xref: /linux/block/blk-cgroup.c (revision daa121128a2d2ac6006159e2c47676e4fcd21eab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38 
39 /*
40  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42  * policy [un]register operations including cgroup file additions /
43  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
44  * allows grabbing it from cgroup callbacks.
45  */
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
48 
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
51 
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
54 
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56 
57 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
58 
59 bool blkcg_debug_stats = false;
60 
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62 
63 #define BLKG_DESTROY_BATCH_SIZE  64
64 
65 /*
66  * Lockless lists for tracking IO stats update
67  *
68  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69  * There are multiple blkg's (one for each block device) attached to each
70  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71  * but it doesn't know which blkg has the updated stats. If there are many
72  * block devices in a system, the cost of iterating all the blkg's to flush
73  * out the IO stats can be high. To reduce such overhead, a set of percpu
74  * lockless lists (lhead) per blkcg are used to track the set of recently
75  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78  * References to blkg are gotten and then put back in the process to
79  * protect against blkg removal.
80  *
81  * Return: 0 if successful or -ENOMEM if allocation fails.
82  */
83 static int init_blkcg_llists(struct blkcg *blkcg)
84 {
85 	int cpu;
86 
87 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 	if (!blkcg->lhead)
89 		return -ENOMEM;
90 
91 	for_each_possible_cpu(cpu)
92 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 	return 0;
94 }
95 
96 /**
97  * blkcg_css - find the current css
98  *
99  * Find the css associated with either the kthread or the current task.
100  * This may return a dying css, so it is up to the caller to use tryget logic
101  * to confirm it is alive and well.
102  */
103 static struct cgroup_subsys_state *blkcg_css(void)
104 {
105 	struct cgroup_subsys_state *css;
106 
107 	css = kthread_blkcg();
108 	if (css)
109 		return css;
110 	return task_css(current, io_cgrp_id);
111 }
112 
113 static bool blkcg_policy_enabled(struct request_queue *q,
114 				 const struct blkcg_policy *pol)
115 {
116 	return pol && test_bit(pol->plid, q->blkcg_pols);
117 }
118 
119 static void blkg_free_workfn(struct work_struct *work)
120 {
121 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 					     free_work);
123 	struct request_queue *q = blkg->q;
124 	int i;
125 
126 	/*
127 	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 	 * in order to make sure pd_free_fn() is called in order, the deletion
129 	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 	 * blkcg_deactivate_policy().
132 	 */
133 	mutex_lock(&q->blkcg_mutex);
134 	for (i = 0; i < BLKCG_MAX_POLS; i++)
135 		if (blkg->pd[i])
136 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 	if (blkg->parent)
138 		blkg_put(blkg->parent);
139 	spin_lock_irq(&q->queue_lock);
140 	list_del_init(&blkg->q_node);
141 	spin_unlock_irq(&q->queue_lock);
142 	mutex_unlock(&q->blkcg_mutex);
143 
144 	blk_put_queue(q);
145 	free_percpu(blkg->iostat_cpu);
146 	percpu_ref_exit(&blkg->refcnt);
147 	kfree(blkg);
148 }
149 
150 /**
151  * blkg_free - free a blkg
152  * @blkg: blkg to free
153  *
154  * Free @blkg which may be partially allocated.
155  */
156 static void blkg_free(struct blkcg_gq *blkg)
157 {
158 	if (!blkg)
159 		return;
160 
161 	/*
162 	 * Both ->pd_free_fn() and request queue's release handler may
163 	 * sleep, so free us by scheduling one work func
164 	 */
165 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 	schedule_work(&blkg->free_work);
167 }
168 
169 static void __blkg_release(struct rcu_head *rcu)
170 {
171 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 	struct blkcg *blkcg = blkg->blkcg;
173 	int cpu;
174 
175 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 	WARN_ON(!bio_list_empty(&blkg->async_bios));
177 #endif
178 	/*
179 	 * Flush all the non-empty percpu lockless lists before releasing
180 	 * us, given these stat belongs to us.
181 	 *
182 	 * blkg_stat_lock is for serializing blkg stat update
183 	 */
184 	for_each_possible_cpu(cpu)
185 		__blkcg_rstat_flush(blkcg, cpu);
186 
187 	/* release the blkcg and parent blkg refs this blkg has been holding */
188 	css_put(&blkg->blkcg->css);
189 	blkg_free(blkg);
190 }
191 
192 /*
193  * A group is RCU protected, but having an rcu lock does not mean that one
194  * can access all the fields of blkg and assume these are valid.  For
195  * example, don't try to follow throtl_data and request queue links.
196  *
197  * Having a reference to blkg under an rcu allows accesses to only values
198  * local to groups like group stats and group rate limits.
199  */
200 static void blkg_release(struct percpu_ref *ref)
201 {
202 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203 
204 	call_rcu(&blkg->rcu_head, __blkg_release);
205 }
206 
207 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208 static struct workqueue_struct *blkcg_punt_bio_wq;
209 
210 static void blkg_async_bio_workfn(struct work_struct *work)
211 {
212 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213 					     async_bio_work);
214 	struct bio_list bios = BIO_EMPTY_LIST;
215 	struct bio *bio;
216 	struct blk_plug plug;
217 	bool need_plug = false;
218 
219 	/* as long as there are pending bios, @blkg can't go away */
220 	spin_lock(&blkg->async_bio_lock);
221 	bio_list_merge_init(&bios, &blkg->async_bios);
222 	spin_unlock(&blkg->async_bio_lock);
223 
224 	/* start plug only when bio_list contains at least 2 bios */
225 	if (bios.head && bios.head->bi_next) {
226 		need_plug = true;
227 		blk_start_plug(&plug);
228 	}
229 	while ((bio = bio_list_pop(&bios)))
230 		submit_bio(bio);
231 	if (need_plug)
232 		blk_finish_plug(&plug);
233 }
234 
235 /*
236  * When a shared kthread issues a bio for a cgroup, doing so synchronously can
237  * lead to priority inversions as the kthread can be trapped waiting for that
238  * cgroup.  Use this helper instead of submit_bio to punt the actual issuing to
239  * a dedicated per-blkcg work item to avoid such priority inversions.
240  */
241 void blkcg_punt_bio_submit(struct bio *bio)
242 {
243 	struct blkcg_gq *blkg = bio->bi_blkg;
244 
245 	if (blkg->parent) {
246 		spin_lock(&blkg->async_bio_lock);
247 		bio_list_add(&blkg->async_bios, bio);
248 		spin_unlock(&blkg->async_bio_lock);
249 		queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
250 	} else {
251 		/* never bounce for the root cgroup */
252 		submit_bio(bio);
253 	}
254 }
255 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
256 
257 static int __init blkcg_punt_bio_init(void)
258 {
259 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
260 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
261 					    WQ_UNBOUND | WQ_SYSFS, 0);
262 	if (!blkcg_punt_bio_wq)
263 		return -ENOMEM;
264 	return 0;
265 }
266 subsys_initcall(blkcg_punt_bio_init);
267 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
268 
269 /**
270  * bio_blkcg_css - return the blkcg CSS associated with a bio
271  * @bio: target bio
272  *
273  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
274  * associated. Callers are expected to either handle %NULL or know association
275  * has been done prior to calling this.
276  */
277 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
278 {
279 	if (!bio || !bio->bi_blkg)
280 		return NULL;
281 	return &bio->bi_blkg->blkcg->css;
282 }
283 EXPORT_SYMBOL_GPL(bio_blkcg_css);
284 
285 /**
286  * blkcg_parent - get the parent of a blkcg
287  * @blkcg: blkcg of interest
288  *
289  * Return the parent blkcg of @blkcg.  Can be called anytime.
290  */
291 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
292 {
293 	return css_to_blkcg(blkcg->css.parent);
294 }
295 
296 /**
297  * blkg_alloc - allocate a blkg
298  * @blkcg: block cgroup the new blkg is associated with
299  * @disk: gendisk the new blkg is associated with
300  * @gfp_mask: allocation mask to use
301  *
302  * Allocate a new blkg associating @blkcg and @disk.
