1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/ctype.h> 29 #include <linux/resume_user_mode.h> 30 #include <linux/psi.h> 31 #include <linux/part_stat.h> 32 #include "blk.h" 33 #include "blk-cgroup.h" 34 #include "blk-ioprio.h" 35 #include "blk-throttle.h" 36 37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu); 38 39 /* 40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 42 * policy [un]register operations including cgroup file additions / 43 * removals. Putting cgroup file registration outside blkcg_pol_mutex 44 * allows grabbing it from cgroup callbacks. 45 */ 46 static DEFINE_MUTEX(blkcg_pol_register_mutex); 47 static DEFINE_MUTEX(blkcg_pol_mutex); 48 49 struct blkcg blkcg_root; 50 EXPORT_SYMBOL_GPL(blkcg_root); 51 52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 53 EXPORT_SYMBOL_GPL(blkcg_root_css); 54 55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 56 57 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 58 59 bool blkcg_debug_stats = false; 60 61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock); 62 63 #define BLKG_DESTROY_BATCH_SIZE 64 64 65 /* 66 * Lockless lists for tracking IO stats update 67 * 68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg). 69 * There are multiple blkg's (one for each block device) attached to each 70 * blkcg. The rstat code keeps track of which cpu has IO stats updated, 71 * but it doesn't know which blkg has the updated stats. If there are many 72 * block devices in a system, the cost of iterating all the blkg's to flush 73 * out the IO stats can be high. To reduce such overhead, a set of percpu 74 * lockless lists (lhead) per blkcg are used to track the set of recently 75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put 76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if 77 * not there yet and then removed when being flushed [blkcg_rstat_flush()]. 78 * References to blkg are gotten and then put back in the process to 79 * protect against blkg removal. 80 * 81 * Return: 0 if successful or -ENOMEM if allocation fails. 82 */ 83 static int init_blkcg_llists(struct blkcg *blkcg) 84 { 85 int cpu; 86 87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL); 88 if (!blkcg->lhead) 89 return -ENOMEM; 90 91 for_each_possible_cpu(cpu) 92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu)); 93 return 0; 94 } 95 96 /** 97 * blkcg_css - find the current css 98 * 99 * Find the css associated with either the kthread or the current task. 100 * This may return a dying css, so it is up to the caller to use tryget logic 101 * to confirm it is alive and well. 102 */ 103 static struct cgroup_subsys_state *blkcg_css(void) 104 { 105 struct cgroup_subsys_state *css; 106 107 css = kthread_blkcg(); 108 if (css) 109 return css; 110 return task_css(current, io_cgrp_id); 111 } 112 113 static bool blkcg_policy_enabled(struct request_queue *q, 114 const struct blkcg_policy *pol) 115 { 116 return pol && test_bit(pol->plid, q->blkcg_pols); 117 } 118 119 static void blkg_free_workfn(struct work_struct *work) 120 { 121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 122 free_work); 123 struct request_queue *q = blkg->q; 124 int i; 125 126 /* 127 * pd_free_fn() can also be called from blkcg_deactivate_policy(), 128 * in order to make sure pd_free_fn() is called in order, the deletion 129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and 130 * blkcg_mutex is used to synchronize blkg_free_workfn() and 131 * blkcg_deactivate_policy(). 132 */ 133 mutex_lock(&q->blkcg_mutex); 134 for (i = 0; i < BLKCG_MAX_POLS; i++) 135 if (blkg->pd[i]) 136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 137 if (blkg->parent) 138 blkg_put(blkg->parent); 139 spin_lock_irq(&q->queue_lock); 140 list_del_init(&blkg->q_node); 141 spin_unlock_irq(&q->queue_lock); 142 mutex_unlock(&q->blkcg_mutex); 143 144 blk_put_queue(q); 145 free_percpu(blkg->iostat_cpu); 146 percpu_ref_exit(&blkg->refcnt); 147 kfree(blkg); 148 } 149 150 /** 151 * blkg_free - free a blkg 152 * @blkg: blkg to free 153 * 154 * Free @blkg which may be partially allocated. 155 */ 156 static void blkg_free(struct blkcg_gq *blkg) 157 { 158 if (!blkg) 159 return; 160 161 /* 162 * Both ->pd_free_fn() and request queue's release handler may 163 * sleep, so free us by scheduling one work func 164 */ 165 INIT_WORK(&blkg->free_work, blkg_free_workfn); 166 schedule_work(&blkg->free_work); 167 } 168 169 static void __blkg_release(struct rcu_head *rcu) 170 { 171 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 172 struct blkcg *blkcg = blkg->blkcg; 173 int cpu; 174 175 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 176 WARN_ON(!bio_list_empty(&blkg->async_bios)); 177 #endif 178 /* 179 * Flush all the non-empty percpu lockless lists before releasing 180 * us, given these stat belongs to us. 181 * 182 * blkg_stat_lock is for serializing blkg stat update 183 */ 184 for_each_possible_cpu(cpu) 185 __blkcg_rstat_flush(blkcg, cpu); 186 187 /* release the blkcg and parent blkg refs this blkg has been holding */ 188 css_put(&blkg->blkcg->css); 189 blkg_free(blkg); 190 } 191 192 /* 193 * A group is RCU protected, but having an rcu lock does not mean that one 194 * can access all the fields of blkg and assume these are valid. For 195 * example, don't try to follow throtl_data and request queue links. 196 * 197 * Having a reference to blkg under an rcu allows accesses to only values 198 * local to groups like group stats and group rate limits. 