question 246 * 247 * Description: 248 * The Linux block layer assumes that a block driver will consume all 249 * entries on the request queue when the request_fn strategy is called. 250 * Often this will not happen, because of hardware limitations (queue 251 * depth settings). If a device driver gets a 'queue full' response, 252 * or if it simply chooses not to queue more I/O at one point, it can 253 * call this function to prevent the request_fn from being called until 254 * the driver has signalled it's ready to go again. This happens by calling 255 * blk_start_queue() to restart queue operations. Queue lock must be held. 256 **/ 257 void blk_stop_queue(struct request_queue *q) 258 { 259 cancel_delayed_work(&q->delay_work); 260 queue_flag_set(QUEUE_FLAG_STOPPED, q); 261 } 262 EXPORT_SYMBOL(blk_stop_queue); 263 264 /** 265 * blk_sync_queue - cancel any pending callbacks on a queue 266 * @q: the queue 267 * 268 * Description: 269 * The block layer may perform asynchronous callback activity 270 * on a queue, such as calling the unplug function after a timeout. 271 * A block device may call blk_sync_queue to ensure that any 272 * such activity is cancelled, thus allowing it to release resources 273 * that the callbacks might use. The caller must already have made sure 274 * that its ->make_request_fn will not re-add plugging prior to calling 275 * this function. 276 * 277 * This function does not cancel any asynchronous activity arising 278 * out of elevator or throttling code. That would require elevator_exit() 279 * and blkcg_exit_queue() to be called with queue lock initialized. 280 * 281 */ 282 void blk_sync_queue(struct request_queue *q) 283 { 284 del_timer_sync(&q->timeout); 285 286 if (q->mq_ops) { 287 struct blk_mq_hw_ctx *hctx; 288 int i; 289 290 queue_for_each_hw_ctx(q, hctx, i) { 291 cancel_delayed_work_sync(&hctx->run_work); 292 cancel_delayed_work_sync(&hctx->delay_work); 293 } 294 } else { 295 cancel_delayed_work_sync(&q->delay_work); 296 } 297 } 298 EXPORT_SYMBOL(blk_sync_queue); 299 300 /** 301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 302 * @q: The queue to run 303 * 304 * Description: 305 * Invoke request handling on a queue if there are any pending requests. 306 * May be used to restart request handling after a request has completed. 307 * This variant runs the queue whether or not the queue has been 308 * stopped. Must be called with the queue lock held and interrupts 309 * disabled. See also @blk_run_queue. 310 */ 311 inline void __blk_run_queue_uncond(struct request_queue *q) 312 { 313 if (unlikely(blk_queue_dead(q))) 314 return; 315 316 /* 317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 318 * the queue lock internally. As a result multiple threads may be 319 * running such a request function concurrently. Keep track of the 320 * number of active request_fn invocations such that blk_drain_queue() 321 * can wait until all these request_fn calls have finished. 322 */ 323 q->request_fn_active++; 324 q->request_fn(q); 325 q->request_fn_active--; 326 } 327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 328 329 /** 330 * __blk_run_queue - run a single device queue 331 * @q: The queue to run 332 * 333 * Description: 334 * See @blk_run_queue. This variant must be called with the queue lock 335 * held and interrupts disabled. 336 */ 337 void __blk_run_queue(struct request_queue *q) 338 { 339 if (unlikely(blk_queue_stopped(q))) 340 return; 341 342 __blk_run_queue_uncond(q); 343 } 344 EXPORT_SYMBOL(__blk_run_queue); 345 346 /** 347 * blk_run_queue_async - run a single device queue in workqueue context 348 * @q: The queue to run 349 * 350 * Description: 351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 352 * of us. The caller must hold the queue lock. 353 */ 354 void blk_run_queue_async(struct request_queue *q) 355 { 356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 358 } 359 EXPORT_SYMBOL(blk_run_queue_async); 360 361 /** 362 * blk_run_queue - run a single device queue 363 * @q: The queue to run 364 * 365 * Description: 366 * Invoke request handling on this queue, if it has pending work to do. 367 * May be used to restart queueing when a request has completed. 368 */ 369 void blk_run_queue(struct request_queue *q) 370 { 371 unsigned long flags; 372 373 spin_lock_irqsave(q->queue_lock, flags); 374 __blk_run_queue(q); 375 spin_unlock_irqrestore(q->queue_lock, flags); 376 } 377 EXPORT_SYMBOL(blk_run_queue); 378 379 void blk_put_queue(struct request_queue *q) 380 { 381 kobject_put(&q->kobj); 382 } 383 EXPORT_SYMBOL(blk_put_queue); 384 385 /** 386 * __blk_drain_queue - drain requests from request_queue 387 * @q: queue to drain 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 389 * 390 * Drain requests from @q. If @drain_all is set, all requests are drained. 391 * If not, only ELVPRIV requests are drained. The caller is responsible 392 * for ensuring that no new requests which need to be drained are queued. 393 */ 394 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 395 __releases(q->queue_lock) 396 __acquires(q->queue_lock) 397 { 398 int i; 399 400 lockdep_assert_held(q->queue_lock); 401 402 while (true) { 403 bool drain = false; 404 405 /* 406 * The caller might be trying to drain @q before its 407 * elevator is initialized. 408 */ 409 if (q->elevator) 410 elv_drain_elevator(q); 411 412 blkcg_drain_queue(q); 413 414 /* 415 * This function might be called on a queue which failed 416 * driver init after queue creation or is not yet fully 417 * active yet. Some drivers (e.g. fd and loop) get unhappy 418 * in such cases. Kick queue iff dispatch queue has 419 * something on it and @q has request_fn set. 420 */ 421 if (!list_empty(&q->queue_head) && q->request_fn) 422 __blk_run_queue(q); 423 424 drain |= q->nr_rqs_elvpriv; 425 drain |= q->request_fn_active; 426 427 /* 428 * Unfortunately, requests are queued at and tracked from 429 * multiple places and there's no single counter which can 430 * be drained. Check all the queues and counters. 431 */ 432 if (drain_all) { 433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 434 drain |= !list_empty(&q->queue_head); 435 for (i = 0; i < 2; i++) { 436 drain |= q->nr_rqs[i]; 437 drain |= q->in_flight[i]; 438 if (fq) 439 drain |= !list_empty(&fq->flush_queue[i]); 440 } 441 } 442 443 if (!drain) 444 break; 445 446 spin_unlock_irq(q->queue_lock); 447 448 msleep(10); 449 450 spin_lock_irq(q->queue_lock); 451 } 452 453 /* 454 * With queue marked dead, any woken up waiter will fail the 455 * allocation path, so the wakeup chaining is lost and we're 456 * left with hung waiters. We need to wake up those waiters. 457 */ 458 if (q->request_fn) { 459 struct request_list *rl; 460 461 blk_queue_for_each_rl(rl, q) 462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 463 wake_up_all(&rl->wait[i]); 464 } 465 } 466 467 /** 468 * blk_queue_bypass_start - enter queue bypass mode 469 * @q: queue of interest 470 * 471 * In bypass mode, only the dispatch FIFO queue of @q is used. This 472 * function makes @q enter bypass mode and drains all requests which were 473 * throttled or issued before. On return, it's guaranteed that no request 474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 475 * inside queue or RCU read lock. 476 */ 477 void blk_queue_bypass_start(struct request_queue *q) 478 { 479 spin_lock_irq(q->queue_lock); 480 q->bypass_depth++; 481 queue_flag_set(QUEUE_FLAG_BYPASS, q); 482 spin_unlock_irq(q->queue_lock); 483 484 /* 485 * Queues start drained. Skip actual draining till init is 486 * complete. This avoids lenghty delays during queue init which 487 * can happen many times during boot. 488 */ 489 if (blk_queue_init_done(q)) { 490 spin_lock_irq(q->queue_lock); 491 __blk_drain_queue(q, false); 492 spin_unlock_irq(q->queue_lock); 493 494 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 495 synchronize_rcu(); 496 } 497 } 498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 499 500 /** 501 * blk_queue_bypass_end - leave queue bypass mode 502 * @q: queue of interest 503 * 504 * Leave bypass mode and restore the normal queueing behavior. 505 */ 506 void blk_queue_bypass_end(struct request_queue *q) 507 { 508 spin_lock_irq(q->queue_lock); 509 if (!--q->bypass_depth) 510 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 511 WARN_ON_ONCE(q->bypass_depth < 0); 512 spin_unlock_irq(q->queue_lock); 513 } 514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 515 516 void blk_set_queue_dying(struct request_queue *q) 517 { 518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 519 520 if (q->mq_ops) 521 blk_mq_wake_waiters(q); 522 else { 523 struct request_list *rl; 524 525 blk_queue_for_each_rl(rl, q) { 526 if (rl->rq_pool) { 527 wake_up(&rl->wait[BLK_RW_SYNC]); 528 wake_up(&rl->wait[BLK_RW_ASYNC]); 529 } 530 } 531 } 532 } 533 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 534 535 /** 536 * blk_cleanup_queue - shutdown a request queue 537 * @q: request queue to shutdown 538 * 539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 540 * put it. All future requests will be failed immediately with -ENODEV. 541 */ 542 void blk_cleanup_queue(struct request_queue *q) 543 { 544 spinlock_t *lock = q->queue_lock; 545 546 /* mark @q DYING, no new request or merges will be allowed afterwards */ 547 mutex_lock(&q->sysfs_lock); 548 blk_set_queue_dying(q); 549 spin_lock_irq(lock); 550 551 /* 552 * A dying queue is permanently in bypass mode till released. Note 553 * that, unlike blk_queue_bypass_start(), we aren't performing 554 * synchronize_rcu() after entering bypass mode to avoid the delay 555 * as some drivers create and destroy a lot of queues while 556 * probing. This is still safe because blk_release_queue() will be 557 * called only after the queue refcnt drops to zero and nothing, 558 * RCU or not, would be traversing the queue by then. 559 */ 560 q->bypass_depth++; 561 queue_flag_set(QUEUE_FLAG_BYPASS, q); 562 563 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 565 queue_flag_set(QUEUE_FLAG_DYING, q); 566 spin_unlock_irq(lock); 567 mutex_unlock(&q->sysfs_lock); 568 569 /* 570 * Drain all requests queued before DYING marking. Set DEAD flag to 571 * prevent that q->request_fn() gets invoked after draining finished. 572 */ 573 blk_freeze_queue(q); 574 spin_lock_irq(lock); 575 if (!q->mq_ops) 576 __blk_drain_queue(q, true); 577 queue_flag_set(QUEUE_FLAG_DEAD, q); 578 spin_unlock_irq(lock); 579 580 /* for synchronous bio-based driver finish in-flight integrity i/o */ 581 blk_flush_integrity(); 582 583 /* @q won't process any more request, flush async actions */ 584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 585 blk_sync_queue(q); 586 587 if (q->mq_ops) 588 blk_mq_free_queue(q); 589 percpu_ref_exit(&q->q_usage_counter); 590 591 spin_lock_irq(lock); 592 if (q->queue_lock != &q->__queue_lock) 593 q->queue_lock = &q->__queue_lock; 594 spin_unlock_irq(lock); 595 596 bdi_unregister(&q->backing_dev_info); 597 598 /* @q is and will stay empty, shutdown and put */ 599 blk_put_queue(q); 600 } 601 EXPORT_SYMBOL(blk_cleanup_queue); 602 603 /* Allocate memory local to the request queue */ 604 static void *alloc_request_struct(gfp_t gfp_mask, void *data) 605 { 606 int nid = (int)(long)data; 607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid); 608 } 609 610 static void free_request_struct(void *element, void *unused) 611 { 612 kmem_cache_free(request_cachep, element); 613 } 614 615 int blk_init_rl(struct request_list *rl, struct request_queue *q, 616 gfp_t gfp_mask) 617 { 618 if (unlikely(rl->rq_pool)) 619 return 0; 620 621 rl->q = q; 622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 626 627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct, 628 free_request_struct, 629 (void *)(long)q->node, gfp_mask, 630 q->node); 631 if (!rl->rq_pool) 632 return -ENOMEM; 633 634 return 0; 635 } 636 637 void blk_exit_rl(struct request_list *rl) 638 { 639 if (rl->rq_pool) 640 mempool_destroy(rl->rq_pool); 641 } 642 643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 644 { 645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 646 } 647 EXPORT_SYMBOL(blk_alloc_queue); 648 649 int blk_queue_enter(struct request_queue *q, bool nowait) 650 { 651 while (true) { 652 int ret; 653 654 if (percpu_ref_tryget_live(&q->q_usage_counter)) 655 return 0; 656 657 if (nowait) 658 return -EBUSY; 659 660 ret = wait_event_interruptible(q->mq_freeze_wq, 661 !atomic_read(&q->mq_freeze_depth) || 662 blk_queue_dying(q)); 