1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/ctype.h> 29 #include <linux/resume_user_mode.h> 30 #include <linux/psi.h> 31 #include <linux/part_stat.h> 32 #include "blk.h" 33 #include "blk-cgroup.h" 34 #include "blk-ioprio.h" 35 #include "blk-throttle.h" 36 37 /* 38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 40 * policy [un]register operations including cgroup file additions / 41 * removals. Putting cgroup file registration outside blkcg_pol_mutex 42 * allows grabbing it from cgroup callbacks. 43 */ 44 static DEFINE_MUTEX(blkcg_pol_register_mutex); 45 static DEFINE_MUTEX(blkcg_pol_mutex); 46 47 struct blkcg blkcg_root; 48 EXPORT_SYMBOL_GPL(blkcg_root); 49 50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 51 EXPORT_SYMBOL_GPL(blkcg_root_css); 52 53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 54 55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 56 57 bool blkcg_debug_stats = false; 58 static struct workqueue_struct *blkcg_punt_bio_wq; 59 60 #define BLKG_DESTROY_BATCH_SIZE 64 61 62 /* 63 * Lockless lists for tracking IO stats update 64 * 65 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg). 66 * There are multiple blkg's (one for each block device) attached to each 67 * blkcg. The rstat code keeps track of which cpu has IO stats updated, 68 * but it doesn't know which blkg has the updated stats. If there are many 69 * block devices in a system, the cost of iterating all the blkg's to flush 70 * out the IO stats can be high. To reduce such overhead, a set of percpu 71 * lockless lists (lhead) per blkcg are used to track the set of recently 72 * updated iostat_cpu's since the last flush. An iostat_cpu will be put 73 * onto the lockless list on the update side [blk_cgroup_bio_start()] if 74 * not there yet and then removed when being flushed [blkcg_rstat_flush()]. 75 * References to blkg are gotten and then put back in the process to 76 * protect against blkg removal. 77 * 78 * Return: 0 if successful or -ENOMEM if allocation fails. 79 */ 80 static int init_blkcg_llists(struct blkcg *blkcg) 81 { 82 int cpu; 83 84 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL); 85 if (!blkcg->lhead) 86 return -ENOMEM; 87 88 for_each_possible_cpu(cpu) 89 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu)); 90 return 0; 91 } 92 93 /** 94 * blkcg_css - find the current css 95 * 96 * Find the css associated with either the kthread or the current task. 97 * This may return a dying css, so it is up to the caller to use tryget logic 98 * to confirm it is alive and well. 99 */ 100 static struct cgroup_subsys_state *blkcg_css(void) 101 { 102 struct cgroup_subsys_state *css; 103 104 css = kthread_blkcg(); 105 if (css) 106 return css; 107 return task_css(current, io_cgrp_id); 108 } 109 110 static bool blkcg_policy_enabled(struct request_queue *q, 111 const struct blkcg_policy *pol) 112 { 113 return pol && test_bit(pol->plid, q->blkcg_pols); 114 } 115 116 static void blkg_free_workfn(struct work_struct *work) 117 { 118 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 119 free_work); 120 struct request_queue *q = blkg->q; 121 int i; 122 123 /* 124 * pd_free_fn() can also be called from blkcg_deactivate_policy(), 125 * in order to make sure pd_free_fn() is called in order, the deletion 126 * of the list blkg->q_node is delayed to here from blkg_destroy(), and 127 * blkcg_mutex is used to synchronize blkg_free_workfn() and 128 * blkcg_deactivate_policy(). 129 */ 130 mutex_lock(&q->blkcg_mutex); 131 for (i = 0; i < BLKCG_MAX_POLS; i++) 132 if (blkg->pd[i]) 133 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 134 if (blkg->parent) 135 blkg_put(blkg->parent); 136 list_del_init(&blkg->q_node); 137 mutex_unlock(&q->blkcg_mutex); 138 139 blk_put_queue(q); 140 free_percpu(blkg->iostat_cpu); 141 percpu_ref_exit(&blkg->refcnt); 142 kfree(blkg); 143 } 144 145 /** 146 * blkg_free - free a blkg 147 * @blkg: blkg to free 148 * 149 * Free @blkg which may be partially allocated. 150 */ 151 static void blkg_free(struct blkcg_gq *blkg) 152 { 153 if (!blkg) 154 return; 155 156 /* 157 * Both ->pd_free_fn() and request queue's release handler may 158 * sleep, so free us by scheduling one work func 159 */ 160 INIT_WORK(&blkg->free_work, blkg_free_workfn); 161 schedule_work(&blkg->free_work); 162 } 163 164 static void __blkg_release(struct rcu_head *rcu) 165 { 166 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 167 168 WARN_ON(!bio_list_empty(&blkg->async_bios)); 169 170 /* release the blkcg and parent blkg refs this blkg has been holding */ 171 css_put(&blkg->blkcg->css); 172 blkg_free(blkg); 173 } 174 175 /* 176 * A group is RCU protected, but having an rcu lock does not mean that one 177 * can access all the fields of blkg and assume these are valid. For 178 * example, don't try to follow throtl_data and request queue links. 179 * 180 * Having a reference to blkg under an rcu allows accesses to only values 181 * local to groups like group stats and group rate limits. 182 */ 183 static void blkg_release(struct percpu_ref *ref) 184 { 185 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 186 187 call_rcu(&blkg->rcu_head, __blkg_release); 188 } 189 190 static void blkg_async_bio_workfn(struct work_struct *work) 191 { 192 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 193 async_bio_work); 194 struct bio_list bios = BIO_EMPTY_LIST; 195 struct bio *bio; 196 struct blk_plug plug; 197 bool need_plug = false; 198 199 /* as long as there are pending bios, @blkg can't go away */ 200 spin_lock_bh(&blkg->async_bio_lock); 201 bio_list_merge(&bios, &blkg->async_bios); 202 bio_list_init(&blkg->async_bios); 203 spin_unlock_bh(&blkg->async_bio_lock); 204 205 /* start plug only when bio_list contains at least 2 bios */ 206 if (bios.head && bios.head->bi_next) { 207 need_plug = true; 208 blk_start_plug(&plug); 209 } 210 while ((bio = bio_list_pop(&bios))) 211 submit_bio(bio); 212 if (need_plug) 213 blk_finish_plug(&plug); 214 } 215 216 /** 217 * bio_blkcg_css - return the blkcg CSS associated with a bio 218 * @bio: target bio 219 * 220 * This returns the CSS for the blkcg associated with a bio, or %NULL if not 221 * associated. Callers are expected to either handle %NULL or know association 222 * has been done prior to calling this. 223 */ 224 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio) 225 { 226 if (!bio || !bio->bi_blkg) 227 return NULL; 228 return &bio->bi_blkg->blkcg->css; 229 } 230 EXPORT_SYMBOL_GPL(bio_blkcg_css); 231 232 /** 233 * blkcg_parent - get the parent of a blkcg 234 * @blkcg: blkcg of interest 235 * 236 * Return the parent blkcg of @blkcg. Can be called anytime. 