199 */ 200 static void blkg_release(struct percpu_ref *ref) 201 { 202 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 203 204 call_rcu(&blkg->rcu_head, __blkg_release); 205 } 206 207 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 208 static struct workqueue_struct *blkcg_punt_bio_wq; 209 210 static void blkg_async_bio_workfn(struct work_struct *work) 211 { 212 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 213 async_bio_work); 214 struct bio_list bios = BIO_EMPTY_LIST; 215 struct bio *bio; 216 struct blk_plug plug; 217 bool need_plug = false; 218 219 /* as long as there are pending bios, @blkg can't go away */ 220 spin_lock(&blkg->async_bio_lock); 221 bio_list_merge(&bios, &blkg->async_bios); 222 bio_list_init(&blkg->async_bios); 223 spin_unlock(&blkg->async_bio_lock); 224 225 /* start plug only when bio_list contains at least 2 bios */ 226 if (bios.head && bios.head->bi_next) { 227 need_plug = true; 228 blk_start_plug(&plug); 229 } 230 while ((bio = bio_list_pop(&bios))) 231 submit_bio(bio); 232 if (need_plug) 233 blk_finish_plug(&plug); 234 } 235 236 /* 237 * When a shared kthread issues a bio for a cgroup, doing so synchronously can 238 * lead to priority inversions as the kthread can be trapped waiting for that 239 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to 240 * a dedicated per-blkcg work item to avoid such priority inversions. 241 */ 242 void blkcg_punt_bio_submit(struct bio *bio) 243 { 244 struct blkcg_gq *blkg = bio->bi_blkg; 245 246 if (blkg->parent) { 247 spin_lock(&blkg->async_bio_lock); 248 bio_list_add(&blkg->async_bios, bio); 249 spin_unlock(&blkg->async_bio_lock); 250 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 251 } else { 252 /* never bounce for the root cgroup */ 253 submit_bio(bio); 254 } 255 } 256 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit); 257 258 static int __init blkcg_punt_bio_init(void) 259 { 260 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 261 WQ_MEM_RECLAIM | WQ_FREEZABLE | 262 WQ_UNBOUND | WQ_SYSFS, 0); 263 if (!blkcg_punt_bio_wq) 264 return -ENOMEM; 265 return 0; 266 } 267 subsys_initcall(blkcg_punt_bio_init); 268 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */ 269 270 /** 271 * bio_blkcg_css - return the blkcg CSS associated with a bio 272 * @bio: target bio 273 * 274 * This returns the CSS for the blkcg associated with a bio, or %NULL if not 275 * associated. Callers are expected to either handle %NULL or know association 276 * has been done prior to calling this. 277 */ 278 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio) 279 { 280 if (!bio || !bio->bi_blkg) 281 return NULL; 282 return &bio->bi_blkg->blkcg->css; 283 } 284 EXPORT_SYMBOL_GPL(bio_blkcg_css); 285 286 /** 287 * blkcg_parent - get the parent of a blkcg 288 * @blkcg: blkcg of interest 289 * 290 * Return the parent blkcg of @blkcg. Can be called anytime. 291 */ 292 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg) 293 { 294 return css_to_blkcg(blkcg->css.parent); 295 } 296 297 /** 298 * blkg_alloc - allocate a blkg 299 * @blkcg: block cgroup the new blkg is associated with 300 * @disk: gendisk the new blkg is associated with 301 * @gfp_mask: allocation mask to use 302 * 303 * Allocate a new blkg assocating @blkcg and @q. 304 */ 305 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk, 306 gfp_t gfp_mask) 307 { 308 struct blkcg_gq *blkg; 309 int i, cpu; 310 311 /* alloc and init base part */ 312 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node); 313 if (!blkg) 314 return NULL; 315 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 316 goto out_free_blkg; 317 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 318 if (!blkg->iostat_cpu) 319 goto out_exit_refcnt; 320 if (!blk_get_queue(disk->queue)) 321 goto out_free_iostat; 322 323 blkg->q = disk->queue; 324 INIT_LIST_HEAD(&blkg->q_node); 325 blkg->blkcg = blkcg; 326 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 327 spin_lock_init(&blkg->async_bio_lock); 328 bio_list_init(&blkg->async_bios); 329 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 330 #endif 331 332 u64_stats_init(&blkg->iostat.sync); 333 for_each_possible_cpu(cpu) { 334 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 335 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg; 336 } 337 338 for (i = 0; i < BLKCG_MAX_POLS; i++) { 339 struct blkcg_policy *pol = blkcg_policy[i]; 340 struct blkg_policy_data *pd; 341 342 if (!blkcg_policy_enabled(disk->queue, pol)) 343 continue; 344 345 /* alloc per-policy data and attach it to blkg */ 346 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask); 347 if (!pd) 348 goto out_free_pds; 349 blkg->pd[i] = pd; 350 pd->blkg = blkg; 351 pd->plid = i; 352 pd->online = false; 353 } 354 355 return blkg; 356 357 out_free_pds: 358 while (--i >= 0) 359 if (blkg->pd[i]) 360 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 361 blk_put_queue(disk->queue); 362 out_free_iostat: 363 free_percpu(blkg->iostat_cpu); 364 out_exit_refcnt: 365 percpu_ref_exit(&blkg->refcnt); 366 out_free_blkg: 367 kfree(blkg); 368 return NULL; 369 } 370 371 /* 372 * If @new_blkg is %NULL, this function tries to allocate a new one as 373 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 374 */ 375 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk, 376 struct blkcg_gq *new_blkg) 377 { 378 struct blkcg_gq *blkg; 379 int i, ret; 380 381 lockdep_assert_held(&disk->queue->queue_lock); 382 383 /* request_queue is dying, do not create/recreate a blkg */ 384 if (blk_queue_dying(disk->queue)) { 385 ret = -ENODEV; 386 goto err_free_blkg; 387 } 388 389 /* blkg holds a reference to blkcg */ 390 if (!css_tryget_online(&blkcg->css)) { 391 ret = -ENODEV; 392 goto err_free_blkg; 393 } 394 395 /* allocate */ 396 if (!new_blkg) { 397 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN); 398 if (unlikely(!new_blkg)) { 399 ret = -ENOMEM; 400 goto err_put_css; 401 } 402 } 403 blkg = new_blkg; 404 405 /* link parent */ 406 if (blkcg_parent(blkcg)) { 407 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue); 408 if (WARN_ON_ONCE(!blkg->parent)) { 409 ret = -ENODEV; 410 goto err_put_css; 411 } 412 blkg_get(blkg->parent); 413 } 414 415 /* invoke per-policy init */ 416 for (i = 0; i < BLKCG_MAX_POLS; i++) { 417 struct blkcg_policy *pol = blkcg_policy[i]; 418 419 if (blkg->pd[i] && pol->pd_init_fn) 