xref: /linux/block/blk-cgroup.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34 
35 #define MAX_KEY_LEN 100
36 
37 /*
38  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40  * policy [un]register operations including cgroup file additions /
41  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
42  * allows grabbing it from cgroup callbacks.
43  */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46 
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49 
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52 
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54 
55 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
56 
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59 
60 static bool blkcg_policy_enabled(struct request_queue *q,
61 				 const struct blkcg_policy *pol)
62 {
63 	return pol && test_bit(pol->plid, q->blkcg_pols);
64 }
65 
66 /**
67  * blkg_free - free a blkg
68  * @blkg: blkg to free
69  *
70  * Free @blkg which may be partially allocated.
71  */
72 static void blkg_free(struct blkcg_gq *blkg)
73 {
74 	int i;
75 
76 	if (!blkg)
77 		return;
78 
79 	for (i = 0; i < BLKCG_MAX_POLS; i++)
80 		if (blkg->pd[i])
81 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
82 
83 	free_percpu(blkg->iostat_cpu);
84 	percpu_ref_exit(&blkg->refcnt);
85 	kfree(blkg);
86 }
87 
88 static void __blkg_release(struct rcu_head *rcu)
89 {
90 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
91 
92 	WARN_ON(!bio_list_empty(&blkg->async_bios));
93 
94 	/* release the blkcg and parent blkg refs this blkg has been holding */
95 	css_put(&blkg->blkcg->css);
96 	if (blkg->parent)
97 		blkg_put(blkg->parent);
98 
99 	wb_congested_put(blkg->wb_congested);
100 
101 	blkg_free(blkg);
102 }
103 
104 /*
105  * A group is RCU protected, but having an rcu lock does not mean that one
106  * can access all the fields of blkg and assume these are valid.  For
107  * example, don't try to follow throtl_data and request queue links.
108  *
109  * Having a reference to blkg under an rcu allows accesses to only values
110  * local to groups like group stats and group rate limits.
111  */
112 static void blkg_release(struct percpu_ref *ref)
113 {
114 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
115 
116 	call_rcu(&blkg->rcu_head, __blkg_release);
117 }
118 
119 static void blkg_async_bio_workfn(struct work_struct *work)
120 {
121 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 					     async_bio_work);
123 	struct bio_list bios = BIO_EMPTY_LIST;
124 	struct bio *bio;
125 
126 	/* as long as there are pending bios, @blkg can't go away */
127 	spin_lock_bh(&blkg->async_bio_lock);
128 	bio_list_merge(&bios, &blkg->async_bios);
129 	bio_list_init(&blkg->async_bios);
130 	spin_unlock_bh(&blkg->async_bio_lock);
131 
132 	while ((bio = bio_list_pop(&bios)))
133 		submit_bio(bio);
134 }
135 
136 /**
137  * blkg_alloc - allocate a blkg
138  * @blkcg: block cgroup the new blkg is associated with
139  * @q: request_queue the new blkg is associated with
140  * @gfp_mask: allocation mask to use
141  *
142  * Allocate a new blkg assocating @blkcg and @q.
143  */
144 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
145 				   gfp_t gfp_mask)
146 {
147 	struct blkcg_gq *blkg;
148 	int i, cpu;
149 
150 	/* alloc and init base part */
151 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
152 	if (!blkg)
153 		return NULL;
154 
155 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
156 		goto err_free;
157 
158 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
159 	if (!blkg->iostat_cpu)
160 		goto err_free;
161 
162 	blkg->q = q;
163 	INIT_LIST_HEAD(&blkg->q_node);
164 	spin_lock_init(&blkg->async_bio_lock);
165 	bio_list_init(&blkg->async_bios);
166 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
167 	blkg->blkcg = blkcg;
168 
169 	u64_stats_init(&blkg->iostat.sync);
170 	for_each_possible_cpu(cpu)
171 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
172 
173 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
174 		struct blkcg_policy *pol = blkcg_policy[i];
175 		struct blkg_policy_data *pd;
176 
177 		if (!blkcg_policy_enabled(q, pol))
178 			continue;
179 
180 		/* alloc per-policy data and attach it to blkg */
181 		pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
182 		if (!pd)
183 			goto err_free;
184 
185 		blkg->pd[i] = pd;
186 		pd->blkg = blkg;
187 		pd->plid = i;
188 	}
189 
190 	return blkg;
191 
192 err_free:
193 	blkg_free(blkg);
194 	return NULL;
195 }
196 
197 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
198 				      struct request_queue *q, bool update_hint)
199 {
200 	struct blkcg_gq *blkg;
201 
202 	/*
203 	 * Hint didn't match.  Look up from the radix tree.  Note that the
204 	 * hint can only be updated under queue_lock as otherwise @blkg
205 	 * could have already been removed from blkg_tree.  The caller is
206 	 * responsible for grabbing queue_lock if @update_hint.
207 	 */
208 	blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
209 	if (blkg && blkg->q == q) {
210 		if (update_hint) {
211 			lockdep_assert_held(&q->queue_lock);
212 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
213 		}
214 		return blkg;
215 	}
216 
217 	return NULL;
218 }
219 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
220 
221 /*
222  * If @new_blkg is %NULL, this function tries to allocate a new one as
223  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
224  */
225 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
226 				    struct request_queue *q,
227 				    struct blkcg_gq *new_blkg)
228 {
229 	struct blkcg_gq *blkg;
230 	struct bdi_writeback_congested *wb_congested;
231 	int i, ret;
232 
233 	WARN_ON_ONCE(!rcu_read_lock_held());
234 	lockdep_assert_held(&q->queue_lock);
235 
236 	/* request_queue is dying, do not create/recreate a blkg */
237 	if (blk_queue_dying(q)) {
238 		ret = -ENODEV;
239 		goto err_free_blkg;
240 	}
241 
242 	/* blkg holds a reference to blkcg */
243 	if (!css_tryget_online(&blkcg->css)) {
244 		ret = -ENODEV;
245 		goto err_free_blkg;
246 	}
247 
248 	wb_congested = wb_congested_get_create(q->backing_dev_info,
249 					       blkcg->css.id,
250 					       GFP_NOWAIT | __GFP_NOWARN);
251 	if (!wb_congested) {
252 		ret = -ENOMEM;
253 		goto err_put_css;
254 	}
255 
256 	/* allocate */
257 	if (!new_blkg) {
258 		new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
259 		if (unlikely(!new_blkg)) {
260 			ret = -ENOMEM;
261 			goto err_put_congested;
262 		}
263 	}
264 	blkg = new_blkg;
265 	blkg->wb_congested = wb_congested;
266 
267 	/* link parent */
268 	if (blkcg_parent(blkcg)) {
269 		blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
270 		if (WARN_ON_ONCE(!blkg->parent)) {
271 			ret = -ENODEV;
272 			goto err_put_congested;
273 		}
274 		blkg_get(blkg->parent);
275 	}
276 
277 	/* invoke per-policy init */
278 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
279 		struct blkcg_policy *pol = blkcg_policy[i];
280 
281 		if (blkg->pd[i] && pol->pd_init_fn)
282 			pol->pd_init_fn(blkg->pd[i]);
283 	}
284 
285 	/* insert */
286 	spin_lock(&blkcg->lock);
287 	ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
288 	if (likely(!ret)) {
289 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
290 		list_add(&blkg->q_node, &q->blkg_list);
291 
292 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
293 			struct blkcg_policy *pol = blkcg_policy[i];
294 
295 			if (blkg->pd[i] && pol->pd_online_fn)
296 				pol->pd_online_fn(blkg->pd[i]);
297 		}
298 	}
299 	blkg->online = true;
300 	spin_unlock(&blkcg->lock);
301 
302 	if (!ret)
303 		return blkg;
304 
305 	/* @blkg failed fully initialized, use the usual release path */
306 	blkg_put(blkg);
307 	return ERR_PTR(ret);
308 
309 err_put_congested:
310 	wb_congested_put(wb_congested);
311 err_put_css:
312 	css_put(&blkcg->css);
313 err_free_blkg:
314 	blkg_free(new_blkg);
315 	return ERR_PTR(ret);
316 }
317 
318 /**
319  * __blkg_lookup_create - lookup blkg, try to create one if not there
320  * @blkcg: blkcg of interest
321  * @q: request_queue of interest
322  *
323  * Lookup blkg for the @blkcg - @q pair.  If it doesn't exist, try to
324  * create one.  blkg creation is performed recursively from blkcg_root such
325  * that all non-root blkg's have access to the parent blkg.  This function
326  * should be called under RCU read lock and @q->queue_lock.