663 if (blk_queue_dying(q)) 664 return -ENODEV; 665 if (ret) 666 return ret; 667 } 668 } 669 670 void blk_queue_exit(struct request_queue *q) 671 { 672 percpu_ref_put(&q->q_usage_counter); 673 } 674 675 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 676 { 677 struct request_queue *q = 678 container_of(ref, struct request_queue, q_usage_counter); 679 680 wake_up_all(&q->mq_freeze_wq); 681 } 682 683 static void blk_rq_timed_out_timer(unsigned long data) 684 { 685 struct request_queue *q = (struct request_queue *)data; 686 687 kblockd_schedule_work(&q->timeout_work); 688 } 689 690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 691 { 692 struct request_queue *q; 693 int err; 694 695 q = kmem_cache_alloc_node(blk_requestq_cachep, 696 gfp_mask | __GFP_ZERO, node_id); 697 if (!q) 698 return NULL; 699 700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 701 if (q->id < 0) 702 goto fail_q; 703 704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 705 if (!q->bio_split) 706 goto fail_id; 707 708 q->backing_dev_info.ra_pages = 709 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK; 711 q->backing_dev_info.name = "block"; 712 q->node = node_id; 713 714 err = bdi_init(&q->backing_dev_info); 715 if (err) 716 goto fail_split; 717 718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 719 laptop_mode_timer_fn, (unsigned long) q); 720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 721 INIT_LIST_HEAD(&q->queue_head); 722 INIT_LIST_HEAD(&q->timeout_list); 723 INIT_LIST_HEAD(&q->icq_list); 724 #ifdef CONFIG_BLK_CGROUP 725 INIT_LIST_HEAD(&q->blkg_list); 726 #endif 727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 728 729 kobject_init(&q->kobj, &blk_queue_ktype); 730 731 mutex_init(&q->sysfs_lock); 732 spin_lock_init(&q->__queue_lock); 733 734 /* 735 * By default initialize queue_lock to internal lock and driver can 736 * override it later if need be. 737 */ 738 q->queue_lock = &q->__queue_lock; 739 740 /* 741 * A queue starts its life with bypass turned on to avoid 742 * unnecessary bypass on/off overhead and nasty surprises during 743 * init. The initial bypass will be finished when the queue is 744 * registered by blk_register_queue(). 745 */ 746 q->bypass_depth = 1; 747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 748 749 init_waitqueue_head(&q->mq_freeze_wq); 750 751 /* 752 * Init percpu_ref in atomic mode so that it's faster to shutdown. 753 * See blk_register_queue() for details. 754 */ 755 if (percpu_ref_init(&q->q_usage_counter, 756 blk_queue_usage_counter_release, 757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 758 goto fail_bdi; 759 760 if (blkcg_init_queue(q)) 761 goto fail_ref; 762 763 return q; 764 765 fail_ref: 766 percpu_ref_exit(&q->q_usage_counter); 767 fail_bdi: 768 bdi_destroy(&q->backing_dev_info); 769 fail_split: 770 bioset_free(q->bio_split); 771 fail_id: 772 ida_simple_remove(&blk_queue_ida, q->id); 773 fail_q: 774 kmem_cache_free(blk_requestq_cachep, q); 775 return NULL; 776 } 777 EXPORT_SYMBOL(blk_alloc_queue_node); 778 779 /** 780 * blk_init_queue - prepare a request queue for use with a block device 781 * @rfn: The function to be called to process requests that have been 782 * placed on the queue. 783 * @lock: Request queue spin lock 784 * 785 * Description: 786 * If a block device wishes to use the standard request handling procedures, 787 * which sorts requests and coalesces adjacent requests, then it must 788 * call blk_init_queue(). The function @rfn will be called when there 789 * are requests on the queue that need to be processed. If the device 790 * supports plugging, then @rfn may not be called immediately when requests 791 * are available on the queue, but may be called at some time later instead. 792 * Plugged queues are generally unplugged when a buffer belonging to one 793 * of the requests on the queue is needed, or due to memory pressure. 794 * 795 * @rfn is not required, or even expected, to remove all requests off the 796 * queue, but only as many as it can handle at a time. If it does leave 797 * requests on the queue, it is responsible for arranging that the requests 798 * get dealt with eventually. 799 * 800 * The queue spin lock must be held while manipulating the requests on the 801 * request queue; this lock will be taken also from interrupt context, so irq 802 * disabling is needed for it. 803 * 804 * Function returns a pointer to the initialized request queue, or %NULL if 805 * it didn't succeed. 806 * 807 * Note: 808 * blk_init_queue() must be paired with a blk_cleanup_queue() call 809 * when the block device is deactivated (such as at module unload). 810 **/ 811 812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 813 { 814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 815 } 816 EXPORT_SYMBOL(blk_init_queue); 817 818 struct request_queue * 819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 820 { 821 struct request_queue *uninit_q, *q; 822 823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 824 if (!uninit_q) 825 return NULL; 826 827 q = blk_init_allocated_queue(uninit_q, rfn, lock); 828 if (!q) 829 blk_cleanup_queue(uninit_q); 830 831 return q; 832 } 833 EXPORT_SYMBOL(blk_init_queue_node); 834 835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 836 837 struct request_queue * 838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 839 spinlock_t *lock) 840 { 841 if (!q) 842 return NULL; 843 844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0); 845 if (!q->fq) 846 return NULL; 847 848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 849 goto fail; 850 851 INIT_WORK(&q->timeout_work, blk_timeout_work); 852 q->request_fn = rfn; 853 q->prep_rq_fn = NULL; 854 q->unprep_rq_fn = NULL; 855 q->queue_flags |= QUEUE_FLAG_DEFAULT; 856 857 /* Override internal queue lock with supplied lock pointer */ 858 if (lock) 859 q->queue_lock = lock; 860 861 /* 862 * This also sets hw/phys segments, boundary and size 863 */ 864 blk_queue_make_request(q, blk_queue_bio); 865 866 q->sg_reserved_size = INT_MAX; 867 868 /* Protect q->elevator from elevator_change */ 869 mutex_lock(&q->sysfs_lock); 870 871 /* init elevator */ 872 if (elevator_init(q, NULL)) { 873 mutex_unlock(&q->sysfs_lock); 874 goto fail; 875 } 876 877 mutex_unlock(&q->sysfs_lock); 878 879 return q; 880 881 fail: 882 blk_free_flush_queue(q->fq); 883 return NULL; 884 } 885 EXPORT_SYMBOL(blk_init_allocated_queue); 886 887 bool blk_get_queue(struct request_queue *q) 888 { 889 if (likely(!blk_queue_dying(q))) { 890 __blk_get_queue(q); 891 return true; 892 } 893 894 return false; 895 } 896 EXPORT_SYMBOL(blk_get_queue); 897 898 static inline void blk_free_request(struct request_list *rl, struct request *rq) 899 { 900 if (rq->cmd_flags & REQ_ELVPRIV) { 901 elv_put_request(rl->q, rq); 902 if (rq->elv.icq) 903 put_io_context(rq->elv.icq->ioc); 904 } 905 906 mempool_free(rq, rl->rq_pool); 907 } 908 909 /* 910 * ioc_batching returns true if the ioc is a valid batching request and 911 * should be given priority access to a request. 912 */ 913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 914 { 915 if (!ioc) 916 return 0; 917 918 /* 919 * Make sure the process is able to allocate at least 1 request 920 * even if the batch times out, otherwise we could theoretically 921 * lose wakeups. 922 */ 923 return ioc->nr_batch_requests == q->nr_batching || 924 (ioc->nr_batch_requests > 0 925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 926 } 927 928 /* 929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 930 * will cause the process to be a "batcher" on all queues in the system. This 931 * is the behaviour we want though - once it gets a wakeup it should be given 932 * a nice run. 933 */ 934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 935 { 936 if (!ioc || ioc_batching(q, ioc)) 937 return; 938 939 ioc->nr_batch_requests = q->nr_batching; 940 ioc->last_waited = jiffies; 941 } 942 943 static void __freed_request(struct request_list *rl, int sync) 944 { 945 struct request_queue *q = rl->q; 946 947 if (rl->count[sync] < queue_congestion_off_threshold(q)) 948 blk_clear_congested(rl, sync); 949 950 if (rl->count[sync] + 1 <= q->nr_requests) { 951 if (waitqueue_active(&rl->wait[sync])) 952 wake_up(&rl->wait[sync]); 953 954 blk_clear_rl_full(rl, sync); 955 } 956 } 957 958 /* 959 * A request has just been released. Account for it, update the full and 960 * congestion status, wake up any waiters. Called under q->queue_lock. 961 */ 962 static void freed_request(struct request_list *rl, unsigned int flags) 963 { 964 struct request_queue *q = rl->q; 965 int sync = rw_is_sync(flags); 966 967 q->nr_rqs[sync]--; 968 rl->count[sync]--; 969 if (flags & REQ_ELVPRIV) 970 q->nr_rqs_elvpriv--; 971 972 __freed_request(rl, sync); 973 974 if (unlikely(rl->starved[sync ^ 1])) 975 __freed_request(rl, sync ^ 1); 976 } 977 978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 979 { 980 struct request_list *rl; 981 int on_thresh, off_thresh; 982 983 spin_lock_irq(q->queue_lock); 984 q->nr_requests = nr; 985 blk_queue_congestion_threshold(q); 986 on_thresh = queue_congestion_on_threshold(q); 987 off_thresh = queue_congestion_off_threshold(q); 988 989 blk_queue_for_each_rl(rl, q) { 990 if (rl->count[BLK_RW_SYNC] >= on_thresh) 991 blk_set_congested(rl, BLK_RW_SYNC); 992 else if (rl->count[BLK_RW_SYNC] < off_thresh) 993 blk_clear_congested(rl, BLK_RW_SYNC); 994 995 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 996 blk_set_congested(rl, BLK_RW_ASYNC); 997 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 998 blk_clear_congested(rl, BLK_RW_ASYNC); 999 1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1001 blk_set_rl_full(rl, BLK_RW_SYNC); 1002 } else { 1003 blk_clear_rl_full(rl, BLK_RW_SYNC); 1004 wake_up(&rl->wait[BLK_RW_SYNC]); 1005 } 1006 1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1008 blk_set_rl_full(rl, BLK_RW_ASYNC); 1009 } else { 1010 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1011 wake_up(&rl->wait[BLK_RW_ASYNC]); 1012 } 1013 } 1014 1015 spin_unlock_irq(q->queue_lock); 1016 return 0; 1017 } 1018 1019 /* 1020 * Determine if elevator data should be initialized when allocating the 1021 * request associated with @bio. 1022 */ 1023 static bool blk_rq_should_init_elevator(struct bio *bio) 1024 { 1025 if (!bio) 1026 return true; 1027 1028 /* 1029 * Flush requests do not use the elevator so skip initialization. 1030 * This allows a request to share the flush and elevator data. 1031 */ 1032 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 1033 return false; 1034 1035 return true; 1036 } 1037 1038 /** 1039 * rq_ioc - determine io_context for request allocation 1040 * @bio: request being allocated is for this bio (can be %NULL) 1041 * 1042 * Determine io_context to use for request allocation for @bio. May return 1043 * %NULL if %current->io_context doesn't exist. 1044 */ 1045 static struct io_context *rq_ioc(struct bio *bio) 1046 { 1047 #ifdef CONFIG_BLK_CGROUP 1048 if (bio && bio->bi_ioc) 1049 return bio->bi_ioc; 1050 #endif 1051 return current->io_context; 1052 } 1053 1054 /** 1055 * __get_request - get a free request 1056 * @rl: request list to allocate from 1057 * @rw_flags: RW and SYNC flags 1058 * @bio: bio to allocate request for (can be %NULL) 1059 * @gfp_mask: allocation mask 1060 * 1061 * Get a free request from @q. This function may fail under memory 1062 * pressure or if @q is dead. 1063 * 1064 * Must be called with @q->queue_lock held and, 1065 * Returns ERR_PTR on failure, with @q->queue_lock held. 1066 * Returns request pointer on success, with @q->queue_lock *not held*. 1067 */ 1068 static struct request *__get_request(struct request_list *rl, int rw_flags, 1069 struct bio *bio, gfp_t gfp_mask) 1070 { 1071 struct request_queue *q = rl->q; 1072 struct request *rq; 1073 struct elevator_type *et = q->elevator->type; 1074 struct io_context *ioc = rq_ioc(bio); 1075 struct io_cq *icq = NULL; 1076 const bool is_sync = rw_is_sync(rw_flags) != 0; 1077 int may_queue; 1078 1079 if (unlikely(blk_queue_dying(q))) 1080 return ERR_PTR(-ENODEV); 1081 1082 may_queue = elv_may_queue(q, rw_flags); 1083 if (may_queue == ELV_MQUEUE_NO) 1084 goto rq_starved; 1085 1086 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1087 if (rl->count[is_sync]+1 >= q->nr_requests) { 1088 /* 1089 * The queue will fill after this allocation, so set 1090 * it as full, and mark this process as "batching". 