303  */
304 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
305 				   gfp_t gfp_mask)
306 {
307 	struct blkcg_gq *blkg;
308 	int i, cpu;
309 
310 	/* alloc and init base part */
311 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
312 	if (!blkg)
313 		return NULL;
314 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
315 		goto out_free_blkg;
316 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
317 	if (!blkg->iostat_cpu)
318 		goto out_exit_refcnt;
319 	if (!blk_get_queue(disk->queue))
320 		goto out_free_iostat;
321 
322 	blkg->q = disk->queue;
323 	INIT_LIST_HEAD(&blkg->q_node);
324 	blkg->blkcg = blkcg;
325 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
326 	spin_lock_init(&blkg->async_bio_lock);
327 	bio_list_init(&blkg->async_bios);
328 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
329 #endif
330 
331 	u64_stats_init(&blkg->iostat.sync);
332 	for_each_possible_cpu(cpu) {
333 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
334 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
335 	}
336 
337 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
338 		struct blkcg_policy *pol = blkcg_policy[i];
339 		struct blkg_policy_data *pd;
340 
341 		if (!blkcg_policy_enabled(disk->queue, pol))
342 			continue;
343 
344 		/* alloc per-policy data and attach it to blkg */
345 		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
346 		if (!pd)
347 			goto out_free_pds;
348 		blkg->pd[i] = pd;
349 		pd->blkg = blkg;
350 		pd->plid = i;
351 		pd->online = false;
352 	}
353 
354 	return blkg;
355 
356 out_free_pds:
357 	while (--i >= 0)
358 		if (blkg->pd[i])
359 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
360 	blk_put_queue(disk->queue);
361 out_free_iostat:
362 	free_percpu(blkg->iostat_cpu);
363 out_exit_refcnt:
364 	percpu_ref_exit(&blkg->refcnt);
365 out_free_blkg:
366 	kfree(blkg);
367 	return NULL;
368 }
369 
370 /*
371  * If @new_blkg is %NULL, this function tries to allocate a new one as
372  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
373  */
374 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
375 				    struct blkcg_gq *new_blkg)
376 {
377 	struct blkcg_gq *blkg;
378 	int i, ret;
379 
380 	lockdep_assert_held(&disk->queue->queue_lock);
381 
382 	/* request_queue is dying, do not create/recreate a blkg */
383 	if (blk_queue_dying(disk->queue)) {
384 		ret = -ENODEV;
385 		goto err_free_blkg;
386 	}
387 
388 	/* blkg holds a reference to blkcg */
389 	if (!css_tryget_online(&blkcg->css)) {
390 		ret = -ENODEV;
391 		goto err_free_blkg;
392 	}
393 
394 	/* allocate */
395 	if (!new_blkg) {
396 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
397 		if (unlikely(!new_blkg)) {
398 			ret = -ENOMEM;
399 			goto err_put_css;
400 		}
401 	}
402 	blkg = new_blkg;
403 
404 	/* link parent */
405 	if (blkcg_parent(blkcg)) {
406 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
407 		if (WARN_ON_ONCE(!blkg->parent)) {
408 			ret = -ENODEV;
409 			goto err_put_css;
410 		}
411 		blkg_get(blkg->parent);
412 	}
413 
414 	/* invoke per-policy init */
415 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
416 		struct blkcg_policy *pol = blkcg_policy[i];
417 
418 		if (blkg->pd[i] && pol->pd_init_fn)
419 			pol->pd_init_fn(blkg->pd[i]);
420 	}
421 
422 	/* insert */
423 	spin_lock(&blkcg->lock);
424 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
425 	if (likely(!ret)) {
426 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
427 		list_add(&blkg->q_node, &disk->queue->blkg_list);
428 
429 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
430 			struct blkcg_policy *pol = blkcg_policy[i];
431 
432 			if (blkg->pd[i]) {
433 				if (pol->pd_online_fn)
434 					pol->pd_online_fn(blkg->pd[i]);
435 				blkg->pd[i]->online = true;
436 			}
437 		}
438 	}
439 	blkg->online = true;
440 	spin_unlock(&blkcg->lock);
441 
442 	if (!ret)
443 		return blkg;
444 
445 	/* @blkg failed fully initialized, use the usual release path */
446 	blkg_put(blkg);
447 	return ERR_PTR(ret);
448 
449 err_put_css:
450 	css_put(&blkcg->css);
451 err_free_blkg:
452 	if (new_blkg)
453 		blkg_free(new_blkg);
454 	return ERR_PTR(ret);
455 }
456 
457 /**
458  * blkg_lookup_create - lookup blkg, try to create one if not there
459  * @blkcg: blkcg of interest
460  * @disk: gendisk of interest
461  *
462  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
463  * create one.  blkg creation is performed recursively from blkcg_root such
464  * that all non-root blkg's have access to the parent blkg.  This function
465  * should be called under RCU read lock and takes @disk->queue->queue_lock.
466  *
467  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
468  * down from root.
469  */
470 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
471 		struct gendisk *disk)
472 {
473 	struct request_queue *q = disk->queue;
474 	struct blkcg_gq *blkg;
475 	unsigned long flags;
476 
477 	WARN_ON_ONCE(!rcu_read_lock_held());
478 
479 	blkg = blkg_lookup(blkcg, q);
480 	if (blkg)
481 		return blkg;
482 
483 	spin_lock_irqsave(&q->queue_lock, flags);
484 	blkg = blkg_lookup(blkcg, q);
485 	if (blkg) {
486 		if (blkcg != &blkcg_root &&
487 		    blkg != rcu_dereference(blkcg->blkg_hint))
488 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
489 		goto found;
490 	}
491 
492 	/*
493 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
494 	 * non-root blkgs have access to their parents.  Returns the closest
495 	 * blkg to the intended blkg should blkg_create() fail.
496 	 */
497 	while (true) {
498 		struct blkcg *pos = blkcg;
499 		struct blkcg *parent = blkcg_parent(blkcg);
500 		struct blkcg_gq *ret_blkg = q->root_blkg;
501 
502 		while (parent) {
503 			blkg = blkg_lookup(parent, q);
504 			if (blkg) {
505 				/* remember closest blkg */
506 				ret_blkg = blkg;
507 				break;
508 			}
509 			pos = parent;
510 			parent = blkcg_parent(parent);
511 		}
512 
513 		blkg = blkg_create(pos, disk, NULL);
514 		if (IS_ERR(blkg)) {
515 			blkg = ret_blkg;
516 			break;
517 		}
518 		if (pos == blkcg)
519 			break;
520 	}
521 
522 found:
523 	spin_unlock_irqrestore(&q->queue_lock, flags);
524 	return blkg;
525 }
526 
527 static void blkg_destroy(struct blkcg_gq *blkg)
528 {
529 	struct blkcg *blkcg = blkg->blkcg;
530 	int i;
531 
532 	lockdep_assert_held(&blkg->q->queue_lock);
533 	lockdep_assert_held(&blkcg->lock);
534 
535 	/*
536 	 * blkg stays on the queue list until blkg_free_workfn(), see details in
537 	 * blkg_free_workfn(), hence this function can be called from
538 	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
539 	 * blkg_free_workfn().
540 	 */
541 	if (hlist_unhashed(&blkg->blkcg_node))
542 		return;
543 
544 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
545 		struct blkcg_policy *pol = blkcg_policy[i];
546 
547 		if (blkg->pd[i] && blkg->pd[i]->online) {
548 			blkg->pd[i]->online = false;
549 			if (pol->pd_offline_fn)
550 				pol->pd_offline_fn(blkg->pd[i]);
551 		}
552 	}
553 
554 	blkg->online = false;
555 
556 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
557 	hlist_del_init_rcu(&blkg->blkcg_node);
558 
559 	/*
560 	 * Both setting lookup hint to and clearing it from @blkg are done
561 	 * under queue_lock.  If it's not pointing to @blkg now, it never
562 	 * will.  Hint assignment itself can race safely.
563 	 */
564 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
565 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
566 
567 	/*
568 	 * Put the reference taken at the time of creation so that when all
569 	 * queues are gone, group can be destroyed.
570 	 */
571 	percpu_ref_kill(&blkg->refcnt);
572 }
573 
574 static void blkg_destroy_all(struct gendisk *disk)
575 {
576 	struct request_queue *q = disk->queue;
577 	struct blkcg_gq *blkg;
578 	int count = BLKG_DESTROY_BATCH_SIZE;
579 	int i;
580 
581 restart:
582 	spin_lock_irq(&q->queue_lock);
583 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
584 		struct blkcg *blkcg = blkg->blkcg;
585 
586 		if (hlist_unhashed(&blkg->blkcg_node))
587 			continue;
588 
589 		spin_lock(&blkcg->lock);
590 		blkg_destroy(blkg);
591 		spin_unlock(&blkcg->lock);
592 
593 		/*
594 		 * in order to avoid holding the spin lock for too long, release
595 		 * it when a batch of blkgs are destroyed.