237 */ 238 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg) 239 { 240 return css_to_blkcg(blkcg->css.parent); 241 } 242 243 /** 244 * blkg_alloc - allocate a blkg 245 * @blkcg: block cgroup the new blkg is associated with 246 * @disk: gendisk the new blkg is associated with 247 * @gfp_mask: allocation mask to use 248 * 249 * Allocate a new blkg assocating @blkcg and @q. 250 */ 251 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk, 252 gfp_t gfp_mask) 253 { 254 struct blkcg_gq *blkg; 255 int i, cpu; 256 257 /* alloc and init base part */ 258 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node); 259 if (!blkg) 260 return NULL; 261 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 262 goto out_free_blkg; 263 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 264 if (!blkg->iostat_cpu) 265 goto out_exit_refcnt; 266 if (!blk_get_queue(disk->queue)) 267 goto out_free_iostat; 268 269 blkg->q = disk->queue; 270 INIT_LIST_HEAD(&blkg->q_node); 271 spin_lock_init(&blkg->async_bio_lock); 272 bio_list_init(&blkg->async_bios); 273 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 274 blkg->blkcg = blkcg; 275 276 u64_stats_init(&blkg->iostat.sync); 277 for_each_possible_cpu(cpu) { 278 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 279 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg; 280 } 281 282 for (i = 0; i < BLKCG_MAX_POLS; i++) { 283 struct blkcg_policy *pol = blkcg_policy[i]; 284 struct blkg_policy_data *pd; 285 286 if (!blkcg_policy_enabled(disk->queue, pol)) 287 continue; 288 289 /* alloc per-policy data and attach it to blkg */ 290 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask); 291 if (!pd) 292 goto out_free_pds; 293 blkg->pd[i] = pd; 294 pd->blkg = blkg; 295 pd->plid = i; 296 pd->online = false; 297 } 298 299 return blkg; 300 301 out_free_pds: 302 while (--i >= 0) 303 if (blkg->pd[i]) 304 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 305 blk_put_queue(disk->queue); 306 out_free_iostat: 307 free_percpu(blkg->iostat_cpu); 308 out_exit_refcnt: 309 percpu_ref_exit(&blkg->refcnt); 310 out_free_blkg: 311 kfree(blkg); 312 return NULL; 313 } 314 315 /* 316 * If @new_blkg is %NULL, this function tries to allocate a new one as 317 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 318 */ 319 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk, 320 struct blkcg_gq *new_blkg) 321 { 322 struct blkcg_gq *blkg; 323 int i, ret; 324 325 lockdep_assert_held(&disk->queue->queue_lock); 326 327 /* request_queue is dying, do not create/recreate a blkg */ 328 if (blk_queue_dying(disk->queue)) { 329 ret = -ENODEV; 330 goto err_free_blkg; 331 } 332 333 /* blkg holds a reference to blkcg */ 334 if (!css_tryget_online(&blkcg->css)) { 335 ret = -ENODEV; 336 goto err_free_blkg; 337 } 338 339 /* allocate */ 340 if (!new_blkg) { 341 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN); 342 if (unlikely(!new_blkg)) { 343 ret = -ENOMEM; 344 goto err_put_css; 345 } 346 } 347 blkg = new_blkg; 348 349 /* link parent */ 350 if (blkcg_parent(blkcg)) { 351 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue); 352 if (WARN_ON_ONCE(!blkg->parent)) { 353 ret = -ENODEV; 354 goto err_put_css; 355 } 356 blkg_get(blkg->parent); 357 } 358 359 /* invoke per-policy init */ 360 for (i = 0; i < BLKCG_MAX_POLS; i++) { 361 struct blkcg_policy *pol = blkcg_policy[i]; 362 363 if (blkg->pd[i] && pol->pd_init_fn) 364 pol->pd_init_fn(blkg->pd[i]); 365 } 366 367 /* insert */ 368 spin_lock(&blkcg->lock); 369 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg); 370 if (likely(!ret)) { 371 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 372 list_add(&blkg->q_node, &disk->queue->blkg_list); 373 374 for (i = 0; i < BLKCG_MAX_POLS; i++) { 375 struct blkcg_policy *pol = blkcg_policy[i]; 376 377 if (blkg->pd[i]) { 378 if (pol->pd_online_fn) 379 pol->pd_online_fn(blkg->pd[i]); 380 blkg->pd[i]->online = true; 381 } 382 } 383 } 384 blkg->online = true; 385 spin_unlock(&blkcg->lock); 386 387 if (!ret) 388 return blkg; 389 390 /* @blkg failed fully initialized, use the usual release path */ 391 blkg_put(blkg); 392 return ERR_PTR(ret); 393 394 err_put_css: 395 css_put(&blkcg->css); 396 err_free_blkg: 397 if (new_blkg) 398 blkg_free(new_blkg); 399 return ERR_PTR(ret); 400 } 401 402 /** 403 * blkg_lookup_create - lookup blkg, try to create one if not there 404 * @blkcg: blkcg of interest 405 * @disk: gendisk of interest 406 * 407 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to 408 * create one. blkg creation is performed recursively from blkcg_root such 409 * that all non-root blkg's have access to the parent blkg. This function 410 * should be called under RCU read lock and takes @disk->queue->queue_lock. 411 * 412 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 413 * down from root. 414 */ 415 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 416 struct gendisk *disk) 417 { 418 struct request_queue *q = disk->queue; 419 struct blkcg_gq *blkg; 420 unsigned long flags; 421 422 WARN_ON_ONCE(!rcu_read_lock_held()); 423 424 blkg = blkg_lookup(blkcg, q); 425 if (blkg) 426 return blkg; 427 428 spin_lock_irqsave(&q->queue_lock, flags); 429 blkg = blkg_lookup(blkcg, q); 430 if (blkg) { 431 if (blkcg != &blkcg_root && 432 blkg != rcu_dereference(blkcg->blkg_hint)) 433 rcu_assign_pointer(blkcg->blkg_hint, blkg); 434 goto found; 435 } 436 437 /* 438 * Create blkgs walking down from blkcg_root to @blkcg, so that all 439 * non-root blkgs have access to their parents. Returns the closest 440 * blkg to the intended blkg should blkg_create() fail. 441 */ 442 while (true) { 443 struct blkcg *pos = blkcg; 444 struct blkcg *parent = blkcg_parent(blkcg); 445 struct blkcg_gq *ret_blkg = q->root_blkg; 446 447 while (parent) { 448 blkg = blkg_lookup(parent, q); 449 if (blkg) { 450 /* remember closest blkg */ 451 ret_blkg = blkg; 452 break; 453 } 454 pos = parent; 455 parent = blkcg_parent(parent); 456 } 457 458 blkg = blkg_create(pos, disk, NULL); 459 if (IS_ERR(blkg)) { 460 blkg = ret_blkg; 461 break; 462 } 463 if (pos == blkcg) 464 break; 465 } 466 467 found: 468 spin_unlock_irqrestore(&q->queue_lock, flags); 469 return blkg; 470 } 471 472 static void blkg_destroy(struct blkcg_gq *blkg) 473 { 474 struct blkcg *blkcg = blkg->blkcg; 475 int i; 476 477 lockdep_assert_held(&blkg->q->queue_lock); 478 lockdep_assert_held(&blkcg->lock); 479 480 /* 481 * blkg stays on the queue list until blkg_free_workfn(), see details in 482 * blkg_free_workfn(), hence this function can be called from 483 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before 484 * blkg_free_workfn(). 485 */ 486 if (hlist_unhashed(&blkg->blkcg_node)) 487 return; 488 489 for (i = 0; i < BLKCG_MAX_POLS; i++) { 490 struct blkcg_policy *pol = blkcg_policy[i]; 491 492 if (blkg->pd[i] && blkg->pd[i]->online) { 493 blkg->pd[i]->online = false; 494 if (pol->pd_offline_fn) 495 pol->pd_offline_fn(blkg->pd[i]); 496 } 497 } 498 499 blkg->online = false; 500 501 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 502 hlist_del_init_rcu(&blkg->blkcg_node); 503 504 /* 505 * Both setting lookup hint to and clearing it from @blkg are done 506 * under queue_lock. If it's not pointing to @blkg now, it never 507 * will. Hint assignment itself can race safely. 508 */ 509 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 510 rcu_assign_pointer(blkcg->blkg_hint, NULL); 511 512 /* 513 * Put the reference taken at the time of creation so that when all 514 * queues are gone, group can be destroyed. 515 */ 516 percpu_ref_kill(&blkg->refcnt); 517 } 518 519 static void blkg_destroy_all(struct gendisk *disk) 520 { 521 struct request_queue *q = disk->queue; 522 struct blkcg_gq *blkg, *n; 523 int count = BLKG_DESTROY_BATCH_SIZE; 524 525 restart: 526 spin_lock_irq(&q->queue_lock); 527 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 528 struct blkcg *blkcg = blkg->blkcg; 529 530 spin_lock(&blkcg->lock); 531 blkg_destroy(blkg); 532 spin_unlock(&blkcg->lock); 533 534 /* 535 * in order to avoid holding the spin lock for too long, release 536 * it when a batch of blkgs are destroyed. 537 */ 538 if (!(--count)) { 539 count = BLKG_DESTROY_BATCH_SIZE; 540 spin_unlock_irq(&q->queue_lock); 541 cond_resched(); 542 goto restart; 543 } 544 } 545 546 q->root_blkg = NULL; 547 spin_unlock_irq(&q->queue_lock); 548 } 549 550 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 551 struct cftype *cftype, u64 val) 552 { 553 struct blkcg *blkcg = css_to_blkcg(css); 554 struct blkcg_gq *blkg; 555 int i, cpu; 556 557 mutex_lock(&blkcg_pol_mutex); 558 spin_lock_irq(&blkcg->lock); 559 560 /* 561 * Note that stat reset is racy - it doesn't synchronize against 562 * stat updates. This is a debug feature which shouldn't exist 563 * anyway. If you get hit by a race, retry. 