1091 * This process will be allowed to complete a batch of 1092 * requests, others will be blocked. 1093 */ 1094 if (!blk_rl_full(rl, is_sync)) { 1095 ioc_set_batching(q, ioc); 1096 blk_set_rl_full(rl, is_sync); 1097 } else { 1098 if (may_queue != ELV_MQUEUE_MUST 1099 && !ioc_batching(q, ioc)) { 1100 /* 1101 * The queue is full and the allocating 1102 * process is not a "batcher", and not 1103 * exempted by the IO scheduler 1104 */ 1105 return ERR_PTR(-ENOMEM); 1106 } 1107 } 1108 } 1109 blk_set_congested(rl, is_sync); 1110 } 1111 1112 /* 1113 * Only allow batching queuers to allocate up to 50% over the defined 1114 * limit of requests, otherwise we could have thousands of requests 1115 * allocated with any setting of ->nr_requests 1116 */ 1117 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1118 return ERR_PTR(-ENOMEM); 1119 1120 q->nr_rqs[is_sync]++; 1121 rl->count[is_sync]++; 1122 rl->starved[is_sync] = 0; 1123 1124 /* 1125 * Decide whether the new request will be managed by elevator. If 1126 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 1127 * prevent the current elevator from being destroyed until the new 1128 * request is freed. This guarantees icq's won't be destroyed and 1129 * makes creating new ones safe. 1130 * 1131 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1132 * it will be created after releasing queue_lock. 1133 */ 1134 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1135 rw_flags |= REQ_ELVPRIV; 1136 q->nr_rqs_elvpriv++; 1137 if (et->icq_cache && ioc) 1138 icq = ioc_lookup_icq(ioc, q); 1139 } 1140 1141 if (blk_queue_io_stat(q)) 1142 rw_flags |= REQ_IO_STAT; 1143 spin_unlock_irq(q->queue_lock); 1144 1145 /* allocate and init request */ 1146 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1147 if (!rq) 1148 goto fail_alloc; 1149 1150 blk_rq_init(q, rq); 1151 blk_rq_set_rl(rq, rl); 1152 rq->cmd_flags = rw_flags | REQ_ALLOCED; 1153 1154 /* init elvpriv */ 1155 if (rw_flags & REQ_ELVPRIV) { 1156 if (unlikely(et->icq_cache && !icq)) { 1157 if (ioc) 1158 icq = ioc_create_icq(ioc, q, gfp_mask); 1159 if (!icq) 1160 goto fail_elvpriv; 1161 } 1162 1163 rq->elv.icq = icq; 1164 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1165 goto fail_elvpriv; 1166 1167 /* @rq->elv.icq holds io_context until @rq is freed */ 1168 if (icq) 1169 get_io_context(icq->ioc); 1170 } 1171 out: 1172 /* 1173 * ioc may be NULL here, and ioc_batching will be false. That's 1174 * OK, if the queue is under the request limit then requests need 1175 * not count toward the nr_batch_requests limit. There will always 1176 * be some limit enforced by BLK_BATCH_TIME. 1177 */ 1178 if (ioc_batching(q, ioc)) 1179 ioc->nr_batch_requests--; 1180 1181 trace_block_getrq(q, bio, rw_flags & 1); 1182 return rq; 1183 1184 fail_elvpriv: 1185 /* 1186 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1187 * and may fail indefinitely under memory pressure and thus 1188 * shouldn't stall IO. Treat this request as !elvpriv. This will 1189 * disturb iosched and blkcg but weird is bettern than dead. 1190 */ 1191 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1192 __func__, dev_name(q->backing_dev_info.dev)); 1193 1194 rq->cmd_flags &= ~REQ_ELVPRIV; 1195 rq->elv.icq = NULL; 1196 1197 spin_lock_irq(q->queue_lock); 1198 q->nr_rqs_elvpriv--; 1199 spin_unlock_irq(q->queue_lock); 1200 goto out; 1201 1202 fail_alloc: 1203 /* 1204 * Allocation failed presumably due to memory. Undo anything we 1205 * might have messed up. 1206 * 1207 * Allocating task should really be put onto the front of the wait 1208 * queue, but this is pretty rare. 1209 */ 1210 spin_lock_irq(q->queue_lock); 1211 freed_request(rl, rw_flags); 1212 1213 /* 1214 * in the very unlikely event that allocation failed and no 1215 * requests for this direction was pending, mark us starved so that 1216 * freeing of a request in the other direction will notice 1217 * us. another possible fix would be to split the rq mempool into 1218 * READ and WRITE 1219 */ 1220 rq_starved: 1221 if (unlikely(rl->count[is_sync] == 0)) 1222 rl->starved[is_sync] = 1; 1223 return ERR_PTR(-ENOMEM); 1224 } 1225 1226 /** 1227 * get_request - get a free request 1228 * @q: request_queue to allocate request from 1229 * @rw_flags: RW and SYNC flags 1230 * @bio: bio to allocate request for (can be %NULL) 1231 * @gfp_mask: allocation mask 1232 * 1233 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1234 * this function keeps retrying under memory pressure and fails iff @q is dead. 1235 * 1236 * Must be called with @q->queue_lock held and, 1237 * Returns ERR_PTR on failure, with @q->queue_lock held. 1238 * Returns request pointer on success, with @q->queue_lock *not held*. 1239 */ 1240 static struct request *get_request(struct request_queue *q, int rw_flags, 1241 struct bio *bio, gfp_t gfp_mask) 1242 { 1243 const bool is_sync = rw_is_sync(rw_flags) != 0; 1244 DEFINE_WAIT(wait); 1245 struct request_list *rl; 1246 struct request *rq; 1247 1248 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1249 retry: 1250 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1251 if (!IS_ERR(rq)) 1252 return rq; 1253 1254 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1255 blk_put_rl(rl); 1256 return rq; 1257 } 1258 1259 /* wait on @rl and retry */ 1260 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1261 TASK_UNINTERRUPTIBLE); 1262 1263 trace_block_sleeprq(q, bio, rw_flags & 1); 1264 1265 spin_unlock_irq(q->queue_lock); 1266 io_schedule(); 1267 1268 /* 1269 * After sleeping, we become a "batching" process and will be able 1270 * to allocate at least one request, and up to a big batch of them 1271 * for a small period time. See ioc_batching, ioc_set_batching 1272 */ 1273 ioc_set_batching(q, current->io_context); 1274 1275 spin_lock_irq(q->queue_lock); 1276 finish_wait(&rl->wait[is_sync], &wait); 1277 1278 goto retry; 1279 } 1280 1281 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1282 gfp_t gfp_mask) 1283 { 1284 struct request *rq; 1285 1286 BUG_ON(rw != READ && rw != WRITE); 1287 1288 /* create ioc upfront */ 1289 create_io_context(gfp_mask, q->node); 1290 1291 spin_lock_irq(q->queue_lock); 1292 rq = get_request(q, rw, NULL, gfp_mask); 1293 if (IS_ERR(rq)) 1294 spin_unlock_irq(q->queue_lock); 1295 /* q->queue_lock is unlocked at this point */ 1296 1297 return rq; 1298 } 1299 1300 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1301 { 1302 if (q->mq_ops) 1303 return blk_mq_alloc_request(q, rw, 1304 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1305 0 : BLK_MQ_REQ_NOWAIT); 1306 else 1307 return blk_old_get_request(q, rw, gfp_mask); 1308 } 1309 EXPORT_SYMBOL(blk_get_request); 1310 1311 /** 1312 * blk_make_request - given a bio, allocate a corresponding struct request. 1313 * @q: target request queue 1314 * @bio: The bio describing the memory mappings that will be submitted for IO. 1315 * It may be a chained-bio properly constructed by block/bio layer. 1316 * @gfp_mask: gfp flags to be used for memory allocation 1317 * 1318 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1319 * type commands. Where the struct request needs to be farther initialized by 1320 * the caller. It is passed a &struct bio, which describes the memory info of 1321 * the I/O transfer. 1322 * 1323 * The caller of blk_make_request must make sure that bi_io_vec 1324 * are set to describe the memory buffers. That bio_data_dir() will return 1325 * the needed direction of the request. (And all bio's in the passed bio-chain 1326 * are properly set accordingly) 1327 * 1328 * If called under none-sleepable conditions, mapped bio buffers must not 1329 * need bouncing, by calling the appropriate masked or flagged allocator, 1330 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1331 * BUG. 1332 * 1333 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1334 * given to how you allocate bios. In particular, you cannot use 1335 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise 1336 * you risk waiting for IO completion of a bio that hasn't been submitted yet, 1337 * thus resulting in a deadlock. Alternatively bios should be allocated using 1338 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock. 1339 * If possible a big IO should be split into smaller parts when allocation 1340 * fails. Partial allocation should not be an error, or you risk a live-lock. 1341 */ 1342 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1343 gfp_t gfp_mask) 1344 { 1345 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1346 1347 if (IS_ERR(rq)) 1348 return rq; 1349 1350 blk_rq_set_block_pc(rq); 1351 1352 for_each_bio(bio) { 1353 struct bio *bounce_bio = bio; 1354 int ret; 1355 1356 blk_queue_bounce(q, &bounce_bio); 1357 ret = blk_rq_append_bio(q, rq, bounce_bio); 1358 if (unlikely(ret)) { 1359 blk_put_request(rq); 1360 return ERR_PTR(ret); 1361 } 1362 } 1363 1364 return rq; 1365 } 1366 EXPORT_SYMBOL(blk_make_request); 1367 1368 /** 1369 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC 1370 * @rq: request to be initialized 1371 * 1372 */ 1373 void blk_rq_set_block_pc(struct request *rq) 1374 { 1375 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1376 rq->__data_len = 0; 1377 rq->__sector = (sector_t) -1; 1378 rq->bio = rq->biotail = NULL; 1379 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1380 } 1381 EXPORT_SYMBOL(blk_rq_set_block_pc); 1382 1383 /** 1384 * blk_requeue_request - put a request back on queue 1385 * @q: request queue where request should be inserted 1386 * @rq: request to be inserted 1387 * 1388 * Description: 1389 * Drivers often keep queueing requests until the hardware cannot accept 1390 * more, when that condition happens we need to put the request back 1391 * on the queue. Must be called with queue lock held. 1392 */ 1393 void blk_requeue_request(struct request_queue *q, struct request *rq) 1394 { 1395 blk_delete_timer(rq); 1396 blk_clear_rq_complete(rq); 1397 trace_block_rq_requeue(q, rq); 1398 1399 if (rq->cmd_flags & REQ_QUEUED) 1400 blk_queue_end_tag(q, rq); 1401 1402 BUG_ON(blk_queued_rq(rq)); 1403 1404 elv_requeue_request(q, rq); 1405 } 1406 EXPORT_SYMBOL(blk_requeue_request); 1407 1408 static void add_acct_request(struct request_queue *q, struct request *rq, 1409 int where) 1410 { 1411 blk_account_io_start(rq, true); 1412 __elv_add_request(q, rq, where); 1413 } 1414 1415 static void part_round_stats_single(int cpu, struct hd_struct *part, 1416 unsigned long now) 1417 { 1418 int inflight; 1419 1420 if (now == part->stamp) 1421 return; 1422 1423 inflight = part_in_flight(part); 1424 if (inflight) { 1425 __part_stat_add(cpu, part, time_in_queue, 1426 inflight * (now - part->stamp)); 1427 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1428 } 1429 part->stamp = now; 1430 } 1431 1432 /** 1433 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1434 * @cpu: cpu number for stats access 1435 * @part: target partition 1436 * 1437 * The average IO queue length and utilisation statistics are maintained 1438 * by observing the current state of the queue length and the amount of 1439 * time it has been in this state for. 1440 * 1441 * Normally, that accounting is done on IO completion, but that can result 1442 * in more than a second's worth of IO being accounted for within any one 1443 * second, leading to >100% utilisation. To deal with that, we call this 1444 * function to do a round-off before returning the results when reading 1445 * /proc/diskstats. This accounts immediately for all queue usage up to 1446 * the current jiffies and restarts the counters again. 