xref: /linux/block/blk-core.c (revision 086099893fcebeae50f9020588080de43c82e4c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/blk-pm.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 #include "blk-rq-qos.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62 
63 DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85 
86 /**
87  * blk_queue_flag_clear - atomically clear a queue flag
88  * @flag: flag to be cleared
89  * @q: request queue
90  */
91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 	clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96 
97 /**
98  * blk_queue_flag_test_and_set - atomically test and set a queue flag
99  * @flag: flag to be set
100  * @q: request queue
101  *
102  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103  * the flag was already set.
104  */
105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 	return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110 
111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 	memset(rq, 0, sizeof(*rq));
114 
115 	INIT_LIST_HEAD(&rq->queuelist);
116 	rq->q = q;
117 	rq->__sector = (sector_t) -1;
118 	INIT_HLIST_NODE(&rq->hash);
119 	RB_CLEAR_NODE(&rq->rb_node);
120 	rq->tag = BLK_MQ_NO_TAG;
121 	rq->internal_tag = BLK_MQ_NO_TAG;
122 	rq->start_time_ns = ktime_get_ns();
123 	rq->part = NULL;
124 	blk_crypto_rq_set_defaults(rq);
125 }
126 EXPORT_SYMBOL(blk_rq_init);
127 
128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129 static const char *const blk_op_name[] = {
130 	REQ_OP_NAME(READ),
131 	REQ_OP_NAME(WRITE),
132 	REQ_OP_NAME(FLUSH),
133 	REQ_OP_NAME(DISCARD),
134 	REQ_OP_NAME(SECURE_ERASE),
135 	REQ_OP_NAME(ZONE_RESET),
136 	REQ_OP_NAME(ZONE_RESET_ALL),
137 	REQ_OP_NAME(ZONE_OPEN),
138 	REQ_OP_NAME(ZONE_CLOSE),
139 	REQ_OP_NAME(ZONE_FINISH),
140 	REQ_OP_NAME(ZONE_APPEND),
141 	REQ_OP_NAME(WRITE_SAME),
142 	REQ_OP_NAME(WRITE_ZEROES),
143 	REQ_OP_NAME(DRV_IN),
144 	REQ_OP_NAME(DRV_OUT),
145 };
146 #undef REQ_OP_NAME
147 
148 /**
149  * blk_op_str - Return string XXX in the REQ_OP_XXX.
150  * @op: REQ_OP_XXX.
151  *
152  * Description: Centralize block layer function to convert REQ_OP_XXX into
153  * string format. Useful in the debugging and tracing bio or request. For
154  * invalid REQ_OP_XXX it returns string "UNKNOWN".
155  */
156 inline const char *blk_op_str(unsigned int op)
157 {
158 	const char *op_str = "UNKNOWN";
159 
160 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
161 		op_str = blk_op_name[op];
162 
163 	return op_str;
164 }
165 EXPORT_SYMBOL_GPL(blk_op_str);
166 
167 static const struct {
168 	int		errno;
169 	const char	*name;
170 } blk_errors[] = {
171 	[BLK_STS_OK]		= { 0,		"" },
172 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
173 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
174 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
175 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
176 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
177 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
178 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
179 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
180 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
181 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
182 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
183 
184 	/* device mapper special case, should not leak out: */
185 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
186 
187 	/* zone device specific errors */
188 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
189 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
190 
191 	/* everything else not covered above: */
192 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
193 };
194 
195 blk_status_t errno_to_blk_status(int errno)
196 {
197 	int i;
198 
199 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
200 		if (blk_errors[i].errno == errno)
201 			return (__force blk_status_t)i;
202 	}
203 
204 	return BLK_STS_IOERR;
205 }
206 EXPORT_SYMBOL_GPL(errno_to_blk_status);
207 
208 int blk_status_to_errno(blk_status_t status)
209 {
210 	int idx = (__force int)status;
211 
212 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
213 		return -EIO;
214 	return blk_errors[idx].errno;
215 }
216 EXPORT_SYMBOL_GPL(blk_status_to_errno);
217 
218 static void print_req_error(struct request *req, blk_status_t status,
219 		const char *caller)
220 {
221 	int idx = (__force int)status;
222 
223 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
224 		return;
225 
226 	printk_ratelimited(KERN_ERR
227 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
228 		"phys_seg %u prio class %u\n",
229 		caller, blk_errors[idx].name,
230 		req->rq_disk ? req->rq_disk->disk_name : "?",
231 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
232 		req->cmd_flags & ~REQ_OP_MASK,
233 		req->nr_phys_segments,
234 		IOPRIO_PRIO_CLASS(req->ioprio));
235 }
236 
237 static void req_bio_endio(struct request *rq, struct bio *bio,
238 			  unsigned int nbytes, blk_status_t error)
239 {
240 	if (error)
241 		bio->bi_status = error;
242 
243 	if (unlikely(rq->rq_flags & RQF_QUIET))
244 		bio_set_flag(bio, BIO_QUIET);
245 
246 	bio_advance(bio, nbytes);
247 
248 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
249 		/*
250 		 * Partial zone append completions cannot be supported as the
251 		 * BIO fragments may end up not being written sequentially.
252 		 */
253 		if (bio->bi_iter.bi_size)
254 			bio->bi_status = BLK_STS_IOERR;
255 		else
256 			bio->bi_iter.bi_sector = rq->__sector;
257 	}
258 
259 	/* don't actually finish bio if it's part of flush sequence */
260 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
261 		bio_endio(bio);
262 }
263 
264 void blk_dump_rq_flags(struct request *rq, char *msg)
265 {
266 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
267 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
268 		(unsigned long long) rq->cmd_flags);
269 
270 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
271 	       (unsigned long long)blk_rq_pos(rq),
272 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
273 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
274 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
275 }
276 EXPORT_SYMBOL(blk_dump_rq_flags);
277 
278 /**
279  * blk_sync_queue - cancel any pending callbacks on a queue
280  * @q: the queue
281  *
282  * Description:
283  *     The block layer may perform asynchronous callback activity
284  *     on a queue, such as calling the unplug function after a timeout.
285  *     A block device may call blk_sync_queue to ensure that any
286  *     such activity is cancelled, thus allowing it to release resources
287  *     that the callbacks might use. The caller must already have made sure
288  *     that its ->submit_bio will not re-add plugging prior to calling
289  *     this function.
290  *
291  *     This function does not cancel any asynchronous activity arising
292  *     out of elevator or throttling code. That would require elevator_exit()
293  *     and blkcg_exit_queue() to be called with queue lock initialized.
