xref: /linux/block/blk-cgroup.c (revision bb4c19e030f45c5416f1eb4daa94fbaf7165e9ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 /*
38  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40  * policy [un]register operations including cgroup file additions /
41  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
42  * allows grabbing it from cgroup callbacks.
43  */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46 
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49 
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52 
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54 
55 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
56 
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59 
60 #define BLKG_DESTROY_BATCH_SIZE  64
61 
62 /*
63  * Lockless lists for tracking IO stats update
64  *
65  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
66  * There are multiple blkg's (one for each block device) attached to each
67  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
68  * but it doesn't know which blkg has the updated stats. If there are many
69  * block devices in a system, the cost of iterating all the blkg's to flush
70  * out the IO stats can be high. To reduce such overhead, a set of percpu
71  * lockless lists (lhead) per blkcg are used to track the set of recently
72  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
73  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
74  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
75  * References to blkg are gotten and then put back in the process to
76  * protect against blkg removal.
77  *
78  * Return: 0 if successful or -ENOMEM if allocation fails.
79  */
80 static int init_blkcg_llists(struct blkcg *blkcg)
81 {
82 	int cpu;
83 
84 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
85 	if (!blkcg->lhead)
86 		return -ENOMEM;
87 
88 	for_each_possible_cpu(cpu)
89 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
90 	return 0;
91 }
92 
93 /**
94  * blkcg_css - find the current css
95  *
96  * Find the css associated with either the kthread or the current task.
97  * This may return a dying css, so it is up to the caller to use tryget logic
98  * to confirm it is alive and well.
99  */
100 static struct cgroup_subsys_state *blkcg_css(void)
101 {
102 	struct cgroup_subsys_state *css;
103 
104 	css = kthread_blkcg();
105 	if (css)
106 		return css;
107 	return task_css(current, io_cgrp_id);
108 }
109 
110 static bool blkcg_policy_enabled(struct request_queue *q,
111 				 const struct blkcg_policy *pol)
112 {
113 	return pol && test_bit(pol->plid, q->blkcg_pols);
114 }
115 
116 static void blkg_free_workfn(struct work_struct *work)
117 {
118 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
119 					     free_work);
120 	struct request_queue *q = blkg->q;
121 	int i;
122 
123 	/*
124 	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
125 	 * in order to make sure pd_free_fn() is called in order, the deletion
126 	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
127 	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
128 	 * blkcg_deactivate_policy().
129 	 */
130 	mutex_lock(&q->blkcg_mutex);
131 	for (i = 0; i < BLKCG_MAX_POLS; i++)
132 		if (blkg->pd[i])
133 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
134 	if (blkg->parent)
135 		blkg_put(blkg->parent);
136 	list_del_init(&blkg->q_node);
137 	mutex_unlock(&q->blkcg_mutex);
138 
139 	blk_put_queue(q);
140 	free_percpu(blkg->iostat_cpu);
141 	percpu_ref_exit(&blkg->refcnt);
142 	kfree(blkg);
143 }
144 
145 /**
146  * blkg_free - free a blkg
147  * @blkg: blkg to free
148  *
149  * Free @blkg which may be partially allocated.
150  */
151 static void blkg_free(struct blkcg_gq *blkg)
152 {
153 	if (!blkg)
154 		return;
155 
156 	/*
157 	 * Both ->pd_free_fn() and request queue's release handler may
158 	 * sleep, so free us by scheduling one work func
159 	 */
160 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
161 	schedule_work(&blkg->free_work);
162 }
163 
164 static void __blkg_release(struct rcu_head *rcu)
165 {
166 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
167 
168 	WARN_ON(!bio_list_empty(&blkg->async_bios));
169 
170 	/* release the blkcg and parent blkg refs this blkg has been holding */
171 	css_put(&blkg->blkcg->css);
172 	blkg_free(blkg);
173 }
174 
175 /*
176  * A group is RCU protected, but having an rcu lock does not mean that one
177  * can access all the fields of blkg and assume these are valid.  For
178  * example, don't try to follow throtl_data and request queue links.
179  *
180  * Having a reference to blkg under an rcu allows accesses to only values
181  * local to groups like group stats and group rate limits.
182  */
183 static void blkg_release(struct percpu_ref *ref)
184 {
185 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
186 
187 	call_rcu(&blkg->rcu_head, __blkg_release);
188 }
189 
190 static void blkg_async_bio_workfn(struct work_struct *work)
191 {
192 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
193 					     async_bio_work);
194 	struct bio_list bios = BIO_EMPTY_LIST;
195 	struct bio *bio;
196 	struct blk_plug plug;
197 	bool need_plug = false;
198 
199 	/* as long as there are pending bios, @blkg can't go away */
200 	spin_lock_bh(&blkg->async_bio_lock);
201 	bio_list_merge(&bios, &blkg->async_bios);
202 	bio_list_init(&blkg->async_bios);
203 	spin_unlock_bh(&blkg->async_bio_lock);
204 
205 	/* start plug only when bio_list contains at least 2 bios */
206 	if (bios.head && bios.head->bi_next) {
207 		need_plug = true;
208 		blk_start_plug(&plug);
209 	}
210 	while ((bio = bio_list_pop(&bios)))
211 		submit_bio(bio);
212 	if (need_plug)
213 		blk_finish_plug(&plug);
214 }
215 
216 /**
217  * bio_blkcg_css - return the blkcg CSS associated with a bio
218  * @bio: target bio
219  *
220  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
221  * associated. Callers are expected to either handle %NULL or know association
222  * has been done prior to calling this.
223  */
224 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
225 {
226 	if (!bio || !bio->bi_blkg)
227 		return NULL;
228 	return &bio->bi_blkg->blkcg->css;
229 }
230 EXPORT_SYMBOL_GPL(bio_blkcg_css);
231 
232 /**
233  * blkcg_parent - get the parent of a blkcg
234  * @blkcg: blkcg of interest
235  *
236  * Return the parent blkcg of @blkcg.  Can be called anytime.
237  */
238 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
239 {
240 	return css_to_blkcg(blkcg->css.parent);
241 }
242 
243 /**
244  * blkg_alloc - allocate a blkg
245  * @blkcg: block cgroup the new blkg is associated with
246  * @disk: gendisk the new blkg is associated with
247  * @gfp_mask: allocation mask to use
248  *
249  * Allocate a new blkg assocating @blkcg and @q.