327  *
328  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
329  * down from root.
330  */
331 struct blkcg_gq *__blkg_lookup_create(struct blkcg *blkcg,
332 				      struct request_queue *q)
333 {
334 	struct blkcg_gq *blkg;
335 
336 	WARN_ON_ONCE(!rcu_read_lock_held());
337 	lockdep_assert_held(&q->queue_lock);
338 
339 	blkg = __blkg_lookup(blkcg, q, true);
340 	if (blkg)
341 		return blkg;
342 
343 	/*
344 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
345 	 * non-root blkgs have access to their parents.  Returns the closest
346 	 * blkg to the intended blkg should blkg_create() fail.
347 	 */
348 	while (true) {
349 		struct blkcg *pos = blkcg;
350 		struct blkcg *parent = blkcg_parent(blkcg);
351 		struct blkcg_gq *ret_blkg = q->root_blkg;
352 
353 		while (parent) {
354 			blkg = __blkg_lookup(parent, q, false);
355 			if (blkg) {
356 				/* remember closest blkg */
357 				ret_blkg = blkg;
358 				break;
359 			}
360 			pos = parent;
361 			parent = blkcg_parent(parent);
362 		}
363 
364 		blkg = blkg_create(pos, q, NULL);
365 		if (IS_ERR(blkg))
366 			return ret_blkg;
367 		if (pos == blkcg)
368 			return blkg;
369 	}
370 }
371 
372 /**
373  * blkg_lookup_create - find or create a blkg
374  * @blkcg: target block cgroup
375  * @q: target request_queue
376  *
377  * This looks up or creates the blkg representing the unique pair
378  * of the blkcg and the request_queue.
379  */
380 struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
381 				    struct request_queue *q)
382 {
383 	struct blkcg_gq *blkg = blkg_lookup(blkcg, q);
384 
385 	if (unlikely(!blkg)) {
386 		unsigned long flags;
387 
388 		spin_lock_irqsave(&q->queue_lock, flags);
389 		blkg = __blkg_lookup_create(blkcg, q);
390 		spin_unlock_irqrestore(&q->queue_lock, flags);
391 	}
392 
393 	return blkg;
394 }
395 
396 static void blkg_destroy(struct blkcg_gq *blkg)
397 {
398 	struct blkcg *blkcg = blkg->blkcg;
399 	int i;
400 
401 	lockdep_assert_held(&blkg->q->queue_lock);
402 	lockdep_assert_held(&blkcg->lock);
403 
404 	/* Something wrong if we are trying to remove same group twice */
405 	WARN_ON_ONCE(list_empty(&blkg->q_node));
406 	WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
407 
408 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
409 		struct blkcg_policy *pol = blkcg_policy[i];
410 
411 		if (blkg->pd[i] && pol->pd_offline_fn)
412 			pol->pd_offline_fn(blkg->pd[i]);
413 	}
414 
415 	blkg->online = false;
416 
417 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
418 	list_del_init(&blkg->q_node);
419 	hlist_del_init_rcu(&blkg->blkcg_node);
420 
421 	/*
422 	 * Both setting lookup hint to and clearing it from @blkg are done
423 	 * under queue_lock.  If it's not pointing to @blkg now, it never
424 	 * will.  Hint assignment itself can race safely.
425 	 */
426 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
427 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
428 
429 	/*
430 	 * Put the reference taken at the time of creation so that when all
431 	 * queues are gone, group can be destroyed.
432 	 */
433 	percpu_ref_kill(&blkg->refcnt);
434 }
435 
436 /**
437  * blkg_destroy_all - destroy all blkgs associated with a request_queue
438  * @q: request_queue of interest
439  *
440  * Destroy all blkgs associated with @q.
441  */
442 static void blkg_destroy_all(struct request_queue *q)
443 {
444 	struct blkcg_gq *blkg, *n;
445 
446 	spin_lock_irq(&q->queue_lock);
447 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
448 		struct blkcg *blkcg = blkg->blkcg;
449 
450 		spin_lock(&blkcg->lock);
451 		blkg_destroy(blkg);
452 		spin_unlock(&blkcg->lock);
453 	}
454 
455 	q->root_blkg = NULL;
456 	spin_unlock_irq(&q->queue_lock);
457 }
458 
459 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
460 			     struct cftype *cftype, u64 val)
461 {
462 	struct blkcg *blkcg = css_to_blkcg(css);
463 	struct blkcg_gq *blkg;
464 	int i, cpu;
465 
466 	mutex_lock(&blkcg_pol_mutex);
467 	spin_lock_irq(&blkcg->lock);
468 
469 	/*
470 	 * Note that stat reset is racy - it doesn't synchronize against
471 	 * stat updates.  This is a debug feature which shouldn't exist
472 	 * anyway.  If you get hit by a race, retry.