1447 */ 1448 void part_round_stats(int cpu, struct hd_struct *part) 1449 { 1450 unsigned long now = jiffies; 1451 1452 if (part->partno) 1453 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1454 part_round_stats_single(cpu, part, now); 1455 } 1456 EXPORT_SYMBOL_GPL(part_round_stats); 1457 1458 #ifdef CONFIG_PM 1459 static void blk_pm_put_request(struct request *rq) 1460 { 1461 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1462 pm_runtime_mark_last_busy(rq->q->dev); 1463 } 1464 #else 1465 static inline void blk_pm_put_request(struct request *rq) {} 1466 #endif 1467 1468 /* 1469 * queue lock must be held 1470 */ 1471 void __blk_put_request(struct request_queue *q, struct request *req) 1472 { 1473 if (unlikely(!q)) 1474 return; 1475 1476 if (q->mq_ops) { 1477 blk_mq_free_request(req); 1478 return; 1479 } 1480 1481 blk_pm_put_request(req); 1482 1483 elv_completed_request(q, req); 1484 1485 /* this is a bio leak */ 1486 WARN_ON(req->bio != NULL); 1487 1488 /* 1489 * Request may not have originated from ll_rw_blk. if not, 1490 * it didn't come out of our reserved rq pools 1491 */ 1492 if (req->cmd_flags & REQ_ALLOCED) { 1493 unsigned int flags = req->cmd_flags; 1494 struct request_list *rl = blk_rq_rl(req); 1495 1496 BUG_ON(!list_empty(&req->queuelist)); 1497 BUG_ON(ELV_ON_HASH(req)); 1498 1499 blk_free_request(rl, req); 1500 freed_request(rl, flags); 1501 blk_put_rl(rl); 1502 } 1503 } 1504 EXPORT_SYMBOL_GPL(__blk_put_request); 1505 1506 void blk_put_request(struct request *req) 1507 { 1508 struct request_queue *q = req->q; 1509 1510 if (q->mq_ops) 1511 blk_mq_free_request(req); 1512 else { 1513 unsigned long flags; 1514 1515 spin_lock_irqsave(q->queue_lock, flags); 1516 __blk_put_request(q, req); 1517 spin_unlock_irqrestore(q->queue_lock, flags); 1518 } 1519 } 1520 EXPORT_SYMBOL(blk_put_request); 1521 1522 /** 1523 * blk_add_request_payload - add a payload to a request 1524 * @rq: request to update 1525 * @page: page backing the payload 1526 * @offset: offset in page 1527 * @len: length of the payload. 1528 * 1529 * This allows to later add a payload to an already submitted request by 1530 * a block driver. The driver needs to take care of freeing the payload 1531 * itself. 1532 * 1533 * Note that this is a quite horrible hack and nothing but handling of 1534 * discard requests should ever use it. 1535 */ 1536 void blk_add_request_payload(struct request *rq, struct page *page, 1537 int offset, unsigned int len) 1538 { 1539 struct bio *bio = rq->bio; 1540 1541 bio->bi_io_vec->bv_page = page; 1542 bio->bi_io_vec->bv_offset = offset; 1543 bio->bi_io_vec->bv_len = len; 1544 1545 bio->bi_iter.bi_size = len; 1546 bio->bi_vcnt = 1; 1547 bio->bi_phys_segments = 1; 1548 1549 rq->__data_len = rq->resid_len = len; 1550 rq->nr_phys_segments = 1; 1551 } 1552 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1553 1554 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1555 struct bio *bio) 1556 { 1557 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1558 1559 if (!ll_back_merge_fn(q, req, bio)) 1560 return false; 1561 1562 trace_block_bio_backmerge(q, req, bio); 1563 1564 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1565 blk_rq_set_mixed_merge(req); 1566 1567 req->biotail->bi_next = bio; 1568 req->biotail = bio; 1569 req->__data_len += bio->bi_iter.bi_size; 1570 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1571 1572 blk_account_io_start(req, false); 1573 return true; 1574 } 1575 1576 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1577 struct bio *bio) 1578 { 1579 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1580 1581 if (!ll_front_merge_fn(q, req, bio)) 1582 return false; 1583 1584 trace_block_bio_frontmerge(q, req, bio); 1585 1586 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1587 blk_rq_set_mixed_merge(req); 1588 1589 bio->bi_next = req->bio; 1590 req->bio = bio; 1591 1592 req->__sector = bio->bi_iter.bi_sector; 1593 req->__data_len += bio->bi_iter.bi_size; 1594 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1595 1596 blk_account_io_start(req, false); 1597 return true; 1598 } 1599 1600 /** 1601 * blk_attempt_plug_merge - try to merge with %current's plugged list 1602 * @q: request_queue new bio is being queued at 1603 * @bio: new bio being queued 1604 * @request_count: out parameter for number of traversed plugged requests 1605 * @same_queue_rq: pointer to &struct request that gets filled in when 1606 * another request associated with @q is found on the plug list 1607 * (optional, may be %NULL) 1608 * 1609 * Determine whether @bio being queued on @q can be merged with a request 1610 * on %current's plugged list. Returns %true if merge was successful, 1611 * otherwise %false. 1612 * 1613 * Plugging coalesces IOs from the same issuer for the same purpose without 1614 * going through @q->queue_lock. As such it's more of an issuing mechanism 1615 * than scheduling, and the request, while may have elvpriv data, is not 1616 * added on the elevator at this point. In addition, we don't have 1617 * reliable access to the elevator outside queue lock. Only check basic 1618 * merging parameters without querying the elevator. 1619 * 1620 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1621 */ 1622 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1623 unsigned int *request_count, 1624 struct request **same_queue_rq) 1625 { 1626 struct blk_plug *plug; 1627 struct request *rq; 1628 bool ret = false; 1629 struct list_head *plug_list; 1630 1631 plug = current->plug; 1632 if (!plug) 1633 goto out; 1634 *request_count = 0; 1635 1636 if (q->mq_ops) 1637 plug_list = &plug->mq_list; 1638 else 1639 plug_list = &plug->list; 1640 1641 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1642 int el_ret; 1643 1644 if (rq->q == q) { 1645 (*request_count)++; 1646 /* 1647 * Only blk-mq multiple hardware queues case checks the 1648 * rq in the same queue, there should be only one such 1649 * rq in a queue 1650 **/ 1651 if (same_queue_rq) 1652 *same_queue_rq = rq; 1653 } 1654 1655 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1656 continue; 1657 1658 el_ret = blk_try_merge(rq, bio); 1659 if (el_ret == ELEVATOR_BACK_MERGE) { 1660 ret = bio_attempt_back_merge(q, rq, bio); 1661 if (ret) 1662 break; 1663 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1664 ret = bio_attempt_front_merge(q, rq, bio); 1665 if (ret) 1666 break; 1667 } 1668 } 1669 out: 1670 return ret; 1671 } 1672 1673 unsigned int blk_plug_queued_count(struct request_queue *q) 1674 { 1675 struct blk_plug *plug; 1676 struct request *rq; 1677 struct list_head *plug_list; 1678 unsigned int ret = 0; 1679 1680 plug = current->plug; 1681 if (!plug) 1682 goto out; 1683 1684 if (q->mq_ops) 1685 plug_list = &plug->mq_list; 1686 else 1687 plug_list = &plug->list; 1688 1689 list_for_each_entry(rq, plug_list, queuelist) { 1690 if (rq->q == q) 1691 ret++; 1692 } 1693 out: 1694 return ret; 1695 } 1696 1697 void init_request_from_bio(struct request *req, struct bio *bio) 1698 { 1699 req->cmd_type = REQ_TYPE_FS; 1700 1701 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1702 if (bio->bi_rw & REQ_RAHEAD) 1703 req->cmd_flags |= REQ_FAILFAST_MASK; 1704 1705 req->errors = 0; 1706 req->__sector = bio->bi_iter.bi_sector; 1707 req->ioprio = bio_prio(bio); 1708 blk_rq_bio_prep(req->q, req, bio); 1709 } 1710 1711 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1712 { 1713 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1714 struct blk_plug *plug; 1715 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1716 struct request *req; 1717 unsigned int request_count = 0; 1718 1719 /* 1720 * low level driver can indicate that it wants pages above a 1721 * certain limit bounced to low memory (ie for highmem, or even 1722 * ISA dma in theory) 1723 */ 1724 blk_queue_bounce(q, &bio); 1725 1726 blk_queue_split(q, &bio, q->bio_split); 1727 1728 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1729 bio->bi_error = -EIO; 1730 bio_endio(bio); 1731 return BLK_QC_T_NONE; 1732 } 1733 1734 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1735 spin_lock_irq(q->queue_lock); 1736 where = ELEVATOR_INSERT_FLUSH; 1737 goto get_rq; 1738 } 1739 1740 /* 1741 * Check if we can merge with the plugged list before grabbing 1742 * any locks. 1743 */ 1744 if (!blk_queue_nomerges(q)) { 1745 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1746 return BLK_QC_T_NONE; 1747 } else 1748 request_count = blk_plug_queued_count(q); 1749 1750 spin_lock_irq(q->queue_lock); 1751 1752 el_ret = elv_merge(q, &req, bio); 1753 if (el_ret == ELEVATOR_BACK_MERGE) { 1754 if (bio_attempt_back_merge(q, req, bio)) { 1755 elv_bio_merged(q, req, bio); 1756 if (!attempt_back_merge(q, req)) 1757 elv_merged_request(q, req, el_ret); 1758 goto out_unlock; 1759 } 1760 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1761 if (bio_attempt_front_merge(q, req, bio)) { 1762 elv_bio_merged(q, req, bio); 1763 if (!attempt_front_merge(q, req)) 1764 elv_merged_request(q, req, el_ret); 1765 goto out_unlock; 1766 } 1767 } 1768 1769 get_rq: 1770 /* 1771 * This sync check and mask will be re-done in init_request_from_bio(), 1772 * but we need to set it earlier to expose the sync flag to the 1773 * rq allocator and io schedulers. 1774 */ 1775 rw_flags = bio_data_dir(bio); 1776 if (sync) 1777 rw_flags |= REQ_SYNC; 1778 1779 /* 1780 * Grab a free request. This is might sleep but can not fail. 1781 * Returns with the queue unlocked. 1782 */ 1783 req = get_request(q, rw_flags, bio, GFP_NOIO); 1784 if (IS_ERR(req)) { 1785 bio->bi_error = PTR_ERR(req); 1786 bio_endio(bio); 1787 goto out_unlock; 1788 } 1789 1790 /* 1791 * After dropping the lock and possibly sleeping here, our request 1792 * may now be mergeable after it had proven unmergeable (above). 1793 * We don't worry about that case for efficiency. It won't happen 1794 * often, and the elevators are able to handle it. 1795 */ 1796 init_request_from_bio(req, bio); 1797 1798 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1799 req->cpu = raw_smp_processor_id(); 1800 1801 plug = current->plug; 1802 if (plug) { 1803 /* 1804 * If this is the first request added after a plug, fire 1805 * of a plug trace. 1806 */ 1807 if (!request_count) 1808 trace_block_plug(q); 1809 else { 1810 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1811 blk_flush_plug_list(plug, false); 1812 trace_block_plug(q); 1813 } 1814 } 1815 list_add_tail(&req->queuelist, &plug->list); 1816 blk_account_io_start(req, true); 1817 } else { 1818 spin_lock_irq(q->queue_lock); 1819 add_acct_request(q, req, where); 1820 __blk_run_queue(q); 1821 out_unlock: 1822 spin_unlock_irq(q->queue_lock); 1823 } 1824 1825 return BLK_QC_T_NONE; 1826 } 1827 1828 /* 1829 * If bio->bi_dev is a partition, remap the location 1830 */ 1831 static inline void blk_partition_remap(struct bio *bio) 1832 { 1833 struct block_device *bdev = bio->bi_bdev; 1834 1835 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1836 struct hd_struct *p = bdev->bd_part; 1837 1838 bio->bi_iter.bi_sector += p->start_sect; 1839 bio->bi_bdev = bdev->bd_contains; 1840 1841 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1842 bdev->bd_dev, 1843 bio->bi_iter.bi_sector - p->start_sect); 1844 } 1845 } 1846 1847 static void handle_bad_sector(struct bio *bio) 1848 { 1849 char b[BDEVNAME_SIZE]; 1850 1851 printk(KERN_INFO "attempt to access beyond end of device\n"); 1852 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1853 bdevname(bio->bi_bdev, b), 1854 bio->bi_rw, 1855 (unsigned long long)bio_end_sector(bio), 1856 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1857 } 1858 1859 #ifdef CONFIG_FAIL_MAKE_REQUEST 1860 1861 static DECLARE_FAULT_ATTR(fail_make_request); 1862 1863 static int __init setup_fail_make_request(char *str) 1864 { 1865 return setup_fault_attr(&fail_make_request, str); 1866 } 1867 __setup("fail_make_request=", setup_fail_make_request); 1868 1869 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1870 { 1871 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1872 } 1873 1874 static int __init fail_make_request_debugfs(void) 1875 { 1876 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1877 NULL, &fail_make_request); 1878 1879 return PTR_ERR_OR_ZERO(dir); 1880 } 1881 1882 late_initcall(fail_make_request_debugfs); 1883 1884 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1885 1886 static inline bool should_fail_request(struct hd_struct *part, 1887 unsigned int bytes) 1888 { 1889 return false; 1890 } 1891 1892 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1893 1894 /* 1895 * Check whether this bio extends beyond the end of the device. 1896 */ 1897 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1898 { 1899 sector_t maxsector; 1900 1901 if (!nr_sectors) 1902 return 0; 1903 1904 /* Test device or partition size, when known. */ 1905 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1906 if (maxsector) { 1907 sector_t sector = bio->bi_iter.bi_sector; 1908 1909 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1910 /* 1911 * This may well happen - the kernel calls bread() 1912 * without checking the size of the device, e.g., when 1913 * mounting a device. 