596 		 */
597 		if (!(--count)) {
598 			count = BLKG_DESTROY_BATCH_SIZE;
599 			spin_unlock_irq(&q->queue_lock);
600 			cond_resched();
601 			goto restart;
602 		}
603 	}
604 
605 	/*
606 	 * Mark policy deactivated since policy offline has been done, and
607 	 * the free is scheduled, so future blkcg_deactivate_policy() can
608 	 * be bypassed
609 	 */
610 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
611 		struct blkcg_policy *pol = blkcg_policy[i];
612 
613 		if (pol)
614 			__clear_bit(pol->plid, q->blkcg_pols);
615 	}
616 
617 	q->root_blkg = NULL;
618 	spin_unlock_irq(&q->queue_lock);
619 }
620 
621 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
622 			     struct cftype *cftype, u64 val)
623 {
624 	struct blkcg *blkcg = css_to_blkcg(css);
625 	struct blkcg_gq *blkg;
626 	int i, cpu;
627 
628 	mutex_lock(&blkcg_pol_mutex);
629 	spin_lock_irq(&blkcg->lock);
630 
631 	/*
632 	 * Note that stat reset is racy - it doesn't synchronize against
633 	 * stat updates.  This is a debug feature which shouldn't exist
634 	 * anyway.  If you get hit by a race, retry.
635 	 */
636 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
637 		for_each_possible_cpu(cpu) {
638 			struct blkg_iostat_set *bis =
639 				per_cpu_ptr(blkg->iostat_cpu, cpu);
640 			memset(bis, 0, sizeof(*bis));
641 
642 			/* Re-initialize the cleared blkg_iostat_set */
643 			u64_stats_init(&bis->sync);
644 			bis->blkg = blkg;
645 		}
646 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
647 		u64_stats_init(&blkg->iostat.sync);
648 
649 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
650 			struct blkcg_policy *pol = blkcg_policy[i];
651 
652 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
653 				pol->pd_reset_stats_fn(blkg->pd[i]);
654 		}
655 	}
656 
657 	spin_unlock_irq(&blkcg->lock);
658 	mutex_unlock(&blkcg_pol_mutex);
659 	return 0;
660 }
661 
662 const char *blkg_dev_name(struct blkcg_gq *blkg)
663 {
664 	if (!blkg->q->disk)
665 		return NULL;
666 	return bdi_dev_name(blkg->q->disk->bdi);
667 }
668 
669 /**
670  * blkcg_print_blkgs - helper for printing per-blkg data
671  * @sf: seq_file to print to
672  * @blkcg: blkcg of interest
673  * @prfill: fill function to print out a blkg
674  * @pol: policy in question
675  * @data: data to be passed to @prfill
676  * @show_total: to print out sum of prfill return values or not
677  *
678  * This function invokes @prfill on each blkg of @blkcg if pd for the
679  * policy specified by @pol exists.  @prfill is invoked with @sf, the
680  * policy data and @data and the matching queue lock held.  If @show_total
681  * is %true, the sum of the return values from @prfill is printed with
682  * "Total" label at the end.
683  *
684  * This is to be used to construct print functions for
685  * cftype->read_seq_string method.
686  */
687 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
688 		       u64 (*prfill)(struct seq_file *,
689 				     struct blkg_policy_data *, int),
690 		       const struct blkcg_policy *pol, int data,
691 		       bool show_total)
692 {
693 	struct blkcg_gq *blkg;
694 	u64 total = 0;
695 
696 	rcu_read_lock();
697 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
698 		spin_lock_irq(&blkg->q->queue_lock);
699 		if (blkcg_policy_enabled(blkg->q, pol))
700 			total += prfill(sf, blkg->pd[pol->plid], data);
701 		spin_unlock_irq(&blkg->q->queue_lock);
702 	}
703 	rcu_read_unlock();
704 
705 	if (show_total)
706 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
707 }
708 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
709 
710 /**
711  * __blkg_prfill_u64 - prfill helper for a single u64 value
712  * @sf: seq_file to print to
713  * @pd: policy private data of interest
714  * @v: value to print
715  *
716  * Print @v to @sf for the device associated with @pd.
717  */
718 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
719 {
720 	const char *dname = blkg_dev_name(pd->blkg);
721 
722 	if (!dname)
723 		return 0;
724 
725 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
726 	return v;
727 }
728 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
729 
730 /**
731  * blkg_conf_init - initialize a blkg_conf_ctx
732  * @ctx: blkg_conf_ctx to initialize
733  * @input: input string
734  *
735  * Initialize @ctx which can be used to parse blkg config input string @input.
736  * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
737  * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
738  */
739 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
740 {
741 	*ctx = (struct blkg_conf_ctx){ .input = input };
742 }
743 EXPORT_SYMBOL_GPL(blkg_conf_init);
744 
745 /**
746  * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
747  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
748  *
749  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
750  * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
751  * set to point past the device node prefix.
752  *
753  * This function may be called multiple times on @ctx and the extra calls become
754  * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
755  * explicitly if bdev access is needed without resolving the blkcg / policy part
756  * of @ctx->input. Returns -errno on error.
757  */
758 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
759 {
760 	char *input = ctx->input;
761 	unsigned int major, minor;
762 	struct block_device *bdev;
763 	int key_len;
764 
765 	if (ctx->bdev)
766 		return 0;
767 
768 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
769 		return -EINVAL;
770 
771 	input += key_len;
772 	if (!isspace(*input))
773 		return -EINVAL;
774 	input = skip_spaces(input);
775 
776 	bdev = blkdev_get_no_open(MKDEV(major, minor));
777 	if (!bdev)
778 		return -ENODEV;
779 	if (bdev_is_partition(bdev)) {
780 		blkdev_put_no_open(bdev);
781 		return -ENODEV;
782 	}
783 
784 	mutex_lock(&bdev->bd_queue->rq_qos_mutex);
785 	if (!disk_live(bdev->bd_disk)) {
786 		blkdev_put_no_open(bdev);
787 		mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
788 		return -ENODEV;
789 	}
790 
791 	ctx->body = input;
792 	ctx->bdev = bdev;
793 	return 0;
794 }
795 
796 /**
797  * blkg_conf_prep - parse and prepare for per-blkg config update
798  * @blkcg: target block cgroup
799  * @pol: target policy
800  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
801  *
802  * Parse per-blkg config update from @ctx->input and initialize @ctx
803  * accordingly. On success, @ctx->body points to the part of @ctx->input
804  * following MAJ:MIN, @ctx->bdev points to the target block device and
805  * @ctx->blkg to the blkg being configured.
806  *
807  * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
808  * function returns with queue lock held and must be followed by
809  * blkg_conf_exit().
810  */
811 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
812 		   struct blkg_conf_ctx *ctx)
813 	__acquires(&bdev->bd_queue->queue_lock)
814 {
815 	struct gendisk *disk;
816 	struct request_queue *q;
817 	struct blkcg_gq *blkg;
818 	int ret;
819 
820 	ret = blkg_conf_open_bdev(ctx);
821 	if (ret)
822 		return ret;
823 
824 	disk = ctx->bdev->bd_disk;
825 	q = disk->queue;
826 
827 	/*
828 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
829 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
830 	 */
831 	ret = blk_queue_enter(q, 0);
832 	if (ret)
833 		goto fail;
834 
835 	spin_lock_irq(&q->queue_lock);
836 
837 	if (!blkcg_policy_enabled(q, pol)) {
838 		ret = -EOPNOTSUPP;
839 		goto fail_unlock;
840 	}
841 
842 	blkg = blkg_lookup(blkcg, q);
843 	if (blkg)
844 		goto success;
845 
846 	/*
847 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
848 	 * non-root blkgs have access to their parents.