473 	 */
474 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
475 		for_each_possible_cpu(cpu) {
476 			struct blkg_iostat_set *bis =
477 				per_cpu_ptr(blkg->iostat_cpu, cpu);
478 			memset(bis, 0, sizeof(*bis));
479 		}
480 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
481 
482 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
483 			struct blkcg_policy *pol = blkcg_policy[i];
484 
485 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
486 				pol->pd_reset_stats_fn(blkg->pd[i]);
487 		}
488 	}
489 
490 	spin_unlock_irq(&blkcg->lock);
491 	mutex_unlock(&blkcg_pol_mutex);
492 	return 0;
493 }
494 
495 const char *blkg_dev_name(struct blkcg_gq *blkg)
496 {
497 	/* some drivers (floppy) instantiate a queue w/o disk registered */
498 	if (blkg->q->backing_dev_info->dev)
499 		return dev_name(blkg->q->backing_dev_info->dev);
500 	return NULL;
501 }
502 
503 /**
504  * blkcg_print_blkgs - helper for printing per-blkg data
505  * @sf: seq_file to print to
506  * @blkcg: blkcg of interest
507  * @prfill: fill function to print out a blkg
508  * @pol: policy in question
509  * @data: data to be passed to @prfill
510  * @show_total: to print out sum of prfill return values or not
511  *
512  * This function invokes @prfill on each blkg of @blkcg if pd for the
513  * policy specified by @pol exists.  @prfill is invoked with @sf, the
514  * policy data and @data and the matching queue lock held.  If @show_total
515  * is %true, the sum of the return values from @prfill is printed with
516  * "Total" label at the end.
517  *
518  * This is to be used to construct print functions for
519  * cftype->read_seq_string method.
520  */
521 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
522 		       u64 (*prfill)(struct seq_file *,
523 				     struct blkg_policy_data *, int),
524 		       const struct blkcg_policy *pol, int data,
525 		       bool show_total)
526 {
527 	struct blkcg_gq *blkg;
528 	u64 total = 0;
529 
530 	rcu_read_lock();
531 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
532 		spin_lock_irq(&blkg->q->queue_lock);
533 		if (blkcg_policy_enabled(blkg->q, pol))
534 			total += prfill(sf, blkg->pd[pol->plid], data);
535 		spin_unlock_irq(&blkg->q->queue_lock);
536 	}
537 	rcu_read_unlock();
538 
539 	if (show_total)
540 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
541 }
542 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
543 
544 /**
545  * __blkg_prfill_u64 - prfill helper for a single u64 value
546  * @sf: seq_file to print to
547  * @pd: policy private data of interest
548  * @v: value to print
549  *
550  * Print @v to @sf for the device assocaited with @pd.
551  */
552 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
553 {
554 	const char *dname = blkg_dev_name(pd->blkg);
555 
556 	if (!dname)
557 		return 0;
558 
559 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
560 	return v;
561 }
562 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
563 
564 /* Performs queue bypass and policy enabled checks then looks up blkg. */
565 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
566 					  const struct blkcg_policy *pol,
567 					  struct request_queue *q)
568 {
569 	WARN_ON_ONCE(!rcu_read_lock_held());
570 	lockdep_assert_held(&q->queue_lock);
571 
572 	if (!blkcg_policy_enabled(q, pol))
573 		return ERR_PTR(-EOPNOTSUPP);
574 	return __blkg_lookup(blkcg, q, true /* update_hint */);
575 }
576 
577 /**
578  * blkg_conf_prep - parse and prepare for per-blkg config update
579  * @inputp: input string pointer
580  *
581  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
582  * from @input and get and return the matching gendisk.  *@inputp is
583  * updated to point past the device node prefix.  Returns an ERR_PTR()
584  * value on error.
585  *
586  * Use this function iff blkg_conf_prep() can't be used for some reason.
587  */
588 struct gendisk *blkcg_conf_get_disk(char **inputp)
589 {
590 	char *input = *inputp;
591 	unsigned int major, minor;
592 	struct gendisk *disk;
593 	int key_len, part;
594 
595 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
596 		return ERR_PTR(-EINVAL);
597 
598 	input += key_len;
599 	if (!isspace(*input))
600 		return ERR_PTR(-EINVAL);
601 	input = skip_spaces(input);
602 
603 	disk = get_gendisk(MKDEV(major, minor), &part);
604 	if (!disk)
605 		return ERR_PTR(-ENODEV);
606 	if (part) {
607 		put_disk_and_module(disk);
608 		return ERR_PTR(-ENODEV);
609 	}
610 
611 	*inputp = input;
612 	return disk;
613 }
614 
615 /**
616  * blkg_conf_prep - parse and prepare for per-blkg config update
617  * @blkcg: target block cgroup
618  * @pol: target policy
619  * @input: input string
620  * @ctx: blkg_conf_ctx to be filled
621  *
622  * Parse per-blkg config update from @input and initialize @ctx with the
623  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
624  * part of @input following MAJ:MIN.  This function returns with RCU read
625  * lock and queue lock held and must be paired with blkg_conf_finish().
626  */
627 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
628 		   char *input, struct blkg_conf_ctx *ctx)
629 	__acquires(rcu) __acquires(&disk->queue->queue_lock)
630 {
631 	struct gendisk *disk;
632 	struct request_queue *q;
633 	struct blkcg_gq *blkg;
634 	int ret;
635 
636 	disk = blkcg_conf_get_disk(&input);
637 	if (IS_ERR(disk))
638 		return PTR_ERR(disk);
639 
640 	q = disk->queue;
641 
642 	rcu_read_lock();
643 	spin_lock_irq(&q->queue_lock);
644 
645 	blkg = blkg_lookup_check(blkcg, pol, q);
646 	if (IS_ERR(blkg)) {
647 		ret = PTR_ERR(blkg);
648 		goto fail_unlock;
649 	}
650 
651 	if (blkg)
652 		goto success;
653 
654 	/*
655 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
656 	 * non-root blkgs have access to their parents.
657 	 */
658 	while (true) {
659 		struct blkcg *pos = blkcg;
660 		struct blkcg *parent;
661 		struct blkcg_gq *new_blkg;
662 
663 		parent = blkcg_parent(blkcg);
664 		while (parent && !__blkg_lookup(parent, q, false)) {
665 			pos = parent;
666 			parent = blkcg_parent(parent);
667 		}
668 
669 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
670 		spin_unlock_irq(&q->queue_lock);
671 		rcu_read_unlock();
672 
673 		new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
674 		if (unlikely(!new_blkg)) {
675 			ret = -ENOMEM;
676 			goto fail;
677 		}
678 
679 		rcu_read_lock();
680 		spin_lock_irq(&q->queue_lock);
681 
682 		blkg = blkg_lookup_check(pos, pol, q);
683 		if (IS_ERR(blkg)) {
684 			ret = PTR_ERR(blkg);
685 			goto fail_unlock;
686 		}
687 
688 		if (blkg) {
689 			blkg_free(new_blkg);
690 		} else {
691 			blkg = blkg_create(pos, q, new_blkg);
692 			if (IS_ERR(blkg)) {
693 				ret = PTR_ERR(blkg);
694 				goto fail_unlock;
695 			}
696 		}
697 
698 		if (pos == blkcg)
699 			goto success;
700 	}
701 success:
702 	ctx->disk = disk;
703 	ctx->blkg = blkg;
704 	ctx->body = input;
705 	return 0;
706 
707 fail_unlock:
708 	spin_unlock_irq(&q->queue_lock);
709 	rcu_read_unlock();
710 fail:
711 	put_disk_and_module(disk);
712 	/*
713 	 * If queue was bypassing, we should retry.  Do so after a
714 	 * short msleep().  It isn't strictly necessary but queue
715 	 * can be bypassing for some time and it's always nice to
716 	 * avoid busy looping.