564 */ 565 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 566 for_each_possible_cpu(cpu) { 567 struct blkg_iostat_set *bis = 568 per_cpu_ptr(blkg->iostat_cpu, cpu); 569 memset(bis, 0, sizeof(*bis)); 570 } 571 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 572 573 for (i = 0; i < BLKCG_MAX_POLS; i++) { 574 struct blkcg_policy *pol = blkcg_policy[i]; 575 576 if (blkg->pd[i] && pol->pd_reset_stats_fn) 577 pol->pd_reset_stats_fn(blkg->pd[i]); 578 } 579 } 580 581 spin_unlock_irq(&blkcg->lock); 582 mutex_unlock(&blkcg_pol_mutex); 583 return 0; 584 } 585 586 const char *blkg_dev_name(struct blkcg_gq *blkg) 587 { 588 if (!blkg->q->disk) 589 return NULL; 590 return bdi_dev_name(blkg->q->disk->bdi); 591 } 592 593 /** 594 * blkcg_print_blkgs - helper for printing per-blkg data 595 * @sf: seq_file to print to 596 * @blkcg: blkcg of interest 597 * @prfill: fill function to print out a blkg 598 * @pol: policy in question 599 * @data: data to be passed to @prfill 600 * @show_total: to print out sum of prfill return values or not 601 * 602 * This function invokes @prfill on each blkg of @blkcg if pd for the 603 * policy specified by @pol exists. @prfill is invoked with @sf, the 604 * policy data and @data and the matching queue lock held. If @show_total 605 * is %true, the sum of the return values from @prfill is printed with 606 * "Total" label at the end. 607 * 608 * This is to be used to construct print functions for 609 * cftype->read_seq_string method. 610 */ 611 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 612 u64 (*prfill)(struct seq_file *, 613 struct blkg_policy_data *, int), 614 const struct blkcg_policy *pol, int data, 615 bool show_total) 616 { 617 struct blkcg_gq *blkg; 618 u64 total = 0; 619 620 rcu_read_lock(); 621 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 622 spin_lock_irq(&blkg->q->queue_lock); 623 if (blkcg_policy_enabled(blkg->q, pol)) 624 total += prfill(sf, blkg->pd[pol->plid], data); 625 spin_unlock_irq(&blkg->q->queue_lock); 626 } 627 rcu_read_unlock(); 628 629 if (show_total) 630 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 631 } 632 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 633 634 /** 635 * __blkg_prfill_u64 - prfill helper for a single u64 value 636 * @sf: seq_file to print to 637 * @pd: policy private data of interest 638 * @v: value to print 639 * 640 * Print @v to @sf for the device associated with @pd. 641 */ 642 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 643 { 644 const char *dname = blkg_dev_name(pd->blkg); 645 646 if (!dname) 647 return 0; 648 649 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 650 return v; 651 } 652 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 653 654 /** 655 * blkg_conf_init - initialize a blkg_conf_ctx 656 * @ctx: blkg_conf_ctx to initialize 657 * @input: input string 658 * 659 * Initialize @ctx which can be used to parse blkg config input string @input. 660 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and 661 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit(). 662 */ 663 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input) 664 { 665 *ctx = (struct blkg_conf_ctx){ .input = input }; 666 } 667 EXPORT_SYMBOL_GPL(blkg_conf_init); 668 669 /** 670 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update 671 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 672 * 673 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from 674 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is 675 * set to point past the device node prefix. 676 * 677 * This function may be called multiple times on @ctx and the extra calls become 678 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function 679 * explicitly if bdev access is needed without resolving the blkcg / policy part 680 * of @ctx->input. Returns -errno on error. 681 */ 682 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx) 683 { 684 char *input = ctx->input; 685 unsigned int major, minor; 686 struct block_device *bdev; 687 int key_len; 688 689 if (ctx->bdev) 690 return 0; 691 692 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 693 return -EINVAL; 694 695 input += key_len; 696 if (!isspace(*input)) 697 return -EINVAL; 698 input = skip_spaces(input); 699 700 bdev = blkdev_get_no_open(MKDEV(major, minor)); 701 if (!bdev) 702 return -ENODEV; 703 if (bdev_is_partition(bdev)) { 704 blkdev_put_no_open(bdev); 705 return -ENODEV; 706 } 707 708 ctx->body = input; 709 ctx->bdev = bdev; 710 return 0; 711 } 712 713 /** 714 * blkg_conf_prep - parse and prepare for per-blkg config update 715 * @blkcg: target block cgroup 716 * @pol: target policy 717 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 718 * 719 * Parse per-blkg config update from @ctx->input and initialize @ctx 720 * accordingly. On success, @ctx->body points to the part of @ctx->input 721 * following MAJ:MIN, @ctx->bdev points to the target block device and 722 * @ctx->blkg to the blkg being configured. 723 * 724 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this 725 * function returns with queue lock held and must be followed by 726 * blkg_conf_exit(). 727 */ 728 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 729 struct blkg_conf_ctx *ctx) 730 __acquires(&bdev->bd_queue->queue_lock) 731 { 732 struct gendisk *disk; 733 struct request_queue *q; 734 struct blkcg_gq *blkg; 735 int ret; 736 737 ret = blkg_conf_open_bdev(ctx); 738 if (ret) 739 return ret; 740 741 disk = ctx->bdev->bd_disk; 742 q = disk->queue; 743 744 /* 745 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 746 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 747 */ 748 ret = blk_queue_enter(q, 0); 749 if (ret) 750 goto fail; 751 752 spin_lock_irq(&q->queue_lock); 753 754 if (!blkcg_policy_enabled(q, pol)) { 755 ret = -EOPNOTSUPP; 756 goto fail_unlock; 757 } 758 759 blkg = blkg_lookup(blkcg, q); 760 if (blkg) 761 goto success; 762 763 /* 764 * Create blkgs walking down from blkcg_root to @blkcg, so that all 765 * non-root blkgs have access to their parents. 766 */ 767 while (true) { 768 struct blkcg *pos = blkcg; 769 struct blkcg *parent; 770 struct blkcg_gq *new_blkg; 771 772 parent = blkcg_parent(blkcg); 773 while (parent && !blkg_lookup(parent, q)) { 774 pos = parent; 775 parent = blkcg_parent(parent); 776 } 777 778 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 779 spin_unlock_irq(&q->queue_lock); 780 781 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL); 782 if (unlikely(!new_blkg)) { 783 ret = -ENOMEM; 784 goto fail_exit_queue; 785 } 786 787 if (radix_tree_preload(GFP_KERNEL)) { 788 blkg_free(new_blkg); 789 ret = -ENOMEM; 790 goto fail_exit_queue; 791 } 792 793 spin_lock_irq(&q->queue_lock); 794 795 if (!blkcg_policy_enabled(q, pol)) { 796 blkg_free(new_blkg); 797 ret = -EOPNOTSUPP; 798 goto fail_preloaded; 799 } 800 801 blkg = blkg_lookup(pos, q); 802 if (blkg) { 803 blkg_free(new_blkg); 804 } else { 805 blkg = blkg_create(pos, disk, new_blkg); 806 if (IS_ERR(blkg)) { 807 ret = PTR_ERR(blkg); 808 goto fail_preloaded; 809 } 810 } 811 812 radix_tree_preload_end(); 813 814 if (pos == blkcg) 815 goto success; 816 } 817 success: 818 blk_queue_exit(q); 819 ctx->blkg = blkg; 820 return 0; 821 822 fail_preloaded: 823 radix_tree_preload_end(); 824 fail_unlock: 825 spin_unlock_irq(&q->queue_lock); 826 fail_exit_queue: 827 blk_queue_exit(q); 828 fail: 829 /* 830 * If queue was bypassing, we should retry. Do so after a 831 * short msleep(). It isn't strictly necessary but queue 832 * can be bypassing for some time and it's always nice to 833 * avoid busy looping. 