250  */
251 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
252 				   gfp_t gfp_mask)
253 {
254 	struct blkcg_gq *blkg;
255 	int i, cpu;
256 
257 	/* alloc and init base part */
258 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
259 	if (!blkg)
260 		return NULL;
261 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
262 		goto out_free_blkg;
263 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
264 	if (!blkg->iostat_cpu)
265 		goto out_exit_refcnt;
266 	if (!blk_get_queue(disk->queue))
267 		goto out_free_iostat;
268 
269 	blkg->q = disk->queue;
270 	INIT_LIST_HEAD(&blkg->q_node);
271 	spin_lock_init(&blkg->async_bio_lock);
272 	bio_list_init(&blkg->async_bios);
273 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
274 	blkg->blkcg = blkcg;
275 
276 	u64_stats_init(&blkg->iostat.sync);
277 	for_each_possible_cpu(cpu) {
278 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
279 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
280 	}
281 
282 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
283 		struct blkcg_policy *pol = blkcg_policy[i];
284 		struct blkg_policy_data *pd;
285 
286 		if (!blkcg_policy_enabled(disk->queue, pol))
287 			continue;
288 
289 		/* alloc per-policy data and attach it to blkg */
290 		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
291 		if (!pd)
292 			goto out_free_pds;
293 		blkg->pd[i] = pd;
294 		pd->blkg = blkg;
295 		pd->plid = i;
296 		pd->online = false;
297 	}
298 
299 	return blkg;
300 
301 out_free_pds:
302 	while (--i >= 0)
303 		if (blkg->pd[i])
304 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
305 	blk_put_queue(disk->queue);
306 out_free_iostat:
307 	free_percpu(blkg->iostat_cpu);
308 out_exit_refcnt:
309 	percpu_ref_exit(&blkg->refcnt);
310 out_free_blkg:
311 	kfree(blkg);
312 	return NULL;
313 }
314 
315 /*
316  * If @new_blkg is %NULL, this function tries to allocate a new one as
317  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
318  */
319 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
320 				    struct blkcg_gq *new_blkg)
321 {
322 	struct blkcg_gq *blkg;
323 	int i, ret;
324 
325 	lockdep_assert_held(&disk->queue->queue_lock);
326 
327 	/* request_queue is dying, do not create/recreate a blkg */
328 	if (blk_queue_dying(disk->queue)) {
329 		ret = -ENODEV;
330 		goto err_free_blkg;
331 	}
332 
333 	/* blkg holds a reference to blkcg */
334 	if (!css_tryget_online(&blkcg->css)) {
335 		ret = -ENODEV;
336 		goto err_free_blkg;
337 	}
338 
339 	/* allocate */
340 	if (!new_blkg) {
341 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
342 		if (unlikely(!new_blkg)) {
343 			ret = -ENOMEM;
344 			goto err_put_css;
345 		}
346 	}
347 	blkg = new_blkg;
348 
349 	/* link parent */
350 	if (blkcg_parent(blkcg)) {
351 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
352 		if (WARN_ON_ONCE(!blkg->parent)) {
353 			ret = -ENODEV;
354 			goto err_put_css;
355 		}
356 		blkg_get(blkg->parent);
357 	}
358 
359 	/* invoke per-policy init */
360 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
361 		struct blkcg_policy *pol = blkcg_policy[i];
362 
363 		if (blkg->pd[i] && pol->pd_init_fn)
364 			pol->pd_init_fn(blkg->pd[i]);
365 	}
366 
367 	/* insert */
368 	spin_lock(&blkcg->lock);
369 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
370 	if (likely(!ret)) {
371 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
372 		list_add(&blkg->q_node, &disk->queue->blkg_list);
373 
374 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
375 			struct blkcg_policy *pol = blkcg_policy[i];
376 
377 			if (blkg->pd[i]) {
378 				if (pol->pd_online_fn)
379 					pol->pd_online_fn(blkg->pd[i]);
380 				blkg->pd[i]->online = true;
381 			}
382 		}
383 	}
384 	blkg->online = true;
385 	spin_unlock(&blkcg->lock);
386 
387 	if (!ret)
388 		return blkg;
389 
390 	/* @blkg failed fully initialized, use the usual release path */
391 	blkg_put(blkg);
392 	return ERR_PTR(ret);
393 
394 err_put_css:
395 	css_put(&blkcg->css);
396 err_free_blkg:
397 	if (new_blkg)
398 		blkg_free(new_blkg);
399 	return ERR_PTR(ret);
400 }
401 
402 /**
403  * blkg_lookup_create - lookup blkg, try to create one if not there
404  * @blkcg: blkcg of interest
405  * @disk: gendisk of interest
406  *
407  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
408  * create one.  blkg creation is performed recursively from blkcg_root such
409  * that all non-root blkg's have access to the parent blkg.  This function
410  * should be called under RCU read lock and takes @disk->queue->queue_lock.
411  *
412  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
413  * down from root.
414  */
415 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
416 		struct gendisk *disk)
417 {
418 	struct request_queue *q = disk->queue;
419 	struct blkcg_gq *blkg;
420 	unsigned long flags;
421 
422 	WARN_ON_ONCE(!rcu_read_lock_held());
423 
424 	blkg = blkg_lookup(blkcg, q);
425 	if (blkg)
426 		return blkg;
427 
428 	spin_lock_irqsave(&q->queue_lock, flags);
429 	blkg = blkg_lookup(blkcg, q);
430 	if (blkg) {
431 		if (blkcg != &blkcg_root &&
432 		    blkg != rcu_dereference(blkcg->blkg_hint))
433 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
434 		goto found;
435 	}
436 
437 	/*
438 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
439 	 * non-root blkgs have access to their parents.  Returns the closest
440 	 * blkg to the intended blkg should blkg_create() fail.
441 	 */
442 	while (true) {
443 		struct blkcg *pos = blkcg;
444 		struct blkcg *parent = blkcg_parent(blkcg);
445 		struct blkcg_gq *ret_blkg = q->root_blkg;
446 
447 		while (parent) {
448 			blkg = blkg_lookup(parent, q);
449 			if (blkg) {
450 				/* remember closest blkg */
451 				ret_blkg = blkg;
452 				break;
453 			}
454 			pos = parent;
455 			parent = blkcg_parent(parent);
456 		}
457 
458 		blkg = blkg_create(pos, disk, NULL);
459 		if (IS_ERR(blkg)) {
460 			blkg = ret_blkg;
461 			break;
462 		}
463 		if (pos == blkcg)
464 			break;
465 	}
466 
467 found:
468 	spin_unlock_irqrestore(&q->queue_lock, flags);
469 	return blkg;
470 }
471 
472 static void blkg_destroy(struct blkcg_gq *blkg)
473 {
474 	struct blkcg *blkcg = blkg->blkcg;
475 	int i;
476 
477 	lockdep_assert_held(&blkg->q->queue_lock);
478 	lockdep_assert_held(&blkcg->lock);
479 
480 	/*
481 	 * blkg stays on the queue list until blkg_free_workfn(), see details in
482 	 * blkg_free_workfn(), hence this function can be called from
483 	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
484 	 * blkg_free_workfn().
485 	 */
486 	if (hlist_unhashed(&blkg->blkcg_node))
487 		return;
488 
489 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
490 		struct blkcg_policy *pol = blkcg_policy[i];
491 
492 		if (blkg->pd[i] && blkg->pd[i]->online) {
493 			blkg->pd[i]->online = false;
494 			if (pol->pd_offline_fn)
495 				pol->pd_offline_fn(blkg->pd[i]);
496 		}
497 	}
498 
499 	blkg->online = false;
500 
501 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
502 	hlist_del_init_rcu(&blkg->blkcg_node);
503 
504 	/*
505 	 * Both setting lookup hint to and clearing it from @blkg are done
506 	 * under queue_lock.  If it's not pointing to @blkg now, it never
507 	 * will.  Hint assignment itself can race safely.
508 	 */
509 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
510 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
511 
512 	/*
513 	 * Put the reference taken at the time of creation so that when all
514 	 * queues are gone, group can be destroyed.
515 	 */
516 	percpu_ref_kill(&blkg->refcnt);
517 }
518 
519 static void blkg_destroy_all(struct gendisk *disk)
520 {
521 	struct request_queue *q = disk->queue;
522 	struct blkcg_gq *blkg, *n;
523 	int count = BLKG_DESTROY_BATCH_SIZE;
524 
525 restart:
526 	spin_lock_irq(&q->queue_lock);
527 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
528 		struct blkcg *blkcg = blkg->blkcg;
529 
530 		spin_lock(&blkcg->lock);
531 		blkg_destroy(blkg);
532 		spin_unlock(&blkcg->lock);
533 
534 		/*
535 		 * in order to avoid holding the spin lock for too long, release
536 		 * it when a batch of blkgs are destroyed.
537 		 */
538 		if (!(--count)) {
539 			count = BLKG_DESTROY_BATCH_SIZE;
540 			spin_unlock_irq(&q->queue_lock);
541 			cond_resched();
542 			goto restart;
543 		}
544 	}
545 
546 	q->root_blkg = NULL;
547 	spin_unlock_irq(&q->queue_lock);
548 }
549 
550 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
551 			     struct cftype *cftype, u64 val)
552 {
553 	struct blkcg *blkcg = css_to_blkcg(css);
554 	struct blkcg_gq *blkg;
555 	int i, cpu;
556 
557 	mutex_lock(&blkcg_pol_mutex);
558 	spin_lock_irq(&blkcg->lock);
559 
560 	/*
561 	 * Note that stat reset is racy - it doesn't synchronize against
562 	 * stat updates.  This is a debug feature which shouldn't exist
563 	 * anyway.  If you get hit by a race, retry.