420 pol->pd_init_fn(blkg->pd[i]); 421 } 422 423 /* insert */ 424 spin_lock(&blkcg->lock); 425 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg); 426 if (likely(!ret)) { 427 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 428 list_add(&blkg->q_node, &disk->queue->blkg_list); 429 430 for (i = 0; i < BLKCG_MAX_POLS; i++) { 431 struct blkcg_policy *pol = blkcg_policy[i]; 432 433 if (blkg->pd[i]) { 434 if (pol->pd_online_fn) 435 pol->pd_online_fn(blkg->pd[i]); 436 blkg->pd[i]->online = true; 437 } 438 } 439 } 440 blkg->online = true; 441 spin_unlock(&blkcg->lock); 442 443 if (!ret) 444 return blkg; 445 446 /* @blkg failed fully initialized, use the usual release path */ 447 blkg_put(blkg); 448 return ERR_PTR(ret); 449 450 err_put_css: 451 css_put(&blkcg->css); 452 err_free_blkg: 453 if (new_blkg) 454 blkg_free(new_blkg); 455 return ERR_PTR(ret); 456 } 457 458 /** 459 * blkg_lookup_create - lookup blkg, try to create one if not there 460 * @blkcg: blkcg of interest 461 * @disk: gendisk of interest 462 * 463 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to 464 * create one. blkg creation is performed recursively from blkcg_root such 465 * that all non-root blkg's have access to the parent blkg. This function 466 * should be called under RCU read lock and takes @disk->queue->queue_lock. 467 * 468 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 469 * down from root. 470 */ 471 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 472 struct gendisk *disk) 473 { 474 struct request_queue *q = disk->queue; 475 struct blkcg_gq *blkg; 476 unsigned long flags; 477 478 WARN_ON_ONCE(!rcu_read_lock_held()); 479 480 blkg = blkg_lookup(blkcg, q); 481 if (blkg) 482 return blkg; 483 484 spin_lock_irqsave(&q->queue_lock, flags); 485 blkg = blkg_lookup(blkcg, q); 486 if (blkg) { 487 if (blkcg != &blkcg_root && 488 blkg != rcu_dereference(blkcg->blkg_hint)) 489 rcu_assign_pointer(blkcg->blkg_hint, blkg); 490 goto found; 491 } 492 493 /* 494 * Create blkgs walking down from blkcg_root to @blkcg, so that all 495 * non-root blkgs have access to their parents. Returns the closest 496 * blkg to the intended blkg should blkg_create() fail. 497 */ 498 while (true) { 499 struct blkcg *pos = blkcg; 500 struct blkcg *parent = blkcg_parent(blkcg); 501 struct blkcg_gq *ret_blkg = q->root_blkg; 502 503 while (parent) { 504 blkg = blkg_lookup(parent, q); 505 if (blkg) { 506 /* remember closest blkg */ 507 ret_blkg = blkg; 508 break; 509 } 510 pos = parent; 511 parent = blkcg_parent(parent); 512 } 513 514 blkg = blkg_create(pos, disk, NULL); 515 if (IS_ERR(blkg)) { 516 blkg = ret_blkg; 517 break; 518 } 519 if (pos == blkcg) 520 break; 521 } 522 523 found: 524 spin_unlock_irqrestore(&q->queue_lock, flags); 525 return blkg; 526 } 527 528 static void blkg_destroy(struct blkcg_gq *blkg) 529 { 530 struct blkcg *blkcg = blkg->blkcg; 531 int i; 532 533 lockdep_assert_held(&blkg->q->queue_lock); 534 lockdep_assert_held(&blkcg->lock); 535 536 /* 537 * blkg stays on the queue list until blkg_free_workfn(), see details in 538 * blkg_free_workfn(), hence this function can be called from 539 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before 540 * blkg_free_workfn(). 541 */ 542 if (hlist_unhashed(&blkg->blkcg_node)) 543 return; 544 545 for (i = 0; i < BLKCG_MAX_POLS; i++) { 546 struct blkcg_policy *pol = blkcg_policy[i]; 547 548 if (blkg->pd[i] && blkg->pd[i]->online) { 549 blkg->pd[i]->online = false; 550 if (pol->pd_offline_fn) 551 pol->pd_offline_fn(blkg->pd[i]); 552 } 553 } 554 555 blkg->online = false; 556 557 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 558 hlist_del_init_rcu(&blkg->blkcg_node); 559 560 /* 561 * Both setting lookup hint to and clearing it from @blkg are done 562 * under queue_lock. If it's not pointing to @blkg now, it never 563 * will. Hint assignment itself can race safely. 564 */ 565 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 566 rcu_assign_pointer(blkcg->blkg_hint, NULL); 567 568 /* 569 * Put the reference taken at the time of creation so that when all 570 * queues are gone, group can be destroyed. 571 */ 572 percpu_ref_kill(&blkg->refcnt); 573 } 574 575 static void blkg_destroy_all(struct gendisk *disk) 576 { 577 struct request_queue *q = disk->queue; 578 struct blkcg_gq *blkg, *n; 579 int count = BLKG_DESTROY_BATCH_SIZE; 580 581 restart: 582 spin_lock_irq(&q->queue_lock); 583 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 584 struct blkcg *blkcg = blkg->blkcg; 585 586 if (hlist_unhashed(&blkg->blkcg_node)) 587 continue; 588 589 spin_lock(&blkcg->lock); 590 blkg_destroy(blkg); 591 spin_unlock(&blkcg->lock); 592 593 /* 594 * in order to avoid holding the spin lock for too long, release 595 * it when a batch of blkgs are destroyed. 596 */ 597 if (!(--count)) { 598 count = BLKG_DESTROY_BATCH_SIZE; 599 spin_unlock_irq(&q->queue_lock); 600 cond_resched(); 601 goto restart; 602 } 603 } 604 605 q->root_blkg = NULL; 606 spin_unlock_irq(&q->queue_lock); 607 } 608 609 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 610 struct cftype *cftype, u64 val) 611 { 612 struct blkcg *blkcg = css_to_blkcg(css); 613 struct blkcg_gq *blkg; 614 int i, cpu; 615 616 mutex_lock(&blkcg_pol_mutex); 617 spin_lock_irq(&blkcg->lock); 618 619 /* 620 * Note that stat reset is racy - it doesn't synchronize against 621 * stat updates. This is a debug feature which shouldn't exist 622 * anyway. If you get hit by a race, retry. 