294  *
295  */
296 void blk_sync_queue(struct request_queue *q)
297 {
298 	del_timer_sync(&q->timeout);
299 	cancel_work_sync(&q->timeout_work);
300 }
301 EXPORT_SYMBOL(blk_sync_queue);
302 
303 /**
304  * blk_set_pm_only - increment pm_only counter
305  * @q: request queue pointer
306  */
307 void blk_set_pm_only(struct request_queue *q)
308 {
309 	atomic_inc(&q->pm_only);
310 }
311 EXPORT_SYMBOL_GPL(blk_set_pm_only);
312 
313 void blk_clear_pm_only(struct request_queue *q)
314 {
315 	int pm_only;
316 
317 	pm_only = atomic_dec_return(&q->pm_only);
318 	WARN_ON_ONCE(pm_only < 0);
319 	if (pm_only == 0)
320 		wake_up_all(&q->mq_freeze_wq);
321 }
322 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
323 
324 /**
325  * blk_put_queue - decrement the request_queue refcount
326  * @q: the request_queue structure to decrement the refcount for
327  *
328  * Decrements the refcount of the request_queue kobject. When this reaches 0
329  * we'll have blk_release_queue() called.
330  *
331  * Context: Any context, but the last reference must not be dropped from
332  *          atomic context.
333  */
334 void blk_put_queue(struct request_queue *q)
335 {
336 	kobject_put(&q->kobj);
337 }
338 EXPORT_SYMBOL(blk_put_queue);
339 
340 void blk_set_queue_dying(struct request_queue *q)
341 {
342 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
343 
344 	/*
345 	 * When queue DYING flag is set, we need to block new req
346 	 * entering queue, so we call blk_freeze_queue_start() to
347 	 * prevent I/O from crossing blk_queue_enter().
348 	 */
349 	blk_freeze_queue_start(q);
350 
351 	if (queue_is_mq(q))
352 		blk_mq_wake_waiters(q);
353 
354 	/* Make blk_queue_enter() reexamine the DYING flag. */
355 	wake_up_all(&q->mq_freeze_wq);
356 }
357 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
358 
359 /**
360  * blk_cleanup_queue - shutdown a request queue
361  * @q: request queue to shutdown
362  *
363  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
364  * put it.  All future requests will be failed immediately with -ENODEV.
365  *
366  * Context: can sleep
367  */
368 void blk_cleanup_queue(struct request_queue *q)
369 {
370 	/* cannot be called from atomic context */
371 	might_sleep();
372 
373 	WARN_ON_ONCE(blk_queue_registered(q));
374 
375 	/* mark @q DYING, no new request or merges will be allowed afterwards */
376 	blk_set_queue_dying(q);
377 
378 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
379 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
380 
381 	/*
382 	 * Drain all requests queued before DYING marking. Set DEAD flag to
383 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
384 	 * after draining finished.
385 	 */
386 	blk_freeze_queue(q);
387 
388 	rq_qos_exit(q);
389 
390 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
391 
392 	/* for synchronous bio-based driver finish in-flight integrity i/o */
393 	blk_flush_integrity();
394 
395 	blk_sync_queue(q);
396 	if (queue_is_mq(q))
397 		blk_mq_exit_queue(q);
398 
399 	/*
400 	 * In theory, request pool of sched_tags belongs to request queue.
401 	 * However, the current implementation requires tag_set for freeing
402 	 * requests, so free the pool now.
403 	 *
404 	 * Queue has become frozen, there can't be any in-queue requests, so
405 	 * it is safe to free requests now.
406 	 */
407 	mutex_lock(&q->sysfs_lock);
408 	if (q->elevator)
409 		blk_mq_sched_free_requests(q);
410 	mutex_unlock(&q->sysfs_lock);
411 
412 	percpu_ref_exit(&q->q_usage_counter);
413 
414 	/* @q is and will stay empty, shutdown and put */
415 	blk_put_queue(q);
416 }
417 EXPORT_SYMBOL(blk_cleanup_queue);
418 
419 /**
420  * blk_queue_enter() - try to increase q->q_usage_counter
421  * @q: request queue pointer
422  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
423  */
424 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
425 {
426 	const bool pm = flags & BLK_MQ_REQ_PM;
427 
428 	while (true) {
429 		bool success = false;
430 
431 		rcu_read_lock();
432 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
433 			/*
434 			 * The code that increments the pm_only counter is
435 			 * responsible for ensuring that that counter is
436 			 * globally visible before the queue is unfrozen.
437 			 */
438 			if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
439 			    !blk_queue_pm_only(q)) {
440 				success = true;
441 			} else {
442 				percpu_ref_put(&q->q_usage_counter);
443 			}
444 		}
445 		rcu_read_unlock();
446 
447 		if (success)
448 			return 0;
449 
450 		if (flags & BLK_MQ_REQ_NOWAIT)
451 			return -EBUSY;
452 
453 		/*
454 		 * read pair of barrier in blk_freeze_queue_start(),
455 		 * we need to order reading __PERCPU_REF_DEAD flag of
456 		 * .q_usage_counter and reading .mq_freeze_depth or
457 		 * queue dying flag, otherwise the following wait may
458 		 * never return if the two reads are reordered.