1914 */ 1915 handle_bad_sector(bio); 1916 return 1; 1917 } 1918 } 1919 1920 return 0; 1921 } 1922 1923 static noinline_for_stack bool 1924 generic_make_request_checks(struct bio *bio) 1925 { 1926 struct request_queue *q; 1927 int nr_sectors = bio_sectors(bio); 1928 int err = -EIO; 1929 char b[BDEVNAME_SIZE]; 1930 struct hd_struct *part; 1931 1932 might_sleep(); 1933 1934 if (bio_check_eod(bio, nr_sectors)) 1935 goto end_io; 1936 1937 q = bdev_get_queue(bio->bi_bdev); 1938 if (unlikely(!q)) { 1939 printk(KERN_ERR 1940 "generic_make_request: Trying to access " 1941 "nonexistent block-device %s (%Lu)\n", 1942 bdevname(bio->bi_bdev, b), 1943 (long long) bio->bi_iter.bi_sector); 1944 goto end_io; 1945 } 1946 1947 part = bio->bi_bdev->bd_part; 1948 if (should_fail_request(part, bio->bi_iter.bi_size) || 1949 should_fail_request(&part_to_disk(part)->part0, 1950 bio->bi_iter.bi_size)) 1951 goto end_io; 1952 1953 /* 1954 * If this device has partitions, remap block n 1955 * of partition p to block n+start(p) of the disk. 1956 */ 1957 blk_partition_remap(bio); 1958 1959 if (bio_check_eod(bio, nr_sectors)) 1960 goto end_io; 1961 1962 /* 1963 * Filter flush bio's early so that make_request based 1964 * drivers without flush support don't have to worry 1965 * about them. 1966 */ 1967 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 1968 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 1969 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1970 if (!nr_sectors) { 1971 err = 0; 1972 goto end_io; 1973 } 1974 } 1975 1976 if ((bio->bi_rw & REQ_DISCARD) && 1977 (!blk_queue_discard(q) || 1978 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1979 err = -EOPNOTSUPP; 1980 goto end_io; 1981 } 1982 1983 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1984 err = -EOPNOTSUPP; 1985 goto end_io; 1986 } 1987 1988 /* 1989 * Various block parts want %current->io_context and lazy ioc 1990 * allocation ends up trading a lot of pain for a small amount of 1991 * memory. Just allocate it upfront. This may fail and block 1992 * layer knows how to live with it. 1993 */ 1994 create_io_context(GFP_ATOMIC, q->node); 1995 1996 if (!blkcg_bio_issue_check(q, bio)) 1997 return false; 1998 1999 trace_block_bio_queue(q, bio); 2000 return true; 2001 2002 end_io: 2003 bio->bi_error = err; 2004 bio_endio(bio); 2005 return false; 2006 } 2007 2008 /** 2009 * generic_make_request - hand a buffer to its device driver for I/O 2010 * @bio: The bio describing the location in memory and on the device. 2011 * 2012 * generic_make_request() is used to make I/O requests of block 2013 * devices. It is passed a &struct bio, which describes the I/O that needs 2014 * to be done. 2015 * 2016 * generic_make_request() does not return any status. The 2017 * success/failure status of the request, along with notification of 2018 * completion, is delivered asynchronously through the bio->bi_end_io 2019 * function described (one day) else where. 2020 * 2021 * The caller of generic_make_request must make sure that bi_io_vec 2022 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2023 * set to describe the device address, and the 2024 * bi_end_io and optionally bi_private are set to describe how 2025 * completion notification should be signaled. 2026 * 2027 * generic_make_request and the drivers it calls may use bi_next if this 2028 * bio happens to be merged with someone else, and may resubmit the bio to 2029 * a lower device by calling into generic_make_request recursively, which 2030 * means the bio should NOT be touched after the call to ->make_request_fn. 2031 */ 2032 blk_qc_t generic_make_request(struct bio *bio) 2033 { 2034 struct bio_list bio_list_on_stack; 2035 blk_qc_t ret = BLK_QC_T_NONE; 2036 2037 if (!generic_make_request_checks(bio)) 2038 goto out; 2039 2040 /* 2041 * We only want one ->make_request_fn to be active at a time, else 2042 * stack usage with stacked devices could be a problem. So use 2043 * current->bio_list to keep a list of requests submited by a 2044 * make_request_fn function. current->bio_list is also used as a 2045 * flag to say if generic_make_request is currently active in this 2046 * task or not. If it is NULL, then no make_request is active. If 2047 * it is non-NULL, then a make_request is active, and new requests 2048 * should be added at the tail 2049 */ 2050 if (current->bio_list) { 2051 bio_list_add(current->bio_list, bio); 2052 goto out; 2053 } 2054 2055 /* following loop may be a bit non-obvious, and so deserves some 2056 * explanation. 2057 * Before entering the loop, bio->bi_next is NULL (as all callers 2058 * ensure that) so we have a list with a single bio. 2059 * We pretend that we have just taken it off a longer list, so 2060 * we assign bio_list to a pointer to the bio_list_on_stack, 2061 * thus initialising the bio_list of new bios to be 2062 * added. ->make_request() may indeed add some more bios 2063 * through a recursive call to generic_make_request. If it 2064 * did, we find a non-NULL value in bio_list and re-enter the loop 2065 * from the top. In this case we really did just take the bio 2066 * of the top of the list (no pretending) and so remove it from 2067 * bio_list, and call into ->make_request() again. 2068 */ 2069 BUG_ON(bio->bi_next); 2070 bio_list_init(&bio_list_on_stack); 2071 current->bio_list = &bio_list_on_stack; 2072 do { 2073 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2074 2075 if (likely(blk_queue_enter(q, false) == 0)) { 2076 ret = q->make_request_fn(q, bio); 2077 2078 blk_queue_exit(q); 2079 2080 bio = bio_list_pop(current->bio_list); 2081 } else { 2082 struct bio *bio_next = bio_list_pop(current->bio_list); 2083 2084 bio_io_error(bio); 2085 bio = bio_next; 2086 } 2087 } while (bio); 2088 current->bio_list = NULL; /* deactivate */ 2089 2090 out: 2091 return ret; 2092 } 2093 EXPORT_SYMBOL(generic_make_request); 2094 2095 /** 2096 * submit_bio - submit a bio to the block device layer for I/O 2097 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 2098 * @bio: The &struct bio which describes the I/O 2099 * 2100 * submit_bio() is very similar in purpose to generic_make_request(), and 2101 * uses that function to do most of the work. Both are fairly rough 2102 * interfaces; @bio must be presetup and ready for I/O. 2103 * 2104 */ 2105 blk_qc_t submit_bio(int rw, struct bio *bio) 2106 { 2107 bio->bi_rw |= rw; 2108 2109 /* 2110 * If it's a regular read/write or a barrier with data attached, 2111 * go through the normal accounting stuff before submission. 2112 */ 2113 if (bio_has_data(bio)) { 2114 unsigned int count; 2115 2116 if (unlikely(rw & REQ_WRITE_SAME)) 2117 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2118 else 2119 count = bio_sectors(bio); 2120 2121 if (rw & WRITE) { 2122 count_vm_events(PGPGOUT, count); 2123 } else { 2124 task_io_account_read(bio->bi_iter.bi_size); 2125 count_vm_events(PGPGIN, count); 2126 } 2127 2128 if (unlikely(block_dump)) { 2129 char b[BDEVNAME_SIZE]; 2130 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2131 current->comm, task_pid_nr(current), 2132 (rw & WRITE) ? "WRITE" : "READ", 2133 (unsigned long long)bio->bi_iter.bi_sector, 2134 bdevname(bio->bi_bdev, b), 2135 count); 2136 } 2137 } 2138 2139 return generic_make_request(bio); 2140 } 2141 EXPORT_SYMBOL(submit_bio); 2142 2143 /** 2144 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2145 * for new the queue limits 2146 * @q: the queue 2147 * @rq: the request being checked 2148 * 2149 * Description: 2150 * @rq may have been made based on weaker limitations of upper-level queues 2151 * in request stacking drivers, and it may violate the limitation of @q. 2152 * Since the block layer and the underlying device driver trust @rq 2153 * after it is inserted to @q, it should be checked against @q before 2154 * the insertion using this generic function. 2155 * 2156 * Request stacking drivers like request-based dm may change the queue 2157 * limits when retrying requests on other queues. Those requests need 2158 * to be checked against the new queue limits again during dispatch. 2159 */ 2160 static int blk_cloned_rq_check_limits(struct request_queue *q, 2161 struct request *rq) 2162 { 2163 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 2164 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2165 return -EIO; 2166 } 2167 2168 /* 2169 * queue's settings related to segment counting like q->bounce_pfn 2170 * may differ from that of other stacking queues. 2171 * Recalculate it to check the request correctly on this queue's 2172 * limitation. 2173 */ 2174 blk_recalc_rq_segments(rq); 2175 if (rq->nr_phys_segments > queue_max_segments(q)) { 2176 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2177 return -EIO; 2178 } 2179 2180 return 0; 2181 } 2182 2183 /** 2184 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2185 * @q: the queue to submit the request 2186 * @rq: the request being queued 2187 */ 2188 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2189 { 2190 unsigned long flags; 2191 int where = ELEVATOR_INSERT_BACK; 2192 2193 if (blk_cloned_rq_check_limits(q, rq)) 2194 return -EIO; 2195 2196 if (rq->rq_disk && 2197 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2198 return -EIO; 2199 2200 if (q->mq_ops) { 2201 if (blk_queue_io_stat(q)) 2202 blk_account_io_start(rq, true); 2203 blk_mq_insert_request(rq, false, true, false); 2204 return 0; 2205 } 2206 2207 spin_lock_irqsave(q->queue_lock, flags); 2208 if (unlikely(blk_queue_dying(q))) { 2209 spin_unlock_irqrestore(q->queue_lock, flags); 2210 return -ENODEV; 2211 } 2212 2213 /* 2214 * Submitting request must be dequeued before calling this function 2215 * because it will be linked to another request_queue 2216 */ 2217 BUG_ON(blk_queued_rq(rq)); 2218 2219 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 2220 where = ELEVATOR_INSERT_FLUSH; 2221 2222 add_acct_request(q, rq, where); 2223 if (where == ELEVATOR_INSERT_FLUSH) 2224 __blk_run_queue(q); 2225 spin_unlock_irqrestore(q->queue_lock, flags); 2226 2227 return 0; 2228 } 2229 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2230 2231 /** 2232 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2233 * @rq: request to examine 2234 * 2235 * Description: 2236 * A request could be merge of IOs which require different failure 2237 * handling. This function determines the number of bytes which 2238 * can be failed from the beginning of the request without 2239 * crossing into area which need to be retried further. 2240 * 2241 * Return: 2242 * The number of bytes to fail. 2243 * 2244 * Context: 2245 * queue_lock must be held. 2246 */ 2247 unsigned int blk_rq_err_bytes(const struct request *rq) 2248 { 2249 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2250 unsigned int bytes = 0; 2251 struct bio *bio; 2252 2253 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2254 return blk_rq_bytes(rq); 2255 2256 /* 2257 * Currently the only 'mixing' which can happen is between 2258 * different fastfail types. We can safely fail portions 2259 * which have all the failfast bits that the first one has - 2260 * the ones which are at least as eager to fail as the first 2261 * one. 2262 */ 2263 for (bio = rq->bio; bio; bio = bio->bi_next) { 2264 if ((bio->bi_rw & ff) != ff) 2265 break; 2266 bytes += bio->bi_iter.bi_size; 2267 } 2268 2269 /* this could lead to infinite loop */ 2270 BUG_ON(blk_rq_bytes(rq) && !bytes); 2271 return bytes; 2272 } 2273 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2274 2275 void blk_account_io_completion(struct request *req, unsigned int bytes) 2276 { 2277 if (blk_do_io_stat(req)) { 2278 const int rw = rq_data_dir(req); 2279 struct hd_struct *part; 2280 int cpu; 2281 2282 cpu = part_stat_lock(); 2283 part = req->part; 2284 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2285 part_stat_unlock(); 2286 } 2287 } 2288 2289 void blk_account_io_done(struct request *req) 2290 { 2291 /* 2292 * Account IO completion. flush_rq isn't accounted as a 2293 * normal IO on queueing nor completion. Accounting the 2294 * containing request is enough. 