623 */ 624 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 625 for_each_possible_cpu(cpu) { 626 struct blkg_iostat_set *bis = 627 per_cpu_ptr(blkg->iostat_cpu, cpu); 628 memset(bis, 0, sizeof(*bis)); 629 630 /* Re-initialize the cleared blkg_iostat_set */ 631 u64_stats_init(&bis->sync); 632 bis->blkg = blkg; 633 } 634 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 635 u64_stats_init(&blkg->iostat.sync); 636 637 for (i = 0; i < BLKCG_MAX_POLS; i++) { 638 struct blkcg_policy *pol = blkcg_policy[i]; 639 640 if (blkg->pd[i] && pol->pd_reset_stats_fn) 641 pol->pd_reset_stats_fn(blkg->pd[i]); 642 } 643 } 644 645 spin_unlock_irq(&blkcg->lock); 646 mutex_unlock(&blkcg_pol_mutex); 647 return 0; 648 } 649 650 const char *blkg_dev_name(struct blkcg_gq *blkg) 651 { 652 if (!blkg->q->disk) 653 return NULL; 654 return bdi_dev_name(blkg->q->disk->bdi); 655 } 656 657 /** 658 * blkcg_print_blkgs - helper for printing per-blkg data 659 * @sf: seq_file to print to 660 * @blkcg: blkcg of interest 661 * @prfill: fill function to print out a blkg 662 * @pol: policy in question 663 * @data: data to be passed to @prfill 664 * @show_total: to print out sum of prfill return values or not 665 * 666 * This function invokes @prfill on each blkg of @blkcg if pd for the 667 * policy specified by @pol exists. @prfill is invoked with @sf, the 668 * policy data and @data and the matching queue lock held. If @show_total 669 * is %true, the sum of the return values from @prfill is printed with 670 * "Total" label at the end. 671 * 672 * This is to be used to construct print functions for 673 * cftype->read_seq_string method. 674 */ 675 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 676 u64 (*prfill)(struct seq_file *, 677 struct blkg_policy_data *, int), 678 const struct blkcg_policy *pol, int data, 679 bool show_total) 680 { 681 struct blkcg_gq *blkg; 682 u64 total = 0; 683 684 rcu_read_lock(); 685 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 686 spin_lock_irq(&blkg->q->queue_lock); 687 if (blkcg_policy_enabled(blkg->q, pol)) 688 total += prfill(sf, blkg->pd[pol->plid], data); 689 spin_unlock_irq(&blkg->q->queue_lock); 690 } 691 rcu_read_unlock(); 692 693 if (show_total) 694 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 695 } 696 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 697 698 /** 699 * __blkg_prfill_u64 - prfill helper for a single u64 value 700 * @sf: seq_file to print to 701 * @pd: policy private data of interest 702 * @v: value to print 703 * 704 * Print @v to @sf for the device associated with @pd. 705 */ 706 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 707 { 708 const char *dname = blkg_dev_name(pd->blkg); 709 710 if (!dname) 711 return 0; 712 713 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 714 return v; 715 } 716 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 717 718 /** 719 * blkg_conf_init - initialize a blkg_conf_ctx 720 * @ctx: blkg_conf_ctx to initialize 721 * @input: input string 722 * 723 * Initialize @ctx which can be used to parse blkg config input string @input. 724 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and 725 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit(). 726 */ 727 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input) 728 { 729 *ctx = (struct blkg_conf_ctx){ .input = input }; 730 } 731 EXPORT_SYMBOL_GPL(blkg_conf_init); 732 733 /** 734 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update 735 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 736 * 737 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from 738 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is 739 * set to point past the device node prefix. 740 * 741 * This function may be called multiple times on @ctx and the extra calls become 742 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function 743 * explicitly if bdev access is needed without resolving the blkcg / policy part 744 * of @ctx->input. Returns -errno on error. 745 */ 746 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx) 747 { 748 char *input = ctx->input; 749 unsigned int major, minor; 750 struct block_device *bdev; 751 int key_len; 752 753 if (ctx->bdev) 754 return 0; 755 756 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 757 return -EINVAL; 758 759 input += key_len; 760 if (!isspace(*input)) 761 return -EINVAL; 762 input = skip_spaces(input); 763 764 bdev = blkdev_get_no_open(MKDEV(major, minor)); 765 if (!bdev) 766 return -ENODEV; 767 if (bdev_is_partition(bdev)) { 768 blkdev_put_no_open(bdev); 769 return -ENODEV; 770 } 771 772 mutex_lock(&bdev->bd_queue->rq_qos_mutex); 773 if (!disk_live(bdev->bd_disk)) { 774 blkdev_put_no_open(bdev); 775 mutex_unlock(&bdev->bd_queue->rq_qos_mutex); 776 return -ENODEV; 777 } 778 779 ctx->body = input; 780 ctx->bdev = bdev; 781 return 0; 782 } 783 784 /** 785 * blkg_conf_prep - parse and prepare for per-blkg config update 786 * @blkcg: target block cgroup 787 * @pol: target policy 788 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 789 * 790 * Parse per-blkg config update from @ctx->input and initialize @ctx 791 * accordingly. On success, @ctx->body points to the part of @ctx->input 792 * following MAJ:MIN, @ctx->bdev points to the target block device and 793 * @ctx->blkg to the blkg being configured. 794 * 795 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this 796 * function returns with queue lock held and must be followed by 797 * blkg_conf_exit(). 798 */ 799 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 800 struct blkg_conf_ctx *ctx) 801 __acquires(&bdev->bd_queue->queue_lock) 802 { 803 struct gendisk *disk; 804 struct request_queue *q; 805 struct blkcg_gq *blkg; 806 int ret; 807 808 ret = blkg_conf_open_bdev(ctx); 809 if (ret) 810 return ret; 811 812 disk = ctx->bdev->bd_disk; 813 q = disk->queue; 814 815 /* 816 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 817 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 818 */ 819 ret = blk_queue_enter(q, 0); 820 if (ret) 821 goto fail; 822 823 spin_lock_irq(&q->queue_lock); 824 825 if (!blkcg_policy_enabled(q, pol)) { 826 ret = -EOPNOTSUPP; 827 goto fail_unlock; 828 } 829 830 blkg = blkg_lookup(blkcg, q); 831 if (blkg) 832 goto success; 833 834 /* 835 * Create blkgs walking down from blkcg_root to @blkcg, so that all 836 * non-root blkgs have access to their parents. 