459 		 */
460 		smp_rmb();
461 
462 		wait_event(q->mq_freeze_wq,
463 			   (!q->mq_freeze_depth &&
464 			    blk_pm_resume_queue(pm, q)) ||
465 			   blk_queue_dying(q));
466 		if (blk_queue_dying(q))
467 			return -ENODEV;
468 	}
469 }
470 
471 static inline int bio_queue_enter(struct bio *bio)
472 {
473 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
474 	bool nowait = bio->bi_opf & REQ_NOWAIT;
475 	int ret;
476 
477 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
478 	if (unlikely(ret)) {
479 		if (nowait && !blk_queue_dying(q))
480 			bio_wouldblock_error(bio);
481 		else
482 			bio_io_error(bio);
483 	}
484 
485 	return ret;
486 }
487 
488 void blk_queue_exit(struct request_queue *q)
489 {
490 	percpu_ref_put(&q->q_usage_counter);
491 }
492 
493 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
494 {
495 	struct request_queue *q =
496 		container_of(ref, struct request_queue, q_usage_counter);
497 
498 	wake_up_all(&q->mq_freeze_wq);
499 }
500 
501 static void blk_rq_timed_out_timer(struct timer_list *t)
502 {
503 	struct request_queue *q = from_timer(q, t, timeout);
504 
505 	kblockd_schedule_work(&q->timeout_work);
506 }
507 
508 static void blk_timeout_work(struct work_struct *work)
509 {
510 }
511 
512 struct request_queue *blk_alloc_queue(int node_id)
513 {
514 	struct request_queue *q;
515 	int ret;
516 
517 	q = kmem_cache_alloc_node(blk_requestq_cachep,
518 				GFP_KERNEL | __GFP_ZERO, node_id);
519 	if (!q)
520 		return NULL;
521 
522 	q->last_merge = NULL;
523 
524 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
525 	if (q->id < 0)
526 		goto fail_q;
527 
528 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
529 	if (ret)
530 		goto fail_id;
531 
532 	q->stats = blk_alloc_queue_stats();
533 	if (!q->stats)
534 		goto fail_split;
535 
536 	q->node = node_id;
537 
538 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
539 
540 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
541 	INIT_WORK(&q->timeout_work, blk_timeout_work);
542 	INIT_LIST_HEAD(&q->icq_list);
543 #ifdef CONFIG_BLK_CGROUP
544 	INIT_LIST_HEAD(&q->blkg_list);
545 #endif
546 
547 	kobject_init(&q->kobj, &blk_queue_ktype);
548 
549 	mutex_init(&q->debugfs_mutex);
550 	mutex_init(&q->sysfs_lock);
551 	mutex_init(&q->sysfs_dir_lock);
552 	spin_lock_init(&q->queue_lock);
553 
554 	init_waitqueue_head(&q->mq_freeze_wq);
555 	mutex_init(&q->mq_freeze_lock);
556 
557 	/*
558 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
559 	 * See blk_register_queue() for details.
560 	 */
561 	if (percpu_ref_init(&q->q_usage_counter,
562 				blk_queue_usage_counter_release,
563 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
564 		goto fail_stats;
565 
566 	if (blkcg_init_queue(q))
567 		goto fail_ref;
568 
569 	blk_queue_dma_alignment(q, 511);
570 	blk_set_default_limits(&q->limits);
571 	q->nr_requests = BLKDEV_MAX_RQ;
572 
573 	return q;
574 
575 fail_ref:
576 	percpu_ref_exit(&q->q_usage_counter);
577 fail_stats:
578 	blk_free_queue_stats(q->stats);
579 fail_split:
580 	bioset_exit(&q->bio_split);
581 fail_id:
582 	ida_simple_remove(&blk_queue_ida, q->id);
583 fail_q:
584 	kmem_cache_free(blk_requestq_cachep, q);
585 	return NULL;
586 }
587 
588 /**
589  * blk_get_queue - increment the request_queue refcount
590  * @q: the request_queue structure to increment the refcount for
591  *
592  * Increment the refcount of the request_queue kobject.
593  *
594  * Context: Any context.
595  */
596 bool blk_get_queue(struct request_queue *q)
597 {
598 	if (likely(!blk_queue_dying(q))) {
599 		__blk_get_queue(q);
600 		return true;
601 	}
602 
603 	return false;
604 }
605 EXPORT_SYMBOL(blk_get_queue);
606 
607 /**
608  * blk_get_request - allocate a request
609  * @q: request queue to allocate a request for
610  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
611  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
612  */
613 struct request *blk_get_request(struct request_queue *q, unsigned int op,
614 				blk_mq_req_flags_t flags)
615 {
616 	struct request *req;
617 
618 	WARN_ON_ONCE(op & REQ_NOWAIT);
619 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
620 
621 	req = blk_mq_alloc_request(q, op, flags);
622 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
623 		q->mq_ops->initialize_rq_fn(req);
624 
625 	return req;
626 }
627 EXPORT_SYMBOL(blk_get_request);
628 
629 void blk_put_request(struct request *req)
630 {
631 	blk_mq_free_request(req);
632 }
633 EXPORT_SYMBOL(blk_put_request);
634 
635 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
636 {
637 	char b[BDEVNAME_SIZE];
638 
639 	pr_info_ratelimited("attempt to access beyond end of device\n"
640 			    "%s: rw=%d, want=%llu, limit=%llu\n",
641 			    bio_devname(bio, b), bio->bi_opf,
642 			    bio_end_sector(bio), maxsector);
643 }
644 
645 #ifdef CONFIG_FAIL_MAKE_REQUEST
646 
647 static DECLARE_FAULT_ATTR(fail_make_request);
648 
649 static int __init setup_fail_make_request(char *str)
650 {
651 	return setup_fault_attr(&fail_make_request, str);
652 }
653 __setup("fail_make_request=", setup_fail_make_request);
654 
655 static bool should_fail_request(struct block_device *part, unsigned int bytes)
656 {
657 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
658 }
659 
660 static int __init fail_make_request_debugfs(void)
661 {
662 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
663 						NULL, &fail_make_request);
664 
665 	return PTR_ERR_OR_ZERO(dir);
666 }
667 
668 late_initcall(fail_make_request_debugfs);
669 
670 #else /* CONFIG_FAIL_MAKE_REQUEST */
671 
672 static inline bool should_fail_request(struct block_device *part,
673 					unsigned int bytes)
674 {
675 	return false;
676 }
677 
678 #endif /* CONFIG_FAIL_MAKE_REQUEST */
679 
680 static inline bool bio_check_ro(struct bio *bio)
681 {
682 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
683 		char b[BDEVNAME_SIZE];
684 
685 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
686 			return false;
687 
688 		WARN_ONCE(1,
689 		       "Trying to write to read-only block-device %s (partno %d)\n",
690 			bio_devname(bio, b), bio->bi_bdev->bd_partno);
691 		/* Older lvm-tools actually trigger this */
692 		return false;
693 	}
694 
695 	return false;
696 }
697 
698 static noinline int should_fail_bio(struct bio *bio)
699 {
700 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
701 		return -EIO;
702 	return 0;
703 }
704 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
705 
706 /*
707  * Check whether this bio extends beyond the end of the device or partition.
708  * This may well happen - the kernel calls bread() without checking the size of
709  * the device, e.g., when mounting a file system.
710  */
711 static inline int bio_check_eod(struct bio *bio)
712 {
713 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
714 	unsigned int nr_sectors = bio_sectors(bio);
715 
716 	if (nr_sectors && maxsector &&
717 	    (nr_sectors > maxsector ||
718 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
719 		handle_bad_sector(bio, maxsector);
720 		return -EIO;
721 	}
722 	return 0;
723 }
724 
725 /*
726  * Remap block n of partition p to block n+start(p) of the disk.