849 	 */
850 	while (true) {
851 		struct blkcg *pos = blkcg;
852 		struct blkcg *parent;
853 		struct blkcg_gq *new_blkg;
854 
855 		parent = blkcg_parent(blkcg);
856 		while (parent && !blkg_lookup(parent, q)) {
857 			pos = parent;
858 			parent = blkcg_parent(parent);
859 		}
860 
861 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
862 		spin_unlock_irq(&q->queue_lock);
863 
864 		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
865 		if (unlikely(!new_blkg)) {
866 			ret = -ENOMEM;
867 			goto fail_exit_queue;
868 		}
869 
870 		if (radix_tree_preload(GFP_KERNEL)) {
871 			blkg_free(new_blkg);
872 			ret = -ENOMEM;
873 			goto fail_exit_queue;
874 		}
875 
876 		spin_lock_irq(&q->queue_lock);
877 
878 		if (!blkcg_policy_enabled(q, pol)) {
879 			blkg_free(new_blkg);
880 			ret = -EOPNOTSUPP;
881 			goto fail_preloaded;
882 		}
883 
884 		blkg = blkg_lookup(pos, q);
885 		if (blkg) {
886 			blkg_free(new_blkg);
887 		} else {
888 			blkg = blkg_create(pos, disk, new_blkg);
889 			if (IS_ERR(blkg)) {
890 				ret = PTR_ERR(blkg);
891 				goto fail_preloaded;
892 			}
893 		}
894 
895 		radix_tree_preload_end();
896 
897 		if (pos == blkcg)
898 			goto success;
899 	}
900 success:
901 	blk_queue_exit(q);
902 	ctx->blkg = blkg;
903 	return 0;
904 
905 fail_preloaded:
906 	radix_tree_preload_end();
907 fail_unlock:
908 	spin_unlock_irq(&q->queue_lock);
909 fail_exit_queue:
910 	blk_queue_exit(q);
911 fail:
912 	/*
913 	 * If queue was bypassing, we should retry.  Do so after a
914 	 * short msleep().  It isn't strictly necessary but queue
915 	 * can be bypassing for some time and it's always nice to
916 	 * avoid busy looping.
917 	 */
918 	if (ret == -EBUSY) {
919 		msleep(10);
920 		ret = restart_syscall();
921 	}
922 	return ret;
923 }
924 EXPORT_SYMBOL_GPL(blkg_conf_prep);
925 
926 /**
927  * blkg_conf_exit - clean up per-blkg config update
928  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
929  *
930  * Clean up after per-blkg config update. This function must be called on all
931  * blkg_conf_ctx's initialized with blkg_conf_init().
932  */
933 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
934 	__releases(&ctx->bdev->bd_queue->queue_lock)
935 	__releases(&ctx->bdev->bd_queue->rq_qos_mutex)
936 {
937 	if (ctx->blkg) {
938 		spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
939 		ctx->blkg = NULL;
940 	}
941 
942 	if (ctx->bdev) {
943 		mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
944 		blkdev_put_no_open(ctx->bdev);
945 		ctx->body = NULL;
946 		ctx->bdev = NULL;
947 	}
948 }
949 EXPORT_SYMBOL_GPL(blkg_conf_exit);
950 
951 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
952 {
953 	int i;
954 
955 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
956 		dst->bytes[i] = src->bytes[i];
957 		dst->ios[i] = src->ios[i];
958 	}
959 }
960 
961 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
962 {
963 	int i;
964 
965 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
966 		dst->bytes[i] += src->bytes[i];
967 		dst->ios[i] += src->ios[i];
968 	}
969 }
970 
971 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
972 {
973 	int i;
974 
975 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
976 		dst->bytes[i] -= src->bytes[i];
977 		dst->ios[i] -= src->ios[i];
978 	}
979 }
980 
981 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
982 				struct blkg_iostat *last)
983 {
984 	struct blkg_iostat delta;
985 	unsigned long flags;
986 
987 	/* propagate percpu delta to global */
988 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
989 	blkg_iostat_set(&delta, cur);
990 	blkg_iostat_sub(&delta, last);
991 	blkg_iostat_add(&blkg->iostat.cur, &delta);
992 	blkg_iostat_add(last, &delta);
993 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
994 }
995 
996 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
997 {
998 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
999 	struct llist_node *lnode;
1000 	struct blkg_iostat_set *bisc, *next_bisc;
1001 	unsigned long flags;
1002 
1003 	rcu_read_lock();
1004 
1005 	lnode = llist_del_all(lhead);
1006 	if (!lnode)
1007 		goto out;
1008 
1009 	/*
1010 	 * For covering concurrent parent blkg update from blkg_release().
1011 	 *
1012 	 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1013 	 * this lock won't cause contention most of time.
1014 	 */
1015 	raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1016 
1017 	/*
1018 	 * Iterate only the iostat_cpu's queued in the lockless list.
1019 	 */
1020 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1021 		struct blkcg_gq *blkg = bisc->blkg;
1022 		struct blkcg_gq *parent = blkg->parent;
1023 		struct blkg_iostat cur;
1024 		unsigned int seq;
1025 
1026 		WRITE_ONCE(bisc->lqueued, false);
1027 
1028 		/* fetch the current per-cpu values */
1029 		do {
1030 			seq = u64_stats_fetch_begin(&bisc->sync);
1031 			blkg_iostat_set(&cur, &bisc->cur);
1032 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
1033 
1034 		blkcg_iostat_update(blkg, &cur, &bisc->last);
1035 
1036 		/* propagate global delta to parent (unless that's root) */
1037 		if (parent && parent->parent)
1038 			blkcg_iostat_update(parent, &blkg->iostat.cur,
1039 					    &blkg->iostat.last);
1040 	}
1041 	raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1042 out:
1043 	rcu_read_unlock();
1044 }
1045 
1046 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1047 {
1048 	/* Root-level stats are sourced from system-wide IO stats */
1049 	if (cgroup_parent(css->cgroup))
1050 		__blkcg_rstat_flush(css_to_blkcg(css), cpu);
1051 }
1052 
1053 /*
1054  * We source root cgroup stats from the system-wide stats to avoid
1055  * tracking the same information twice and incurring overhead when no
1056  * cgroups are defined. For that reason, cgroup_rstat_flush in
1057  * blkcg_print_stat does not actually fill out the iostat in the root
1058  * cgroup's blkcg_gq.
1059  *
1060  * However, we would like to re-use the printing code between the root and
1061  * non-root cgroups to the extent possible. For that reason, we simulate
1062  * flushing the root cgroup's stats by explicitly filling in the iostat
1063  * with disk level statistics.