2295 */ 2296 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2297 unsigned long duration = jiffies - req->start_time; 2298 const int rw = rq_data_dir(req); 2299 struct hd_struct *part; 2300 int cpu; 2301 2302 cpu = part_stat_lock(); 2303 part = req->part; 2304 2305 part_stat_inc(cpu, part, ios[rw]); 2306 part_stat_add(cpu, part, ticks[rw], duration); 2307 part_round_stats(cpu, part); 2308 part_dec_in_flight(part, rw); 2309 2310 hd_struct_put(part); 2311 part_stat_unlock(); 2312 } 2313 } 2314 2315 #ifdef CONFIG_PM 2316 /* 2317 * Don't process normal requests when queue is suspended 2318 * or in the process of suspending/resuming 2319 */ 2320 static struct request *blk_pm_peek_request(struct request_queue *q, 2321 struct request *rq) 2322 { 2323 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2324 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2325 return NULL; 2326 else 2327 return rq; 2328 } 2329 #else 2330 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2331 struct request *rq) 2332 { 2333 return rq; 2334 } 2335 #endif 2336 2337 void blk_account_io_start(struct request *rq, bool new_io) 2338 { 2339 struct hd_struct *part; 2340 int rw = rq_data_dir(rq); 2341 int cpu; 2342 2343 if (!blk_do_io_stat(rq)) 2344 return; 2345 2346 cpu = part_stat_lock(); 2347 2348 if (!new_io) { 2349 part = rq->part; 2350 part_stat_inc(cpu, part, merges[rw]); 2351 } else { 2352 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2353 if (!hd_struct_try_get(part)) { 2354 /* 2355 * The partition is already being removed, 2356 * the request will be accounted on the disk only 2357 * 2358 * We take a reference on disk->part0 although that 2359 * partition will never be deleted, so we can treat 2360 * it as any other partition. 2361 */ 2362 part = &rq->rq_disk->part0; 2363 hd_struct_get(part); 2364 } 2365 part_round_stats(cpu, part); 2366 part_inc_in_flight(part, rw); 2367 rq->part = part; 2368 } 2369 2370 part_stat_unlock(); 2371 } 2372 2373 /** 2374 * blk_peek_request - peek at the top of a request queue 2375 * @q: request queue to peek at 2376 * 2377 * Description: 2378 * Return the request at the top of @q. The returned request 2379 * should be started using blk_start_request() before LLD starts 2380 * processing it. 2381 * 2382 * Return: 2383 * Pointer to the request at the top of @q if available. Null 2384 * otherwise. 2385 * 2386 * Context: 2387 * queue_lock must be held. 2388 */ 2389 struct request *blk_peek_request(struct request_queue *q) 2390 { 2391 struct request *rq; 2392 int ret; 2393 2394 while ((rq = __elv_next_request(q)) != NULL) { 2395 2396 rq = blk_pm_peek_request(q, rq); 2397 if (!rq) 2398 break; 2399 2400 if (!(rq->cmd_flags & REQ_STARTED)) { 2401 /* 2402 * This is the first time the device driver 2403 * sees this request (possibly after 2404 * requeueing). Notify IO scheduler. 2405 */ 2406 if (rq->cmd_flags & REQ_SORTED) 2407 elv_activate_rq(q, rq); 2408 2409 /* 2410 * just mark as started even if we don't start 2411 * it, a request that has been delayed should 2412 * not be passed by new incoming requests 2413 */ 2414 rq->cmd_flags |= REQ_STARTED; 2415 trace_block_rq_issue(q, rq); 2416 } 2417 2418 if (!q->boundary_rq || q->boundary_rq == rq) { 2419 q->end_sector = rq_end_sector(rq); 2420 q->boundary_rq = NULL; 2421 } 2422 2423 if (rq->cmd_flags & REQ_DONTPREP) 2424 break; 2425 2426 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2427 /* 2428 * make sure space for the drain appears we 2429 * know we can do this because max_hw_segments 2430 * has been adjusted to be one fewer than the 2431 * device can handle 2432 */ 2433 rq->nr_phys_segments++; 2434 } 2435 2436 if (!q->prep_rq_fn) 2437 break; 2438 2439 ret = q->prep_rq_fn(q, rq); 2440 if (ret == BLKPREP_OK) { 2441 break; 2442 } else if (ret == BLKPREP_DEFER) { 2443 /* 2444 * the request may have been (partially) prepped. 2445 * we need to keep this request in the front to 2446 * avoid resource deadlock. REQ_STARTED will 2447 * prevent other fs requests from passing this one. 2448 */ 2449 if (q->dma_drain_size && blk_rq_bytes(rq) && 2450 !(rq->cmd_flags & REQ_DONTPREP)) { 2451 /* 2452 * remove the space for the drain we added 2453 * so that we don't add it again 2454 */ 2455 --rq->nr_phys_segments; 2456 } 2457 2458 rq = NULL; 2459 break; 2460 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2461 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO; 2462 2463 rq->cmd_flags |= REQ_QUIET; 2464 /* 2465 * Mark this request as started so we don't trigger 2466 * any debug logic in the end I/O path. 2467 */ 2468 blk_start_request(rq); 2469 __blk_end_request_all(rq, err); 2470 } else { 2471 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2472 break; 2473 } 2474 } 2475 2476 return rq; 2477 } 2478 EXPORT_SYMBOL(blk_peek_request); 2479 2480 void blk_dequeue_request(struct request *rq) 2481 { 2482 struct request_queue *q = rq->q; 2483 2484 BUG_ON(list_empty(&rq->queuelist)); 2485 BUG_ON(ELV_ON_HASH(rq)); 2486 2487 list_del_init(&rq->queuelist); 2488 2489 /* 2490 * the time frame between a request being removed from the lists 2491 * and to it is freed is accounted as io that is in progress at 2492 * the driver side. 2493 */ 2494 if (blk_account_rq(rq)) { 2495 q->in_flight[rq_is_sync(rq)]++; 2496 set_io_start_time_ns(rq); 2497 } 2498 } 2499 2500 /** 2501 * blk_start_request - start request processing on the driver 2502 * @req: request to dequeue 2503 * 2504 * Description: 2505 * Dequeue @req and start timeout timer on it. This hands off the 2506 * request to the driver. 2507 * 2508 * Block internal functions which don't want to start timer should 2509 * call blk_dequeue_request(). 2510 * 2511 * Context: 2512 * queue_lock must be held. 2513 */ 2514 void blk_start_request(struct request *req) 2515 { 2516 blk_dequeue_request(req); 2517 2518 /* 2519 * We are now handing the request to the hardware, initialize 2520 * resid_len to full count and add the timeout handler. 2521 */ 2522 req->resid_len = blk_rq_bytes(req); 2523 if (unlikely(blk_bidi_rq(req))) 2524 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2525 2526 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2527 blk_add_timer(req); 2528 } 2529 EXPORT_SYMBOL(blk_start_request); 2530 2531 /** 2532 * blk_fetch_request - fetch a request from a request queue 2533 * @q: request queue to fetch a request from 2534 * 2535 * Description: 2536 * Return the request at the top of @q. The request is started on 2537 * return and LLD can start processing it immediately. 2538 * 2539 * Return: 2540 * Pointer to the request at the top of @q if available. Null 2541 * otherwise. 2542 * 2543 * Context: 2544 * queue_lock must be held. 2545 */ 2546 struct request *blk_fetch_request(struct request_queue *q) 2547 { 2548 struct request *rq; 2549 2550 rq = blk_peek_request(q); 2551 if (rq) 2552 blk_start_request(rq); 2553 return rq; 2554 } 2555 EXPORT_SYMBOL(blk_fetch_request); 2556 2557 /** 2558 * blk_update_request - Special helper function for request stacking drivers 2559 * @req: the request being processed 2560 * @error: %0 for success, < %0 for error 2561 * @nr_bytes: number of bytes to complete @req 2562 * 2563 * Description: 2564 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2565 * the request structure even if @req doesn't have leftover. 2566 * If @req has leftover, sets it up for the next range of segments. 2567 * 2568 * This special helper function is only for request stacking drivers 2569 * (e.g. request-based dm) so that they can handle partial completion. 2570 * Actual device drivers should use blk_end_request instead. 2571 * 2572 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2573 * %false return from this function. 2574 * 2575 * Return: 2576 * %false - this request doesn't have any more data 2577 * %true - this request has more data 2578 **/ 2579 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2580 { 2581 int total_bytes; 2582 2583 trace_block_rq_complete(req->q, req, nr_bytes); 2584 2585 if (!req->bio) 2586 return false; 2587 2588 /* 2589 * For fs requests, rq is just carrier of independent bio's 2590 * and each partial completion should be handled separately. 2591 * Reset per-request error on each partial completion. 2592 * 2593 * TODO: tj: This is too subtle. It would be better to let 2594 * low level drivers do what they see fit. 2595 */ 2596 if (req->cmd_type == REQ_TYPE_FS) 2597 req->errors = 0; 2598 2599 if (error && req->cmd_type == REQ_TYPE_FS && 2600 !(req->cmd_flags & REQ_QUIET)) { 2601 char *error_type; 2602 2603 switch (error) { 2604 case -ENOLINK: 2605 error_type = "recoverable transport"; 2606 break; 2607 case -EREMOTEIO: 2608 error_type = "critical target"; 2609 break; 2610 case -EBADE: 2611 error_type = "critical nexus"; 2612 break; 2613 case -ETIMEDOUT: 2614 error_type = "timeout"; 2615 break; 2616 case -ENOSPC: 2617 error_type = "critical space allocation"; 2618 break; 2619 case -ENODATA: 2620 error_type = "critical medium"; 2621 break; 2622 case -EIO: 2623 default: 2624 error_type = "I/O"; 2625 break; 2626 } 2627 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2628 __func__, error_type, req->rq_disk ? 2629 req->rq_disk->disk_name : "?", 2630 (unsigned long long)blk_rq_pos(req)); 2631 2632 } 2633 2634 blk_account_io_completion(req, nr_bytes); 2635 2636 total_bytes = 0; 2637 while (req->bio) { 2638 struct bio *bio = req->bio; 2639 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2640 2641 if (bio_bytes == bio->bi_iter.bi_size) 2642 req->bio = bio->bi_next; 2643 2644 req_bio_endio(req, bio, bio_bytes, error); 2645 2646 total_bytes += bio_bytes; 2647 nr_bytes -= bio_bytes; 2648 2649 if (!nr_bytes) 2650 break; 2651 } 2652 2653 /* 2654 * completely done 2655 */ 2656 if (!req->bio) { 2657 /* 2658 * Reset counters so that the request stacking driver 2659 * can find how many bytes remain in the request 2660 * later. 2661 */ 2662 req->__data_len = 0; 2663 return false; 2664 } 2665 2666 req->__data_len -= total_bytes; 2667 2668 /* update sector only for requests with clear definition of sector */ 2669 if (req->cmd_type == REQ_TYPE_FS) 2670 req->__sector += total_bytes >> 9; 2671 2672 /* mixed attributes always follow the first bio */ 2673 if (req->cmd_flags & REQ_MIXED_MERGE) { 2674 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2675 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2676 } 2677 2678 /* 2679 * If total number of sectors is less than the first segment 2680 * size, something has gone terribly wrong. 2681 */ 2682 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2683 blk_dump_rq_flags(req, "request botched"); 2684 req->__data_len = blk_rq_cur_bytes(req); 2685 } 2686 2687 /* recalculate the number of segments */ 2688 blk_recalc_rq_segments(req); 2689 2690 return true; 2691 } 2692 EXPORT_SYMBOL_GPL(blk_update_request); 2693 2694 static bool blk_update_bidi_request(struct request *rq, int error, 2695 unsigned int nr_bytes, 2696 unsigned int bidi_bytes) 2697 { 2698 if (blk_update_request(rq, error, nr_bytes)) 2699 return true; 2700 2701 /* Bidi request must be completed as a whole */ 2702 if (unlikely(blk_bidi_rq(rq)) && 2703 blk_update_request(rq->next_rq, error, bidi_bytes)) 2704 return true; 2705 2706 if (blk_queue_add_random(rq->q)) 2707 add_disk_randomness(rq->rq_disk); 2708 2709 return false; 2710 } 2711 2712 /** 2713 * blk_unprep_request - unprepare a request 2714 * @req: the request 2715 * 2716 * This function makes a request ready for complete resubmission (or 2717 * completion). It happens only after all error handling is complete, 2718 * so represents the appropriate moment to deallocate any resources 2719 * that were allocated to the request in the prep_rq_fn. The queue 2720 * lock is held when calling this. 2721 */ 2722 void blk_unprep_request(struct request *req) 2723 { 2724 struct request_queue *q = req->q; 2725 2726 req->cmd_flags &= ~REQ_DONTPREP; 2727 if (q->unprep_rq_fn) 2728 q->unprep_rq_fn(q, req); 2729 } 2730 EXPORT_SYMBOL_GPL(blk_unprep_request); 2731 2732 /* 2733 * queue lock must be held 2734 */ 2735 void blk_finish_request(struct request *req, int error) 2736 { 2737 if (req->cmd_flags & REQ_QUEUED) 2738 blk_queue_end_tag(req->q, req); 2739 2740 BUG_ON(blk_queued_rq(req)); 2741 2742 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2743 laptop_io_completion(&req->q->backing_dev_info); 2744 2745 blk_delete_timer(req); 2746 2747 if (req->cmd_flags & REQ_DONTPREP) 2748 blk_unprep_request(req); 2749 2750 blk_account_io_done(req); 2751 2752 if (req->end_io) 2753 req->end_io(req, error); 2754 else { 2755 if (blk_bidi_rq(req)) 2756 __blk_put_request(req->next_rq->q, req->next_rq); 2757 2758 __blk_put_request(req->q, req); 2759 } 2760 } 2761 EXPORT_SYMBOL(blk_finish_request); 2762 2763 /** 2764 * blk_end_bidi_request - Complete a bidi request 2765 * @rq: the request to complete 2766 * @error: %0 for success, < %0 for error 2767 * @nr_bytes: number of bytes to complete @rq 2768 * @bidi_bytes: number of bytes to complete @rq->next_rq 2769 * 2770 * Description: 2771 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2772 * Drivers that supports bidi can safely call this member for any 2773 * type of request, bidi or uni. In the later case @bidi_bytes is 2774 * just ignored. 