717 	 */
718 	if (ret == -EBUSY) {
719 		msleep(10);
720 		ret = restart_syscall();
721 	}
722 	return ret;
723 }
724 EXPORT_SYMBOL_GPL(blkg_conf_prep);
725 
726 /**
727  * blkg_conf_finish - finish up per-blkg config update
728  * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
729  *
730  * Finish up after per-blkg config update.  This function must be paired
731  * with blkg_conf_prep().
732  */
733 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
734 	__releases(&ctx->disk->queue->queue_lock) __releases(rcu)
735 {
736 	spin_unlock_irq(&ctx->disk->queue->queue_lock);
737 	rcu_read_unlock();
738 	put_disk_and_module(ctx->disk);
739 }
740 EXPORT_SYMBOL_GPL(blkg_conf_finish);
741 
742 static int blkcg_print_stat(struct seq_file *sf, void *v)
743 {
744 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
745 	struct blkcg_gq *blkg;
746 
747 	cgroup_rstat_flush(blkcg->css.cgroup);
748 	rcu_read_lock();
749 
750 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
751 		struct blkg_iostat_set *bis = &blkg->iostat;
752 		const char *dname;
753 		char *buf;
754 		u64 rbytes, wbytes, rios, wios, dbytes, dios;
755 		size_t size = seq_get_buf(sf, &buf), off = 0;
756 		int i;
757 		bool has_stats = false;
758 		unsigned seq;
759 
760 		spin_lock_irq(&blkg->q->queue_lock);
761 
762 		if (!blkg->online)
763 			goto skip;
764 
765 		dname = blkg_dev_name(blkg);
766 		if (!dname)
767 			goto skip;
768 
769 		/*
770 		 * Hooray string manipulation, count is the size written NOT
771 		 * INCLUDING THE \0, so size is now count+1 less than what we
772 		 * had before, but we want to start writing the next bit from
773 		 * the \0 so we only add count to buf.
774 		 */
775 		off += scnprintf(buf+off, size-off, "%s ", dname);
776 
777 		do {
778 			seq = u64_stats_fetch_begin(&bis->sync);
779 
780 			rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
781 			wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
782 			dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
783 			rios = bis->cur.ios[BLKG_IOSTAT_READ];
784 			wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
785 			dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
786 		} while (u64_stats_fetch_retry(&bis->sync, seq));
787 
788 		if (rbytes || wbytes || rios || wios) {
789 			has_stats = true;
790 			off += scnprintf(buf+off, size-off,
791 					 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
792 					 rbytes, wbytes, rios, wios,
793 					 dbytes, dios);
794 		}
795 
796 		if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
797 			has_stats = true;
798 			off += scnprintf(buf+off, size-off,
799 					 " use_delay=%d delay_nsec=%llu",
800 					 atomic_read(&blkg->use_delay),
801 					(unsigned long long)atomic64_read(&blkg->delay_nsec));
802 		}
803 
804 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
805 			struct blkcg_policy *pol = blkcg_policy[i];
806 			size_t written;
807 
808 			if (!blkg->pd[i] || !pol->pd_stat_fn)
809 				continue;
810 
811 			written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
812 			if (written)
813 				has_stats = true;
814 			off += written;
815 		}
816 
817 		if (has_stats) {
818 			if (off < size - 1) {
819 				off += scnprintf(buf+off, size-off, "\n");
820 				seq_commit(sf, off);
821 			} else {
822 				seq_commit(sf, -1);
823 			}
824 		}
825 	skip:
826 		spin_unlock_irq(&blkg->q->queue_lock);
827 	}
828 
829 	rcu_read_unlock();
830 	return 0;
831 }
832 
833 static struct cftype blkcg_files[] = {
834 	{
835 		.name = "stat",
836 		.flags = CFTYPE_NOT_ON_ROOT,
837 		.seq_show = blkcg_print_stat,
838 	},
839 	{ }	/* terminate */
840 };
841 
842 static struct cftype blkcg_legacy_files[] = {
843 	{
844 		.name = "reset_stats",
845 		.write_u64 = blkcg_reset_stats,
846 	},
847 	{ }	/* terminate */
848 };
849 
850 /*
851  * blkcg destruction is a three-stage process.
852  *
853  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
854  *    which offlines writeback.  Here we tie the next stage of blkg destruction
855  *    to the completion of writeback associated with the blkcg.  This lets us
856  *    avoid punting potentially large amounts of outstanding writeback to root
857  *    while maintaining any ongoing policies.  The next stage is triggered when
858  *    the nr_cgwbs count goes to zero.
859  *
860  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
861  *    and handles the destruction of blkgs.  Here the css reference held by
862  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
863  *    This work may occur in cgwb_release_workfn() on the cgwb_release
864  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
865  *    punted to the root_blkg.
866  *
867  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
868  *    This finally frees the blkcg.
869  */
870 
871 /**
872  * blkcg_css_offline - cgroup css_offline callback
873  * @css: css of interest
874  *
875  * This function is called when @css is about to go away.  Here the cgwbs are
876  * offlined first and only once writeback associated with the blkcg has
877  * finished do we start step 2 (see above).
878  */
879 static void blkcg_css_offline(struct cgroup_subsys_state *css)
880 {
881 	struct blkcg *blkcg = css_to_blkcg(css);
882 
883 	/* this prevents anyone from attaching or migrating to this blkcg */
884 	wb_blkcg_offline(blkcg);
885 
886 	/* put the base cgwb reference allowing step 2 to be triggered */
887 	blkcg_cgwb_put(blkcg);
888 }
889 
890 /**
891  * blkcg_destroy_blkgs - responsible for shooting down blkgs
892  * @blkcg: blkcg of interest
893  *
894  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
895  * is nested inside q lock, this function performs reverse double lock dancing.
896  * Destroying the blkgs releases the reference held on the blkcg's css allowing
897  * blkcg_css_free to eventually be called.
898  *
899  * This is the blkcg counterpart of ioc_release_fn().