564 	 */
565 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
566 		for_each_possible_cpu(cpu) {
567 			struct blkg_iostat_set *bis =
568 				per_cpu_ptr(blkg->iostat_cpu, cpu);
569 			memset(bis, 0, sizeof(*bis));
570 		}
571 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
572 
573 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
574 			struct blkcg_policy *pol = blkcg_policy[i];
575 
576 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
577 				pol->pd_reset_stats_fn(blkg->pd[i]);
578 		}
579 	}
580 
581 	spin_unlock_irq(&blkcg->lock);
582 	mutex_unlock(&blkcg_pol_mutex);
583 	return 0;
584 }
585 
586 const char *blkg_dev_name(struct blkcg_gq *blkg)
587 {
588 	if (!blkg->q->disk)
589 		return NULL;
590 	return bdi_dev_name(blkg->q->disk->bdi);
591 }
592 
593 /**
594  * blkcg_print_blkgs - helper for printing per-blkg data
595  * @sf: seq_file to print to
596  * @blkcg: blkcg of interest
597  * @prfill: fill function to print out a blkg
598  * @pol: policy in question
599  * @data: data to be passed to @prfill
600  * @show_total: to print out sum of prfill return values or not
601  *
602  * This function invokes @prfill on each blkg of @blkcg if pd for the
603  * policy specified by @pol exists.  @prfill is invoked with @sf, the
604  * policy data and @data and the matching queue lock held.  If @show_total
605  * is %true, the sum of the return values from @prfill is printed with
606  * "Total" label at the end.
607  *
608  * This is to be used to construct print functions for
609  * cftype->read_seq_string method.
610  */
611 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
612 		       u64 (*prfill)(struct seq_file *,
613 				     struct blkg_policy_data *, int),
614 		       const struct blkcg_policy *pol, int data,
615 		       bool show_total)
616 {
617 	struct blkcg_gq *blkg;
618 	u64 total = 0;
619 
620 	rcu_read_lock();
621 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
622 		spin_lock_irq(&blkg->q->queue_lock);
623 		if (blkcg_policy_enabled(blkg->q, pol))
624 			total += prfill(sf, blkg->pd[pol->plid], data);
625 		spin_unlock_irq(&blkg->q->queue_lock);
626 	}
627 	rcu_read_unlock();
628 
629 	if (show_total)
630 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
631 }
632 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
633 
634 /**
635  * __blkg_prfill_u64 - prfill helper for a single u64 value
636  * @sf: seq_file to print to
637  * @pd: policy private data of interest
638  * @v: value to print
639  *
640  * Print @v to @sf for the device associated with @pd.
641  */
642 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
643 {
644 	const char *dname = blkg_dev_name(pd->blkg);
645 
646 	if (!dname)
647 		return 0;
648 
649 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
650 	return v;
651 }
652 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
653 
654 /**
655  * blkg_conf_init - initialize a blkg_conf_ctx
656  * @ctx: blkg_conf_ctx to initialize
657  * @input: input string
658  *
659  * Initialize @ctx which can be used to parse blkg config input string @input.
660  * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
661  * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
662  */
663 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
664 {
665 	*ctx = (struct blkg_conf_ctx){ .input = input };
666 }
667 EXPORT_SYMBOL_GPL(blkg_conf_init);
668 
669 /**
670  * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
671  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
672  *
673  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
674  * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
675  * set to point past the device node prefix.
676  *
677  * This function may be called multiple times on @ctx and the extra calls become
678  * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
679  * explicitly if bdev access is needed without resolving the blkcg / policy part
680  * of @ctx->input. Returns -errno on error.
681  */
682 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
683 {
684 	char *input = ctx->input;
685 	unsigned int major, minor;
686 	struct block_device *bdev;
687 	int key_len;
688 
689 	if (ctx->bdev)
690 		return 0;
691 
692 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
693 		return -EINVAL;
694 
695 	input += key_len;
696 	if (!isspace(*input))
697 		return -EINVAL;
698 	input = skip_spaces(input);
699 
700 	bdev = blkdev_get_no_open(MKDEV(major, minor));
701 	if (!bdev)
702 		return -ENODEV;
703 	if (bdev_is_partition(bdev)) {
704 		blkdev_put_no_open(bdev);
705 		return -ENODEV;
706 	}
707 
708 	ctx->body = input;
709 	ctx->bdev = bdev;
710 	return 0;
711 }
712 
713 /**
714  * blkg_conf_prep - parse and prepare for per-blkg config update
715  * @blkcg: target block cgroup
716  * @pol: target policy
717  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
718  *
719  * Parse per-blkg config update from @ctx->input and initialize @ctx
720  * accordingly. On success, @ctx->body points to the part of @ctx->input
721  * following MAJ:MIN, @ctx->bdev points to the target block device and
722  * @ctx->blkg to the blkg being configured.
723  *
724  * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
725  * function returns with queue lock held and must be followed by
726  * blkg_conf_exit().
727  */
728 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
729 		   struct blkg_conf_ctx *ctx)
730 	__acquires(&bdev->bd_queue->queue_lock)
731 {
732 	struct gendisk *disk;
733 	struct request_queue *q;
734 	struct blkcg_gq *blkg;
735 	int ret;
736 
737 	ret = blkg_conf_open_bdev(ctx);
738 	if (ret)
739 		return ret;
740 
741 	disk = ctx->bdev->bd_disk;
742 	q = disk->queue;
743 
744 	/*
745 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
746 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
747 	 */
748 	ret = blk_queue_enter(q, 0);
749 	if (ret)
750 		goto fail;
751 
752 	spin_lock_irq(&q->queue_lock);
753 
754 	if (!blkcg_policy_enabled(q, pol)) {
755 		ret = -EOPNOTSUPP;
756 		goto fail_unlock;
757 	}
758 
759 	blkg = blkg_lookup(blkcg, q);
760 	if (blkg)
761 		goto success;
762 
763 	/*
764 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
765 	 * non-root blkgs have access to their parents.
766 	 */
767 	while (true) {
768 		struct blkcg *pos = blkcg;
769 		struct blkcg *parent;
770 		struct blkcg_gq *new_blkg;
771 
772 		parent = blkcg_parent(blkcg);
773 		while (parent && !blkg_lookup(parent, q)) {
774 			pos = parent;
775 			parent = blkcg_parent(parent);
776 		}
777 
778 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
779 		spin_unlock_irq(&q->queue_lock);
780 
781 		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
782 		if (unlikely(!new_blkg)) {
783 			ret = -ENOMEM;
784 			goto fail_exit_queue;
785 		}
786 
787 		if (radix_tree_preload(GFP_KERNEL)) {
788 			blkg_free(new_blkg);
789 			ret = -ENOMEM;
790 			goto fail_exit_queue;
791 		}
792 
793 		spin_lock_irq(&q->queue_lock);
794 
795 		if (!blkcg_policy_enabled(q, pol)) {
796 			blkg_free(new_blkg);
797 			ret = -EOPNOTSUPP;
798 			goto fail_preloaded;
799 		}
800 
801 		blkg = blkg_lookup(pos, q);
802 		if (blkg) {
803 			blkg_free(new_blkg);
804 		} else {
805 			blkg = blkg_create(pos, disk, new_blkg);
806 			if (IS_ERR(blkg)) {
807 				ret = PTR_ERR(blkg);
808 				goto fail_preloaded;
809 			}
810 		}
811 
812 		radix_tree_preload_end();
813 
814 		if (pos == blkcg)
815 			goto success;
816 	}
817 success:
818 	blk_queue_exit(q);
819 	ctx->blkg = blkg;
820 	return 0;
821 
822 fail_preloaded:
823 	radix_tree_preload_end();
824 fail_unlock:
825 	spin_unlock_irq(&q->queue_lock);
826 fail_exit_queue:
827 	blk_queue_exit(q);
828 fail:
829 	/*
830 	 * If queue was bypassing, we should retry.  Do so after a
831 	 * short msleep().  It isn't strictly necessary but queue
832 	 * can be bypassing for some time and it's always nice to
833 	 * avoid busy looping.