2775 * 2776 * Return: 2777 * %false - we are done with this request 2778 * %true - still buffers pending for this request 2779 **/ 2780 static bool blk_end_bidi_request(struct request *rq, int error, 2781 unsigned int nr_bytes, unsigned int bidi_bytes) 2782 { 2783 struct request_queue *q = rq->q; 2784 unsigned long flags; 2785 2786 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2787 return true; 2788 2789 spin_lock_irqsave(q->queue_lock, flags); 2790 blk_finish_request(rq, error); 2791 spin_unlock_irqrestore(q->queue_lock, flags); 2792 2793 return false; 2794 } 2795 2796 /** 2797 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2798 * @rq: the request to complete 2799 * @error: %0 for success, < %0 for error 2800 * @nr_bytes: number of bytes to complete @rq 2801 * @bidi_bytes: number of bytes to complete @rq->next_rq 2802 * 2803 * Description: 2804 * Identical to blk_end_bidi_request() except that queue lock is 2805 * assumed to be locked on entry and remains so on return. 2806 * 2807 * Return: 2808 * %false - we are done with this request 2809 * %true - still buffers pending for this request 2810 **/ 2811 bool __blk_end_bidi_request(struct request *rq, int error, 2812 unsigned int nr_bytes, unsigned int bidi_bytes) 2813 { 2814 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2815 return true; 2816 2817 blk_finish_request(rq, error); 2818 2819 return false; 2820 } 2821 2822 /** 2823 * blk_end_request - Helper function for drivers to complete the request. 2824 * @rq: the request being processed 2825 * @error: %0 for success, < %0 for error 2826 * @nr_bytes: number of bytes to complete 2827 * 2828 * Description: 2829 * Ends I/O on a number of bytes attached to @rq. 2830 * If @rq has leftover, sets it up for the next range of segments. 2831 * 2832 * Return: 2833 * %false - we are done with this request 2834 * %true - still buffers pending for this request 2835 **/ 2836 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2837 { 2838 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2839 } 2840 EXPORT_SYMBOL(blk_end_request); 2841 2842 /** 2843 * blk_end_request_all - Helper function for drives to finish the request. 2844 * @rq: the request to finish 2845 * @error: %0 for success, < %0 for error 2846 * 2847 * Description: 2848 * Completely finish @rq. 2849 */ 2850 void blk_end_request_all(struct request *rq, int error) 2851 { 2852 bool pending; 2853 unsigned int bidi_bytes = 0; 2854 2855 if (unlikely(blk_bidi_rq(rq))) 2856 bidi_bytes = blk_rq_bytes(rq->next_rq); 2857 2858 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2859 BUG_ON(pending); 2860 } 2861 EXPORT_SYMBOL(blk_end_request_all); 2862 2863 /** 2864 * blk_end_request_cur - Helper function to finish the current request chunk. 2865 * @rq: the request to finish the current chunk for 2866 * @error: %0 for success, < %0 for error 2867 * 2868 * Description: 2869 * Complete the current consecutively mapped chunk from @rq. 2870 * 2871 * Return: 2872 * %false - we are done with this request 2873 * %true - still buffers pending for this request 2874 */ 2875 bool blk_end_request_cur(struct request *rq, int error) 2876 { 2877 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2878 } 2879 EXPORT_SYMBOL(blk_end_request_cur); 2880 2881 /** 2882 * blk_end_request_err - Finish a request till the next failure boundary. 2883 * @rq: the request to finish till the next failure boundary for 2884 * @error: must be negative errno 2885 * 2886 * Description: 2887 * Complete @rq till the next failure boundary. 2888 * 2889 * Return: 2890 * %false - we are done with this request 2891 * %true - still buffers pending for this request 2892 */ 2893 bool blk_end_request_err(struct request *rq, int error) 2894 { 2895 WARN_ON(error >= 0); 2896 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2897 } 2898 EXPORT_SYMBOL_GPL(blk_end_request_err); 2899 2900 /** 2901 * __blk_end_request - Helper function for drivers to complete the request. 2902 * @rq: the request being processed 2903 * @error: %0 for success, < %0 for error 2904 * @nr_bytes: number of bytes to complete 2905 * 2906 * Description: 2907 * Must be called with queue lock held unlike blk_end_request(). 2908 * 2909 * Return: 2910 * %false - we are done with this request 2911 * %true - still buffers pending for this request 2912 **/ 2913 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2914 { 2915 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2916 } 2917 EXPORT_SYMBOL(__blk_end_request); 2918 2919 /** 2920 * __blk_end_request_all - Helper function for drives to finish the request. 2921 * @rq: the request to finish 2922 * @error: %0 for success, < %0 for error 2923 * 2924 * Description: 2925 * Completely finish @rq. Must be called with queue lock held. 2926 */ 2927 void __blk_end_request_all(struct request *rq, int error) 2928 { 2929 bool pending; 2930 unsigned int bidi_bytes = 0; 2931 2932 if (unlikely(blk_bidi_rq(rq))) 2933 bidi_bytes = blk_rq_bytes(rq->next_rq); 2934 2935 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2936 BUG_ON(pending); 2937 } 2938 EXPORT_SYMBOL(__blk_end_request_all); 2939 2940 /** 2941 * __blk_end_request_cur - Helper function to finish the current request chunk. 2942 * @rq: the request to finish the current chunk for 2943 * @error: %0 for success, < %0 for error 2944 * 2945 * Description: 2946 * Complete the current consecutively mapped chunk from @rq. Must 2947 * be called with queue lock held. 2948 * 2949 * Return: 2950 * %false - we are done with this request 2951 * %true - still buffers pending for this request 2952 */ 2953 bool __blk_end_request_cur(struct request *rq, int error) 2954 { 2955 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2956 } 2957 EXPORT_SYMBOL(__blk_end_request_cur); 2958 2959 /** 2960 * __blk_end_request_err - Finish a request till the next failure boundary. 2961 * @rq: the request to finish till the next failure boundary for 2962 * @error: must be negative errno 2963 * 2964 * Description: 2965 * Complete @rq till the next failure boundary. Must be called 2966 * with queue lock held. 2967 * 2968 * Return: 2969 * %false - we are done with this request 2970 * %true - still buffers pending for this request 2971 */ 2972 bool __blk_end_request_err(struct request *rq, int error) 2973 { 2974 WARN_ON(error >= 0); 2975 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2976 } 2977 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2978 2979 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2980 struct bio *bio) 2981 { 2982 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2983 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2984 2985 if (bio_has_data(bio)) 2986 rq->nr_phys_segments = bio_phys_segments(q, bio); 2987 2988 rq->__data_len = bio->bi_iter.bi_size; 2989 rq->bio = rq->biotail = bio; 2990 2991 if (bio->bi_bdev) 2992 rq->rq_disk = bio->bi_bdev->bd_disk; 2993 } 2994 2995 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2996 /** 2997 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2998 * @rq: the request to be flushed 2999 * 3000 * Description: 3001 * Flush all pages in @rq. 3002 */ 3003 void rq_flush_dcache_pages(struct request *rq) 3004 { 3005 struct req_iterator iter; 3006 struct bio_vec bvec; 3007 3008 rq_for_each_segment(bvec, rq, iter) 3009 flush_dcache_page(bvec.bv_page); 3010 } 3011 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3012 #endif 3013 3014 /** 3015 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3016 * @q : the queue of the device being checked 3017 * 3018 * Description: 3019 * Check if underlying low-level drivers of a device are busy. 3020 * If the drivers want to export their busy state, they must set own 3021 * exporting function using blk_queue_lld_busy() first. 3022 * 3023 * Basically, this function is used only by request stacking drivers 3024 * to stop dispatching requests to underlying devices when underlying 3025 * devices are busy. This behavior helps more I/O merging on the queue 3026 * of the request stacking driver and prevents I/O throughput regression 3027 * on burst I/O load. 3028 * 3029 * Return: 3030 * 0 - Not busy (The request stacking driver should dispatch request) 3031 * 1 - Busy (The request stacking driver should stop dispatching request) 3032 */ 3033 int blk_lld_busy(struct request_queue *q) 3034 { 3035 if (q->lld_busy_fn) 3036 return q->lld_busy_fn(q); 3037 3038 return 0; 3039 } 3040 EXPORT_SYMBOL_GPL(blk_lld_busy); 3041 3042 /** 3043 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3044 * @rq: the clone request to be cleaned up 3045 * 3046 * Description: 3047 * Free all bios in @rq for a cloned request. 3048 */ 3049 void blk_rq_unprep_clone(struct request *rq) 3050 { 3051 struct bio *bio; 3052 3053 while ((bio = rq->bio) != NULL) { 3054 rq->bio = bio->bi_next; 3055 3056 bio_put(bio); 3057 } 3058 } 3059 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3060 3061 /* 3062 * Copy attributes of the original request to the clone request. 3063 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3064 */ 3065 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3066 { 3067 dst->cpu = src->cpu; 3068 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 3069 dst->cmd_type = src->cmd_type; 3070 dst->__sector = blk_rq_pos(src); 3071 dst->__data_len = blk_rq_bytes(src); 3072 dst->nr_phys_segments = src->nr_phys_segments; 3073 dst->ioprio = src->ioprio; 3074 dst->extra_len = src->extra_len; 3075 } 3076 3077 /** 3078 * blk_rq_prep_clone - Helper function to setup clone request 3079 * @rq: the request to be setup 3080 * @rq_src: original request to be cloned 3081 * @bs: bio_set that bios for clone are allocated from 3082 * @gfp_mask: memory allocation mask for bio 3083 * @bio_ctr: setup function to be called for each clone bio. 3084 * Returns %0 for success, non %0 for failure. 3085 * @data: private data to be passed to @bio_ctr 3086 * 3087 * Description: 3088 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3089 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3090 * are not copied, and copying such parts is the caller's responsibility. 3091 * Also, pages which the original bios are pointing to are not copied 3092 * and the cloned bios just point same pages. 3093 * So cloned bios must be completed before original bios, which means 3094 * the caller must complete @rq before @rq_src. 3095 */ 3096 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3097 struct bio_set *bs, gfp_t gfp_mask, 3098 int (*bio_ctr)(struct bio *, struct bio *, void *), 3099 void *data) 3100 { 3101 struct bio *bio, *bio_src; 3102 3103 if (!bs) 3104 bs = fs_bio_set; 3105 3106 __rq_for_each_bio(bio_src, rq_src) { 3107 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3108 if (!bio) 3109 goto free_and_out; 3110 3111 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3112 goto free_and_out; 3113 3114 if (rq->bio) { 3115 rq->biotail->bi_next = bio; 3116 rq->biotail = bio; 3117 } else 3118 rq->bio = rq->biotail = bio; 3119 } 3120 3121 __blk_rq_prep_clone(rq, rq_src); 3122 3123 return 0; 3124 3125 free_and_out: 3126 if (bio) 3127 bio_put(bio); 3128 blk_rq_unprep_clone(rq); 3129 3130 return -ENOMEM; 3131 } 3132 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3133 3134 int kblockd_schedule_work(struct work_struct *work) 3135 { 3136 return queue_work(kblockd_workqueue, work); 3137 } 3138 EXPORT_SYMBOL(kblockd_schedule_work); 3139 3140 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3141 unsigned long delay) 3142 { 3143 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3144 } 3145 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3146 3147 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3148 unsigned long delay) 3149 { 3150 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3151 } 3152 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3153 3154 /** 3155 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3156 * @plug: The &struct blk_plug that needs to be initialized 3157 * 3158 * Description: 3159 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3160 * pending I/O should the task end up blocking between blk_start_plug() and 3161 * blk_finish_plug(). This is important from a performance perspective, but 3162 * also ensures that we don't deadlock. For instance, if the task is blocking 3163 * for a memory allocation, memory reclaim could end up wanting to free a 3164 * page belonging to that request that is currently residing in our private 3165 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3166 * this kind of deadlock. 