900  */
901 void blkcg_destroy_blkgs(struct blkcg *blkcg)
902 {
903 	spin_lock_irq(&blkcg->lock);
904 
905 	while (!hlist_empty(&blkcg->blkg_list)) {
906 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
907 						struct blkcg_gq, blkcg_node);
908 		struct request_queue *q = blkg->q;
909 
910 		if (spin_trylock(&q->queue_lock)) {
911 			blkg_destroy(blkg);
912 			spin_unlock(&q->queue_lock);
913 		} else {
914 			spin_unlock_irq(&blkcg->lock);
915 			cpu_relax();
916 			spin_lock_irq(&blkcg->lock);
917 		}
918 	}
919 
920 	spin_unlock_irq(&blkcg->lock);
921 }
922 
923 static void blkcg_css_free(struct cgroup_subsys_state *css)
924 {
925 	struct blkcg *blkcg = css_to_blkcg(css);
926 	int i;
927 
928 	mutex_lock(&blkcg_pol_mutex);
929 
930 	list_del(&blkcg->all_blkcgs_node);
931 
932 	for (i = 0; i < BLKCG_MAX_POLS; i++)
933 		if (blkcg->cpd[i])
934 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
935 
936 	mutex_unlock(&blkcg_pol_mutex);
937 
938 	kfree(blkcg);
939 }
940 
941 static struct cgroup_subsys_state *
942 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
943 {
944 	struct blkcg *blkcg;
945 	struct cgroup_subsys_state *ret;
946 	int i;
947 
948 	mutex_lock(&blkcg_pol_mutex);
949 
950 	if (!parent_css) {
951 		blkcg = &blkcg_root;
952 	} else {
953 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
954 		if (!blkcg) {
955 			ret = ERR_PTR(-ENOMEM);
956 			goto unlock;
957 		}
958 	}
959 
960 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
961 		struct blkcg_policy *pol = blkcg_policy[i];
962 		struct blkcg_policy_data *cpd;
963 
964 		/*
965 		 * If the policy hasn't been attached yet, wait for it
966 		 * to be attached before doing anything else. Otherwise,
967 		 * check if the policy requires any specific per-cgroup
968 		 * data: if it does, allocate and initialize it.
969 		 */
970 		if (!pol || !pol->cpd_alloc_fn)
971 			continue;
972 
973 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
974 		if (!cpd) {
975 			ret = ERR_PTR(-ENOMEM);
976 			goto free_pd_blkcg;
977 		}
978 		blkcg->cpd[i] = cpd;
979 		cpd->blkcg = blkcg;
980 		cpd->plid = i;
981 		if (pol->cpd_init_fn)
982 			pol->cpd_init_fn(cpd);
983 	}
984 
985 	spin_lock_init(&blkcg->lock);
986 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
987 	INIT_HLIST_HEAD(&blkcg->blkg_list);
988 #ifdef CONFIG_CGROUP_WRITEBACK
989 	INIT_LIST_HEAD(&blkcg->cgwb_list);
990 	refcount_set(&blkcg->cgwb_refcnt, 1);
991 #endif
992 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
993 
994 	mutex_unlock(&blkcg_pol_mutex);
995 	return &blkcg->css;
996 
997 free_pd_blkcg:
998 	for (i--; i >= 0; i--)
999 		if (blkcg->cpd[i])
1000 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1001 
1002 	if (blkcg != &blkcg_root)
1003 		kfree(blkcg);
1004 unlock:
1005 	mutex_unlock(&blkcg_pol_mutex);
1006 	return ret;
1007 }
1008 
1009 /**
1010  * blkcg_init_queue - initialize blkcg part of request queue
1011  * @q: request_queue to initialize
1012  *
1013  * Called from blk_alloc_queue_node(). Responsible for initializing blkcg
1014  * part of new request_queue @q.
1015  *
1016  * RETURNS:
1017  * 0 on success, -errno on failure.
1018  */
1019 int blkcg_init_queue(struct request_queue *q)
1020 {
1021 	struct blkcg_gq *new_blkg, *blkg;
1022 	bool preloaded;
1023 	int ret;
1024 
1025 	new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1026 	if (!new_blkg)
1027 		return -ENOMEM;
1028 
1029 	preloaded = !radix_tree_preload(GFP_KERNEL);
1030 
1031 	/* Make sure the root blkg exists. */
1032 	rcu_read_lock();
1033 	spin_lock_irq(&q->queue_lock);
1034 	blkg = blkg_create(&blkcg_root, q, new_blkg);
1035 	if (IS_ERR(blkg))
1036 		goto err_unlock;
1037 	q->root_blkg = blkg;
1038 	spin_unlock_irq(&q->queue_lock);
1039 	rcu_read_unlock();
1040 
1041 	if (preloaded)
1042 		radix_tree_preload_end();
1043 
1044 	ret = blk_iolatency_init(q);
1045 	if (ret)
1046 		goto err_destroy_all;
1047 
1048 	ret = blk_throtl_init(q);
1049 	if (ret)
1050 		goto err_destroy_all;
1051 	return 0;
1052 
1053 err_destroy_all:
1054 	blkg_destroy_all(q);
1055 	return ret;
1056 err_unlock:
1057 	spin_unlock_irq(&q->queue_lock);
1058 	rcu_read_unlock();
1059 	if (preloaded)
1060 		radix_tree_preload_end();
1061 	return PTR_ERR(blkg);
1062 }
1063 
1064 /**
1065  * blkcg_exit_queue - exit and release blkcg part of request_queue
1066  * @q: request_queue being released
1067  *
1068  * Called from blk_exit_queue().  Responsible for exiting blkcg part.
1069  */
1070 void blkcg_exit_queue(struct request_queue *q)
1071 {
1072 	blkg_destroy_all(q);
1073 	blk_throtl_exit(q);
1074 }
1075 
1076 /*
1077  * We cannot support shared io contexts, as we have no mean to support
1078  * two tasks with the same ioc in two different groups without major rework
1079  * of the main cic data structures.  For now we allow a task to change
1080  * its cgroup only if it's the only owner of its ioc.