837 */ 838 while (true) { 839 struct blkcg *pos = blkcg; 840 struct blkcg *parent; 841 struct blkcg_gq *new_blkg; 842 843 parent = blkcg_parent(blkcg); 844 while (parent && !blkg_lookup(parent, q)) { 845 pos = parent; 846 parent = blkcg_parent(parent); 847 } 848 849 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 850 spin_unlock_irq(&q->queue_lock); 851 852 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL); 853 if (unlikely(!new_blkg)) { 854 ret = -ENOMEM; 855 goto fail_exit_queue; 856 } 857 858 if (radix_tree_preload(GFP_KERNEL)) { 859 blkg_free(new_blkg); 860 ret = -ENOMEM; 861 goto fail_exit_queue; 862 } 863 864 spin_lock_irq(&q->queue_lock); 865 866 if (!blkcg_policy_enabled(q, pol)) { 867 blkg_free(new_blkg); 868 ret = -EOPNOTSUPP; 869 goto fail_preloaded; 870 } 871 872 blkg = blkg_lookup(pos, q); 873 if (blkg) { 874 blkg_free(new_blkg); 875 } else { 876 blkg = blkg_create(pos, disk, new_blkg); 877 if (IS_ERR(blkg)) { 878 ret = PTR_ERR(blkg); 879 goto fail_preloaded; 880 } 881 } 882 883 radix_tree_preload_end(); 884 885 if (pos == blkcg) 886 goto success; 887 } 888 success: 889 blk_queue_exit(q); 890 ctx->blkg = blkg; 891 return 0; 892 893 fail_preloaded: 894 radix_tree_preload_end(); 895 fail_unlock: 896 spin_unlock_irq(&q->queue_lock); 897 fail_exit_queue: 898 blk_queue_exit(q); 899 fail: 900 /* 901 * If queue was bypassing, we should retry. Do so after a 902 * short msleep(). It isn't strictly necessary but queue 903 * can be bypassing for some time and it's always nice to 904 * avoid busy looping. 905 */ 906 if (ret == -EBUSY) { 907 msleep(10); 908 ret = restart_syscall(); 909 } 910 return ret; 911 } 912 EXPORT_SYMBOL_GPL(blkg_conf_prep); 913 914 /** 915 * blkg_conf_exit - clean up per-blkg config update 916 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 917 * 918 * Clean up after per-blkg config update. This function must be called on all 919 * blkg_conf_ctx's initialized with blkg_conf_init(). 920 */ 921 void blkg_conf_exit(struct blkg_conf_ctx *ctx) 922 __releases(&ctx->bdev->bd_queue->queue_lock) 923 __releases(&ctx->bdev->bd_queue->rq_qos_mutex) 924 { 925 if (ctx->blkg) { 926 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 927 ctx->blkg = NULL; 928 } 929 930 if (ctx->bdev) { 931 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex); 932 blkdev_put_no_open(ctx->bdev); 933 ctx->body = NULL; 934 ctx->bdev = NULL; 935 } 936 } 937 EXPORT_SYMBOL_GPL(blkg_conf_exit); 938 939 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 940 { 941 int i; 942 943 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 944 dst->bytes[i] = src->bytes[i]; 945 dst->ios[i] = src->ios[i]; 946 } 947 } 948 949 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 950 { 951 int i; 952 953 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 954 dst->bytes[i] += src->bytes[i]; 955 dst->ios[i] += src->ios[i]; 956 } 957 } 958 959 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 960 { 961 int i; 962 963 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 964 dst->bytes[i] -= src->bytes[i]; 965 dst->ios[i] -= src->ios[i]; 966 } 967 } 968 969 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur, 970 struct blkg_iostat *last) 971 { 972 struct blkg_iostat delta; 973 unsigned long flags; 974 975 /* propagate percpu delta to global */ 976 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 977 blkg_iostat_set(&delta, cur); 978 blkg_iostat_sub(&delta, last); 979 blkg_iostat_add(&blkg->iostat.cur, &delta); 980 blkg_iostat_add(last, &delta); 981 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 982 } 983 984 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu) 985 { 986 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu); 987 struct llist_node *lnode; 988 struct blkg_iostat_set *bisc, *next_bisc; 989 unsigned long flags; 990 991 rcu_read_lock(); 992 993 lnode = llist_del_all(lhead); 994 if (!lnode) 995 goto out; 996 997 /* 998 * For covering concurrent parent blkg update from blkg_release(). 999 * 1000 * When flushing from cgroup, cgroup_rstat_lock is always held, so 1001 * this lock won't cause contention most of time. 1002 */ 1003 raw_spin_lock_irqsave(&blkg_stat_lock, flags); 1004 1005 /* 1006 * Iterate only the iostat_cpu's queued in the lockless list. 1007 */ 1008 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) { 1009 struct blkcg_gq *blkg = bisc->blkg; 1010 struct blkcg_gq *parent = blkg->parent; 1011 struct blkg_iostat cur; 1012 unsigned int seq; 1013 1014 WRITE_ONCE(bisc->lqueued, false); 1015 1016 /* fetch the current per-cpu values */ 1017 do { 1018 seq = u64_stats_fetch_begin(&bisc->sync); 1019 blkg_iostat_set(&cur, &bisc->cur); 1020 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 1021 1022 blkcg_iostat_update(blkg, &cur, &bisc->last); 1023 1024 /* propagate global delta to parent (unless that's root) */ 1025 if (parent && parent->parent) 1026 blkcg_iostat_update(parent, &blkg->iostat.cur, 1027 &blkg->iostat.last); 1028 } 1029 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags); 1030 out: 1031 rcu_read_unlock(); 1032 } 1033 1034 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 1035 { 1036 /* Root-level stats are sourced from system-wide IO stats */ 1037 if (cgroup_parent(css->cgroup)) 1038 __blkcg_rstat_flush(css_to_blkcg(css), cpu); 1039 } 1040 1041 /* 1042 * We source root cgroup stats from the system-wide stats to avoid 1043 * tracking the same information twice and incurring overhead when no 1044 * cgroups are defined. For that reason, cgroup_rstat_flush in 1045 * blkcg_print_stat does not actually fill out the iostat in the root 1046 * cgroup's blkcg_gq. 1047 * 1048 * However, we would like to re-use the printing code between the root and 1049 * non-root cgroups to the extent possible. For that reason, we simulate 1050 * flushing the root cgroup's stats by explicitly filling in the iostat 1051 * with disk level statistics. 