834 */ 835 if (ret == -EBUSY) { 836 msleep(10); 837 ret = restart_syscall(); 838 } 839 return ret; 840 } 841 EXPORT_SYMBOL_GPL(blkg_conf_prep); 842 843 /** 844 * blkg_conf_exit - clean up per-blkg config update 845 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 846 * 847 * Clean up after per-blkg config update. This function must be called on all 848 * blkg_conf_ctx's initialized with blkg_conf_init(). 849 */ 850 void blkg_conf_exit(struct blkg_conf_ctx *ctx) 851 __releases(&ctx->bdev->bd_queue->queue_lock) 852 { 853 if (ctx->blkg) { 854 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 855 ctx->blkg = NULL; 856 } 857 858 if (ctx->bdev) { 859 blkdev_put_no_open(ctx->bdev); 860 ctx->body = NULL; 861 ctx->bdev = NULL; 862 } 863 } 864 EXPORT_SYMBOL_GPL(blkg_conf_exit); 865 866 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 867 { 868 int i; 869 870 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 871 dst->bytes[i] = src->bytes[i]; 872 dst->ios[i] = src->ios[i]; 873 } 874 } 875 876 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 877 { 878 int i; 879 880 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 881 dst->bytes[i] += src->bytes[i]; 882 dst->ios[i] += src->ios[i]; 883 } 884 } 885 886 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 887 { 888 int i; 889 890 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 891 dst->bytes[i] -= src->bytes[i]; 892 dst->ios[i] -= src->ios[i]; 893 } 894 } 895 896 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur, 897 struct blkg_iostat *last) 898 { 899 struct blkg_iostat delta; 900 unsigned long flags; 901 902 /* propagate percpu delta to global */ 903 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 904 blkg_iostat_set(&delta, cur); 905 blkg_iostat_sub(&delta, last); 906 blkg_iostat_add(&blkg->iostat.cur, &delta); 907 blkg_iostat_add(last, &delta); 908 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 909 } 910 911 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 912 { 913 struct blkcg *blkcg = css_to_blkcg(css); 914 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu); 915 struct llist_node *lnode; 916 struct blkg_iostat_set *bisc, *next_bisc; 917 918 /* Root-level stats are sourced from system-wide IO stats */ 919 if (!cgroup_parent(css->cgroup)) 920 return; 921 922 rcu_read_lock(); 923 924 lnode = llist_del_all(lhead); 925 if (!lnode) 926 goto out; 927 928 /* 929 * Iterate only the iostat_cpu's queued in the lockless list. 930 */ 931 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) { 932 struct blkcg_gq *blkg = bisc->blkg; 933 struct blkcg_gq *parent = blkg->parent; 934 struct blkg_iostat cur; 935 unsigned int seq; 936 937 WRITE_ONCE(bisc->lqueued, false); 938 939 /* fetch the current per-cpu values */ 940 do { 941 seq = u64_stats_fetch_begin(&bisc->sync); 942 blkg_iostat_set(&cur, &bisc->cur); 943 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 944 945 blkcg_iostat_update(blkg, &cur, &bisc->last); 946 947 /* propagate global delta to parent (unless that's root) */ 948 if (parent && parent->parent) 949 blkcg_iostat_update(parent, &blkg->iostat.cur, 950 &blkg->iostat.last); 951 percpu_ref_put(&blkg->refcnt); 952 } 953 954 out: 955 rcu_read_unlock(); 956 } 957 958 /* 959 * We source root cgroup stats from the system-wide stats to avoid 960 * tracking the same information twice and incurring overhead when no 961 * cgroups are defined. For that reason, cgroup_rstat_flush in 962 * blkcg_print_stat does not actually fill out the iostat in the root 963 * cgroup's blkcg_gq. 964 * 965 * However, we would like to re-use the printing code between the root and 966 * non-root cgroups to the extent possible. For that reason, we simulate 967 * flushing the root cgroup's stats by explicitly filling in the iostat 968 * with disk level statistics. 969 */ 970 static void blkcg_fill_root_iostats(void) 971 { 972 struct class_dev_iter iter; 973 struct device *dev; 974 975 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 976 while ((dev = class_dev_iter_next(&iter))) { 977 struct block_device *bdev = dev_to_bdev(dev); 978 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg; 979 struct blkg_iostat tmp; 980 int cpu; 981 unsigned long flags; 982 983 memset(&tmp, 0, sizeof(tmp)); 984 for_each_possible_cpu(cpu) { 985 struct disk_stats *cpu_dkstats; 986 987 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 988 tmp.ios[BLKG_IOSTAT_READ] += 989 cpu_dkstats->ios[STAT_READ]; 990 tmp.ios[BLKG_IOSTAT_WRITE] += 991 cpu_dkstats->ios[STAT_WRITE]; 992 tmp.ios[BLKG_IOSTAT_DISCARD] += 993 cpu_dkstats->ios[STAT_DISCARD]; 994 // convert sectors to bytes 995 tmp.bytes[BLKG_IOSTAT_READ] += 996 cpu_dkstats->sectors[STAT_READ] << 9; 997 tmp.bytes[BLKG_IOSTAT_WRITE] += 998 cpu_dkstats->sectors[STAT_WRITE] << 9; 999 tmp.bytes[BLKG_IOSTAT_DISCARD] += 1000 cpu_dkstats->sectors[STAT_DISCARD] << 9; 1001 } 1002 1003 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 1004 blkg_iostat_set(&blkg->iostat.cur, &tmp); 1005 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 1006 } 1007 } 1008 1009 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 1010 { 1011 struct blkg_iostat_set *bis = &blkg->iostat; 1012 u64 rbytes, wbytes, rios, wios, dbytes, dios; 1013 const char *dname; 1014 unsigned seq; 1015 int i; 1016 1017 if (!blkg->online) 1018 return; 1019 1020 dname = blkg_dev_name(blkg); 1021 if (!dname) 1022 return; 1023 1024 seq_printf(s, "%s ", dname); 1025 1026 do { 1027 seq = u64_stats_fetch_begin(&bis->sync); 1028 1029 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 1030 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 1031 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 1032 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 1033 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 1034 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 1035 } while (u64_stats_fetch_retry(&bis->sync, seq)); 1036 1037 if (rbytes || wbytes || rios || wios) { 1038 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 1039 rbytes, wbytes, rios, wios, 1040 dbytes, dios); 1041 } 1042 1043 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 1044 seq_printf(s, " use_delay=%d delay_nsec=%llu", 1045 atomic_read(&blkg->use_delay), 1046 atomic64_read(&blkg->delay_nsec)); 1047 } 1048 1049 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1050 struct blkcg_policy *pol = blkcg_policy[i]; 1051 1052 if (!blkg->pd[i] || !pol->pd_stat_fn) 1053 continue; 1054 1055 pol->pd_stat_fn(blkg->pd[i], s); 1056 } 1057 1058 seq_puts(s, "\n"); 1059 } 1060 1061 static int blkcg_print_stat(struct seq_file *sf, void *v) 1062 { 1063 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1064 struct blkcg_gq *blkg; 1065 1066 if (!seq_css(sf)->parent) 1067 blkcg_fill_root_iostats(); 1068 else 1069 cgroup_rstat_flush(blkcg->css.cgroup); 1070 1071 rcu_read_lock(); 1072 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 1073 spin_lock_irq(&blkg->q->queue_lock); 1074 blkcg_print_one_stat(blkg, sf); 1075 spin_unlock_irq(&blkg->q->queue_lock); 1076 } 1077 rcu_read_unlock(); 1078 return 0; 1079 } 1080 1081 static struct cftype blkcg_files[] = { 1082 { 1083 .name = "stat", 1084 .seq_show = blkcg_print_stat, 1085 }, 1086 { } /* terminate */ 1087 }; 1088 1089 static struct cftype blkcg_legacy_files[] = { 1090 { 1091 .name = "reset_stats", 1092 .write_u64 = blkcg_reset_stats, 1093 }, 1094 { } /* terminate */ 1095 }; 1096 1097 #ifdef CONFIG_CGROUP_WRITEBACK 1098 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css) 1099 { 1100 return &css_to_blkcg(css)->cgwb_list; 1101 } 1102 #endif 1103 1104 /* 1105 * blkcg destruction is a three-stage process. 