1064  */
1065 static void blkcg_fill_root_iostats(void)
1066 {
1067 	struct class_dev_iter iter;
1068 	struct device *dev;
1069 
1070 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1071 	while ((dev = class_dev_iter_next(&iter))) {
1072 		struct block_device *bdev = dev_to_bdev(dev);
1073 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1074 		struct blkg_iostat tmp;
1075 		int cpu;
1076 		unsigned long flags;
1077 
1078 		memset(&tmp, 0, sizeof(tmp));
1079 		for_each_possible_cpu(cpu) {
1080 			struct disk_stats *cpu_dkstats;
1081 
1082 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1083 			tmp.ios[BLKG_IOSTAT_READ] +=
1084 				cpu_dkstats->ios[STAT_READ];
1085 			tmp.ios[BLKG_IOSTAT_WRITE] +=
1086 				cpu_dkstats->ios[STAT_WRITE];
1087 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
1088 				cpu_dkstats->ios[STAT_DISCARD];
1089 			// convert sectors to bytes
1090 			tmp.bytes[BLKG_IOSTAT_READ] +=
1091 				cpu_dkstats->sectors[STAT_READ] << 9;
1092 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
1093 				cpu_dkstats->sectors[STAT_WRITE] << 9;
1094 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1095 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
1096 		}
1097 
1098 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1099 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
1100 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1101 	}
1102 }
1103 
1104 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1105 {
1106 	struct blkg_iostat_set *bis = &blkg->iostat;
1107 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
1108 	const char *dname;
1109 	unsigned seq;
1110 	int i;
1111 
1112 	if (!blkg->online)
1113 		return;
1114 
1115 	dname = blkg_dev_name(blkg);
1116 	if (!dname)
1117 		return;
1118 
1119 	seq_printf(s, "%s ", dname);
1120 
1121 	do {
1122 		seq = u64_stats_fetch_begin(&bis->sync);
1123 
1124 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1125 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1126 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1127 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1128 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1129 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1130 	} while (u64_stats_fetch_retry(&bis->sync, seq));
1131 
1132 	if (rbytes || wbytes || rios || wios) {
1133 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1134 			rbytes, wbytes, rios, wios,
1135 			dbytes, dios);
1136 	}
1137 
1138 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1139 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1140 			atomic_read(&blkg->use_delay),
1141 			atomic64_read(&blkg->delay_nsec));
1142 	}
1143 
1144 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1145 		struct blkcg_policy *pol = blkcg_policy[i];
1146 
1147 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1148 			continue;
1149 
1150 		pol->pd_stat_fn(blkg->pd[i], s);
1151 	}
1152 
1153 	seq_puts(s, "\n");
1154 }
1155 
1156 static int blkcg_print_stat(struct seq_file *sf, void *v)
1157 {
1158 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1159 	struct blkcg_gq *blkg;
1160 
1161 	if (!seq_css(sf)->parent)
1162 		blkcg_fill_root_iostats();
1163 	else
1164 		cgroup_rstat_flush(blkcg->css.cgroup);
1165 
1166 	rcu_read_lock();
1167 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1168 		spin_lock_irq(&blkg->q->queue_lock);
1169 		blkcg_print_one_stat(blkg, sf);
1170 		spin_unlock_irq(&blkg->q->queue_lock);
1171 	}
1172 	rcu_read_unlock();
1173 	return 0;
1174 }
1175 
1176 static struct cftype blkcg_files[] = {
1177 	{
1178 		.name = "stat",
1179 		.seq_show = blkcg_print_stat,
1180 	},
1181 	{ }	/* terminate */
1182 };
1183 
1184 static struct cftype blkcg_legacy_files[] = {
1185 	{
1186 		.name = "reset_stats",
1187 		.write_u64 = blkcg_reset_stats,
1188 	},
1189 	{ }	/* terminate */
1190 };
1191 
1192 #ifdef CONFIG_CGROUP_WRITEBACK
1193 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1194 {
1195 	return &css_to_blkcg(css)->cgwb_list;
1196 }
1197 #endif
1198 
1199 /*
1200  * blkcg destruction is a three-stage process.
1201  *
1202  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1203  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1204  *    to the completion of writeback associated with the blkcg.  This lets us
1205  *    avoid punting potentially large amounts of outstanding writeback to root
1206  *    while maintaining any ongoing policies.  The next stage is triggered when
1207  *    the nr_cgwbs count goes to zero.
1208  *
1209  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1210  *    and handles the destruction of blkgs.  Here the css reference held by
1211  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1212  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1213  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1214  *    punted to the root_blkg.
1215  *
1216  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1217  *    This finally frees the blkcg.
1218  */
1219 
1220 /**
1221  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1222  * @blkcg: blkcg of interest
1223  *
1224  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1225  * is nested inside q lock, this function performs reverse double lock dancing.
1226  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1227  * blkcg_css_free to eventually be called.
1228  *
1229  * This is the blkcg counterpart of ioc_release_fn().
1230  */
1231 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1232 {
1233 	might_sleep();
1234 
1235 	spin_lock_irq(&blkcg->lock);
1236 
1237 	while (!hlist_empty(&blkcg->blkg_list)) {
1238 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1239 						struct blkcg_gq, blkcg_node);
1240 		struct request_queue *q = blkg->q;
1241 
1242 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1243 			/*
1244 			 * Given that the system can accumulate a huge number
1245 			 * of blkgs in pathological cases, check to see if we
1246 			 * need to rescheduling to avoid softlockup.
1247 			 */
1248 			spin_unlock_irq(&blkcg->lock);
1249 			cond_resched();
1250 			spin_lock_irq(&blkcg->lock);
1251 			continue;
1252 		}
1253 
1254 		blkg_destroy(blkg);
1255 		spin_unlock(&q->queue_lock);
1256 	}
1257 
1258 	spin_unlock_irq(&blkcg->lock);
1259 }
1260 
1261 /**
1262  * blkcg_pin_online - pin online state
1263  * @blkcg_css: blkcg of interest
1264  *
1265  * While pinned, a blkcg is kept online.  This is primarily used to
1266  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1267  * while an associated cgwb is still active.
1268  */
1269 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1270 {
1271 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1272 }
1273 
1274 /**
1275  * blkcg_unpin_online - unpin online state
1276  * @blkcg_css: blkcg of interest
1277  *
1278  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1279  * that blkg doesn't go offline while an associated cgwb is still active.
1280  * When this count goes to zero, all active cgwbs have finished so the
1281  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1282  */
1283 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1284 {
1285 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1286 
1287 	do {
1288 		if (!refcount_dec_and_test(&blkcg->online_pin))
1289 			break;
1290 		blkcg_destroy_blkgs(blkcg);
1291 		blkcg = blkcg_parent(blkcg);
1292 	} while (blkcg);
1293 }
1294 
1295 /**
1296  * blkcg_css_offline - cgroup css_offline callback
1297  * @css: css of interest
1298  *
1299  * This function is called when @css is about to go away.  Here the cgwbs are
1300  * offlined first and only once writeback associated with the blkcg has
1301  * finished do we start step 2 (see above).
1302  */
1303 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1304 {
1305 	/* this prevents anyone from attaching or migrating to this blkcg */
1306 	wb_blkcg_offline(css);
1307 
1308 	/* put the base online pin allowing step 2 to be triggered */
1309 	blkcg_unpin_online(css);
1310 }
1311 
1312 static void blkcg_css_free(struct cgroup_subsys_state *css)
1313 {
1314 	struct blkcg *blkcg = css_to_blkcg(css);
1315 	int i;
1316 
1317 	mutex_lock(&blkcg_pol_mutex);
1318 
1319 	list_del(&blkcg->all_blkcgs_node);
1320 
1321 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1322 		if (blkcg->cpd[i])
1323 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1324 
1325 	mutex_unlock(&blkcg_pol_mutex);
1326 
1327 	free_percpu(blkcg->lhead);
1328 	kfree(blkcg);
1329 }
1330 
1331 static struct cgroup_subsys_state *
1332 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1333 {
1334 	struct blkcg *blkcg;
1335 	int i;
1336 
1337 	mutex_lock(&blkcg_pol_mutex);
1338 
1339 	if (!parent_css) {
1340 		blkcg = &blkcg_root;
1341 	} else {
1342 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1343 		if (!blkcg)
1344 			goto unlock;
1345 	}
1346 
1347 	if (init_blkcg_llists(blkcg))
1348 		goto free_blkcg;
1349 
1350 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1351 		struct blkcg_policy *pol = blkcg_policy[i];
1352 		struct blkcg_policy_data *cpd;
1353 
1354 		/*
1355 		 * If the policy hasn't been attached yet, wait for it
1356 		 * to be attached before doing anything else. Otherwise,
1357 		 * check if the policy requires any specific per-cgroup
1358 		 * data: if it does, allocate and initialize it.
1359 		 */
1360 		if (!pol || !pol->cpd_alloc_fn)
1361 			continue;
1362 
1363 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1364 		if (!cpd)
1365 			goto free_pd_blkcg;
1366 
1367 		blkcg->cpd[i] = cpd;
1368 		cpd->blkcg = blkcg;
1369 		cpd->plid = i;
1370 	}
1371 
1372 	spin_lock_init(&blkcg->lock);
1373 	refcount_set(&blkcg->online_pin, 1);
1374 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1375 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1376 #ifdef CONFIG_CGROUP_WRITEBACK
1377 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1378 #endif
1379 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1380 
1381 	mutex_unlock(&blkcg_pol_mutex);
1382 	return &blkcg->css;
1383 
1384 free_pd_blkcg:
1385 	for (i--; i >= 0; i--)
1386 		if (blkcg->cpd[i])
1387 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1388 	free_percpu(blkcg->lhead);
1389 free_blkcg:
1390 	if (blkcg != &blkcg_root)
1391 		kfree(blkcg);
1392 unlock:
1393 	mutex_unlock(&blkcg_pol_mutex);
1394 	return ERR_PTR(-ENOMEM);
1395 }
1396 
1397 static int blkcg_css_online(struct cgroup_subsys_state *css)
1398 {
1399 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1400 
1401 	/*
1402 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1403 	 * don't go offline while cgwbs are still active on them.  Pin the
1404 	 * parent so that offline always happens towards the root.