1052 */ 1053 static void blkcg_fill_root_iostats(void) 1054 { 1055 struct class_dev_iter iter; 1056 struct device *dev; 1057 1058 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1059 while ((dev = class_dev_iter_next(&iter))) { 1060 struct block_device *bdev = dev_to_bdev(dev); 1061 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg; 1062 struct blkg_iostat tmp; 1063 int cpu; 1064 unsigned long flags; 1065 1066 memset(&tmp, 0, sizeof(tmp)); 1067 for_each_possible_cpu(cpu) { 1068 struct disk_stats *cpu_dkstats; 1069 1070 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 1071 tmp.ios[BLKG_IOSTAT_READ] += 1072 cpu_dkstats->ios[STAT_READ]; 1073 tmp.ios[BLKG_IOSTAT_WRITE] += 1074 cpu_dkstats->ios[STAT_WRITE]; 1075 tmp.ios[BLKG_IOSTAT_DISCARD] += 1076 cpu_dkstats->ios[STAT_DISCARD]; 1077 // convert sectors to bytes 1078 tmp.bytes[BLKG_IOSTAT_READ] += 1079 cpu_dkstats->sectors[STAT_READ] << 9; 1080 tmp.bytes[BLKG_IOSTAT_WRITE] += 1081 cpu_dkstats->sectors[STAT_WRITE] << 9; 1082 tmp.bytes[BLKG_IOSTAT_DISCARD] += 1083 cpu_dkstats->sectors[STAT_DISCARD] << 9; 1084 } 1085 1086 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 1087 blkg_iostat_set(&blkg->iostat.cur, &tmp); 1088 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 1089 } 1090 } 1091 1092 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 1093 { 1094 struct blkg_iostat_set *bis = &blkg->iostat; 1095 u64 rbytes, wbytes, rios, wios, dbytes, dios; 1096 const char *dname; 1097 unsigned seq; 1098 int i; 1099 1100 if (!blkg->online) 1101 return; 1102 1103 dname = blkg_dev_name(blkg); 1104 if (!dname) 1105 return; 1106 1107 seq_printf(s, "%s ", dname); 1108 1109 do { 1110 seq = u64_stats_fetch_begin(&bis->sync); 1111 1112 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 1113 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 1114 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 1115 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 1116 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 1117 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 1118 } while (u64_stats_fetch_retry(&bis->sync, seq)); 1119 1120 if (rbytes || wbytes || rios || wios) { 1121 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 1122 rbytes, wbytes, rios, wios, 1123 dbytes, dios); 1124 } 1125 1126 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 1127 seq_printf(s, " use_delay=%d delay_nsec=%llu", 1128 atomic_read(&blkg->use_delay), 1129 atomic64_read(&blkg->delay_nsec)); 1130 } 1131 1132 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1133 struct blkcg_policy *pol = blkcg_policy[i]; 1134 1135 if (!blkg->pd[i] || !pol->pd_stat_fn) 1136 continue; 1137 1138 pol->pd_stat_fn(blkg->pd[i], s); 1139 } 1140 1141 seq_puts(s, "\n"); 1142 } 1143 1144 static int blkcg_print_stat(struct seq_file *sf, void *v) 1145 { 1146 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1147 struct blkcg_gq *blkg; 1148 1149 if (!seq_css(sf)->parent) 1150 blkcg_fill_root_iostats(); 1151 else 1152 cgroup_rstat_flush(blkcg->css.cgroup); 1153 1154 rcu_read_lock(); 1155 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 1156 spin_lock_irq(&blkg->q->queue_lock); 1157 blkcg_print_one_stat(blkg, sf); 1158 spin_unlock_irq(&blkg->q->queue_lock); 1159 } 1160 rcu_read_unlock(); 1161 return 0; 1162 } 1163 1164 static struct cftype blkcg_files[] = { 1165 { 1166 .name = "stat", 1167 .seq_show = blkcg_print_stat, 1168 }, 1169 { } /* terminate */ 1170 }; 1171 1172 static struct cftype blkcg_legacy_files[] = { 1173 { 1174 .name = "reset_stats", 1175 .write_u64 = blkcg_reset_stats, 1176 }, 1177 { } /* terminate */ 1178 }; 1179 1180 #ifdef CONFIG_CGROUP_WRITEBACK 1181 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css) 1182 { 1183 return &css_to_blkcg(css)->cgwb_list; 1184 } 1185 #endif 1186 1187 /* 1188 * blkcg destruction is a three-stage process. 1189 * 1190 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 1191 * which offlines writeback. Here we tie the next stage of blkg destruction 1192 * to the completion of writeback associated with the blkcg. This lets us 1193 * avoid punting potentially large amounts of outstanding writeback to root 1194 * while maintaining any ongoing policies. The next stage is triggered when 1195 * the nr_cgwbs count goes to zero. 1196 * 1197 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 1198 * and handles the destruction of blkgs. Here the css reference held by 1199 * the blkg is put back eventually allowing blkcg_css_free() to be called. 1200 * This work may occur in cgwb_release_workfn() on the cgwb_release 1201 * workqueue. Any submitted ios that fail to get the blkg ref will be 1202 * punted to the root_blkg. 1203 * 1204 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1205 * This finally frees the blkcg. 1206 */ 1207 1208 /** 1209 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1210 * @blkcg: blkcg of interest 1211 * 1212 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1213 * is nested inside q lock, this function performs reverse double lock dancing. 1214 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1215 * blkcg_css_free to eventually be called. 1216 * 1217 * This is the blkcg counterpart of ioc_release_fn(). 1218 */ 1219 static void blkcg_destroy_blkgs(struct blkcg *blkcg) 1220 { 1221 might_sleep(); 1222 1223 spin_lock_irq(&blkcg->lock); 1224 1225 while (!hlist_empty(&blkcg->blkg_list)) { 1226 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1227 struct blkcg_gq, blkcg_node); 1228 struct request_queue *q = blkg->q; 1229 1230 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1231 /* 1232 * Given that the system can accumulate a huge number 1233 * of blkgs in pathological cases, check to see if we 1234 * need to rescheduling to avoid softlockup. 