1106 * 1107 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 1108 * which offlines writeback. Here we tie the next stage of blkg destruction 1109 * to the completion of writeback associated with the blkcg. This lets us 1110 * avoid punting potentially large amounts of outstanding writeback to root 1111 * while maintaining any ongoing policies. The next stage is triggered when 1112 * the nr_cgwbs count goes to zero. 1113 * 1114 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 1115 * and handles the destruction of blkgs. Here the css reference held by 1116 * the blkg is put back eventually allowing blkcg_css_free() to be called. 1117 * This work may occur in cgwb_release_workfn() on the cgwb_release 1118 * workqueue. Any submitted ios that fail to get the blkg ref will be 1119 * punted to the root_blkg. 1120 * 1121 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1122 * This finally frees the blkcg. 1123 */ 1124 1125 /** 1126 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1127 * @blkcg: blkcg of interest 1128 * 1129 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1130 * is nested inside q lock, this function performs reverse double lock dancing. 1131 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1132 * blkcg_css_free to eventually be called. 1133 * 1134 * This is the blkcg counterpart of ioc_release_fn(). 1135 */ 1136 static void blkcg_destroy_blkgs(struct blkcg *blkcg) 1137 { 1138 might_sleep(); 1139 1140 spin_lock_irq(&blkcg->lock); 1141 1142 while (!hlist_empty(&blkcg->blkg_list)) { 1143 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1144 struct blkcg_gq, blkcg_node); 1145 struct request_queue *q = blkg->q; 1146 1147 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1148 /* 1149 * Given that the system can accumulate a huge number 1150 * of blkgs in pathological cases, check to see if we 1151 * need to rescheduling to avoid softlockup. 1152 */ 1153 spin_unlock_irq(&blkcg->lock); 1154 cond_resched(); 1155 spin_lock_irq(&blkcg->lock); 1156 continue; 1157 } 1158 1159 blkg_destroy(blkg); 1160 spin_unlock(&q->queue_lock); 1161 } 1162 1163 spin_unlock_irq(&blkcg->lock); 1164 } 1165 1166 /** 1167 * blkcg_pin_online - pin online state 1168 * @blkcg_css: blkcg of interest 1169 * 1170 * While pinned, a blkcg is kept online. This is primarily used to 1171 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline 1172 * while an associated cgwb is still active. 1173 */ 1174 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css) 1175 { 1176 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin); 1177 } 1178 1179 /** 1180 * blkcg_unpin_online - unpin online state 1181 * @blkcg_css: blkcg of interest 1182 * 1183 * This is primarily used to impedance-match blkg and cgwb lifetimes so 1184 * that blkg doesn't go offline while an associated cgwb is still active. 1185 * When this count goes to zero, all active cgwbs have finished so the 1186 * blkcg can continue destruction by calling blkcg_destroy_blkgs(). 1187 */ 1188 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css) 1189 { 1190 struct blkcg *blkcg = css_to_blkcg(blkcg_css); 1191 1192 do { 1193 if (!refcount_dec_and_test(&blkcg->online_pin)) 1194 break; 1195 blkcg_destroy_blkgs(blkcg); 1196 blkcg = blkcg_parent(blkcg); 1197 } while (blkcg); 1198 } 1199 1200 /** 1201 * blkcg_css_offline - cgroup css_offline callback 1202 * @css: css of interest 1203 * 1204 * This function is called when @css is about to go away. Here the cgwbs are 1205 * offlined first and only once writeback associated with the blkcg has 1206 * finished do we start step 2 (see above). 1207 */ 1208 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1209 { 1210 /* this prevents anyone from attaching or migrating to this blkcg */ 1211 wb_blkcg_offline(css); 1212 1213 /* put the base online pin allowing step 2 to be triggered */ 1214 blkcg_unpin_online(css); 1215 } 1216 1217 static void blkcg_css_free(struct cgroup_subsys_state *css) 1218 { 1219 struct blkcg *blkcg = css_to_blkcg(css); 1220 int i; 1221 1222 mutex_lock(&blkcg_pol_mutex); 1223 1224 list_del(&blkcg->all_blkcgs_node); 1225 1226 for (i = 0; i < BLKCG_MAX_POLS; i++) 1227 if (blkcg->cpd[i]) 1228 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1229 1230 mutex_unlock(&blkcg_pol_mutex); 1231 1232 free_percpu(blkcg->lhead); 1233 kfree(blkcg); 1234 } 1235 1236 static struct cgroup_subsys_state * 1237 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1238 { 1239 struct blkcg *blkcg; 1240 int i; 1241 1242 mutex_lock(&blkcg_pol_mutex); 1243 1244 if (!parent_css) { 1245 blkcg = &blkcg_root; 1246 } else { 1247 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1248 if (!blkcg) 1249 goto unlock; 1250 } 1251 1252 if (init_blkcg_llists(blkcg)) 1253 goto free_blkcg; 1254 1255 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1256 struct blkcg_policy *pol = blkcg_policy[i]; 1257 struct blkcg_policy_data *cpd; 1258 1259 /* 1260 * If the policy hasn't been attached yet, wait for it 1261 * to be attached before doing anything else. Otherwise, 1262 * check if the policy requires any specific per-cgroup 1263 * data: if it does, allocate and initialize it. 1264 */ 1265 if (!pol || !pol->cpd_alloc_fn) 1266 continue; 1267 1268 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1269 if (!cpd) 1270 goto free_pd_blkcg; 1271 1272 blkcg->cpd[i] = cpd; 1273 cpd->blkcg = blkcg; 1274 cpd->plid = i; 1275 } 1276 1277 spin_lock_init(&blkcg->lock); 1278 refcount_set(&blkcg->online_pin, 1); 1279 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1280 INIT_HLIST_HEAD(&blkcg->blkg_list); 1281 #ifdef CONFIG_CGROUP_WRITEBACK 1282 INIT_LIST_HEAD(&blkcg->cgwb_list); 1283 #endif 1284 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1285 1286 mutex_unlock(&blkcg_pol_mutex); 1287 return &blkcg->css; 1288 1289 free_pd_blkcg: 1290 for (i--; i >= 0; i--) 1291 if (blkcg->cpd[i]) 1292 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1293 free_percpu(blkcg->lhead); 1294 free_blkcg: 1295 if (blkcg != &blkcg_root) 1296 kfree(blkcg); 1297 unlock: 1298 mutex_unlock(&blkcg_pol_mutex); 1299 return ERR_PTR(-ENOMEM); 1300 } 1301 1302 static int blkcg_css_online(struct cgroup_subsys_state *css) 1303 { 1304 struct blkcg *parent = blkcg_parent(css_to_blkcg(css)); 1305 1306 /* 1307 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1308 * don't go offline while cgwbs are still active on them. Pin the 1309 * parent so that offline always happens towards the root. 1310 */ 1311 if (parent) 1312 blkcg_pin_online(&parent->css); 1313 return 0; 1314 } 1315 1316 int blkcg_init_disk(struct gendisk *disk) 1317 { 1318 struct request_queue *q = disk->queue; 1319 struct blkcg_gq *new_blkg, *blkg; 1320 bool preloaded; 1321 int ret; 1322 1323 INIT_LIST_HEAD(&q->blkg_list); 1324 mutex_init(&q->blkcg_mutex); 1325 1326 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL); 1327 if (!new_blkg) 1328 return -ENOMEM; 1329 1330 preloaded = !radix_tree_preload(GFP_KERNEL); 1331 1332 /* Make sure the root blkg exists. */ 1333 /* spin_lock_irq can serve as RCU read-side critical section. */ 1334 spin_lock_irq(&q->queue_lock); 1335 blkg = blkg_create(&blkcg_root, disk, new_blkg); 1336 if (IS_ERR(blkg)) 1337 goto err_unlock; 1338 q->root_blkg = blkg; 1339 spin_unlock_irq(&q->queue_lock); 1340 1341 if (preloaded) 1342 radix_tree_preload_end(); 1343 1344 ret = blk_ioprio_init(disk); 1345 if (ret) 1346 goto err_destroy_all; 1347 1348 ret = blk_throtl_init(disk); 1349 if (ret) 1350 goto err_ioprio_exit; 1351 1352 return 0; 1353 1354 err_ioprio_exit: 1355 blk_ioprio_exit(disk); 1356 err_destroy_all: 1357 blkg_destroy_all(disk); 1358 return ret; 1359 err_unlock: 1360 spin_unlock_irq(&q->queue_lock); 1361 if (preloaded) 1362 radix_tree_preload_end(); 1363 return PTR_ERR(blkg); 1364 } 1365 1366 void blkcg_exit_disk(struct gendisk *disk) 1367 { 1368 blkg_destroy_all(disk); 1369 blk_throtl_exit(disk); 1370 } 1371 1372 static void blkcg_exit(struct task_struct *tsk) 1373 { 1374 if (tsk->throttle_disk) 1375 put_disk(tsk->throttle_disk); 1376 tsk->throttle_disk = NULL; 1377 } 1378 1379 struct cgroup_subsys io_cgrp_subsys = { 1380 .css_alloc = blkcg_css_alloc, 1381 .css_online = blkcg_css_online, 1382 .css_offline = blkcg_css_offline, 1383 .css_free = blkcg_css_free, 1384 .css_rstat_flush = blkcg_rstat_flush, 1385 .dfl_cftypes = blkcg_files, 1386 .legacy_cftypes = blkcg_legacy_files, 1387 .legacy_name = "blkio", 1388 .exit = blkcg_exit, 1389 #ifdef CONFIG_MEMCG 1390 /* 1391 * This ensures that, if available, memcg is automatically enabled 1392 * together on the default hierarchy so that the owner cgroup can 1393 * be retrieved from writeback pages. 1394 */ 1395 .depends_on = 1 << memory_cgrp_id, 1396 #endif 1397 }; 1398 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1399 1400 /** 1401 * blkcg_activate_policy - activate a blkcg policy on a gendisk 1402 * @disk: gendisk of interest 1403 * @pol: blkcg policy to activate 1404 * 1405 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through 1406 * bypass mode to populate its blkgs with policy_data for @pol. 1407 * 1408 * Activation happens with @disk bypassed, so nobody would be accessing blkgs 1409 * from IO path. Update of each blkg is protected by both queue and blkcg 1410 * locks so that holding either lock and testing blkcg_policy_enabled() is 1411 * always enough for dereferencing policy data. 1412 * 1413 * The caller is responsible for synchronizing [de]activations and policy 1414 * [un]registerations. Returns 0 on success, -errno on failure. 1415 */ 1416 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol) 1417 { 1418 struct request_queue *q = disk->queue; 1419 struct blkg_policy_data *pd_prealloc = NULL; 1420 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1421 int ret; 1422 1423 if (blkcg_policy_enabled(q, pol)) 1424 return 0; 1425 1426 if (queue_is_mq(q)) 1427 blk_mq_freeze_queue(q); 1428 retry: 1429 spin_lock_irq(&q->queue_lock); 1430 1431 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1432 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1433 struct blkg_policy_data *pd; 1434 1435 if (blkg->pd[pol->plid]) 1436 continue; 1437 1438 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1439 if (blkg == pinned_blkg) { 1440 pd = pd_prealloc; 1441 pd_prealloc = NULL; 1442 } else { 1443 pd = pol->pd_alloc_fn(disk, blkg->blkcg, 1444 GFP_NOWAIT | __GFP_NOWARN); 1445 } 1446 1447 if (!pd) { 1448 /* 1449 * GFP_NOWAIT failed. Free the existing one and 1450 * prealloc for @blkg w/ GFP_KERNEL. 1451 */ 1452 if (pinned_blkg) 1453 blkg_put(pinned_blkg); 1454 blkg_get(blkg); 1455 pinned_blkg = blkg; 1456 1457 spin_unlock_irq(&q->queue_lock); 1458 1459 if (pd_prealloc) 1460 pol->pd_free_fn(pd_prealloc); 1461 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg, 1462 GFP_KERNEL); 1463 if (pd_prealloc) 1464 goto retry; 1465 else 1466 goto enomem; 1467 } 1468 1469 blkg->pd[pol->plid] = pd; 1470 pd->blkg = blkg; 1471 pd->plid = pol->plid; 1472 pd->online = false; 1473 } 1474 1475 /* all allocated, init in the same order */ 1476 if (pol->pd_init_fn) 1477 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1478 pol->pd_init_fn(blkg->pd[pol->plid]); 1479 1480 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1481 if (pol->pd_online_fn) 1482 pol->pd_online_fn(blkg->pd[pol->plid]); 1483 blkg->pd[pol->plid]->online = true; 1484 } 1485 1486 __set_bit(pol->plid, q->blkcg_pols); 1487 ret = 0; 1488 1489 spin_unlock_irq(&q->queue_lock); 1490 out: 1491 if (queue_is_mq(q)) 1492 blk_mq_unfreeze_queue(q); 1493 if (pinned_blkg) 1494 blkg_put(pinned_blkg); 1495 if (pd_prealloc) 1496 pol->pd_free_fn(pd_prealloc); 1497 return ret; 1498 1499 enomem: 1500 /* alloc failed, nothing's initialized yet, free everything */ 1501 spin_lock_irq(&q->queue_lock); 1502 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1503 struct blkcg *blkcg = blkg->blkcg; 1504 1505 spin_lock(&blkcg->lock); 1506 if (blkg->pd[pol->plid]) { 1507 pol->pd_free_fn(blkg->pd[pol->plid]); 1508 blkg->pd[pol->plid] = NULL; 1509 } 1510 spin_unlock(&blkcg->lock); 1511 } 1512 spin_unlock_irq(&q->queue_lock); 1513 ret = -ENOMEM; 1514 goto out; 1515 } 1516 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1517 1518 /** 1519 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk 1520 * @disk: gendisk of interest 1521 * @pol: blkcg policy to deactivate 1522 * 1523 * Deactivate @pol on @disk. Follows the same synchronization rules as 1524 * blkcg_activate_policy(). 1525 */ 1526 void blkcg_deactivate_policy(struct gendisk *disk, 1527 const struct blkcg_policy *pol) 1528 { 1529 struct request_queue *q = disk->queue; 1530 struct blkcg_gq *blkg; 1531 1532 if (!blkcg_policy_enabled(q, pol)) 1533 return; 1534 1535 if (queue_is_mq(q)) 1536 blk_mq_freeze_queue(q); 1537 1538 mutex_lock(&q->blkcg_mutex); 1539 spin_lock_irq(&q->queue_lock); 1540 1541 __clear_bit(pol->plid, q->blkcg_pols); 1542 1543 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1544 struct blkcg *blkcg = blkg->blkcg; 1545 1546 spin_lock(&blkcg->lock); 1547 if (blkg->pd[pol->plid]) { 1548 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn) 1549 pol->pd_offline_fn(blkg->pd[pol->plid]); 1550 pol->pd_free_fn(blkg->pd[pol->plid]); 1551 blkg->pd[pol->plid] = NULL; 1552 } 1553 spin_unlock(&blkcg->lock); 1554 } 1555 1556 spin_unlock_irq(&q->queue_lock); 1557 mutex_unlock(&q->blkcg_mutex); 1558 1559 if (queue_is_mq(q)) 1560 blk_mq_unfreeze_queue(q); 1561 } 1562 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1563 1564 static void blkcg_free_all_cpd(struct blkcg_policy *pol) 1565 { 1566 struct blkcg *blkcg; 1567 1568 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1569 if (blkcg->cpd[pol->plid]) { 1570 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1571 blkcg->cpd[pol->plid] = NULL; 1572 } 1573 } 1574 } 1575 1576 /** 1577 * blkcg_policy_register - register a blkcg policy 1578 * @pol: blkcg policy to register 1579 * 1580 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1581 * successful registration. Returns 0 on success and -errno on failure. 