727  */
728 static int blk_partition_remap(struct bio *bio)
729 {
730 	struct block_device *p = bio->bi_bdev;
731 
732 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
733 		return -EIO;
734 	if (bio_sectors(bio)) {
735 		bio->bi_iter.bi_sector += p->bd_start_sect;
736 		trace_block_bio_remap(bio, p->bd_dev,
737 				      bio->bi_iter.bi_sector -
738 				      p->bd_start_sect);
739 	}
740 	bio_set_flag(bio, BIO_REMAPPED);
741 	return 0;
742 }
743 
744 /*
745  * Check write append to a zoned block device.
746  */
747 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
748 						 struct bio *bio)
749 {
750 	sector_t pos = bio->bi_iter.bi_sector;
751 	int nr_sectors = bio_sectors(bio);
752 
753 	/* Only applicable to zoned block devices */
754 	if (!blk_queue_is_zoned(q))
755 		return BLK_STS_NOTSUPP;
756 
757 	/* The bio sector must point to the start of a sequential zone */
758 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
759 	    !blk_queue_zone_is_seq(q, pos))
760 		return BLK_STS_IOERR;
761 
762 	/*
763 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
764 	 * split and could result in non-contiguous sectors being written in
765 	 * different zones.
766 	 */
767 	if (nr_sectors > q->limits.chunk_sectors)
768 		return BLK_STS_IOERR;
769 
770 	/* Make sure the BIO is small enough and will not get split */
771 	if (nr_sectors > q->limits.max_zone_append_sectors)
772 		return BLK_STS_IOERR;
773 
774 	bio->bi_opf |= REQ_NOMERGE;
775 
776 	return BLK_STS_OK;
777 }
778 
779 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
780 {
781 	struct block_device *bdev = bio->bi_bdev;
782 	struct request_queue *q = bdev->bd_disk->queue;
783 	blk_status_t status = BLK_STS_IOERR;
784 	struct blk_plug *plug;
785 
786 	might_sleep();
787 
788 	plug = blk_mq_plug(q, bio);
789 	if (plug && plug->nowait)
790 		bio->bi_opf |= REQ_NOWAIT;
791 
792 	/*
793 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
794 	 * if queue does not support NOWAIT.
795 	 */
796 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
797 		goto not_supported;
798 
799 	if (should_fail_bio(bio))
800 		goto end_io;
801 	if (unlikely(bio_check_ro(bio)))
802 		goto end_io;
803 	if (!bio_flagged(bio, BIO_REMAPPED)) {
804 		if (unlikely(bio_check_eod(bio)))
805 			goto end_io;
806 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
807 			goto end_io;
808 	}
809 
810 	/*
811 	 * Filter flush bio's early so that bio based drivers without flush
812 	 * support don't have to worry about them.
813 	 */
814 	if (op_is_flush(bio->bi_opf) &&
815 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
816 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
817 		if (!bio_sectors(bio)) {
818 			status = BLK_STS_OK;
819 			goto end_io;
820 		}
821 	}
822 
823 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
824 		bio_clear_hipri(bio);
825 
826 	switch (bio_op(bio)) {
827 	case REQ_OP_DISCARD:
828 		if (!blk_queue_discard(q))
829 			goto not_supported;
830 		break;
831 	case REQ_OP_SECURE_ERASE:
832 		if (!blk_queue_secure_erase(q))
833 			goto not_supported;
834 		break;
835 	case REQ_OP_WRITE_SAME:
836 		if (!q->limits.max_write_same_sectors)
837 			goto not_supported;
838 		break;
839 	case REQ_OP_ZONE_APPEND:
840 		status = blk_check_zone_append(q, bio);
841 		if (status != BLK_STS_OK)
842 			goto end_io;
843 		break;
844 	case REQ_OP_ZONE_RESET:
845 	case REQ_OP_ZONE_OPEN:
846 	case REQ_OP_ZONE_CLOSE:
847 	case REQ_OP_ZONE_FINISH:
848 		if (!blk_queue_is_zoned(q))
849 			goto not_supported;
850 		break;
851 	case REQ_OP_ZONE_RESET_ALL:
852 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
853 			goto not_supported;
854 		break;
855 	case REQ_OP_WRITE_ZEROES:
856 		if (!q->limits.max_write_zeroes_sectors)
857 			goto not_supported;
858 		break;
859 	default:
860 		break;
861 	}
862 
863 	/*
864 	 * Various block parts want %current->io_context, so allocate it up
865 	 * front rather than dealing with lots of pain to allocate it only
866 	 * where needed. This may fail and the block layer knows how to live
867 	 * with it.
868 	 */
869 	if (unlikely(!current->io_context))
870 		create_task_io_context(current, GFP_ATOMIC, q->node);
871 
872 	if (blk_throtl_bio(bio)) {
873 		blkcg_bio_issue_init(bio);
874 		return false;
875 	}
876 
877 	blk_cgroup_bio_start(bio);
878 	blkcg_bio_issue_init(bio);
879 
880 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
881 		trace_block_bio_queue(bio);
882 		/* Now that enqueuing has been traced, we need to trace
883 		 * completion as well.
884 		 */
885 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
886 	}
887 	return true;
888 
889 not_supported:
890 	status = BLK_STS_NOTSUPP;
891 end_io:
892 	bio->bi_status = status;
893 	bio_endio(bio);
894 	return false;
895 }
896 
897 static blk_qc_t __submit_bio(struct bio *bio)
898 {
899 	struct gendisk *disk = bio->bi_bdev->bd_disk;
900 	blk_qc_t ret = BLK_QC_T_NONE;
901 
902 	if (blk_crypto_bio_prep(&bio)) {
903 		if (!disk->fops->submit_bio)
904 			return blk_mq_submit_bio(bio);
905 		ret = disk->fops->submit_bio(bio);
906 	}
907 	blk_queue_exit(disk->queue);
908 	return ret;
909 }
910 
911 /*
912  * The loop in this function may be a bit non-obvious, and so deserves some
913  * explanation:
914  *
915  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
916  *    that), so we have a list with a single bio.
917  *  - We pretend that we have just taken it off a longer list, so we assign
918  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
919  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
920  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
921  *    non-NULL value in bio_list and re-enter the loop from the top.
922  *  - In this case we really did just take the bio of the top of the list (no
923  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
924  *    again.
925  *
926  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
927  * bio_list_on_stack[1] contains bios that were submitted before the current
928  *	->submit_bio_bio, but that haven't been processed yet.