1405 	 */
1406 	if (parent)
1407 		blkcg_pin_online(&parent->css);
1408 	return 0;
1409 }
1410 
1411 void blkg_init_queue(struct request_queue *q)
1412 {
1413 	INIT_LIST_HEAD(&q->blkg_list);
1414 	mutex_init(&q->blkcg_mutex);
1415 }
1416 
1417 int blkcg_init_disk(struct gendisk *disk)
1418 {
1419 	struct request_queue *q = disk->queue;
1420 	struct blkcg_gq *new_blkg, *blkg;
1421 	bool preloaded;
1422 	int ret;
1423 
1424 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1425 	if (!new_blkg)
1426 		return -ENOMEM;
1427 
1428 	preloaded = !radix_tree_preload(GFP_KERNEL);
1429 
1430 	/* Make sure the root blkg exists. */
1431 	/* spin_lock_irq can serve as RCU read-side critical section. */
1432 	spin_lock_irq(&q->queue_lock);
1433 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1434 	if (IS_ERR(blkg))
1435 		goto err_unlock;
1436 	q->root_blkg = blkg;
1437 	spin_unlock_irq(&q->queue_lock);
1438 
1439 	if (preloaded)
1440 		radix_tree_preload_end();
1441 
1442 	ret = blk_ioprio_init(disk);
1443 	if (ret)
1444 		goto err_destroy_all;
1445 
1446 	return 0;
1447 
1448 err_destroy_all:
1449 	blkg_destroy_all(disk);
1450 	return ret;
1451 err_unlock:
1452 	spin_unlock_irq(&q->queue_lock);
1453 	if (preloaded)
1454 		radix_tree_preload_end();
1455 	return PTR_ERR(blkg);
1456 }
1457 
1458 void blkcg_exit_disk(struct gendisk *disk)
1459 {
1460 	blkg_destroy_all(disk);
1461 	blk_throtl_exit(disk);
1462 }
1463 
1464 static void blkcg_exit(struct task_struct *tsk)
1465 {
1466 	if (tsk->throttle_disk)
1467 		put_disk(tsk->throttle_disk);
1468 	tsk->throttle_disk = NULL;
1469 }
1470 
1471 struct cgroup_subsys io_cgrp_subsys = {
1472 	.css_alloc = blkcg_css_alloc,
1473 	.css_online = blkcg_css_online,
1474 	.css_offline = blkcg_css_offline,
1475 	.css_free = blkcg_css_free,
1476 	.css_rstat_flush = blkcg_rstat_flush,
1477 	.dfl_cftypes = blkcg_files,
1478 	.legacy_cftypes = blkcg_legacy_files,
1479 	.legacy_name = "blkio",
1480 	.exit = blkcg_exit,
1481 #ifdef CONFIG_MEMCG
1482 	/*
1483 	 * This ensures that, if available, memcg is automatically enabled
1484 	 * together on the default hierarchy so that the owner cgroup can
1485 	 * be retrieved from writeback pages.
1486 	 */
1487 	.depends_on = 1 << memory_cgrp_id,
1488 #endif
1489 };
1490 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1491 
1492 /**
1493  * blkcg_activate_policy - activate a blkcg policy on a gendisk
1494  * @disk: gendisk of interest
1495  * @pol: blkcg policy to activate
1496  *
1497  * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1498  * bypass mode to populate its blkgs with policy_data for @pol.
1499  *
1500  * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1501  * from IO path.  Update of each blkg is protected by both queue and blkcg
1502  * locks so that holding either lock and testing blkcg_policy_enabled() is
1503  * always enough for dereferencing policy data.
1504  *
1505  * The caller is responsible for synchronizing [de]activations and policy
1506  * [un]registerations.  Returns 0 on success, -errno on failure.
1507  */
1508 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1509 {
1510 	struct request_queue *q = disk->queue;
1511 	struct blkg_policy_data *pd_prealloc = NULL;
1512 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1513 	int ret;
1514 
1515 	if (blkcg_policy_enabled(q, pol))
1516 		return 0;
1517 
1518 	if (queue_is_mq(q))
1519 		blk_mq_freeze_queue(q);
1520 retry:
1521 	spin_lock_irq(&q->queue_lock);
1522 
1523 	/* blkg_list is pushed at the head, reverse walk to initialize parents first */
1524 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1525 		struct blkg_policy_data *pd;
1526 
1527 		if (blkg->pd[pol->plid])
1528 			continue;
1529 
1530 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1531 		if (blkg == pinned_blkg) {
1532 			pd = pd_prealloc;
1533 			pd_prealloc = NULL;
1534 		} else {
1535 			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1536 					      GFP_NOWAIT | __GFP_NOWARN);
1537 		}
1538 
1539 		if (!pd) {
1540 			/*
1541 			 * GFP_NOWAIT failed.  Free the existing one and
1542 			 * prealloc for @blkg w/ GFP_KERNEL.
1543 			 */
1544 			if (pinned_blkg)
1545 				blkg_put(pinned_blkg);
1546 			blkg_get(blkg);
1547 			pinned_blkg = blkg;
1548 
1549 			spin_unlock_irq(&q->queue_lock);
1550 
1551 			if (pd_prealloc)
1552 				pol->pd_free_fn(pd_prealloc);
1553 			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1554 						       GFP_KERNEL);
1555 			if (pd_prealloc)
1556 				goto retry;
1557 			else
1558 				goto enomem;
1559 		}
1560 
1561 		spin_lock(&blkg->blkcg->lock);
1562 
1563 		pd->blkg = blkg;
1564 		pd->plid = pol->plid;
1565 		blkg->pd[pol->plid] = pd;
1566 
1567 		if (pol->pd_init_fn)
1568 			pol->pd_init_fn(pd);
1569 
1570 		if (pol->pd_online_fn)
1571 			pol->pd_online_fn(pd);
1572 		pd->online = true;
1573 
1574 		spin_unlock(&blkg->blkcg->lock);
1575 	}
1576 
1577 	__set_bit(pol->plid, q->blkcg_pols);
1578 	ret = 0;
1579 
1580 	spin_unlock_irq(&q->queue_lock);
1581 out:
1582 	if (queue_is_mq(q))
1583 		blk_mq_unfreeze_queue(q);
1584 	if (pinned_blkg)
1585 		blkg_put(pinned_blkg);
1586 	if (pd_prealloc)
1587 		pol->pd_free_fn(pd_prealloc);
1588 	return ret;
1589 
1590 enomem:
1591 	/* alloc failed, take down everything */
1592 	spin_lock_irq(&q->queue_lock);
1593 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1594 		struct blkcg *blkcg = blkg->blkcg;
1595 		struct blkg_policy_data *pd;
1596 
1597 		spin_lock(&blkcg->lock);
1598 		pd = blkg->pd[pol->plid];
1599 		if (pd) {
1600 			if (pd->online && pol->pd_offline_fn)
1601 				pol->pd_offline_fn(pd);
1602 			pd->online = false;
1603 			pol->pd_free_fn(pd);
1604 			blkg->pd[pol->plid] = NULL;
1605 		}
1606 		spin_unlock(&blkcg->lock);
1607 	}
1608 	spin_unlock_irq(&q->queue_lock);
1609 	ret = -ENOMEM;
1610 	goto out;
1611 }
1612 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1613 
1614 /**
1615  * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1616  * @disk: gendisk of interest
1617  * @pol: blkcg policy to deactivate
1618  *
1619  * Deactivate @pol on @disk.  Follows the same synchronization rules as
1620  * blkcg_activate_policy().