1235 */ 1236 spin_unlock_irq(&blkcg->lock); 1237 cond_resched(); 1238 spin_lock_irq(&blkcg->lock); 1239 continue; 1240 } 1241 1242 blkg_destroy(blkg); 1243 spin_unlock(&q->queue_lock); 1244 } 1245 1246 spin_unlock_irq(&blkcg->lock); 1247 } 1248 1249 /** 1250 * blkcg_pin_online - pin online state 1251 * @blkcg_css: blkcg of interest 1252 * 1253 * While pinned, a blkcg is kept online. This is primarily used to 1254 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline 1255 * while an associated cgwb is still active. 1256 */ 1257 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css) 1258 { 1259 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin); 1260 } 1261 1262 /** 1263 * blkcg_unpin_online - unpin online state 1264 * @blkcg_css: blkcg of interest 1265 * 1266 * This is primarily used to impedance-match blkg and cgwb lifetimes so 1267 * that blkg doesn't go offline while an associated cgwb is still active. 1268 * When this count goes to zero, all active cgwbs have finished so the 1269 * blkcg can continue destruction by calling blkcg_destroy_blkgs(). 1270 */ 1271 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css) 1272 { 1273 struct blkcg *blkcg = css_to_blkcg(blkcg_css); 1274 1275 do { 1276 if (!refcount_dec_and_test(&blkcg->online_pin)) 1277 break; 1278 blkcg_destroy_blkgs(blkcg); 1279 blkcg = blkcg_parent(blkcg); 1280 } while (blkcg); 1281 } 1282 1283 /** 1284 * blkcg_css_offline - cgroup css_offline callback 1285 * @css: css of interest 1286 * 1287 * This function is called when @css is about to go away. Here the cgwbs are 1288 * offlined first and only once writeback associated with the blkcg has 1289 * finished do we start step 2 (see above). 1290 */ 1291 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1292 { 1293 /* this prevents anyone from attaching or migrating to this blkcg */ 1294 wb_blkcg_offline(css); 1295 1296 /* put the base online pin allowing step 2 to be triggered */ 1297 blkcg_unpin_online(css); 1298 } 1299 1300 static void blkcg_css_free(struct cgroup_subsys_state *css) 1301 { 1302 struct blkcg *blkcg = css_to_blkcg(css); 1303 int i; 1304 1305 mutex_lock(&blkcg_pol_mutex); 1306 1307 list_del(&blkcg->all_blkcgs_node); 1308 1309 for (i = 0; i < BLKCG_MAX_POLS; i++) 1310 if (blkcg->cpd[i]) 1311 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1312 1313 mutex_unlock(&blkcg_pol_mutex); 1314 1315 free_percpu(blkcg->lhead); 1316 kfree(blkcg); 1317 } 1318 1319 static struct cgroup_subsys_state * 1320 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1321 { 1322 struct blkcg *blkcg; 1323 int i; 1324 1325 mutex_lock(&blkcg_pol_mutex); 1326 1327 if (!parent_css) { 1328 blkcg = &blkcg_root; 1329 } else { 1330 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1331 if (!blkcg) 1332 goto unlock; 1333 } 1334 1335 if (init_blkcg_llists(blkcg)) 1336 goto free_blkcg; 1337 1338 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1339 struct blkcg_policy *pol = blkcg_policy[i]; 1340 struct blkcg_policy_data *cpd; 1341 1342 /* 1343 * If the policy hasn't been attached yet, wait for it 1344 * to be attached before doing anything else. Otherwise, 1345 * check if the policy requires any specific per-cgroup 1346 * data: if it does, allocate and initialize it. 1347 */ 1348 if (!pol || !pol->cpd_alloc_fn) 1349 continue; 1350 1351 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1352 if (!cpd) 1353 goto free_pd_blkcg; 1354 1355 blkcg->cpd[i] = cpd; 1356 cpd->blkcg = blkcg; 1357 cpd->plid = i; 1358 } 1359 1360 spin_lock_init(&blkcg->lock); 1361 refcount_set(&blkcg->online_pin, 1); 1362 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1363 INIT_HLIST_HEAD(&blkcg->blkg_list); 1364 #ifdef CONFIG_CGROUP_WRITEBACK 1365 INIT_LIST_HEAD(&blkcg->cgwb_list); 1366 #endif 1367 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1368 1369 mutex_unlock(&blkcg_pol_mutex); 1370 return &blkcg->css; 1371 1372 free_pd_blkcg: 1373 for (i--; i >= 0; i--) 1374 if (blkcg->cpd[i]) 1375 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1376 free_percpu(blkcg->lhead); 1377 free_blkcg: 1378 if (blkcg != &blkcg_root) 1379 kfree(blkcg); 1380 unlock: 1381 mutex_unlock(&blkcg_pol_mutex); 1382 return ERR_PTR(-ENOMEM); 1383 } 1384 1385 static int blkcg_css_online(struct cgroup_subsys_state *css) 1386 { 1387 struct blkcg *parent = blkcg_parent(css_to_blkcg(css)); 1388 1389 /* 1390 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1391 * don't go offline while cgwbs are still active on them. Pin the 1392 * parent so that offline always happens towards the root. 1393 */ 1394 if (parent) 1395 blkcg_pin_online(&parent->css); 1396 return 0; 1397 } 1398 1399 int blkcg_init_disk(struct gendisk *disk) 1400 { 1401 struct request_queue *q = disk->queue; 1402 struct blkcg_gq *new_blkg, *blkg; 1403 bool preloaded; 1404 int ret; 1405 1406 INIT_LIST_HEAD(&q->blkg_list); 1407 mutex_init(&q->blkcg_mutex); 1408 1409 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL); 1410 if (!new_blkg) 1411 return -ENOMEM; 1412 1413 preloaded = !radix_tree_preload(GFP_KERNEL); 1414 1415 /* Make sure the root blkg exists. */ 1416 /* spin_lock_irq can serve as RCU read-side critical section. */ 1417 spin_lock_irq(&q->queue_lock); 1418 blkg = blkg_create(&blkcg_root, disk, new_blkg); 1419 if (IS_ERR(blkg)) 1420 goto err_unlock; 1421 q->root_blkg = blkg; 1422 spin_unlock_irq(&q->queue_lock); 1423 1424 if (preloaded) 1425 radix_tree_preload_end(); 1426 1427 ret = blk_ioprio_init(disk); 1428 if (ret) 1429 goto err_destroy_all; 1430 1431 ret = blk_throtl_init(disk); 1432 if (ret) 1433 goto err_ioprio_exit; 1434 1435 return 0; 1436 1437 err_ioprio_exit: 1438 blk_ioprio_exit(disk); 1439 err_destroy_all: 1440 blkg_destroy_all(disk); 1441 return ret; 1442 err_unlock: 1443 spin_unlock_irq(&q->queue_lock); 1444 if (preloaded) 1445 radix_tree_preload_end(); 1446 return PTR_ERR(blkg); 1447 } 1448 1449 void blkcg_exit_disk(struct gendisk *disk) 1450 { 1451 blkg_destroy_all(disk); 1452 blk_throtl_exit(disk); 1453 } 1454 1455 static void blkcg_exit(struct task_struct *tsk) 1456 { 1457 if (tsk->throttle_disk) 1458 put_disk(tsk->throttle_disk); 1459 tsk->throttle_disk = NULL; 1460 } 1461 1462 struct cgroup_subsys io_cgrp_subsys = { 1463 .css_alloc = blkcg_css_alloc, 1464 .css_online = blkcg_css_online, 1465 .css_offline = blkcg_css_offline, 1466 .css_free = blkcg_css_free, 1467 .css_rstat_flush = blkcg_rstat_flush, 1468 .dfl_cftypes = blkcg_files, 1469 .legacy_cftypes = blkcg_legacy_files, 1470 .legacy_name = "blkio", 1471 .exit = blkcg_exit, 1472 #ifdef CONFIG_MEMCG 1473 /* 1474 * This ensures that, if available, memcg is automatically enabled 1475 * together on the default hierarchy so that the owner cgroup can 1476 * be retrieved from writeback pages. 