1582 */ 1583 int blkcg_policy_register(struct blkcg_policy *pol) 1584 { 1585 struct blkcg *blkcg; 1586 int i, ret; 1587 1588 mutex_lock(&blkcg_pol_register_mutex); 1589 mutex_lock(&blkcg_pol_mutex); 1590 1591 /* find an empty slot */ 1592 ret = -ENOSPC; 1593 for (i = 0; i < BLKCG_MAX_POLS; i++) 1594 if (!blkcg_policy[i]) 1595 break; 1596 if (i >= BLKCG_MAX_POLS) { 1597 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1598 goto err_unlock; 1599 } 1600 1601 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1602 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1603 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1604 goto err_unlock; 1605 1606 /* register @pol */ 1607 pol->plid = i; 1608 blkcg_policy[pol->plid] = pol; 1609 1610 /* allocate and install cpd's */ 1611 if (pol->cpd_alloc_fn) { 1612 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1613 struct blkcg_policy_data *cpd; 1614 1615 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1616 if (!cpd) 1617 goto err_free_cpds; 1618 1619 blkcg->cpd[pol->plid] = cpd; 1620 cpd->blkcg = blkcg; 1621 cpd->plid = pol->plid; 1622 } 1623 } 1624 1625 mutex_unlock(&blkcg_pol_mutex); 1626 1627 /* everything is in place, add intf files for the new policy */ 1628 if (pol->dfl_cftypes) 1629 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1630 pol->dfl_cftypes)); 1631 if (pol->legacy_cftypes) 1632 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1633 pol->legacy_cftypes)); 1634 mutex_unlock(&blkcg_pol_register_mutex); 1635 return 0; 1636 1637 err_free_cpds: 1638 if (pol->cpd_free_fn) 1639 blkcg_free_all_cpd(pol); 1640 1641 blkcg_policy[pol->plid] = NULL; 1642 err_unlock: 1643 mutex_unlock(&blkcg_pol_mutex); 1644 mutex_unlock(&blkcg_pol_register_mutex); 1645 return ret; 1646 } 1647 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1648 1649 /** 1650 * blkcg_policy_unregister - unregister a blkcg policy 1651 * @pol: blkcg policy to unregister 1652 * 1653 * Undo blkcg_policy_register(@pol). Might sleep. 1654 */ 1655 void blkcg_policy_unregister(struct blkcg_policy *pol) 1656 { 1657 mutex_lock(&blkcg_pol_register_mutex); 1658 1659 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1660 goto out_unlock; 1661 1662 /* kill the intf files first */ 1663 if (pol->dfl_cftypes) 1664 cgroup_rm_cftypes(pol->dfl_cftypes); 1665 if (pol->legacy_cftypes) 1666 cgroup_rm_cftypes(pol->legacy_cftypes); 1667 1668 /* remove cpds and unregister */ 1669 mutex_lock(&blkcg_pol_mutex); 1670 1671 if (pol->cpd_free_fn) 1672 blkcg_free_all_cpd(pol); 1673 1674 blkcg_policy[pol->plid] = NULL; 1675 1676 mutex_unlock(&blkcg_pol_mutex); 1677 out_unlock: 1678 mutex_unlock(&blkcg_pol_register_mutex); 1679 } 1680 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1681 1682 bool __blkcg_punt_bio_submit(struct bio *bio) 1683 { 1684 struct blkcg_gq *blkg = bio->bi_blkg; 1685 1686 /* consume the flag first */ 1687 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1688 1689 /* never bounce for the root cgroup */ 1690 if (!blkg->parent) 1691 return false; 1692 1693 spin_lock_bh(&blkg->async_bio_lock); 1694 bio_list_add(&blkg->async_bios, bio); 1695 spin_unlock_bh(&blkg->async_bio_lock); 1696 1697 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1698 return true; 1699 } 1700 1701 /* 1702 * Scale the accumulated delay based on how long it has been since we updated 1703 * the delay. We only call this when we are adding delay, in case it's been a 1704 * while since we added delay, and when we are checking to see if we need to 1705 * delay a task, to account for any delays that may have occurred. 1706 */ 1707 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1708 { 1709 u64 old = atomic64_read(&blkg->delay_start); 1710 1711 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1712 if (atomic_read(&blkg->use_delay) < 0) 1713 return; 1714 1715 /* 1716 * We only want to scale down every second. The idea here is that we 1717 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1718 * time window. We only want to throttle tasks for recent delay that 1719 * has occurred, in 1 second time windows since that's the maximum 1720 * things can be throttled. We save the current delay window in 1721 * blkg->last_delay so we know what amount is still left to be charged 1722 * to the blkg from this point onward. blkg->last_use keeps track of 1723 * the use_delay counter. The idea is if we're unthrottling the blkg we 1724 * are ok with whatever is happening now, and we can take away more of 1725 * the accumulated delay as we've already throttled enough that 1726 * everybody is happy with their IO latencies. 1727 */ 1728 if (time_before64(old + NSEC_PER_SEC, now) && 1729 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) { 1730 u64 cur = atomic64_read(&blkg->delay_nsec); 1731 u64 sub = min_t(u64, blkg->last_delay, now - old); 1732 int cur_use = atomic_read(&blkg->use_delay); 1733 1734 /* 1735 * We've been unthrottled, subtract a larger chunk of our 1736 * accumulated delay. 1737 */ 1738 if (cur_use < blkg->last_use) 1739 sub = max_t(u64, sub, blkg->last_delay >> 1); 1740 1741 /* 1742 * This shouldn't happen, but handle it anyway. Our delay_nsec 1743 * should only ever be growing except here where we subtract out 1744 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1745 * rather not end up with negative numbers. 1746 */ 1747 if (unlikely(cur < sub)) { 1748 atomic64_set(&blkg->delay_nsec, 0); 1749 blkg->last_delay = 0; 1750 } else { 1751 atomic64_sub(sub, &blkg->delay_nsec); 1752 blkg->last_delay = cur - sub; 1753 } 1754 blkg->last_use = cur_use; 1755 } 1756 } 1757 1758 /* 1759 * This is called when we want to actually walk up the hierarchy and check to 1760 * see if we need to throttle, and then actually throttle if there is some 1761 * accumulated delay. This should only be called upon return to user space so 1762 * we're not holding some lock that would induce a priority inversion. 1763 */ 1764 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1765 { 1766 unsigned long pflags; 1767 bool clamp; 1768 u64 now = ktime_to_ns(ktime_get()); 1769 u64 exp; 1770 u64 delay_nsec = 0; 1771 int tok; 1772 1773 while (blkg->parent) { 1774 int use_delay = atomic_read(&blkg->use_delay); 1775 1776 if (use_delay) { 1777 u64 this_delay; 1778 1779 blkcg_scale_delay(blkg, now); 1780 this_delay = atomic64_read(&blkg->delay_nsec); 1781 if (this_delay > delay_nsec) { 1782 delay_nsec = this_delay; 1783 clamp = use_delay > 0; 1784 } 1785 } 1786 blkg = blkg->parent; 1787 } 1788 1789 if (!delay_nsec) 1790 return; 1791 1792 /* 1793 * Let's not sleep for all eternity if we've amassed a huge delay. 1794 * Swapping or metadata IO can accumulate 10's of seconds worth of 1795 * delay, and we want userspace to be able to do _something_ so cap the 1796 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1797 * tasks will be delayed for 0.25 second for every syscall. If 1798 * blkcg_set_delay() was used as indicated by negative use_delay, the 1799 * caller is responsible for regulating the range. 1800 */ 1801 if (clamp) 1802 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1803 1804 if (use_memdelay) 1805 psi_memstall_enter(&pflags); 1806 1807 exp = ktime_add_ns(now, delay_nsec); 1808 tok = io_schedule_prepare(); 1809 do { 1810 __set_current_state(TASK_KILLABLE); 1811 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1812 break; 1813 } while (!fatal_signal_pending(current)); 1814 io_schedule_finish(tok); 1815 1816 if (use_memdelay) 1817 psi_memstall_leave(&pflags); 1818 } 1819 1820 /** 1821 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1822 * 1823 * This is only called if we've been marked with set_notify_resume(). Obviously 1824 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1825 * check to see if current->throttle_disk is set and if not this doesn't do 1826 * anything. This should only ever be called by the resume code, it's not meant 1827 * to be called by people willy-nilly as it will actually do the work to 1828 * throttle the task if it is setup for throttling. 