834 	 */
835 	if (ret == -EBUSY) {
836 		msleep(10);
837 		ret = restart_syscall();
838 	}
839 	return ret;
840 }
841 EXPORT_SYMBOL_GPL(blkg_conf_prep);
842 
843 /**
844  * blkg_conf_exit - clean up per-blkg config update
845  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
846  *
847  * Clean up after per-blkg config update. This function must be called on all
848  * blkg_conf_ctx's initialized with blkg_conf_init().
849  */
850 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
851 	__releases(&ctx->bdev->bd_queue->queue_lock)
852 {
853 	if (ctx->blkg) {
854 		spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
855 		ctx->blkg = NULL;
856 	}
857 
858 	if (ctx->bdev) {
859 		blkdev_put_no_open(ctx->bdev);
860 		ctx->body = NULL;
861 		ctx->bdev = NULL;
862 	}
863 }
864 EXPORT_SYMBOL_GPL(blkg_conf_exit);
865 
866 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
867 {
868 	int i;
869 
870 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
871 		dst->bytes[i] = src->bytes[i];
872 		dst->ios[i] = src->ios[i];
873 	}
874 }
875 
876 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
877 {
878 	int i;
879 
880 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
881 		dst->bytes[i] += src->bytes[i];
882 		dst->ios[i] += src->ios[i];
883 	}
884 }
885 
886 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
887 {
888 	int i;
889 
890 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
891 		dst->bytes[i] -= src->bytes[i];
892 		dst->ios[i] -= src->ios[i];
893 	}
894 }
895 
896 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
897 				struct blkg_iostat *last)
898 {
899 	struct blkg_iostat delta;
900 	unsigned long flags;
901 
902 	/* propagate percpu delta to global */
903 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
904 	blkg_iostat_set(&delta, cur);
905 	blkg_iostat_sub(&delta, last);
906 	blkg_iostat_add(&blkg->iostat.cur, &delta);
907 	blkg_iostat_add(last, &delta);
908 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
909 }
910 
911 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
912 {
913 	struct blkcg *blkcg = css_to_blkcg(css);
914 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
915 	struct llist_node *lnode;
916 	struct blkg_iostat_set *bisc, *next_bisc;
917 
918 	/* Root-level stats are sourced from system-wide IO stats */
919 	if (!cgroup_parent(css->cgroup))
920 		return;
921 
922 	rcu_read_lock();
923 
924 	lnode = llist_del_all(lhead);
925 	if (!lnode)
926 		goto out;
927 
928 	/*
929 	 * Iterate only the iostat_cpu's queued in the lockless list.
930 	 */
931 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
932 		struct blkcg_gq *blkg = bisc->blkg;
933 		struct blkcg_gq *parent = blkg->parent;
934 		struct blkg_iostat cur;
935 		unsigned int seq;
936 
937 		WRITE_ONCE(bisc->lqueued, false);
938 
939 		/* fetch the current per-cpu values */
940 		do {
941 			seq = u64_stats_fetch_begin(&bisc->sync);
942 			blkg_iostat_set(&cur, &bisc->cur);
943 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
944 
945 		blkcg_iostat_update(blkg, &cur, &bisc->last);
946 
947 		/* propagate global delta to parent (unless that's root) */
948 		if (parent && parent->parent)
949 			blkcg_iostat_update(parent, &blkg->iostat.cur,
950 					    &blkg->iostat.last);
951 		percpu_ref_put(&blkg->refcnt);
952 	}
953 
954 out:
955 	rcu_read_unlock();
956 }
957 
958 /*
959  * We source root cgroup stats from the system-wide stats to avoid
960  * tracking the same information twice and incurring overhead when no
961  * cgroups are defined. For that reason, cgroup_rstat_flush in
962  * blkcg_print_stat does not actually fill out the iostat in the root
963  * cgroup's blkcg_gq.
964  *
965  * However, we would like to re-use the printing code between the root and
966  * non-root cgroups to the extent possible. For that reason, we simulate
967  * flushing the root cgroup's stats by explicitly filling in the iostat
968  * with disk level statistics.
969  */
970 static void blkcg_fill_root_iostats(void)
971 {
972 	struct class_dev_iter iter;
973 	struct device *dev;
974 
975 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
976 	while ((dev = class_dev_iter_next(&iter))) {
977 		struct block_device *bdev = dev_to_bdev(dev);
978 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
979 		struct blkg_iostat tmp;
980 		int cpu;
981 		unsigned long flags;
982 
983 		memset(&tmp, 0, sizeof(tmp));
984 		for_each_possible_cpu(cpu) {
985 			struct disk_stats *cpu_dkstats;
986 
987 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
988 			tmp.ios[BLKG_IOSTAT_READ] +=
989 				cpu_dkstats->ios[STAT_READ];
990 			tmp.ios[BLKG_IOSTAT_WRITE] +=
991 				cpu_dkstats->ios[STAT_WRITE];
992 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
993 				cpu_dkstats->ios[STAT_DISCARD];
994 			// convert sectors to bytes
995 			tmp.bytes[BLKG_IOSTAT_READ] +=
996 				cpu_dkstats->sectors[STAT_READ] << 9;
997 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
998 				cpu_dkstats->sectors[STAT_WRITE] << 9;
999 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1000 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
1001 		}
1002 
1003 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1004 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
1005 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1006 	}
1007 }
1008 
1009 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1010 {
1011 	struct blkg_iostat_set *bis = &blkg->iostat;
1012 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
1013 	const char *dname;
1014 	unsigned seq;
1015 	int i;
1016 
1017 	if (!blkg->online)
1018 		return;
1019 
1020 	dname = blkg_dev_name(blkg);
1021 	if (!dname)
1022 		return;
1023 
1024 	seq_printf(s, "%s ", dname);
1025 
1026 	do {
1027 		seq = u64_stats_fetch_begin(&bis->sync);
1028 
1029 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1030 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1031 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1032 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1033 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1034 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1035 	} while (u64_stats_fetch_retry(&bis->sync, seq));
1036 
1037 	if (rbytes || wbytes || rios || wios) {
1038 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1039 			rbytes, wbytes, rios, wios,
1040 			dbytes, dios);
1041 	}
1042 
1043 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1044 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1045 			atomic_read(&blkg->use_delay),
1046 			atomic64_read(&blkg->delay_nsec));
1047 	}
1048 
1049 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1050 		struct blkcg_policy *pol = blkcg_policy[i];
1051 
1052 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1053 			continue;
1054 
1055 		pol->pd_stat_fn(blkg->pd[i], s);
1056 	}
1057 
1058 	seq_puts(s, "\n");
1059 }
1060 
1061 static int blkcg_print_stat(struct seq_file *sf, void *v)
1062 {
1063 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1064 	struct blkcg_gq *blkg;
1065 
1066 	if (!seq_css(sf)->parent)
1067 		blkcg_fill_root_iostats();
1068 	else
1069 		cgroup_rstat_flush(blkcg->css.cgroup);
1070 
1071 	rcu_read_lock();
1072 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1073 		spin_lock_irq(&blkg->q->queue_lock);
1074 		blkcg_print_one_stat(blkg, sf);
1075 		spin_unlock_irq(&blkg->q->queue_lock);
1076 	}
1077 	rcu_read_unlock();
1078 	return 0;
1079 }
1080 
1081 static struct cftype blkcg_files[] = {
1082 	{
1083 		.name = "stat",
1084 		.seq_show = blkcg_print_stat,
1085 	},
1086 	{ }	/* terminate */
1087 };
1088 
1089 static struct cftype blkcg_legacy_files[] = {
1090 	{
1091 		.name = "reset_stats",
1092 		.write_u64 = blkcg_reset_stats,
1093 	},
1094 	{ }	/* terminate */
1095 };
1096 
1097 #ifdef CONFIG_CGROUP_WRITEBACK
1098 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1099 {
1100 	return &css_to_blkcg(css)->cgwb_list;
1101 }
1102 #endif
1103 
1104 /*
1105  * blkcg destruction is a three-stage process.