1081  */
1082 static int blkcg_can_attach(struct cgroup_taskset *tset)
1083 {
1084 	struct task_struct *task;
1085 	struct cgroup_subsys_state *dst_css;
1086 	struct io_context *ioc;
1087 	int ret = 0;
1088 
1089 	/* task_lock() is needed to avoid races with exit_io_context() */
1090 	cgroup_taskset_for_each(task, dst_css, tset) {
1091 		task_lock(task);
1092 		ioc = task->io_context;
1093 		if (ioc && atomic_read(&ioc->nr_tasks) > 1)
1094 			ret = -EINVAL;
1095 		task_unlock(task);
1096 		if (ret)
1097 			break;
1098 	}
1099 	return ret;
1100 }
1101 
1102 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
1103 {
1104 	int i;
1105 
1106 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1107 		dst->bytes[i] = src->bytes[i];
1108 		dst->ios[i] = src->ios[i];
1109 	}
1110 }
1111 
1112 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
1113 {
1114 	int i;
1115 
1116 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1117 		dst->bytes[i] += src->bytes[i];
1118 		dst->ios[i] += src->ios[i];
1119 	}
1120 }
1121 
1122 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
1123 {
1124 	int i;
1125 
1126 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1127 		dst->bytes[i] -= src->bytes[i];
1128 		dst->ios[i] -= src->ios[i];
1129 	}
1130 }
1131 
1132 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1133 {
1134 	struct blkcg *blkcg = css_to_blkcg(css);
1135 	struct blkcg_gq *blkg;
1136 
1137 	rcu_read_lock();
1138 
1139 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1140 		struct blkcg_gq *parent = blkg->parent;
1141 		struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
1142 		struct blkg_iostat cur, delta;
1143 		unsigned seq;
1144 
1145 		/* fetch the current per-cpu values */
1146 		do {
1147 			seq = u64_stats_fetch_begin(&bisc->sync);
1148 			blkg_iostat_set(&cur, &bisc->cur);
1149 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
1150 
1151 		/* propagate percpu delta to global */
1152 		u64_stats_update_begin(&blkg->iostat.sync);
1153 		blkg_iostat_set(&delta, &cur);
1154 		blkg_iostat_sub(&delta, &bisc->last);
1155 		blkg_iostat_add(&blkg->iostat.cur, &delta);
1156 		blkg_iostat_add(&bisc->last, &delta);
1157 		u64_stats_update_end(&blkg->iostat.sync);
1158 
1159 		/* propagate global delta to parent */
1160 		if (parent) {
1161 			u64_stats_update_begin(&parent->iostat.sync);
1162 			blkg_iostat_set(&delta, &blkg->iostat.cur);
1163 			blkg_iostat_sub(&delta, &blkg->iostat.last);
1164 			blkg_iostat_add(&parent->iostat.cur, &delta);
1165 			blkg_iostat_add(&blkg->iostat.last, &delta);
1166 			u64_stats_update_end(&parent->iostat.sync);
1167 		}
1168 	}
1169 
1170 	rcu_read_unlock();
1171 }
1172 
1173 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1174 {
1175 	int i;
1176 
1177 	mutex_lock(&blkcg_pol_mutex);
1178 
1179 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1180 		struct blkcg_policy *pol = blkcg_policy[i];
1181 		struct blkcg *blkcg;
1182 
1183 		if (!pol || !pol->cpd_bind_fn)
1184 			continue;
1185 
1186 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1187 			if (blkcg->cpd[pol->plid])
1188 				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1189 	}
1190 	mutex_unlock(&blkcg_pol_mutex);
1191 }
1192 
1193 static void blkcg_exit(struct task_struct *tsk)
1194 {
1195 	if (tsk->throttle_queue)
1196 		blk_put_queue(tsk->throttle_queue);
1197 	tsk->throttle_queue = NULL;
1198 }
1199 
1200 struct cgroup_subsys io_cgrp_subsys = {
1201 	.css_alloc = blkcg_css_alloc,
1202 	.css_offline = blkcg_css_offline,
1203 	.css_free = blkcg_css_free,
1204 	.can_attach = blkcg_can_attach,
1205 	.css_rstat_flush = blkcg_rstat_flush,
1206 	.bind = blkcg_bind,
1207 	.dfl_cftypes = blkcg_files,
1208 	.legacy_cftypes = blkcg_legacy_files,
1209 	.legacy_name = "blkio",
1210 	.exit = blkcg_exit,
1211 #ifdef CONFIG_MEMCG
1212 	/*
1213 	 * This ensures that, if available, memcg is automatically enabled
1214 	 * together on the default hierarchy so that the owner cgroup can
1215 	 * be retrieved from writeback pages.
1216 	 */
1217 	.depends_on = 1 << memory_cgrp_id,
1218 #endif
1219 };
1220 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1221 
1222 /**
1223  * blkcg_activate_policy - activate a blkcg policy on a request_queue
1224  * @q: request_queue of interest
1225  * @pol: blkcg policy to activate
1226  *
1227  * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1228  * bypass mode to populate its blkgs with policy_data for @pol.
1229  *
1230  * Activation happens with @q bypassed, so nobody would be accessing blkgs
1231  * from IO path.  Update of each blkg is protected by both queue and blkcg
1232  * locks so that holding either lock and testing blkcg_policy_enabled() is
1233  * always enough for dereferencing policy data.
1234  *
1235  * The caller is responsible for synchronizing [de]activations and policy
1236  * [un]registerations.  Returns 0 on success, -errno on failure.
1237  */
1238 int blkcg_activate_policy(struct request_queue *q,
1239 			  const struct blkcg_policy *pol)
1240 {
1241 	struct blkg_policy_data *pd_prealloc = NULL;
1242 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1243 	int ret;
1244 
1245 	if (blkcg_policy_enabled(q, pol))
1246 		return 0;
1247 
1248 	if (queue_is_mq(q))
1249 		blk_mq_freeze_queue(q);
1250 retry:
1251 	spin_lock_irq(&q->queue_lock);
1252 
1253 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1254 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1255 		struct blkg_policy_data *pd;
1256 
1257 		if (blkg->pd[pol->plid])
1258 			continue;
1259 
1260 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1261 		if (blkg == pinned_blkg) {
1262 			pd = pd_prealloc;
1263 			pd_prealloc = NULL;
1264 		} else {
1265 			pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1266 					      blkg->blkcg);
1267 		}
1268 
1269 		if (!pd) {
1270 			/*
1271 			 * GFP_NOWAIT failed.  Free the existing one and
1272 			 * prealloc for @blkg w/ GFP_KERNEL.
1273 			 */
1274 			if (pinned_blkg)
1275 				blkg_put(pinned_blkg);
1276 			blkg_get(blkg);
1277 			pinned_blkg = blkg;
1278 
1279 			spin_unlock_irq(&q->queue_lock);
1280 
1281 			if (pd_prealloc)
1282 				pol->pd_free_fn(pd_prealloc);
1283 			pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1284 						       blkg->blkcg);
1285 			if (pd_prealloc)
1286 				goto retry;
1287 			else
1288 				goto enomem;
1289 		}
1290 
1291 		blkg->pd[pol->plid] = pd;
1292 		pd->blkg = blkg;
1293 		pd->plid = pol->plid;
1294 	}
1295 
1296 	/* all allocated, init in the same order */
1297 	if (pol->pd_init_fn)
1298 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1299 			pol->pd_init_fn(blkg->pd[pol->plid]);
1300 
1301 	__set_bit(pol->plid, q->blkcg_pols);
1302 	ret = 0;
1303 
1304 	spin_unlock_irq(&q->queue_lock);
1305 out:
1306 	if (queue_is_mq(q))
1307 		blk_mq_unfreeze_queue(q);
1308 	if (pinned_blkg)
1309 		blkg_put(pinned_blkg);
1310 	if (pd_prealloc)
1311 		pol->pd_free_fn(pd_prealloc);
1312 	return ret;
1313 
1314 enomem:
1315 	/* alloc failed, nothing's initialized yet, free everything */
1316 	spin_lock_irq(&q->queue_lock);
1317 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1318 		if (blkg->pd[pol->plid]) {
1319 			pol->pd_free_fn(blkg->pd[pol->plid]);
1320 			blkg->pd[pol->plid] = NULL;
1321 		}
1322 	}
1323 	spin_unlock_irq(&q->queue_lock);
1324 	ret = -ENOMEM;
1325 	goto out;
1326 }
1327 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1328 
1329 /**
1330  * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1331  * @q: request_queue of interest
1332  * @pol: blkcg policy to deactivate
1333  *
1334  * Deactivate @pol on @q.  Follows the same synchronization rules as
1335  * blkcg_activate_policy().