929  */
930 static blk_qc_t __submit_bio_noacct(struct bio *bio)
931 {
932 	struct bio_list bio_list_on_stack[2];
933 	blk_qc_t ret = BLK_QC_T_NONE;
934 
935 	BUG_ON(bio->bi_next);
936 
937 	bio_list_init(&bio_list_on_stack[0]);
938 	current->bio_list = bio_list_on_stack;
939 
940 	do {
941 		struct request_queue *q = bio->bi_bdev->bd_disk->queue;
942 		struct bio_list lower, same;
943 
944 		if (unlikely(bio_queue_enter(bio) != 0))
945 			continue;
946 
947 		/*
948 		 * Create a fresh bio_list for all subordinate requests.
949 		 */
950 		bio_list_on_stack[1] = bio_list_on_stack[0];
951 		bio_list_init(&bio_list_on_stack[0]);
952 
953 		ret = __submit_bio(bio);
954 
955 		/*
956 		 * Sort new bios into those for a lower level and those for the
957 		 * same level.
958 		 */
959 		bio_list_init(&lower);
960 		bio_list_init(&same);
961 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
962 			if (q == bio->bi_bdev->bd_disk->queue)
963 				bio_list_add(&same, bio);
964 			else
965 				bio_list_add(&lower, bio);
966 
967 		/*
968 		 * Now assemble so we handle the lowest level first.
969 		 */
970 		bio_list_merge(&bio_list_on_stack[0], &lower);
971 		bio_list_merge(&bio_list_on_stack[0], &same);
972 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
973 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
974 
975 	current->bio_list = NULL;
976 	return ret;
977 }
978 
979 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
980 {
981 	struct bio_list bio_list[2] = { };
982 	blk_qc_t ret = BLK_QC_T_NONE;
983 
984 	current->bio_list = bio_list;
985 
986 	do {
987 		struct gendisk *disk = bio->bi_bdev->bd_disk;
988 
989 		if (unlikely(bio_queue_enter(bio) != 0))
990 			continue;
991 
992 		if (!blk_crypto_bio_prep(&bio)) {
993 			blk_queue_exit(disk->queue);
994 			ret = BLK_QC_T_NONE;
995 			continue;
996 		}
997 
998 		ret = blk_mq_submit_bio(bio);
999 	} while ((bio = bio_list_pop(&bio_list[0])));
1000 
1001 	current->bio_list = NULL;
1002 	return ret;
1003 }
1004 
1005 /**
1006  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1007  * @bio:  The bio describing the location in memory and on the device.
1008  *
1009  * This is a version of submit_bio() that shall only be used for I/O that is
1010  * resubmitted to lower level drivers by stacking block drivers.  All file
1011  * systems and other upper level users of the block layer should use
1012  * submit_bio() instead.
1013  */
1014 blk_qc_t submit_bio_noacct(struct bio *bio)
1015 {
1016 	if (!submit_bio_checks(bio))
1017 		return BLK_QC_T_NONE;
1018 
1019 	/*
1020 	 * We only want one ->submit_bio to be active at a time, else stack
1021 	 * usage with stacked devices could be a problem.  Use current->bio_list
1022 	 * to collect a list of requests submited by a ->submit_bio method while
1023 	 * it is active, and then process them after it returned.
1024 	 */
1025 	if (current->bio_list) {
1026 		bio_list_add(&current->bio_list[0], bio);
1027 		return BLK_QC_T_NONE;
1028 	}
1029 
1030 	if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1031 		return __submit_bio_noacct_mq(bio);
1032 	return __submit_bio_noacct(bio);
1033 }
1034 EXPORT_SYMBOL(submit_bio_noacct);
1035 
1036 /**
1037  * submit_bio - submit a bio to the block device layer for I/O
1038  * @bio: The &struct bio which describes the I/O
1039  *
1040  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1041  * fully set up &struct bio that describes the I/O that needs to be done.  The
1042  * bio will be send to the device described by the bi_bdev field.
1043  *
1044  * The success/failure status of the request, along with notification of
1045  * completion, is delivered asynchronously through the ->bi_end_io() callback
1046  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1047  * been called.
1048  */
1049 blk_qc_t submit_bio(struct bio *bio)
1050 {
1051 	if (blkcg_punt_bio_submit(bio))
1052 		return BLK_QC_T_NONE;
1053 
1054 	/*
1055 	 * If it's a regular read/write or a barrier with data attached,
1056 	 * go through the normal accounting stuff before submission.
1057 	 */
1058 	if (bio_has_data(bio)) {
1059 		unsigned int count;
1060 
1061 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1062 			count = queue_logical_block_size(
1063 					bio->bi_bdev->bd_disk->queue) >> 9;
1064 		else
1065 			count = bio_sectors(bio);
1066 
1067 		if (op_is_write(bio_op(bio))) {
1068 			count_vm_events(PGPGOUT, count);
1069 		} else {
1070 			task_io_account_read(bio->bi_iter.bi_size);
1071 			count_vm_events(PGPGIN, count);
1072 		}
1073 	}
1074 
1075 	/*
1076 	 * If we're reading data that is part of the userspace workingset, count
1077 	 * submission time as memory stall.  When the device is congested, or
1078 	 * the submitting cgroup IO-throttled, submission can be a significant
1079 	 * part of overall IO time.
1080 	 */
1081 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1082 	    bio_flagged(bio, BIO_WORKINGSET))) {
1083 		unsigned long pflags;
1084 		blk_qc_t ret;
1085 
1086 		psi_memstall_enter(&pflags);
1087 		ret = submit_bio_noacct(bio);
1088 		psi_memstall_leave(&pflags);
1089 
1090 		return ret;
1091 	}
1092 
1093 	return submit_bio_noacct(bio);
1094 }
1095 EXPORT_SYMBOL(submit_bio);
1096 
1097 /**
1098  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1099  *                              for the new queue limits
1100  * @q:  the queue
1101  * @rq: the request being checked
1102  *
1103  * Description:
1104  *    @rq may have been made based on weaker limitations of upper-level queues
1105  *    in request stacking drivers, and it may violate the limitation of @q.
1106  *    Since the block layer and the underlying device driver trust @rq
1107  *    after it is inserted to @q, it should be checked against @q before
1108  *    the insertion using this generic function.
1109  *
1110  *    Request stacking drivers like request-based dm may change the queue
1111  *    limits when retrying requests on other queues. Those requests need
1112  *    to be checked against the new queue limits again during dispatch.
1113  */
1114 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1115 				      struct request *rq)
1116 {
1117 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1118 
1119 	if (blk_rq_sectors(rq) > max_sectors) {
1120 		/*
1121 		 * SCSI device does not have a good way to return if
1122 		 * Write Same/Zero is actually supported. If a device rejects
1123 		 * a non-read/write command (discard, write same,etc.) the
1124 		 * low-level device driver will set the relevant queue limit to
1125 		 * 0 to prevent blk-lib from issuing more of the offending
1126 		 * operations. Commands queued prior to the queue limit being
1127 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1128 		 * errors being propagated to upper layers.