1106  *
1107  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1108  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1109  *    to the completion of writeback associated with the blkcg.  This lets us
1110  *    avoid punting potentially large amounts of outstanding writeback to root
1111  *    while maintaining any ongoing policies.  The next stage is triggered when
1112  *    the nr_cgwbs count goes to zero.
1113  *
1114  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1115  *    and handles the destruction of blkgs.  Here the css reference held by
1116  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1117  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1118  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1119  *    punted to the root_blkg.
1120  *
1121  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1122  *    This finally frees the blkcg.
1123  */
1124 
1125 /**
1126  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1127  * @blkcg: blkcg of interest
1128  *
1129  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1130  * is nested inside q lock, this function performs reverse double lock dancing.
1131  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1132  * blkcg_css_free to eventually be called.
1133  *
1134  * This is the blkcg counterpart of ioc_release_fn().
1135  */
1136 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1137 {
1138 	might_sleep();
1139 
1140 	spin_lock_irq(&blkcg->lock);
1141 
1142 	while (!hlist_empty(&blkcg->blkg_list)) {
1143 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1144 						struct blkcg_gq, blkcg_node);
1145 		struct request_queue *q = blkg->q;
1146 
1147 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1148 			/*
1149 			 * Given that the system can accumulate a huge number
1150 			 * of blkgs in pathological cases, check to see if we
1151 			 * need to rescheduling to avoid softlockup.
1152 			 */
1153 			spin_unlock_irq(&blkcg->lock);
1154 			cond_resched();
1155 			spin_lock_irq(&blkcg->lock);
1156 			continue;
1157 		}
1158 
1159 		blkg_destroy(blkg);
1160 		spin_unlock(&q->queue_lock);
1161 	}
1162 
1163 	spin_unlock_irq(&blkcg->lock);
1164 }
1165 
1166 /**
1167  * blkcg_pin_online - pin online state
1168  * @blkcg_css: blkcg of interest
1169  *
1170  * While pinned, a blkcg is kept online.  This is primarily used to
1171  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1172  * while an associated cgwb is still active.
1173  */
1174 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1175 {
1176 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1177 }
1178 
1179 /**
1180  * blkcg_unpin_online - unpin online state
1181  * @blkcg_css: blkcg of interest
1182  *
1183  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1184  * that blkg doesn't go offline while an associated cgwb is still active.
1185  * When this count goes to zero, all active cgwbs have finished so the
1186  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1187  */
1188 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1189 {
1190 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1191 
1192 	do {
1193 		if (!refcount_dec_and_test(&blkcg->online_pin))
1194 			break;
1195 		blkcg_destroy_blkgs(blkcg);
1196 		blkcg = blkcg_parent(blkcg);
1197 	} while (blkcg);
1198 }
1199 
1200 /**
1201  * blkcg_css_offline - cgroup css_offline callback
1202  * @css: css of interest
1203  *
1204  * This function is called when @css is about to go away.  Here the cgwbs are
1205  * offlined first and only once writeback associated with the blkcg has
1206  * finished do we start step 2 (see above).
1207  */
1208 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1209 {
1210 	/* this prevents anyone from attaching or migrating to this blkcg */
1211 	wb_blkcg_offline(css);
1212 
1213 	/* put the base online pin allowing step 2 to be triggered */
1214 	blkcg_unpin_online(css);
1215 }
1216 
1217 static void blkcg_css_free(struct cgroup_subsys_state *css)
1218 {
1219 	struct blkcg *blkcg = css_to_blkcg(css);
1220 	int i;
1221 
1222 	mutex_lock(&blkcg_pol_mutex);
1223 
1224 	list_del(&blkcg->all_blkcgs_node);
1225 
1226 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1227 		if (blkcg->cpd[i])
1228 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1229 
1230 	mutex_unlock(&blkcg_pol_mutex);
1231 
1232 	free_percpu(blkcg->lhead);
1233 	kfree(blkcg);
1234 }
1235 
1236 static struct cgroup_subsys_state *
1237 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1238 {
1239 	struct blkcg *blkcg;
1240 	int i;
1241 
1242 	mutex_lock(&blkcg_pol_mutex);
1243 
1244 	if (!parent_css) {
1245 		blkcg = &blkcg_root;
1246 	} else {
1247 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1248 		if (!blkcg)
1249 			goto unlock;
1250 	}
1251 
1252 	if (init_blkcg_llists(blkcg))
1253 		goto free_blkcg;
1254 
1255 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1256 		struct blkcg_policy *pol = blkcg_policy[i];
1257 		struct blkcg_policy_data *cpd;
1258 
1259 		/*
1260 		 * If the policy hasn't been attached yet, wait for it
1261 		 * to be attached before doing anything else. Otherwise,
1262 		 * check if the policy requires any specific per-cgroup
1263 		 * data: if it does, allocate and initialize it.
1264 		 */
1265 		if (!pol || !pol->cpd_alloc_fn)
1266 			continue;
1267 
1268 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1269 		if (!cpd)
1270 			goto free_pd_blkcg;
1271 
1272 		blkcg->cpd[i] = cpd;
1273 		cpd->blkcg = blkcg;
1274 		cpd->plid = i;
1275 	}
1276 
1277 	spin_lock_init(&blkcg->lock);
1278 	refcount_set(&blkcg->online_pin, 1);
1279 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1280 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1281 #ifdef CONFIG_CGROUP_WRITEBACK
1282 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1283 #endif
1284 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1285 
1286 	mutex_unlock(&blkcg_pol_mutex);
1287 	return &blkcg->css;
1288 
1289 free_pd_blkcg:
1290 	for (i--; i >= 0; i--)
1291 		if (blkcg->cpd[i])
1292 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1293 	free_percpu(blkcg->lhead);
1294 free_blkcg:
1295 	if (blkcg != &blkcg_root)
1296 		kfree(blkcg);
1297 unlock:
1298 	mutex_unlock(&blkcg_pol_mutex);
1299 	return ERR_PTR(-ENOMEM);
1300 }
1301 
1302 static int blkcg_css_online(struct cgroup_subsys_state *css)
1303 {
1304 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1305 
1306 	/*
1307 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1308 	 * don't go offline while cgwbs are still active on them.  Pin the
1309 	 * parent so that offline always happens towards the root.
1310 	 */
1311 	if (parent)
1312 		blkcg_pin_online(&parent->css);
1313 	return 0;
1314 }
1315 
1316 int blkcg_init_disk(struct gendisk *disk)
1317 {
1318 	struct request_queue *q = disk->queue;
1319 	struct blkcg_gq *new_blkg, *blkg;
1320 	bool preloaded;
1321 	int ret;
1322 
1323 	INIT_LIST_HEAD(&q->blkg_list);
1324 	mutex_init(&q->blkcg_mutex);
1325 
1326 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1327 	if (!new_blkg)
1328 		return -ENOMEM;
1329 
1330 	preloaded = !radix_tree_preload(GFP_KERNEL);
1331 
1332 	/* Make sure the root blkg exists. */
1333 	/* spin_lock_irq can serve as RCU read-side critical section. */
1334 	spin_lock_irq(&q->queue_lock);
1335 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1336 	if (IS_ERR(blkg))
1337 		goto err_unlock;
1338 	q->root_blkg = blkg;
1339 	spin_unlock_irq(&q->queue_lock);
1340 
1341 	if (preloaded)
1342 		radix_tree_preload_end();
1343 
1344 	ret = blk_ioprio_init(disk);
1345 	if (ret)
1346 		goto err_destroy_all;
1347 
1348 	ret = blk_throtl_init(disk);
1349 	if (ret)
1350 		goto err_ioprio_exit;
1351 
1352 	return 0;
1353 
1354 err_ioprio_exit:
1355 	blk_ioprio_exit(disk);
1356 err_destroy_all:
1357 	blkg_destroy_all(disk);
1358 	return ret;
1359 err_unlock:
1360 	spin_unlock_irq(&q->queue_lock);
1361 	if (preloaded)
1362 		radix_tree_preload_end();
1363 	return PTR_ERR(blkg);
1364 }
1365 
1366 void blkcg_exit_disk(struct gendisk *disk)
1367 {
1368 	blkg_destroy_all(disk);
1369 	blk_throtl_exit(disk);
1370 }
1371 
1372 static void blkcg_exit(struct task_struct *tsk)
1373 {
1374 	if (tsk->throttle_disk)
1375 		put_disk(tsk->throttle_disk);
1376 	tsk->throttle_disk = NULL;
1377 }
1378 
1379 struct cgroup_subsys io_cgrp_subsys = {
1380 	.css_alloc = blkcg_css_alloc,
1381 	.css_online = blkcg_css_online,
1382 	.css_offline = blkcg_css_offline,
1383 	.css_free = blkcg_css_free,
1384 	.css_rstat_flush = blkcg_rstat_flush,
1385 	.dfl_cftypes = blkcg_files,
1386 	.legacy_cftypes = blkcg_legacy_files,
1387 	.legacy_name = "blkio",
1388 	.exit = blkcg_exit,
1389 #ifdef CONFIG_MEMCG
1390 	/*
1391 	 * This ensures that, if available, memcg is automatically enabled
1392 	 * together on the default hierarchy so that the owner cgroup can
1393 	 * be retrieved from writeback pages.