1336  */
1337 void blkcg_deactivate_policy(struct request_queue *q,
1338 			     const struct blkcg_policy *pol)
1339 {
1340 	struct blkcg_gq *blkg;
1341 
1342 	if (!blkcg_policy_enabled(q, pol))
1343 		return;
1344 
1345 	if (queue_is_mq(q))
1346 		blk_mq_freeze_queue(q);
1347 
1348 	spin_lock_irq(&q->queue_lock);
1349 
1350 	__clear_bit(pol->plid, q->blkcg_pols);
1351 
1352 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1353 		if (blkg->pd[pol->plid]) {
1354 			if (pol->pd_offline_fn)
1355 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1356 			pol->pd_free_fn(blkg->pd[pol->plid]);
1357 			blkg->pd[pol->plid] = NULL;
1358 		}
1359 	}
1360 
1361 	spin_unlock_irq(&q->queue_lock);
1362 
1363 	if (queue_is_mq(q))
1364 		blk_mq_unfreeze_queue(q);
1365 }
1366 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1367 
1368 /**
1369  * blkcg_policy_register - register a blkcg policy
1370  * @pol: blkcg policy to register
1371  *
1372  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1373  * successful registration.  Returns 0 on success and -errno on failure.
1374  */
1375 int blkcg_policy_register(struct blkcg_policy *pol)
1376 {
1377 	struct blkcg *blkcg;
1378 	int i, ret;
1379 
1380 	mutex_lock(&blkcg_pol_register_mutex);
1381 	mutex_lock(&blkcg_pol_mutex);
1382 
1383 	/* find an empty slot */
1384 	ret = -ENOSPC;
1385 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1386 		if (!blkcg_policy[i])
1387 			break;
1388 	if (i >= BLKCG_MAX_POLS) {
1389 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1390 		goto err_unlock;
1391 	}
1392 
1393 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1394 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1395 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1396 		goto err_unlock;
1397 
1398 	/* register @pol */
1399 	pol->plid = i;
1400 	blkcg_policy[pol->plid] = pol;
1401 
1402 	/* allocate and install cpd's */
1403 	if (pol->cpd_alloc_fn) {
1404 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1405 			struct blkcg_policy_data *cpd;
1406 
1407 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1408 			if (!cpd)
1409 				goto err_free_cpds;
1410 
1411 			blkcg->cpd[pol->plid] = cpd;
1412 			cpd->blkcg = blkcg;
1413 			cpd->plid = pol->plid;
1414 			if (pol->cpd_init_fn)
1415 				pol->cpd_init_fn(cpd);
1416 		}
1417 	}
1418 
1419 	mutex_unlock(&blkcg_pol_mutex);
1420 
1421 	/* everything is in place, add intf files for the new policy */
1422 	if (pol->dfl_cftypes)
1423 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1424 					       pol->dfl_cftypes));
1425 	if (pol->legacy_cftypes)
1426 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1427 						  pol->legacy_cftypes));
1428 	mutex_unlock(&blkcg_pol_register_mutex);
1429 	return 0;
1430 
1431 err_free_cpds:
1432 	if (pol->cpd_free_fn) {
1433 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1434 			if (blkcg->cpd[pol->plid]) {
1435 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1436 				blkcg->cpd[pol->plid] = NULL;
1437 			}
1438 		}
1439 	}
1440 	blkcg_policy[pol->plid] = NULL;
1441 err_unlock:
1442 	mutex_unlock(&blkcg_pol_mutex);
1443 	mutex_unlock(&blkcg_pol_register_mutex);
1444 	return ret;
1445 }
1446 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1447 
1448 /**
1449  * blkcg_policy_unregister - unregister a blkcg policy
1450  * @pol: blkcg policy to unregister
1451  *
1452  * Undo blkcg_policy_register(@pol).  Might sleep.
1453  */
1454 void blkcg_policy_unregister(struct blkcg_policy *pol)
1455 {
1456 	struct blkcg *blkcg;
1457 
1458 	mutex_lock(&blkcg_pol_register_mutex);
1459 
1460 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1461 		goto out_unlock;
1462 
1463 	/* kill the intf files first */
1464 	if (pol->dfl_cftypes)
1465 		cgroup_rm_cftypes(pol->dfl_cftypes);
1466 	if (pol->legacy_cftypes)
1467 		cgroup_rm_cftypes(pol->legacy_cftypes);
1468 
1469 	/* remove cpds and unregister */
1470 	mutex_lock(&blkcg_pol_mutex);
1471 
1472 	if (pol->cpd_free_fn) {
1473 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1474 			if (blkcg->cpd[pol->plid]) {
1475 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1476 				blkcg->cpd[pol->plid] = NULL;
1477 			}
1478 		}
1479 	}
1480 	blkcg_policy[pol->plid] = NULL;
1481 
1482 	mutex_unlock(&blkcg_pol_mutex);
1483 out_unlock:
1484 	mutex_unlock(&blkcg_pol_register_mutex);
1485 }
1486 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1487 
1488 bool __blkcg_punt_bio_submit(struct bio *bio)
1489 {
1490 	struct blkcg_gq *blkg = bio->bi_blkg;
1491 
1492 	/* consume the flag first */
1493 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1494 
1495 	/* never bounce for the root cgroup */
1496 	if (!blkg->parent)
1497 		return false;
1498 
1499 	spin_lock_bh(&blkg->async_bio_lock);
1500 	bio_list_add(&blkg->async_bios, bio);
1501 	spin_unlock_bh(&blkg->async_bio_lock);
1502 
1503 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1504 	return true;
1505 }
1506 
1507 /*
1508  * Scale the accumulated delay based on how long it has been since we updated
1509  * the delay.  We only call this when we are adding delay, in case it's been a
1510  * while since we added delay, and when we are checking to see if we need to
1511  * delay a task, to account for any delays that may have occurred.
1512  */
1513 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1514 {
1515 	u64 old = atomic64_read(&blkg->delay_start);
1516 
1517 	/*
1518 	 * We only want to scale down every second.  The idea here is that we
1519 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1520 	 * time window.  We only want to throttle tasks for recent delay that
1521 	 * has occurred, in 1 second time windows since that's the maximum
1522 	 * things can be throttled.  We save the current delay window in
1523 	 * blkg->last_delay so we know what amount is still left to be charged
1524 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1525 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1526 	 * are ok with whatever is happening now, and we can take away more of
1527 	 * the accumulated delay as we've already throttled enough that
1528 	 * everybody is happy with their IO latencies.