1129 		 */
1130 		if (max_sectors == 0)
1131 			return BLK_STS_NOTSUPP;
1132 
1133 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1134 			__func__, blk_rq_sectors(rq), max_sectors);
1135 		return BLK_STS_IOERR;
1136 	}
1137 
1138 	/*
1139 	 * The queue settings related to segment counting may differ from the
1140 	 * original queue.
1141 	 */
1142 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1143 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1144 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1145 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1146 		return BLK_STS_IOERR;
1147 	}
1148 
1149 	return BLK_STS_OK;
1150 }
1151 
1152 /**
1153  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1154  * @q:  the queue to submit the request
1155  * @rq: the request being queued
1156  */
1157 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1158 {
1159 	blk_status_t ret;
1160 
1161 	ret = blk_cloned_rq_check_limits(q, rq);
1162 	if (ret != BLK_STS_OK)
1163 		return ret;
1164 
1165 	if (rq->rq_disk &&
1166 	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1167 		return BLK_STS_IOERR;
1168 
1169 	if (blk_crypto_insert_cloned_request(rq))
1170 		return BLK_STS_IOERR;
1171 
1172 	if (blk_queue_io_stat(q))
1173 		blk_account_io_start(rq);
1174 
1175 	/*
1176 	 * Since we have a scheduler attached on the top device,
1177 	 * bypass a potential scheduler on the bottom device for
1178 	 * insert.
1179 	 */
1180 	return blk_mq_request_issue_directly(rq, true);
1181 }
1182 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1183 
1184 /**
1185  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1186  * @rq: request to examine
1187  *
1188  * Description:
1189  *     A request could be merge of IOs which require different failure
1190  *     handling.  This function determines the number of bytes which
1191  *     can be failed from the beginning of the request without
1192  *     crossing into area which need to be retried further.
1193  *
1194  * Return:
1195  *     The number of bytes to fail.
1196  */
1197 unsigned int blk_rq_err_bytes(const struct request *rq)
1198 {
1199 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1200 	unsigned int bytes = 0;
1201 	struct bio *bio;
1202 
1203 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1204 		return blk_rq_bytes(rq);
1205 
1206 	/*
1207 	 * Currently the only 'mixing' which can happen is between
1208 	 * different fastfail types.  We can safely fail portions
1209 	 * which have all the failfast bits that the first one has -
1210 	 * the ones which are at least as eager to fail as the first
1211 	 * one.
1212 	 */
1213 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1214 		if ((bio->bi_opf & ff) != ff)
1215 			break;
1216 		bytes += bio->bi_iter.bi_size;
1217 	}
1218 
1219 	/* this could lead to infinite loop */
1220 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1221 	return bytes;
1222 }
1223 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1224 
1225 static void update_io_ticks(struct block_device *part, unsigned long now,
1226 		bool end)
1227 {
1228 	unsigned long stamp;
1229 again:
1230 	stamp = READ_ONCE(part->bd_stamp);
1231 	if (unlikely(time_after(now, stamp))) {
1232 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1233 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1234 	}
1235 	if (part->bd_partno) {
1236 		part = bdev_whole(part);
1237 		goto again;
1238 	}
1239 }
1240 
1241 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1242 {
1243 	if (req->part && blk_do_io_stat(req)) {
1244 		const int sgrp = op_stat_group(req_op(req));
1245 
1246 		part_stat_lock();
1247 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1248 		part_stat_unlock();
1249 	}
1250 }
1251 
1252 void blk_account_io_done(struct request *req, u64 now)
1253 {
1254 	/*
1255 	 * Account IO completion.  flush_rq isn't accounted as a
1256 	 * normal IO on queueing nor completion.  Accounting the
1257 	 * containing request is enough.
1258 	 */
1259 	if (req->part && blk_do_io_stat(req) &&
1260 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1261 		const int sgrp = op_stat_group(req_op(req));
1262 
1263 		part_stat_lock();
1264 		update_io_ticks(req->part, jiffies, true);
1265 		part_stat_inc(req->part, ios[sgrp]);
1266 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1267 		part_stat_unlock();
1268 	}
1269 }
1270 
1271 void blk_account_io_start(struct request *rq)
1272 {
1273 	if (!blk_do_io_stat(rq))
1274 		return;
1275 
1276 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
1277 	if (rq->bio && rq->bio->bi_bdev)
1278 		rq->part = rq->bio->bi_bdev;
1279 	else
1280 		rq->part = rq->rq_disk->part0;
1281 
1282 	part_stat_lock();
1283 	update_io_ticks(rq->part, jiffies, false);
1284 	part_stat_unlock();
1285 }
1286 
1287 static unsigned long __part_start_io_acct(struct block_device *part,
1288 					  unsigned int sectors, unsigned int op)
1289 {
1290 	const int sgrp = op_stat_group(op);
1291 	unsigned long now = READ_ONCE(jiffies);
1292 
1293 	part_stat_lock();
1294 	update_io_ticks(part, now, false);
1295 	part_stat_inc(part, ios[sgrp]);
1296 	part_stat_add(part, sectors[sgrp], sectors);
1297 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1298 	part_stat_unlock();
1299 
1300 	return now;
1301 }
1302 
1303 /**
1304  * bio_start_io_acct - start I/O accounting for bio based drivers
1305  * @bio:	bio to start account for
1306  *
1307  * Returns the start time that should be passed back to bio_end_io_acct().
1308  */
1309 unsigned long bio_start_io_acct(struct bio *bio)
1310 {
1311 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1312 }
1313 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1314 
1315 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1316 				 unsigned int op)
1317 {
1318 	return __part_start_io_acct(disk->part0, sectors, op);
1319 }
1320 EXPORT_SYMBOL(disk_start_io_acct);
1321 
1322 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1323 			       unsigned long start_time)
1324 {
1325 	const int sgrp = op_stat_group(op);
1326 	unsigned long now = READ_ONCE(jiffies);
1327 	unsigned long duration = now - start_time;
1328 
1329 	part_stat_lock();
1330 	update_io_ticks(part, now, true);
1331 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1332 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1333 	part_stat_unlock();
1334 }
1335 
1336 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1337 		struct block_device *orig_bdev)
1338 {
1339 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1340 }
1341 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1342 
1343 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1344 		      unsigned long start_time)
1345 {
1346 	__part_end_io_acct(disk->part0, op, start_time);
1347 }
1348 EXPORT_SYMBOL(disk_end_io_acct);
1349 
1350 /*
1351  * Steal bios from a request and add them to a bio list.