1394 	 */
1395 	.depends_on = 1 << memory_cgrp_id,
1396 #endif
1397 };
1398 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1399 
1400 /**
1401  * blkcg_activate_policy - activate a blkcg policy on a gendisk
1402  * @disk: gendisk of interest
1403  * @pol: blkcg policy to activate
1404  *
1405  * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1406  * bypass mode to populate its blkgs with policy_data for @pol.
1407  *
1408  * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1409  * from IO path.  Update of each blkg is protected by both queue and blkcg
1410  * locks so that holding either lock and testing blkcg_policy_enabled() is
1411  * always enough for dereferencing policy data.
1412  *
1413  * The caller is responsible for synchronizing [de]activations and policy
1414  * [un]registerations.  Returns 0 on success, -errno on failure.
1415  */
1416 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1417 {
1418 	struct request_queue *q = disk->queue;
1419 	struct blkg_policy_data *pd_prealloc = NULL;
1420 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1421 	int ret;
1422 
1423 	if (blkcg_policy_enabled(q, pol))
1424 		return 0;
1425 
1426 	if (queue_is_mq(q))
1427 		blk_mq_freeze_queue(q);
1428 retry:
1429 	spin_lock_irq(&q->queue_lock);
1430 
1431 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1432 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1433 		struct blkg_policy_data *pd;
1434 
1435 		if (blkg->pd[pol->plid])
1436 			continue;
1437 
1438 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1439 		if (blkg == pinned_blkg) {
1440 			pd = pd_prealloc;
1441 			pd_prealloc = NULL;
1442 		} else {
1443 			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1444 					      GFP_NOWAIT | __GFP_NOWARN);
1445 		}
1446 
1447 		if (!pd) {
1448 			/*
1449 			 * GFP_NOWAIT failed.  Free the existing one and
1450 			 * prealloc for @blkg w/ GFP_KERNEL.
1451 			 */
1452 			if (pinned_blkg)
1453 				blkg_put(pinned_blkg);
1454 			blkg_get(blkg);
1455 			pinned_blkg = blkg;
1456 
1457 			spin_unlock_irq(&q->queue_lock);
1458 
1459 			if (pd_prealloc)
1460 				pol->pd_free_fn(pd_prealloc);
1461 			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1462 						       GFP_KERNEL);
1463 			if (pd_prealloc)
1464 				goto retry;
1465 			else
1466 				goto enomem;
1467 		}
1468 
1469 		blkg->pd[pol->plid] = pd;
1470 		pd->blkg = blkg;
1471 		pd->plid = pol->plid;
1472 		pd->online = false;
1473 	}
1474 
1475 	/* all allocated, init in the same order */
1476 	if (pol->pd_init_fn)
1477 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1478 			pol->pd_init_fn(blkg->pd[pol->plid]);
1479 
1480 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1481 		if (pol->pd_online_fn)
1482 			pol->pd_online_fn(blkg->pd[pol->plid]);
1483 		blkg->pd[pol->plid]->online = true;
1484 	}
1485 
1486 	__set_bit(pol->plid, q->blkcg_pols);
1487 	ret = 0;
1488 
1489 	spin_unlock_irq(&q->queue_lock);
1490 out:
1491 	if (queue_is_mq(q))
1492 		blk_mq_unfreeze_queue(q);
1493 	if (pinned_blkg)
1494 		blkg_put(pinned_blkg);
1495 	if (pd_prealloc)
1496 		pol->pd_free_fn(pd_prealloc);
1497 	return ret;
1498 
1499 enomem:
1500 	/* alloc failed, nothing's initialized yet, free everything */
1501 	spin_lock_irq(&q->queue_lock);
1502 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1503 		struct blkcg *blkcg = blkg->blkcg;
1504 
1505 		spin_lock(&blkcg->lock);
1506 		if (blkg->pd[pol->plid]) {
1507 			pol->pd_free_fn(blkg->pd[pol->plid]);
1508 			blkg->pd[pol->plid] = NULL;
1509 		}
1510 		spin_unlock(&blkcg->lock);
1511 	}
1512 	spin_unlock_irq(&q->queue_lock);
1513 	ret = -ENOMEM;
1514 	goto out;
1515 }
1516 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1517 
1518 /**
1519  * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1520  * @disk: gendisk of interest
1521  * @pol: blkcg policy to deactivate
1522  *
1523  * Deactivate @pol on @disk.  Follows the same synchronization rules as
1524  * blkcg_activate_policy().
1525  */
1526 void blkcg_deactivate_policy(struct gendisk *disk,
1527 			     const struct blkcg_policy *pol)
1528 {
1529 	struct request_queue *q = disk->queue;
1530 	struct blkcg_gq *blkg;
1531 
1532 	if (!blkcg_policy_enabled(q, pol))
1533 		return;
1534 
1535 	if (queue_is_mq(q))
1536 		blk_mq_freeze_queue(q);
1537 
1538 	mutex_lock(&q->blkcg_mutex);
1539 	spin_lock_irq(&q->queue_lock);
1540 
1541 	__clear_bit(pol->plid, q->blkcg_pols);
1542 
1543 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1544 		struct blkcg *blkcg = blkg->blkcg;
1545 
1546 		spin_lock(&blkcg->lock);
1547 		if (blkg->pd[pol->plid]) {
1548 			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1549 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1550 			pol->pd_free_fn(blkg->pd[pol->plid]);
1551 			blkg->pd[pol->plid] = NULL;
1552 		}
1553 		spin_unlock(&blkcg->lock);
1554 	}
1555 
1556 	spin_unlock_irq(&q->queue_lock);
1557 	mutex_unlock(&q->blkcg_mutex);
1558 
1559 	if (queue_is_mq(q))
1560 		blk_mq_unfreeze_queue(q);
1561 }
1562 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1563 
1564 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1565 {
1566 	struct blkcg *blkcg;
1567 
1568 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1569 		if (blkcg->cpd[pol->plid]) {
1570 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1571 			blkcg->cpd[pol->plid] = NULL;
1572 		}
1573 	}
1574 }
1575 
1576 /**
1577  * blkcg_policy_register - register a blkcg policy
1578  * @pol: blkcg policy to register
1579  *
1580  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1581  * successful registration.  Returns 0 on success and -errno on failure.