1621  */
1622 void blkcg_deactivate_policy(struct gendisk *disk,
1623 			     const struct blkcg_policy *pol)
1624 {
1625 	struct request_queue *q = disk->queue;
1626 	struct blkcg_gq *blkg;
1627 
1628 	if (!blkcg_policy_enabled(q, pol))
1629 		return;
1630 
1631 	if (queue_is_mq(q))
1632 		blk_mq_freeze_queue(q);
1633 
1634 	mutex_lock(&q->blkcg_mutex);
1635 	spin_lock_irq(&q->queue_lock);
1636 
1637 	__clear_bit(pol->plid, q->blkcg_pols);
1638 
1639 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1640 		struct blkcg *blkcg = blkg->blkcg;
1641 
1642 		spin_lock(&blkcg->lock);
1643 		if (blkg->pd[pol->plid]) {
1644 			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1645 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1646 			pol->pd_free_fn(blkg->pd[pol->plid]);
1647 			blkg->pd[pol->plid] = NULL;
1648 		}
1649 		spin_unlock(&blkcg->lock);
1650 	}
1651 
1652 	spin_unlock_irq(&q->queue_lock);
1653 	mutex_unlock(&q->blkcg_mutex);
1654 
1655 	if (queue_is_mq(q))
1656 		blk_mq_unfreeze_queue(q);
1657 }
1658 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1659 
1660 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1661 {
1662 	struct blkcg *blkcg;
1663 
1664 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1665 		if (blkcg->cpd[pol->plid]) {
1666 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1667 			blkcg->cpd[pol->plid] = NULL;
1668 		}
1669 	}
1670 }
1671 
1672 /**
1673  * blkcg_policy_register - register a blkcg policy
1674  * @pol: blkcg policy to register
1675  *
1676  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1677  * successful registration.  Returns 0 on success and -errno on failure.
1678  */
1679 int blkcg_policy_register(struct blkcg_policy *pol)
1680 {
1681 	struct blkcg *blkcg;
1682 	int i, ret;
1683 
1684 	mutex_lock(&blkcg_pol_register_mutex);
1685 	mutex_lock(&blkcg_pol_mutex);
1686 
1687 	/* find an empty slot */
1688 	ret = -ENOSPC;
1689 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1690 		if (!blkcg_policy[i])
1691 			break;
1692 	if (i >= BLKCG_MAX_POLS) {
1693 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1694 		goto err_unlock;
1695 	}
1696 
1697 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1698 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1699 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1700 		goto err_unlock;
1701 
1702 	/* register @pol */
1703 	pol->plid = i;
1704 	blkcg_policy[pol->plid] = pol;
1705 
1706 	/* allocate and install cpd's */
1707 	if (pol->cpd_alloc_fn) {
1708 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1709 			struct blkcg_policy_data *cpd;
1710 
1711 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1712 			if (!cpd)
1713 				goto err_free_cpds;
1714 
1715 			blkcg->cpd[pol->plid] = cpd;
1716 			cpd->blkcg = blkcg;
1717 			cpd->plid = pol->plid;
1718 		}
1719 	}
1720 
1721 	mutex_unlock(&blkcg_pol_mutex);
1722 
1723 	/* everything is in place, add intf files for the new policy */
1724 	if (pol->dfl_cftypes)
1725 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1726 					       pol->dfl_cftypes));
1727 	if (pol->legacy_cftypes)
1728 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1729 						  pol->legacy_cftypes));
1730 	mutex_unlock(&blkcg_pol_register_mutex);
1731 	return 0;
1732 
1733 err_free_cpds:
1734 	if (pol->cpd_free_fn)
1735 		blkcg_free_all_cpd(pol);
1736 
1737 	blkcg_policy[pol->plid] = NULL;
1738 err_unlock:
1739 	mutex_unlock(&blkcg_pol_mutex);
1740 	mutex_unlock(&blkcg_pol_register_mutex);
1741 	return ret;
1742 }
1743 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1744 
1745 /**
1746  * blkcg_policy_unregister - unregister a blkcg policy
1747  * @pol: blkcg policy to unregister
1748  *
1749  * Undo blkcg_policy_register(@pol).  Might sleep.
1750  */
1751 void blkcg_policy_unregister(struct blkcg_policy *pol)
1752 {
1753 	mutex_lock(&blkcg_pol_register_mutex);
1754 
1755 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1756 		goto out_unlock;
1757 
1758 	/* kill the intf files first */
1759 	if (pol->dfl_cftypes)
1760 		cgroup_rm_cftypes(pol->dfl_cftypes);
1761 	if (pol->legacy_cftypes)
1762 		cgroup_rm_cftypes(pol->legacy_cftypes);
1763 
1764 	/* remove cpds and unregister */
1765 	mutex_lock(&blkcg_pol_mutex);
1766 
1767 	if (pol->cpd_free_fn)
1768 		blkcg_free_all_cpd(pol);
1769 
1770 	blkcg_policy[pol->plid] = NULL;
1771 
1772 	mutex_unlock(&blkcg_pol_mutex);
1773 out_unlock:
1774 	mutex_unlock(&blkcg_pol_register_mutex);
1775 }
1776 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1777 
1778 /*
1779  * Scale the accumulated delay based on how long it has been since we updated
1780  * the delay.  We only call this when we are adding delay, in case it's been a
1781  * while since we added delay, and when we are checking to see if we need to
1782  * delay a task, to account for any delays that may have occurred.
1783  */
1784 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1785 {
1786 	u64 old = atomic64_read(&blkg->delay_start);
1787 
1788 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1789 	if (atomic_read(&blkg->use_delay) < 0)
1790 		return;
1791 
1792 	/*
1793 	 * We only want to scale down every second.  The idea here is that we
1794 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1795 	 * time window.  We only want to throttle tasks for recent delay that
1796 	 * has occurred, in 1 second time windows since that's the maximum
1797 	 * things can be throttled.  We save the current delay window in
1798 	 * blkg->last_delay so we know what amount is still left to be charged
1799 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1800 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1801 	 * are ok with whatever is happening now, and we can take away more of
1802 	 * the accumulated delay as we've already throttled enough that
1803 	 * everybody is happy with their IO latencies.
1804 	 */
1805 	if (time_before64(old + NSEC_PER_SEC, now) &&
1806 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1807 		u64 cur = atomic64_read(&blkg->delay_nsec);
1808 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1809 		int cur_use = atomic_read(&blkg->use_delay);
1810 
1811 		/*
1812 		 * We've been unthrottled, subtract a larger chunk of our
1813 		 * accumulated delay.
1814 		 */
1815 		if (cur_use < blkg->last_use)
1816 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1817 
1818 		/*
1819 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1820 		 * should only ever be growing except here where we subtract out
1821 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1822 		 * rather not end up with negative numbers.
1823 		 */
1824 		if (unlikely(cur < sub)) {
1825 			atomic64_set(&blkg->delay_nsec, 0);
1826 			blkg->last_delay = 0;
1827 		} else {
1828 			atomic64_sub(sub, &blkg->delay_nsec);
1829 			blkg->last_delay = cur - sub;
1830 		}
1831 		blkg->last_use = cur_use;
1832 	}
1833 }
1834 
1835 /*
1836  * This is called when we want to actually walk up the hierarchy and check to
1837  * see if we need to throttle, and then actually throttle if there is some
1838  * accumulated delay.  This should only be called upon return to user space so
1839  * we're not holding some lock that would induce a priority inversion.
1840  */
1841 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1842 {
1843 	unsigned long pflags;
1844 	bool clamp;
1845 	u64 now = blk_time_get_ns();
1846 	u64 exp;
1847 	u64 delay_nsec = 0;
1848 	int tok;
1849 
1850 	while (blkg->parent) {
1851 		int use_delay = atomic_read(&blkg->use_delay);
1852 
1853 		if (use_delay) {
1854 			u64 this_delay;
1855 
1856 			blkcg_scale_delay(blkg, now);
1857 			this_delay = atomic64_read(&blkg->delay_nsec);
1858 			if (this_delay > delay_nsec) {
1859 				delay_nsec = this_delay;
1860 				clamp = use_delay > 0;
1861 			}
1862 		}
1863 		blkg = blkg->parent;
1864 	}
1865 
1866 	if (!delay_nsec)
1867 		return;
1868 
1869 	/*
1870 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1871 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1872 	 * delay, and we want userspace to be able to do _something_ so cap the
1873 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1874 	 * tasks will be delayed for 0.25 second for every syscall. If
1875 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1876 	 * caller is responsible for regulating the range.
1877 	 */
1878 	if (clamp)
1879 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1880 
1881 	if (use_memdelay)
1882 		psi_memstall_enter(&pflags);
1883 
1884 	exp = ktime_add_ns(now, delay_nsec);
1885 	tok = io_schedule_prepare();
1886 	do {
1887 		__set_current_state(TASK_KILLABLE);
1888 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1889 			break;
1890 	} while (!fatal_signal_pending(current));
1891 	io_schedule_finish(tok);
1892 
1893 	if (use_memdelay)
1894 		psi_memstall_leave(&pflags);
1895 }
1896 
1897 /**
1898  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1899  *
1900  * This is only called if we've been marked with set_notify_resume().  Obviously
1901  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1902  * check to see if current->throttle_disk is set and if not this doesn't do
1903  * anything.  This should only ever be called by the resume code, it's not meant
1904  * to be called by people willy-nilly as it will actually do the work to
1905  * throttle the task if it is setup for throttling.