1352  * The request must not have been partially completed before.
1353  */
1354 void blk_steal_bios(struct bio_list *list, struct request *rq)
1355 {
1356 	if (rq->bio) {
1357 		if (list->tail)
1358 			list->tail->bi_next = rq->bio;
1359 		else
1360 			list->head = rq->bio;
1361 		list->tail = rq->biotail;
1362 
1363 		rq->bio = NULL;
1364 		rq->biotail = NULL;
1365 	}
1366 
1367 	rq->__data_len = 0;
1368 }
1369 EXPORT_SYMBOL_GPL(blk_steal_bios);
1370 
1371 /**
1372  * blk_update_request - Complete multiple bytes without completing the request
1373  * @req:      the request being processed
1374  * @error:    block status code
1375  * @nr_bytes: number of bytes to complete for @req
1376  *
1377  * Description:
1378  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1379  *     the request structure even if @req doesn't have leftover.
1380  *     If @req has leftover, sets it up for the next range of segments.
1381  *
1382  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1383  *     %false return from this function.
1384  *
1385  * Note:
1386  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1387  *      except in the consistency check at the end of this function.
1388  *
1389  * Return:
1390  *     %false - this request doesn't have any more data
1391  *     %true  - this request has more data
1392  **/
1393 bool blk_update_request(struct request *req, blk_status_t error,
1394 		unsigned int nr_bytes)
1395 {
1396 	int total_bytes;
1397 
1398 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1399 
1400 	if (!req->bio)
1401 		return false;
1402 
1403 #ifdef CONFIG_BLK_DEV_INTEGRITY
1404 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1405 	    error == BLK_STS_OK)
1406 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1407 #endif
1408 
1409 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1410 		     !(req->rq_flags & RQF_QUIET)))
1411 		print_req_error(req, error, __func__);
1412 
1413 	blk_account_io_completion(req, nr_bytes);
1414 
1415 	total_bytes = 0;
1416 	while (req->bio) {
1417 		struct bio *bio = req->bio;
1418 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1419 
1420 		if (bio_bytes == bio->bi_iter.bi_size)
1421 			req->bio = bio->bi_next;
1422 
1423 		/* Completion has already been traced */
1424 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1425 		req_bio_endio(req, bio, bio_bytes, error);
1426 
1427 		total_bytes += bio_bytes;
1428 		nr_bytes -= bio_bytes;
1429 
1430 		if (!nr_bytes)
1431 			break;
1432 	}
1433 
1434 	/*
1435 	 * completely done
1436 	 */
1437 	if (!req->bio) {
1438 		/*
1439 		 * Reset counters so that the request stacking driver
1440 		 * can find how many bytes remain in the request
1441 		 * later.
1442 		 */
1443 		req->__data_len = 0;
1444 		return false;
1445 	}
1446 
1447 	req->__data_len -= total_bytes;
1448 
1449 	/* update sector only for requests with clear definition of sector */
1450 	if (!blk_rq_is_passthrough(req))
1451 		req->__sector += total_bytes >> 9;
1452 
1453 	/* mixed attributes always follow the first bio */
1454 	if (req->rq_flags & RQF_MIXED_MERGE) {
1455 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1456 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1457 	}
1458 
1459 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1460 		/*
1461 		 * If total number of sectors is less than the first segment
1462 		 * size, something has gone terribly wrong.
1463 		 */
1464 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1465 			blk_dump_rq_flags(req, "request botched");
1466 			req->__data_len = blk_rq_cur_bytes(req);
1467 		}
1468 
1469 		/* recalculate the number of segments */
1470 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1471 	}
1472 
1473 	return true;
1474 }
1475 EXPORT_SYMBOL_GPL(blk_update_request);
1476 
1477 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1478 /**
1479  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1480  * @rq: the request to be flushed
1481  *
1482  * Description:
1483  *     Flush all pages in @rq.
1484  */
1485 void rq_flush_dcache_pages(struct request *rq)
1486 {
1487 	struct req_iterator iter;
1488 	struct bio_vec bvec;
1489 
1490 	rq_for_each_segment(bvec, rq, iter)
1491 		flush_dcache_page(bvec.bv_page);
1492 }
1493 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1494 #endif
1495 
1496 /**
1497  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1498  * @q : the queue of the device being checked
1499  *
1500  * Description:
1501  *    Check if underlying low-level drivers of a device are busy.
1502  *    If the drivers want to export their busy state, they must set own
1503  *    exporting function using blk_queue_lld_busy() first.
1504  *
1505  *    Basically, this function is used only by request stacking drivers
1506  *    to stop dispatching requests to underlying devices when underlying
1507  *    devices are busy.  This behavior helps more I/O merging on the queue
1508  *    of the request stacking driver and prevents I/O throughput regression
1509  *    on burst I/O load.
1510  *
1511  * Return:
1512  *    0 - Not busy (The request stacking driver should dispatch request)
1513  *    1 - Busy (The request stacking driver should stop dispatching request)
1514  */
1515 int blk_lld_busy(struct request_queue *q)
1516 {
1517 	if (queue_is_mq(q) && q->mq_ops->busy)
1518 		return q->mq_ops->busy(q);
1519 
1520 	return 0;
1521 }
1522 EXPORT_SYMBOL_GPL(blk_lld_busy);
1523 
1524 /**
1525  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1526  * @rq: the clone request to be cleaned up
1527  *
1528  * Description:
1529  *     Free all bios in @rq for a cloned request.
1530  */
1531 void blk_rq_unprep_clone(struct request *rq)
1532 {
1533 	struct bio *bio;
1534 
1535 	while ((bio = rq->bio) != NULL) {
1536 		rq->bio = bio->bi_next;
1537 
1538 		bio_put(bio);
1539 	}
1540 }
1541 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1542 
1543 /**
1544  * blk_rq_prep_clone - Helper function to setup clone request
1545  * @rq: the request to be setup
1546  * @rq_src: original request to be cloned
1547  * @bs: bio_set that bios for clone are allocated from
1548  * @gfp_mask: memory allocation mask for bio
1549  * @bio_ctr: setup function to be called for each clone bio.
1550  *           Returns %0 for success, non %0 for failure.
1551  * @data: private data to be passed to @bio_ctr
1552  *
1553  * Description:
1554  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1555  *     Also, pages which the original bios are pointing to are not copied
1556  *     and the cloned bios just point same pages.
1557  *     So cloned bios must be completed before original bios, which means
1558  *     the caller must complete @rq before @rq_src.