1582  */
1583 int blkcg_policy_register(struct blkcg_policy *pol)
1584 {
1585 	struct blkcg *blkcg;
1586 	int i, ret;
1587 
1588 	mutex_lock(&blkcg_pol_register_mutex);
1589 	mutex_lock(&blkcg_pol_mutex);
1590 
1591 	/* find an empty slot */
1592 	ret = -ENOSPC;
1593 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1594 		if (!blkcg_policy[i])
1595 			break;
1596 	if (i >= BLKCG_MAX_POLS) {
1597 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1598 		goto err_unlock;
1599 	}
1600 
1601 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1602 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1603 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1604 		goto err_unlock;
1605 
1606 	/* register @pol */
1607 	pol->plid = i;
1608 	blkcg_policy[pol->plid] = pol;
1609 
1610 	/* allocate and install cpd's */
1611 	if (pol->cpd_alloc_fn) {
1612 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1613 			struct blkcg_policy_data *cpd;
1614 
1615 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1616 			if (!cpd)
1617 				goto err_free_cpds;
1618 
1619 			blkcg->cpd[pol->plid] = cpd;
1620 			cpd->blkcg = blkcg;
1621 			cpd->plid = pol->plid;
1622 		}
1623 	}
1624 
1625 	mutex_unlock(&blkcg_pol_mutex);
1626 
1627 	/* everything is in place, add intf files for the new policy */
1628 	if (pol->dfl_cftypes)
1629 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1630 					       pol->dfl_cftypes));
1631 	if (pol->legacy_cftypes)
1632 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1633 						  pol->legacy_cftypes));
1634 	mutex_unlock(&blkcg_pol_register_mutex);
1635 	return 0;
1636 
1637 err_free_cpds:
1638 	if (pol->cpd_free_fn)
1639 		blkcg_free_all_cpd(pol);
1640 
1641 	blkcg_policy[pol->plid] = NULL;
1642 err_unlock:
1643 	mutex_unlock(&blkcg_pol_mutex);
1644 	mutex_unlock(&blkcg_pol_register_mutex);
1645 	return ret;
1646 }
1647 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1648 
1649 /**
1650  * blkcg_policy_unregister - unregister a blkcg policy
1651  * @pol: blkcg policy to unregister
1652  *
1653  * Undo blkcg_policy_register(@pol).  Might sleep.
1654  */
1655 void blkcg_policy_unregister(struct blkcg_policy *pol)
1656 {
1657 	mutex_lock(&blkcg_pol_register_mutex);
1658 
1659 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1660 		goto out_unlock;
1661 
1662 	/* kill the intf files first */
1663 	if (pol->dfl_cftypes)
1664 		cgroup_rm_cftypes(pol->dfl_cftypes);
1665 	if (pol->legacy_cftypes)
1666 		cgroup_rm_cftypes(pol->legacy_cftypes);
1667 
1668 	/* remove cpds and unregister */
1669 	mutex_lock(&blkcg_pol_mutex);
1670 
1671 	if (pol->cpd_free_fn)
1672 		blkcg_free_all_cpd(pol);
1673 
1674 	blkcg_policy[pol->plid] = NULL;
1675 
1676 	mutex_unlock(&blkcg_pol_mutex);
1677 out_unlock:
1678 	mutex_unlock(&blkcg_pol_register_mutex);
1679 }
1680 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1681 
1682 bool __blkcg_punt_bio_submit(struct bio *bio)
1683 {
1684 	struct blkcg_gq *blkg = bio->bi_blkg;
1685 
1686 	/* consume the flag first */
1687 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1688 
1689 	/* never bounce for the root cgroup */
1690 	if (!blkg->parent)
1691 		return false;
1692 
1693 	spin_lock_bh(&blkg->async_bio_lock);
1694 	bio_list_add(&blkg->async_bios, bio);
1695 	spin_unlock_bh(&blkg->async_bio_lock);
1696 
1697 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1698 	return true;
1699 }
1700 
1701 /*
1702  * Scale the accumulated delay based on how long it has been since we updated
1703  * the delay.  We only call this when we are adding delay, in case it's been a
1704  * while since we added delay, and when we are checking to see if we need to
1705  * delay a task, to account for any delays that may have occurred.
1706  */
1707 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1708 {
1709 	u64 old = atomic64_read(&blkg->delay_start);
1710 
1711 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1712 	if (atomic_read(&blkg->use_delay) < 0)
1713 		return;
1714 
1715 	/*
1716 	 * We only want to scale down every second.  The idea here is that we
1717 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1718 	 * time window.  We only want to throttle tasks for recent delay that
1719 	 * has occurred, in 1 second time windows since that's the maximum
1720 	 * things can be throttled.  We save the current delay window in
1721 	 * blkg->last_delay so we know what amount is still left to be charged
1722 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1723 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1724 	 * are ok with whatever is happening now, and we can take away more of
1725 	 * the accumulated delay as we've already throttled enough that
1726 	 * everybody is happy with their IO latencies.
1727 	 */
1728 	if (time_before64(old + NSEC_PER_SEC, now) &&
1729 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1730 		u64 cur = atomic64_read(&blkg->delay_nsec);
1731 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1732 		int cur_use = atomic_read(&blkg->use_delay);
1733 
1734 		/*
1735 		 * We've been unthrottled, subtract a larger chunk of our
1736 		 * accumulated delay.
1737 		 */
1738 		if (cur_use < blkg->last_use)
1739 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1740 
1741 		/*
1742 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1743 		 * should only ever be growing except here where we subtract out
1744 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1745 		 * rather not end up with negative numbers.
1746 		 */
1747 		if (unlikely(cur < sub)) {
1748 			atomic64_set(&blkg->delay_nsec, 0);
1749 			blkg->last_delay = 0;
1750 		} else {
1751 			atomic64_sub(sub, &blkg->delay_nsec);
1752 			blkg->last_delay = cur - sub;
1753 		}
1754 		blkg->last_use = cur_use;
1755 	}
1756 }
1757 
1758 /*
1759  * This is called when we want to actually walk up the hierarchy and check to
1760  * see if we need to throttle, and then actually throttle if there is some
1761  * accumulated delay.  This should only be called upon return to user space so
1762  * we're not holding some lock that would induce a priority inversion.
1763  */
1764 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1765 {
1766 	unsigned long pflags;
1767 	bool clamp;
1768 	u64 now = ktime_to_ns(ktime_get());
1769 	u64 exp;
1770 	u64 delay_nsec = 0;
1771 	int tok;
1772 
1773 	while (blkg->parent) {
1774 		int use_delay = atomic_read(&blkg->use_delay);
1775 
1776 		if (use_delay) {
1777 			u64 this_delay;
1778 
1779 			blkcg_scale_delay(blkg, now);
1780 			this_delay = atomic64_read(&blkg->delay_nsec);
1781 			if (this_delay > delay_nsec) {
1782 				delay_nsec = this_delay;
1783 				clamp = use_delay > 0;
1784 			}
1785 		}
1786 		blkg = blkg->parent;
1787 	}
1788 
1789 	if (!delay_nsec)
1790 		return;
1791 
1792 	/*
1793 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1794 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1795 	 * delay, and we want userspace to be able to do _something_ so cap the
1796 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1797 	 * tasks will be delayed for 0.25 second for every syscall. If
1798 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1799 	 * caller is responsible for regulating the range.
1800 	 */
1801 	if (clamp)
1802 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1803 
1804 	if (use_memdelay)
1805 		psi_memstall_enter(&pflags);
1806 
1807 	exp = ktime_add_ns(now, delay_nsec);
1808 	tok = io_schedule_prepare();
1809 	do {
1810 		__set_current_state(TASK_KILLABLE);
1811 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1812 			break;
1813 	} while (!fatal_signal_pending(current));
1814 	io_schedule_finish(tok);
1815 
1816 	if (use_memdelay)
1817 		psi_memstall_leave(&pflags);
1818 }
1819 
1820 /**
1821  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1822  *
1823  * This is only called if we've been marked with set_notify_resume().  Obviously
1824  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1825  * check to see if current->throttle_disk is set and if not this doesn't do
1826  * anything.  This should only ever be called by the resume code, it's not meant
1827  * to be called by people willy-nilly as it will actually do the work to
1828  * throttle the task if it is setup for throttling.