1906  */
1907 void blkcg_maybe_throttle_current(void)
1908 {
1909 	struct gendisk *disk = current->throttle_disk;
1910 	struct blkcg *blkcg;
1911 	struct blkcg_gq *blkg;
1912 	bool use_memdelay = current->use_memdelay;
1913 
1914 	if (!disk)
1915 		return;
1916 
1917 	current->throttle_disk = NULL;
1918 	current->use_memdelay = false;
1919 
1920 	rcu_read_lock();
1921 	blkcg = css_to_blkcg(blkcg_css());
1922 	if (!blkcg)
1923 		goto out;
1924 	blkg = blkg_lookup(blkcg, disk->queue);
1925 	if (!blkg)
1926 		goto out;
1927 	if (!blkg_tryget(blkg))
1928 		goto out;
1929 	rcu_read_unlock();
1930 
1931 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1932 	blkg_put(blkg);
1933 	put_disk(disk);
1934 	return;
1935 out:
1936 	rcu_read_unlock();
1937 }
1938 
1939 /**
1940  * blkcg_schedule_throttle - this task needs to check for throttling
1941  * @disk: disk to throttle
1942  * @use_memdelay: do we charge this to memory delay for PSI
1943  *
1944  * This is called by the IO controller when we know there's delay accumulated
1945  * for the blkg for this task.  We do not pass the blkg because there are places
1946  * we call this that may not have that information, the swapping code for
1947  * instance will only have a block_device at that point.  This set's the
1948  * notify_resume for the task to check and see if it requires throttling before
1949  * returning to user space.
1950  *
1951  * We will only schedule once per syscall.  You can call this over and over
1952  * again and it will only do the check once upon return to user space, and only
1953  * throttle once.  If the task needs to be throttled again it'll need to be
1954  * re-set at the next time we see the task.
1955  */
1956 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1957 {
1958 	if (unlikely(current->flags & PF_KTHREAD))
1959 		return;
1960 
1961 	if (current->throttle_disk != disk) {
1962 		if (test_bit(GD_DEAD, &disk->state))
1963 			return;
1964 		get_device(disk_to_dev(disk));
1965 
1966 		if (current->throttle_disk)
1967 			put_disk(current->throttle_disk);
1968 		current->throttle_disk = disk;
1969 	}
1970 
1971 	if (use_memdelay)
1972 		current->use_memdelay = use_memdelay;
1973 	set_notify_resume(current);
1974 }
1975 
1976 /**
1977  * blkcg_add_delay - add delay to this blkg
1978  * @blkg: blkg of interest
1979  * @now: the current time in nanoseconds
1980  * @delta: how many nanoseconds of delay to add
1981  *
1982  * Charge @delta to the blkg's current delay accumulation.  This is used to
1983  * throttle tasks if an IO controller thinks we need more throttling.
1984  */
1985 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1986 {
1987 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1988 		return;
1989 	blkcg_scale_delay(blkg, now);
1990 	atomic64_add(delta, &blkg->delay_nsec);
1991 }
1992 
1993 /**
1994  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1995  * @bio: target bio
1996  * @css: target css
1997  *
1998  * As the failure mode here is to walk up the blkg tree, this ensure that the
1999  * blkg->parent pointers are always valid.  This returns the blkg that it ended
2000  * up taking a reference on or %NULL if no reference was taken.
2001  */
2002 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2003 		struct cgroup_subsys_state *css)
2004 {
2005 	struct blkcg_gq *blkg, *ret_blkg = NULL;
2006 
2007 	rcu_read_lock();
2008 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2009 	while (blkg) {
2010 		if (blkg_tryget(blkg)) {
2011 			ret_blkg = blkg;
2012 			break;
2013 		}
2014 		blkg = blkg->parent;
2015 	}
2016 	rcu_read_unlock();
2017 
2018 	return ret_blkg;
2019 }
2020 
2021 /**
2022  * bio_associate_blkg_from_css - associate a bio with a specified css
2023  * @bio: target bio
2024  * @css: target css
2025  *
2026  * Associate @bio with the blkg found by combining the css's blkg and the
2027  * request_queue of the @bio.  An association failure is handled by walking up
2028  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
2029  * and q->root_blkg.  This situation only happens when a cgroup is dying and
2030  * then the remaining bios will spill to the closest alive blkg.
2031  *
2032  * A reference will be taken on the blkg and will be released when @bio is
2033  * freed.
2034  */
2035 void bio_associate_blkg_from_css(struct bio *bio,
2036 				 struct cgroup_subsys_state *css)
2037 {
2038 	if (bio->bi_blkg)
2039 		blkg_put(bio->bi_blkg);
2040 
2041 	if (css && css->parent) {
2042 		bio->bi_blkg = blkg_tryget_closest(bio, css);
2043 	} else {
2044 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2045 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2046 	}
2047 }
2048 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2049 
2050 /**
2051  * bio_associate_blkg - associate a bio with a blkg
2052  * @bio: target bio
2053  *
2054  * Associate @bio with the blkg found from the bio's css and request_queue.
2055  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2056  * already associated, the css is reused and association redone as the
2057  * request_queue may have changed.
2058  */
2059 void bio_associate_blkg(struct bio *bio)
2060 {
2061 	struct cgroup_subsys_state *css;
2062 
2063 	if (blk_op_is_passthrough(bio->bi_opf))
2064 		return;
2065 
2066 	rcu_read_lock();
2067 
2068 	if (bio->bi_blkg)
2069 		css = bio_blkcg_css(bio);
2070 	else
2071 		css = blkcg_css();
2072 
2073 	bio_associate_blkg_from_css(bio, css);
2074 
2075 	rcu_read_unlock();
2076 }
2077 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2078 
2079 /**
2080  * bio_clone_blkg_association - clone blkg association from src to dst bio
2081  * @dst: destination bio
2082  * @src: source bio
2083  */
2084 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2085 {
2086 	if (src->bi_blkg)
2087 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2088 }
2089 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2090 
2091 static int blk_cgroup_io_type(struct bio *bio)
2092 {
2093 	if (op_is_discard(bio->bi_opf))
2094 		return BLKG_IOSTAT_DISCARD;
2095 	if (op_is_write(bio->bi_opf))
2096 		return BLKG_IOSTAT_WRITE;
2097 	return BLKG_IOSTAT_READ;
2098 }
2099 
2100 void blk_cgroup_bio_start(struct bio *bio)
2101 {
2102 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2103 	int rwd = blk_cgroup_io_type(bio), cpu;
2104 	struct blkg_iostat_set *bis;
2105 	unsigned long flags;
2106 
2107 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2108 		return;
2109 
2110 	/* Root-level stats are sourced from system-wide IO stats */
2111 	if (!cgroup_parent(blkcg->css.cgroup))
2112 		return;
2113 
2114 	cpu = get_cpu();
2115 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2116 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2117 
2118 	/*
2119 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2120 	 * bio and we would have already accounted for the size of the bio.
2121 	 */
2122 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2123 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2124 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2125 	}
2126 	bis->cur.ios[rwd]++;
2127 
2128 	/*
2129 	 * If the iostat_cpu isn't in a lockless list, put it into the
2130 	 * list to indicate that a stat update is pending.
2131 	 */
2132 	if (!READ_ONCE(bis->lqueued)) {
2133 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2134 
2135 		llist_add(&bis->lnode, lhead);
2136 		WRITE_ONCE(bis->lqueued, true);
2137 	}
2138 
2139 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2140 	cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2141 	put_cpu();
2142 }
2143 
2144 bool blk_cgroup_congested(void)
2145 {
2146 	struct cgroup_subsys_state *css;
2147 	bool ret = false;
2148 
2149 	rcu_read_lock();
2150 	for (css = blkcg_css(); css; css = css->parent) {
2151 		if (atomic_read(&css->cgroup->congestion_count)) {
2152 			ret = true;
2153 			break;
2154 		}
2155 	}
2156 	rcu_read_unlock();
2157 	return ret;
2158 }
2159 
2160 module_param(blkcg_debug_stats, bool, 0644);
2161 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2162