1559  */
1560 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1561 		      struct bio_set *bs, gfp_t gfp_mask,
1562 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1563 		      void *data)
1564 {
1565 	struct bio *bio, *bio_src;
1566 
1567 	if (!bs)
1568 		bs = &fs_bio_set;
1569 
1570 	__rq_for_each_bio(bio_src, rq_src) {
1571 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1572 		if (!bio)
1573 			goto free_and_out;
1574 
1575 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1576 			goto free_and_out;
1577 
1578 		if (rq->bio) {
1579 			rq->biotail->bi_next = bio;
1580 			rq->biotail = bio;
1581 		} else {
1582 			rq->bio = rq->biotail = bio;
1583 		}
1584 		bio = NULL;
1585 	}
1586 
1587 	/* Copy attributes of the original request to the clone request. */
1588 	rq->__sector = blk_rq_pos(rq_src);
1589 	rq->__data_len = blk_rq_bytes(rq_src);
1590 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1591 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1592 		rq->special_vec = rq_src->special_vec;
1593 	}
1594 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1595 	rq->ioprio = rq_src->ioprio;
1596 
1597 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1598 		goto free_and_out;
1599 
1600 	return 0;
1601 
1602 free_and_out:
1603 	if (bio)
1604 		bio_put(bio);
1605 	blk_rq_unprep_clone(rq);
1606 
1607 	return -ENOMEM;
1608 }
1609 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1610 
1611 int kblockd_schedule_work(struct work_struct *work)
1612 {
1613 	return queue_work(kblockd_workqueue, work);
1614 }
1615 EXPORT_SYMBOL(kblockd_schedule_work);
1616 
1617 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1618 				unsigned long delay)
1619 {
1620 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1621 }
1622 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1623 
1624 /**
1625  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1626  * @plug:	The &struct blk_plug that needs to be initialized
1627  *
1628  * Description:
1629  *   blk_start_plug() indicates to the block layer an intent by the caller
1630  *   to submit multiple I/O requests in a batch.  The block layer may use
1631  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1632  *   is called.  However, the block layer may choose to submit requests
1633  *   before a call to blk_finish_plug() if the number of queued I/Os
1634  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1635  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1636  *   the task schedules (see below).
1637  *
1638  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1639  *   pending I/O should the task end up blocking between blk_start_plug() and
1640  *   blk_finish_plug(). This is important from a performance perspective, but
1641  *   also ensures that we don't deadlock. For instance, if the task is blocking
1642  *   for a memory allocation, memory reclaim could end up wanting to free a
1643  *   page belonging to that request that is currently residing in our private
1644  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1645  *   this kind of deadlock.
1646  */
1647 void blk_start_plug(struct blk_plug *plug)
1648 {
1649 	struct task_struct *tsk = current;
1650 
1651 	/*
1652 	 * If this is a nested plug, don't actually assign it.
1653 	 */
1654 	if (tsk->plug)
1655 		return;
1656 
1657 	INIT_LIST_HEAD(&plug->mq_list);
1658 	INIT_LIST_HEAD(&plug->cb_list);
1659 	plug->rq_count = 0;
1660 	plug->multiple_queues = false;
1661 	plug->nowait = false;
1662 
1663 	/*
1664 	 * Store ordering should not be needed here, since a potential
1665 	 * preempt will imply a full memory barrier
1666 	 */
1667 	tsk->plug = plug;
1668 }
1669 EXPORT_SYMBOL(blk_start_plug);
1670 
1671 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1672 {
1673 	LIST_HEAD(callbacks);
1674 
1675 	while (!list_empty(&plug->cb_list)) {
1676 		list_splice_init(&plug->cb_list, &callbacks);
1677 
1678 		while (!list_empty(&callbacks)) {
1679 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1680 							  struct blk_plug_cb,
1681 							  list);
1682 			list_del(&cb->list);
1683 			cb->callback(cb, from_schedule);
1684 		}
1685 	}
1686 }
1687 
1688 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1689 				      int size)
1690 {
1691 	struct blk_plug *plug = current->plug;
1692 	struct blk_plug_cb *cb;
1693 
1694 	if (!plug)
1695 		return NULL;
1696 
1697 	list_for_each_entry(cb, &plug->cb_list, list)
1698 		if (cb->callback == unplug && cb->data == data)
1699 			return cb;
1700 
1701 	/* Not currently on the callback list */
1702 	BUG_ON(size < sizeof(*cb));
1703 	cb = kzalloc(size, GFP_ATOMIC);
1704 	if (cb) {
1705 		cb->data = data;
1706 		cb->callback = unplug;
1707 		list_add(&cb->list, &plug->cb_list);
1708 	}
1709 	return cb;
1710 }
1711 EXPORT_SYMBOL(blk_check_plugged);
1712 
1713 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1714 {
1715 	flush_plug_callbacks(plug, from_schedule);
1716 
1717 	if (!list_empty(&plug->mq_list))
1718 		blk_mq_flush_plug_list(plug, from_schedule);
1719 }
1720 
1721 /**
1722  * blk_finish_plug - mark the end of a batch of submitted I/O
1723  * @plug:	The &struct blk_plug passed to blk_start_plug()
1724  *
1725  * Description:
1726  * Indicate that a batch of I/O submissions is complete.  This function
1727  * must be paired with an initial call to blk_start_plug().  The intent
1728  * is to allow the block layer to optimize I/O submission.  See the
1729  * documentation for blk_start_plug() for more information.
1730  */
1731 void blk_finish_plug(struct blk_plug *plug)
1732 {
1733 	if (plug != current->plug)
1734 		return;
1735 	blk_flush_plug_list(plug, false);
1736 
1737 	current->plug = NULL;
1738 }
1739 EXPORT_SYMBOL(blk_finish_plug);
1740 
1741 void blk_io_schedule(void)
1742 {
1743 	/* Prevent hang_check timer from firing at us during very long I/O */
1744 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1745 
1746 	if (timeout)
1747 		io_schedule_timeout(timeout);
1748 	else
1749 		io_schedule();
1750 }
1751 EXPORT_SYMBOL_GPL(blk_io_schedule);
1752 
1753 int __init blk_dev_init(void)
1754 {
1755 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1756 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1757 			sizeof_field(struct request, cmd_flags));
1758 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1759 			sizeof_field(struct bio, bi_opf));
1760 
1761 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1762 	kblockd_workqueue = alloc_workqueue("kblockd",
1763 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1764 	if (!kblockd_workqueue)
1765 		panic("Failed to create kblockd\n");
1766 
1767 	blk_requestq_cachep = kmem_cache_create("request_queue",
1768 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1769 
1770 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1771 
1772 	return 0;
1773 }
1774