1829  */
1830 void blkcg_maybe_throttle_current(void)
1831 {
1832 	struct gendisk *disk = current->throttle_disk;
1833 	struct blkcg *blkcg;
1834 	struct blkcg_gq *blkg;
1835 	bool use_memdelay = current->use_memdelay;
1836 
1837 	if (!disk)
1838 		return;
1839 
1840 	current->throttle_disk = NULL;
1841 	current->use_memdelay = false;
1842 
1843 	rcu_read_lock();
1844 	blkcg = css_to_blkcg(blkcg_css());
1845 	if (!blkcg)
1846 		goto out;
1847 	blkg = blkg_lookup(blkcg, disk->queue);
1848 	if (!blkg)
1849 		goto out;
1850 	if (!blkg_tryget(blkg))
1851 		goto out;
1852 	rcu_read_unlock();
1853 
1854 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1855 	blkg_put(blkg);
1856 	put_disk(disk);
1857 	return;
1858 out:
1859 	rcu_read_unlock();
1860 }
1861 
1862 /**
1863  * blkcg_schedule_throttle - this task needs to check for throttling
1864  * @disk: disk to throttle
1865  * @use_memdelay: do we charge this to memory delay for PSI
1866  *
1867  * This is called by the IO controller when we know there's delay accumulated
1868  * for the blkg for this task.  We do not pass the blkg because there are places
1869  * we call this that may not have that information, the swapping code for
1870  * instance will only have a block_device at that point.  This set's the
1871  * notify_resume for the task to check and see if it requires throttling before
1872  * returning to user space.
1873  *
1874  * We will only schedule once per syscall.  You can call this over and over
1875  * again and it will only do the check once upon return to user space, and only
1876  * throttle once.  If the task needs to be throttled again it'll need to be
1877  * re-set at the next time we see the task.
1878  */
1879 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1880 {
1881 	if (unlikely(current->flags & PF_KTHREAD))
1882 		return;
1883 
1884 	if (current->throttle_disk != disk) {
1885 		if (test_bit(GD_DEAD, &disk->state))
1886 			return;
1887 		get_device(disk_to_dev(disk));
1888 
1889 		if (current->throttle_disk)
1890 			put_disk(current->throttle_disk);
1891 		current->throttle_disk = disk;
1892 	}
1893 
1894 	if (use_memdelay)
1895 		current->use_memdelay = use_memdelay;
1896 	set_notify_resume(current);
1897 }
1898 
1899 /**
1900  * blkcg_add_delay - add delay to this blkg
1901  * @blkg: blkg of interest
1902  * @now: the current time in nanoseconds
1903  * @delta: how many nanoseconds of delay to add
1904  *
1905  * Charge @delta to the blkg's current delay accumulation.  This is used to
1906  * throttle tasks if an IO controller thinks we need more throttling.
1907  */
1908 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1909 {
1910 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1911 		return;
1912 	blkcg_scale_delay(blkg, now);
1913 	atomic64_add(delta, &blkg->delay_nsec);
1914 }
1915 
1916 /**
1917  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1918  * @bio: target bio
1919  * @css: target css
1920  *
1921  * As the failure mode here is to walk up the blkg tree, this ensure that the
1922  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1923  * up taking a reference on or %NULL if no reference was taken.
1924  */
1925 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1926 		struct cgroup_subsys_state *css)
1927 {
1928 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1929 
1930 	rcu_read_lock();
1931 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1932 	while (blkg) {
1933 		if (blkg_tryget(blkg)) {
1934 			ret_blkg = blkg;
1935 			break;
1936 		}
1937 		blkg = blkg->parent;
1938 	}
1939 	rcu_read_unlock();
1940 
1941 	return ret_blkg;
1942 }
1943 
1944 /**
1945  * bio_associate_blkg_from_css - associate a bio with a specified css
1946  * @bio: target bio
1947  * @css: target css
1948  *
1949  * Associate @bio with the blkg found by combining the css's blkg and the
1950  * request_queue of the @bio.  An association failure is handled by walking up
1951  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1952  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1953  * then the remaining bios will spill to the closest alive blkg.
1954  *
1955  * A reference will be taken on the blkg and will be released when @bio is
1956  * freed.
1957  */
1958 void bio_associate_blkg_from_css(struct bio *bio,
1959 				 struct cgroup_subsys_state *css)
1960 {
1961 	if (bio->bi_blkg)
1962 		blkg_put(bio->bi_blkg);
1963 
1964 	if (css && css->parent) {
1965 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1966 	} else {
1967 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1968 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1969 	}
1970 }
1971 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1972 
1973 /**
1974  * bio_associate_blkg - associate a bio with a blkg
1975  * @bio: target bio
1976  *
1977  * Associate @bio with the blkg found from the bio's css and request_queue.
1978  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1979  * already associated, the css is reused and association redone as the
1980  * request_queue may have changed.
1981  */
1982 void bio_associate_blkg(struct bio *bio)
1983 {
1984 	struct cgroup_subsys_state *css;
1985 
1986 	rcu_read_lock();
1987 
1988 	if (bio->bi_blkg)
1989 		css = bio_blkcg_css(bio);
1990 	else
1991 		css = blkcg_css();
1992 
1993 	bio_associate_blkg_from_css(bio, css);
1994 
1995 	rcu_read_unlock();
1996 }
1997 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1998 
1999 /**
2000  * bio_clone_blkg_association - clone blkg association from src to dst bio
2001  * @dst: destination bio
2002  * @src: source bio
2003  */
2004 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2005 {
2006 	if (src->bi_blkg)
2007 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2008 }
2009 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2010 
2011 static int blk_cgroup_io_type(struct bio *bio)
2012 {
2013 	if (op_is_discard(bio->bi_opf))
2014 		return BLKG_IOSTAT_DISCARD;
2015 	if (op_is_write(bio->bi_opf))
2016 		return BLKG_IOSTAT_WRITE;
2017 	return BLKG_IOSTAT_READ;
2018 }
2019 
2020 void blk_cgroup_bio_start(struct bio *bio)
2021 {
2022 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2023 	int rwd = blk_cgroup_io_type(bio), cpu;
2024 	struct blkg_iostat_set *bis;
2025 	unsigned long flags;
2026 
2027 	/* Root-level stats are sourced from system-wide IO stats */
2028 	if (!cgroup_parent(blkcg->css.cgroup))
2029 		return;
2030 
2031 	cpu = get_cpu();
2032 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2033 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2034 
2035 	/*
2036 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2037 	 * bio and we would have already accounted for the size of the bio.
2038 	 */
2039 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2040 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2041 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2042 	}
2043 	bis->cur.ios[rwd]++;
2044 
2045 	/*
2046 	 * If the iostat_cpu isn't in a lockless list, put it into the
2047 	 * list to indicate that a stat update is pending.
2048 	 */
2049 	if (!READ_ONCE(bis->lqueued)) {
2050 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2051 
2052 		llist_add(&bis->lnode, lhead);
2053 		WRITE_ONCE(bis->lqueued, true);
2054 		percpu_ref_get(&bis->blkg->refcnt);
2055 	}
2056 
2057 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2058 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2059 		cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2060 	put_cpu();
2061 }
2062 
2063 bool blk_cgroup_congested(void)
2064 {
2065 	struct cgroup_subsys_state *css;
2066 	bool ret = false;
2067 
2068 	rcu_read_lock();
2069 	for (css = blkcg_css(); css; css = css->parent) {
2070 		if (atomic_read(&css->cgroup->congestion_count)) {
2071 			ret = true;
2072 			break;
2073 		}
2074 	}
2075 	rcu_read_unlock();
2076 	return ret;
2077 }
2078 
2079 static int __init blkcg_init(void)
2080 {
2081 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
2082 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
2083 					    WQ_UNBOUND | WQ_SYSFS, 0);
2084 	if (!blkcg_punt_bio_wq)
2085 		return -ENOMEM;
2086 	return 0;
2087 }
2088 subsys_initcall(blkcg_init);
2089 
2090 module_param(blkcg_debug_stats, bool, 0644);
2091 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2092