3167 */ 3168 void blk_start_plug(struct blk_plug *plug) 3169 { 3170 struct task_struct *tsk = current; 3171 3172 /* 3173 * If this is a nested plug, don't actually assign it. 3174 */ 3175 if (tsk->plug) 3176 return; 3177 3178 INIT_LIST_HEAD(&plug->list); 3179 INIT_LIST_HEAD(&plug->mq_list); 3180 INIT_LIST_HEAD(&plug->cb_list); 3181 /* 3182 * Store ordering should not be needed here, since a potential 3183 * preempt will imply a full memory barrier 3184 */ 3185 tsk->plug = plug; 3186 } 3187 EXPORT_SYMBOL(blk_start_plug); 3188 3189 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3190 { 3191 struct request *rqa = container_of(a, struct request, queuelist); 3192 struct request *rqb = container_of(b, struct request, queuelist); 3193 3194 return !(rqa->q < rqb->q || 3195 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3196 } 3197 3198 /* 3199 * If 'from_schedule' is true, then postpone the dispatch of requests 3200 * until a safe kblockd context. We due this to avoid accidental big 3201 * additional stack usage in driver dispatch, in places where the originally 3202 * plugger did not intend it. 3203 */ 3204 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3205 bool from_schedule) 3206 __releases(q->queue_lock) 3207 { 3208 trace_block_unplug(q, depth, !from_schedule); 3209 3210 if (from_schedule) 3211 blk_run_queue_async(q); 3212 else 3213 __blk_run_queue(q); 3214 spin_unlock(q->queue_lock); 3215 } 3216 3217 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3218 { 3219 LIST_HEAD(callbacks); 3220 3221 while (!list_empty(&plug->cb_list)) { 3222 list_splice_init(&plug->cb_list, &callbacks); 3223 3224 while (!list_empty(&callbacks)) { 3225 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3226 struct blk_plug_cb, 3227 list); 3228 list_del(&cb->list); 3229 cb->callback(cb, from_schedule); 3230 } 3231 } 3232 } 3233 3234 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3235 int size) 3236 { 3237 struct blk_plug *plug = current->plug; 3238 struct blk_plug_cb *cb; 3239 3240 if (!plug) 3241 return NULL; 3242 3243 list_for_each_entry(cb, &plug->cb_list, list) 3244 if (cb->callback == unplug && cb->data == data) 3245 return cb; 3246 3247 /* Not currently on the callback list */ 3248 BUG_ON(size < sizeof(*cb)); 3249 cb = kzalloc(size, GFP_ATOMIC); 3250 if (cb) { 3251 cb->data = data; 3252 cb->callback = unplug; 3253 list_add(&cb->list, &plug->cb_list); 3254 } 3255 return cb; 3256 } 3257 EXPORT_SYMBOL(blk_check_plugged); 3258 3259 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3260 { 3261 struct request_queue *q; 3262 unsigned long flags; 3263 struct request *rq; 3264 LIST_HEAD(list); 3265 unsigned int depth; 3266 3267 flush_plug_callbacks(plug, from_schedule); 3268 3269 if (!list_empty(&plug->mq_list)) 3270 blk_mq_flush_plug_list(plug, from_schedule); 3271 3272 if (list_empty(&plug->list)) 3273 return; 3274 3275 list_splice_init(&plug->list, &list); 3276 3277 list_sort(NULL, &list, plug_rq_cmp); 3278 3279 q = NULL; 3280 depth = 0; 3281 3282 /* 3283 * Save and disable interrupts here, to avoid doing it for every 3284 * queue lock we have to take. 3285 */ 3286 local_irq_save(flags); 3287 while (!list_empty(&list)) { 3288 rq = list_entry_rq(list.next); 3289 list_del_init(&rq->queuelist); 3290 BUG_ON(!rq->q); 3291 if (rq->q != q) { 3292 /* 3293 * This drops the queue lock 3294 */ 3295 if (q) 3296 queue_unplugged(q, depth, from_schedule); 3297 q = rq->q; 3298 depth = 0; 3299 spin_lock(q->queue_lock); 3300 } 3301 3302 /* 3303 * Short-circuit if @q is dead 3304 */ 3305 if (unlikely(blk_queue_dying(q))) { 3306 __blk_end_request_all(rq, -ENODEV); 3307 continue; 3308 } 3309 3310 /* 3311 * rq is already accounted, so use raw insert 3312 */ 3313 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3314 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3315 else 3316 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3317 3318 depth++; 3319 } 3320 3321 /* 3322 * This drops the queue lock 3323 */ 3324 if (q) 3325 queue_unplugged(q, depth, from_schedule); 3326 3327 local_irq_restore(flags); 3328 } 3329 3330 void blk_finish_plug(struct blk_plug *plug) 3331 { 3332 if (plug != current->plug) 3333 return; 3334 blk_flush_plug_list(plug, false); 3335 3336 current->plug = NULL; 3337 } 3338 EXPORT_SYMBOL(blk_finish_plug); 3339 3340 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 3341 { 3342 struct blk_plug *plug; 3343 long state; 3344 3345 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 3346 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3347 return false; 3348 3349 plug = current->plug; 3350 if (plug) 3351 blk_flush_plug_list(plug, false); 3352 3353 state = current->state; 3354 while (!need_resched()) { 3355 unsigned int queue_num = blk_qc_t_to_queue_num(cookie); 3356 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num]; 3357 int ret; 3358 3359 hctx->poll_invoked++; 3360 3361 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie)); 3362 if (ret > 0) { 3363 hctx->poll_success++; 3364 set_current_state(TASK_RUNNING); 3365 return true; 3366 } 3367 3368 if (signal_pending_state(state, current)) 3369 set_current_state(TASK_RUNNING); 3370 3371 if (current->state == TASK_RUNNING) 3372 return true; 3373 if (ret < 0) 3374 break; 3375 cpu_relax(); 3376 } 3377 3378 return false; 3379 } 3380 3381 #ifdef CONFIG_PM 3382 /** 3383 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3384 * @q: the queue of the device 3385 * @dev: the device the queue belongs to 3386 * 3387 * Description: 3388 * Initialize runtime-PM-related fields for @q and start auto suspend for 3389 * @dev. Drivers that want to take advantage of request-based runtime PM 3390 * should call this function after @dev has been initialized, and its 3391 * request queue @q has been allocated, and runtime PM for it can not happen 3392 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3393 * cases, driver should call this function before any I/O has taken place. 3394 * 3395 * This function takes care of setting up using auto suspend for the device, 3396 * the autosuspend delay is set to -1 to make runtime suspend impossible 3397 * until an updated value is either set by user or by driver. Drivers do 3398 * not need to touch other autosuspend settings. 3399 * 3400 * The block layer runtime PM is request based, so only works for drivers 3401 * that use request as their IO unit instead of those directly use bio's. 3402 */ 3403 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3404 { 3405 q->dev = dev; 3406 q->rpm_status = RPM_ACTIVE; 3407 pm_runtime_set_autosuspend_delay(q->dev, -1); 3408 pm_runtime_use_autosuspend(q->dev); 3409 } 3410 EXPORT_SYMBOL(blk_pm_runtime_init); 3411 3412 /** 3413 * blk_pre_runtime_suspend - Pre runtime suspend check 3414 * @q: the queue of the device 3415 * 3416 * Description: 3417 * This function will check if runtime suspend is allowed for the device 3418 * by examining if there are any requests pending in the queue. If there 3419 * are requests pending, the device can not be runtime suspended; otherwise, 3420 * the queue's status will be updated to SUSPENDING and the driver can 3421 * proceed to suspend the device. 3422 * 3423 * For the not allowed case, we mark last busy for the device so that 3424 * runtime PM core will try to autosuspend it some time later. 3425 * 3426 * This function should be called near the start of the device's 3427 * runtime_suspend callback. 3428 * 3429 * Return: 3430 * 0 - OK to runtime suspend the device 3431 * -EBUSY - Device should not be runtime suspended 3432 */ 3433 int blk_pre_runtime_suspend(struct request_queue *q) 3434 { 3435 int ret = 0; 3436 3437 if (!q->dev) 3438 return ret; 3439 3440 spin_lock_irq(q->queue_lock); 3441 if (q->nr_pending) { 3442 ret = -EBUSY; 3443 pm_runtime_mark_last_busy(q->dev); 3444 } else { 3445 q->rpm_status = RPM_SUSPENDING; 3446 } 3447 spin_unlock_irq(q->queue_lock); 3448 return ret; 3449 } 3450 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3451 3452 /** 3453 * blk_post_runtime_suspend - Post runtime suspend processing 3454 * @q: the queue of the device 3455 * @err: return value of the device's runtime_suspend function 3456 * 3457 * Description: 3458 * Update the queue's runtime status according to the return value of the 3459 * device's runtime suspend function and mark last busy for the device so 3460 * that PM core will try to auto suspend the device at a later time. 3461 * 3462 * This function should be called near the end of the device's 3463 * runtime_suspend callback. 3464 */ 3465 void blk_post_runtime_suspend(struct request_queue *q, int err) 3466 { 3467 if (!q->dev) 3468 return; 3469 3470 spin_lock_irq(q->queue_lock); 3471 if (!err) { 3472 q->rpm_status = RPM_SUSPENDED; 3473 } else { 3474 q->rpm_status = RPM_ACTIVE; 3475 pm_runtime_mark_last_busy(q->dev); 3476 } 3477 spin_unlock_irq(q->queue_lock); 3478 } 3479 EXPORT_SYMBOL(blk_post_runtime_suspend); 3480 3481 /** 3482 * blk_pre_runtime_resume - Pre runtime resume processing 3483 * @q: the queue of the device 3484 * 3485 * Description: 3486 * Update the queue's runtime status to RESUMING in preparation for the 3487 * runtime resume of the device. 3488 * 3489 * This function should be called near the start of the device's 3490 * runtime_resume callback. 3491 */ 3492 void blk_pre_runtime_resume(struct request_queue *q) 3493 { 3494 if (!q->dev) 3495 return; 3496 3497 spin_lock_irq(q->queue_lock); 3498 q->rpm_status = RPM_RESUMING; 3499 spin_unlock_irq(q->queue_lock); 3500 } 3501 EXPORT_SYMBOL(blk_pre_runtime_resume); 3502 3503 /** 3504 * blk_post_runtime_resume - Post runtime resume processing 3505 * @q: the queue of the device 3506 * @err: return value of the device's runtime_resume function 3507 * 3508 * Description: 3509 * Update the queue's runtime status according to the return value of the 3510 * device's runtime_resume function. If it is successfully resumed, process 3511 * the requests that are queued into the device's queue when it is resuming 3512 * and then mark last busy and initiate autosuspend for it. 3513 * 3514 * This function should be called near the end of the device's 3515 * runtime_resume callback. 3516 */ 3517 void blk_post_runtime_resume(struct request_queue *q, int err) 3518 { 3519 if (!q->dev) 3520 return; 3521 3522 spin_lock_irq(q->queue_lock); 3523 if (!err) { 3524 q->rpm_status = RPM_ACTIVE; 3525 __blk_run_queue(q); 3526 pm_runtime_mark_last_busy(q->dev); 3527 pm_request_autosuspend(q->dev); 3528 } else { 3529 q->rpm_status = RPM_SUSPENDED; 3530 } 3531 spin_unlock_irq(q->queue_lock); 3532 } 3533 EXPORT_SYMBOL(blk_post_runtime_resume); 3534 3535 /** 3536 * blk_set_runtime_active - Force runtime status of the queue to be active 3537 * @q: the queue of the device 3538 * 3539 * If the device is left runtime suspended during system suspend the resume 3540 * hook typically resumes the device and corrects runtime status 3541 * accordingly. However, that does not affect the queue runtime PM status 3542 * which is still "suspended". This prevents processing requests from the 3543 * queue. 3544 * 3545 * This function can be used in driver's resume hook to correct queue 3546 * runtime PM status and re-enable peeking requests from the queue. It 3547 * should be called before first request is added to the queue. 3548 */ 3549 void blk_set_runtime_active(struct request_queue *q) 3550 { 3551 spin_lock_irq(q->queue_lock); 3552 q->rpm_status = RPM_ACTIVE; 3553 pm_runtime_mark_last_busy(q->dev); 3554 pm_request_autosuspend(q->dev); 3555 spin_unlock_irq(q->queue_lock); 3556 } 3557 EXPORT_SYMBOL(blk_set_runtime_active); 3558 #endif 3559 3560 int __init blk_dev_init(void) 3561 { 3562 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3563 FIELD_SIZEOF(struct request, cmd_flags)); 3564 3565 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3566 kblockd_workqueue = alloc_workqueue("kblockd", 3567 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3568 if (!kblockd_workqueue) 3569 panic("Failed to create kblockd\n"); 3570 3571 request_cachep = kmem_cache_create("blkdev_requests", 3572 sizeof(struct request), 0, SLAB_PANIC, NULL); 3573 3574 blk_requestq_cachep = kmem_cache_create("request_queue", 3575 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3576 3577 return 0; 3578 } 3579