1829 */ 1830 void blkcg_maybe_throttle_current(void) 1831 { 1832 struct gendisk *disk = current->throttle_disk; 1833 struct blkcg *blkcg; 1834 struct blkcg_gq *blkg; 1835 bool use_memdelay = current->use_memdelay; 1836 1837 if (!disk) 1838 return; 1839 1840 current->throttle_disk = NULL; 1841 current->use_memdelay = false; 1842 1843 rcu_read_lock(); 1844 blkcg = css_to_blkcg(blkcg_css()); 1845 if (!blkcg) 1846 goto out; 1847 blkg = blkg_lookup(blkcg, disk->queue); 1848 if (!blkg) 1849 goto out; 1850 if (!blkg_tryget(blkg)) 1851 goto out; 1852 rcu_read_unlock(); 1853 1854 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1855 blkg_put(blkg); 1856 put_disk(disk); 1857 return; 1858 out: 1859 rcu_read_unlock(); 1860 } 1861 1862 /** 1863 * blkcg_schedule_throttle - this task needs to check for throttling 1864 * @disk: disk to throttle 1865 * @use_memdelay: do we charge this to memory delay for PSI 1866 * 1867 * This is called by the IO controller when we know there's delay accumulated 1868 * for the blkg for this task. We do not pass the blkg because there are places 1869 * we call this that may not have that information, the swapping code for 1870 * instance will only have a block_device at that point. This set's the 1871 * notify_resume for the task to check and see if it requires throttling before 1872 * returning to user space. 1873 * 1874 * We will only schedule once per syscall. You can call this over and over 1875 * again and it will only do the check once upon return to user space, and only 1876 * throttle once. If the task needs to be throttled again it'll need to be 1877 * re-set at the next time we see the task. 1878 */ 1879 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay) 1880 { 1881 if (unlikely(current->flags & PF_KTHREAD)) 1882 return; 1883 1884 if (current->throttle_disk != disk) { 1885 if (test_bit(GD_DEAD, &disk->state)) 1886 return; 1887 get_device(disk_to_dev(disk)); 1888 1889 if (current->throttle_disk) 1890 put_disk(current->throttle_disk); 1891 current->throttle_disk = disk; 1892 } 1893 1894 if (use_memdelay) 1895 current->use_memdelay = use_memdelay; 1896 set_notify_resume(current); 1897 } 1898 1899 /** 1900 * blkcg_add_delay - add delay to this blkg 1901 * @blkg: blkg of interest 1902 * @now: the current time in nanoseconds 1903 * @delta: how many nanoseconds of delay to add 1904 * 1905 * Charge @delta to the blkg's current delay accumulation. This is used to 1906 * throttle tasks if an IO controller thinks we need more throttling. 1907 */ 1908 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1909 { 1910 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1911 return; 1912 blkcg_scale_delay(blkg, now); 1913 atomic64_add(delta, &blkg->delay_nsec); 1914 } 1915 1916 /** 1917 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1918 * @bio: target bio 1919 * @css: target css 1920 * 1921 * As the failure mode here is to walk up the blkg tree, this ensure that the 1922 * blkg->parent pointers are always valid. This returns the blkg that it ended 1923 * up taking a reference on or %NULL if no reference was taken. 1924 */ 1925 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1926 struct cgroup_subsys_state *css) 1927 { 1928 struct blkcg_gq *blkg, *ret_blkg = NULL; 1929 1930 rcu_read_lock(); 1931 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk); 1932 while (blkg) { 1933 if (blkg_tryget(blkg)) { 1934 ret_blkg = blkg; 1935 break; 1936 } 1937 blkg = blkg->parent; 1938 } 1939 rcu_read_unlock(); 1940 1941 return ret_blkg; 1942 } 1943 1944 /** 1945 * bio_associate_blkg_from_css - associate a bio with a specified css 1946 * @bio: target bio 1947 * @css: target css 1948 * 1949 * Associate @bio with the blkg found by combining the css's blkg and the 1950 * request_queue of the @bio. An association failure is handled by walking up 1951 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1952 * and q->root_blkg. This situation only happens when a cgroup is dying and 1953 * then the remaining bios will spill to the closest alive blkg. 1954 * 1955 * A reference will be taken on the blkg and will be released when @bio is 1956 * freed. 1957 */ 1958 void bio_associate_blkg_from_css(struct bio *bio, 1959 struct cgroup_subsys_state *css) 1960 { 1961 if (bio->bi_blkg) 1962 blkg_put(bio->bi_blkg); 1963 1964 if (css && css->parent) { 1965 bio->bi_blkg = blkg_tryget_closest(bio, css); 1966 } else { 1967 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 1968 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 1969 } 1970 } 1971 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1972 1973 /** 1974 * bio_associate_blkg - associate a bio with a blkg 1975 * @bio: target bio 1976 * 1977 * Associate @bio with the blkg found from the bio's css and request_queue. 1978 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1979 * already associated, the css is reused and association redone as the 1980 * request_queue may have changed. 1981 */ 1982 void bio_associate_blkg(struct bio *bio) 1983 { 1984 struct cgroup_subsys_state *css; 1985 1986 rcu_read_lock(); 1987 1988 if (bio->bi_blkg) 1989 css = bio_blkcg_css(bio); 1990 else 1991 css = blkcg_css(); 1992 1993 bio_associate_blkg_from_css(bio, css); 1994 1995 rcu_read_unlock(); 1996 } 1997 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1998 1999 /** 2000 * bio_clone_blkg_association - clone blkg association from src to dst bio 2001 * @dst: destination bio 2002 * @src: source bio 2003 */ 2004 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2005 { 2006 if (src->bi_blkg) 2007 bio_associate_blkg_from_css(dst, bio_blkcg_css(src)); 2008 } 2009 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2010 2011 static int blk_cgroup_io_type(struct bio *bio) 2012 { 2013 if (op_is_discard(bio->bi_opf)) 2014 return BLKG_IOSTAT_DISCARD; 2015 if (op_is_write(bio->bi_opf)) 2016 return BLKG_IOSTAT_WRITE; 2017 return BLKG_IOSTAT_READ; 2018 } 2019 2020 void blk_cgroup_bio_start(struct bio *bio) 2021 { 2022 struct blkcg *blkcg = bio->bi_blkg->blkcg; 2023 int rwd = blk_cgroup_io_type(bio), cpu; 2024 struct blkg_iostat_set *bis; 2025 unsigned long flags; 2026 2027 /* Root-level stats are sourced from system-wide IO stats */ 2028 if (!cgroup_parent(blkcg->css.cgroup)) 2029 return; 2030 2031 cpu = get_cpu(); 2032 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 2033 flags = u64_stats_update_begin_irqsave(&bis->sync); 2034 2035 /* 2036 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 2037 * bio and we would have already accounted for the size of the bio. 2038 */ 2039 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 2040 bio_set_flag(bio, BIO_CGROUP_ACCT); 2041 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 2042 } 2043 bis->cur.ios[rwd]++; 2044 2045 /* 2046 * If the iostat_cpu isn't in a lockless list, put it into the 2047 * list to indicate that a stat update is pending. 2048 */ 2049 if (!READ_ONCE(bis->lqueued)) { 2050 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead); 2051 2052 llist_add(&bis->lnode, lhead); 2053 WRITE_ONCE(bis->lqueued, true); 2054 percpu_ref_get(&bis->blkg->refcnt); 2055 } 2056 2057 u64_stats_update_end_irqrestore(&bis->sync, flags); 2058 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 2059 cgroup_rstat_updated(blkcg->css.cgroup, cpu); 2060 put_cpu(); 2061 } 2062 2063 bool blk_cgroup_congested(void) 2064 { 2065 struct cgroup_subsys_state *css; 2066 bool ret = false; 2067 2068 rcu_read_lock(); 2069 for (css = blkcg_css(); css; css = css->parent) { 2070 if (atomic_read(&css->cgroup->congestion_count)) { 2071 ret = true; 2072 break; 2073 } 2074 } 2075 rcu_read_unlock(); 2076 return ret; 2077 } 2078 2079 static int __init blkcg_init(void) 2080 { 2081 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 2082 WQ_MEM_RECLAIM | WQ_FREEZABLE | 2083 WQ_UNBOUND | WQ_SYSFS, 0); 2084 if (!blkcg_punt_bio_wq) 2085 return -ENOMEM; 2086 return 0; 2087 } 2088 subsys_initcall(blkcg_init); 2089 2090 module_param(blkcg_debug_stats, bool, 0644); 2091 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 2092