1529 	 */
1530 	if (time_before64(old + NSEC_PER_SEC, now) &&
1531 	    atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1532 		u64 cur = atomic64_read(&blkg->delay_nsec);
1533 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1534 		int cur_use = atomic_read(&blkg->use_delay);
1535 
1536 		/*
1537 		 * We've been unthrottled, subtract a larger chunk of our
1538 		 * accumulated delay.
1539 		 */
1540 		if (cur_use < blkg->last_use)
1541 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1542 
1543 		/*
1544 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1545 		 * should only ever be growing except here where we subtract out
1546 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1547 		 * rather not end up with negative numbers.
1548 		 */
1549 		if (unlikely(cur < sub)) {
1550 			atomic64_set(&blkg->delay_nsec, 0);
1551 			blkg->last_delay = 0;
1552 		} else {
1553 			atomic64_sub(sub, &blkg->delay_nsec);
1554 			blkg->last_delay = cur - sub;
1555 		}
1556 		blkg->last_use = cur_use;
1557 	}
1558 }
1559 
1560 /*
1561  * This is called when we want to actually walk up the hierarchy and check to
1562  * see if we need to throttle, and then actually throttle if there is some
1563  * accumulated delay.  This should only be called upon return to user space so
1564  * we're not holding some lock that would induce a priority inversion.
1565  */
1566 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1567 {
1568 	unsigned long pflags;
1569 	u64 now = ktime_to_ns(ktime_get());
1570 	u64 exp;
1571 	u64 delay_nsec = 0;
1572 	int tok;
1573 
1574 	while (blkg->parent) {
1575 		if (atomic_read(&blkg->use_delay)) {
1576 			blkcg_scale_delay(blkg, now);
1577 			delay_nsec = max_t(u64, delay_nsec,
1578 					   atomic64_read(&blkg->delay_nsec));
1579 		}
1580 		blkg = blkg->parent;
1581 	}
1582 
1583 	if (!delay_nsec)
1584 		return;
1585 
1586 	/*
1587 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1588 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1589 	 * delay, and we want userspace to be able to do _something_ so cap the
1590 	 * delays at 1 second.  If there's 10's of seconds worth of delay then
1591 	 * the tasks will be delayed for 1 second for every syscall.
1592 	 */
1593 	delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1594 
1595 	if (use_memdelay)
1596 		psi_memstall_enter(&pflags);
1597 
1598 	exp = ktime_add_ns(now, delay_nsec);
1599 	tok = io_schedule_prepare();
1600 	do {
1601 		__set_current_state(TASK_KILLABLE);
1602 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1603 			break;
1604 	} while (!fatal_signal_pending(current));
1605 	io_schedule_finish(tok);
1606 
1607 	if (use_memdelay)
1608 		psi_memstall_leave(&pflags);
1609 }
1610 
1611 /**
1612  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1613  *
1614  * This is only called if we've been marked with set_notify_resume().  Obviously
1615  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1616  * check to see if current->throttle_queue is set and if not this doesn't do
1617  * anything.  This should only ever be called by the resume code, it's not meant
1618  * to be called by people willy-nilly as it will actually do the work to
1619  * throttle the task if it is setup for throttling.
1620  */
1621 void blkcg_maybe_throttle_current(void)
1622 {
1623 	struct request_queue *q = current->throttle_queue;
1624 	struct cgroup_subsys_state *css;
1625 	struct blkcg *blkcg;
1626 	struct blkcg_gq *blkg;
1627 	bool use_memdelay = current->use_memdelay;
1628 
1629 	if (!q)
1630 		return;
1631 
1632 	current->throttle_queue = NULL;
1633 	current->use_memdelay = false;
1634 
1635 	rcu_read_lock();
1636 	css = kthread_blkcg();
1637 	if (css)
1638 		blkcg = css_to_blkcg(css);
1639 	else
1640 		blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1641 
1642 	if (!blkcg)
1643 		goto out;
1644 	blkg = blkg_lookup(blkcg, q);
1645 	if (!blkg)
1646 		goto out;
1647 	if (!blkg_tryget(blkg))
1648 		goto out;
1649 	rcu_read_unlock();
1650 
1651 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1652 	blkg_put(blkg);
1653 	blk_put_queue(q);
1654 	return;
1655 out:
1656 	rcu_read_unlock();
1657 	blk_put_queue(q);
1658 }
1659 
1660 /**
1661  * blkcg_schedule_throttle - this task needs to check for throttling
1662  * @q: the request queue IO was submitted on
1663  * @use_memdelay: do we charge this to memory delay for PSI
1664  *
1665  * This is called by the IO controller when we know there's delay accumulated
1666  * for the blkg for this task.  We do not pass the blkg because there are places
1667  * we call this that may not have that information, the swapping code for
1668  * instance will only have a request_queue at that point.  This set's the
1669  * notify_resume for the task to check and see if it requires throttling before
1670  * returning to user space.
1671  *
1672  * We will only schedule once per syscall.  You can call this over and over
1673  * again and it will only do the check once upon return to user space, and only
1674  * throttle once.  If the task needs to be throttled again it'll need to be
1675  * re-set at the next time we see the task.
1676  */
1677 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1678 {
1679 	if (unlikely(current->flags & PF_KTHREAD))
1680 		return;
1681 
1682 	if (!blk_get_queue(q))
1683 		return;
1684 
1685 	if (current->throttle_queue)
1686 		blk_put_queue(current->throttle_queue);
1687 	current->throttle_queue = q;
1688 	if (use_memdelay)
1689 		current->use_memdelay = use_memdelay;
1690 	set_notify_resume(current);
1691 }
1692 
1693 /**
1694  * blkcg_add_delay - add delay to this blkg
1695  * @blkg: blkg of interest
1696  * @now: the current time in nanoseconds
1697  * @delta: how many nanoseconds of delay to add
1698  *
1699  * Charge @delta to the blkg's current delay accumulation.  This is used to
1700  * throttle tasks if an IO controller thinks we need more throttling.
1701  */
1702 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1703 {
1704 	blkcg_scale_delay(blkg, now);
1705 	atomic64_add(delta, &blkg->delay_nsec);
1706 }
1707 
1708 static int __init blkcg_init(void)
1709 {
1710 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1711 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
1712 					    WQ_UNBOUND | WQ_SYSFS, 0);
1713 	if (!blkcg_punt_bio_wq)
1714 		return -ENOMEM;
1715 	return 0;
1716 }
1717 subsys_initcall(blkcg_init);
1718 
1719 module_param(blkcg_debug_stats, bool, 0644);
1720 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1721