1477 */ 1478 .depends_on = 1 << memory_cgrp_id, 1479 #endif 1480 }; 1481 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1482 1483 /** 1484 * blkcg_activate_policy - activate a blkcg policy on a gendisk 1485 * @disk: gendisk of interest 1486 * @pol: blkcg policy to activate 1487 * 1488 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through 1489 * bypass mode to populate its blkgs with policy_data for @pol. 1490 * 1491 * Activation happens with @disk bypassed, so nobody would be accessing blkgs 1492 * from IO path. Update of each blkg is protected by both queue and blkcg 1493 * locks so that holding either lock and testing blkcg_policy_enabled() is 1494 * always enough for dereferencing policy data. 1495 * 1496 * The caller is responsible for synchronizing [de]activations and policy 1497 * [un]registerations. Returns 0 on success, -errno on failure. 1498 */ 1499 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol) 1500 { 1501 struct request_queue *q = disk->queue; 1502 struct blkg_policy_data *pd_prealloc = NULL; 1503 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1504 int ret; 1505 1506 if (blkcg_policy_enabled(q, pol)) 1507 return 0; 1508 1509 if (queue_is_mq(q)) 1510 blk_mq_freeze_queue(q); 1511 retry: 1512 spin_lock_irq(&q->queue_lock); 1513 1514 /* blkg_list is pushed at the head, reverse walk to initialize parents first */ 1515 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1516 struct blkg_policy_data *pd; 1517 1518 if (blkg->pd[pol->plid]) 1519 continue; 1520 1521 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1522 if (blkg == pinned_blkg) { 1523 pd = pd_prealloc; 1524 pd_prealloc = NULL; 1525 } else { 1526 pd = pol->pd_alloc_fn(disk, blkg->blkcg, 1527 GFP_NOWAIT | __GFP_NOWARN); 1528 } 1529 1530 if (!pd) { 1531 /* 1532 * GFP_NOWAIT failed. Free the existing one and 1533 * prealloc for @blkg w/ GFP_KERNEL. 1534 */ 1535 if (pinned_blkg) 1536 blkg_put(pinned_blkg); 1537 blkg_get(blkg); 1538 pinned_blkg = blkg; 1539 1540 spin_unlock_irq(&q->queue_lock); 1541 1542 if (pd_prealloc) 1543 pol->pd_free_fn(pd_prealloc); 1544 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg, 1545 GFP_KERNEL); 1546 if (pd_prealloc) 1547 goto retry; 1548 else 1549 goto enomem; 1550 } 1551 1552 spin_lock(&blkg->blkcg->lock); 1553 1554 pd->blkg = blkg; 1555 pd->plid = pol->plid; 1556 blkg->pd[pol->plid] = pd; 1557 1558 if (pol->pd_init_fn) 1559 pol->pd_init_fn(pd); 1560 1561 if (pol->pd_online_fn) 1562 pol->pd_online_fn(pd); 1563 pd->online = true; 1564 1565 spin_unlock(&blkg->blkcg->lock); 1566 } 1567 1568 __set_bit(pol->plid, q->blkcg_pols); 1569 ret = 0; 1570 1571 spin_unlock_irq(&q->queue_lock); 1572 out: 1573 if (queue_is_mq(q)) 1574 blk_mq_unfreeze_queue(q); 1575 if (pinned_blkg) 1576 blkg_put(pinned_blkg); 1577 if (pd_prealloc) 1578 pol->pd_free_fn(pd_prealloc); 1579 return ret; 1580 1581 enomem: 1582 /* alloc failed, take down everything */ 1583 spin_lock_irq(&q->queue_lock); 1584 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1585 struct blkcg *blkcg = blkg->blkcg; 1586 struct blkg_policy_data *pd; 1587 1588 spin_lock(&blkcg->lock); 1589 pd = blkg->pd[pol->plid]; 1590 if (pd) { 1591 if (pd->online && pol->pd_offline_fn) 1592 pol->pd_offline_fn(pd); 1593 pd->online = false; 1594 pol->pd_free_fn(pd); 1595 blkg->pd[pol->plid] = NULL; 1596 } 1597 spin_unlock(&blkcg->lock); 1598 } 1599 spin_unlock_irq(&q->queue_lock); 1600 ret = -ENOMEM; 1601 goto out; 1602 } 1603 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1604 1605 /** 1606 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk 1607 * @disk: gendisk of interest 1608 * @pol: blkcg policy to deactivate 1609 * 1610 * Deactivate @pol on @disk. Follows the same synchronization rules as 1611 * blkcg_activate_policy(). 1612 */ 1613 void blkcg_deactivate_policy(struct gendisk *disk, 1614 const struct blkcg_policy *pol) 1615 { 1616 struct request_queue *q = disk->queue; 1617 struct blkcg_gq *blkg; 1618 1619 if (!blkcg_policy_enabled(q, pol)) 1620 return; 1621 1622 if (queue_is_mq(q)) 1623 blk_mq_freeze_queue(q); 1624 1625 mutex_lock(&q->blkcg_mutex); 1626 spin_lock_irq(&q->queue_lock); 1627 1628 __clear_bit(pol->plid, q->blkcg_pols); 1629 1630 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1631 struct blkcg *blkcg = blkg->blkcg; 1632 1633 spin_lock(&blkcg->lock); 1634 if (blkg->pd[pol->plid]) { 1635 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn) 1636 pol->pd_offline_fn(blkg->pd[pol->plid]); 1637 pol->pd_free_fn(blkg->pd[pol->plid]); 1638 blkg->pd[pol->plid] = NULL; 1639 } 1640 spin_unlock(&blkcg->lock); 1641 } 1642 1643 spin_unlock_irq(&q->queue_lock); 1644 mutex_unlock(&q->blkcg_mutex); 1645 1646 if (queue_is_mq(q)) 1647 blk_mq_unfreeze_queue(q); 1648 } 1649 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1650 1651 static void blkcg_free_all_cpd(struct blkcg_policy *pol) 1652 { 1653 struct blkcg *blkcg; 1654 1655 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1656 if (blkcg->cpd[pol->plid]) { 1657 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1658 blkcg->cpd[pol->plid] = NULL; 1659 } 1660 } 1661 } 1662 1663 /** 1664 * blkcg_policy_register - register a blkcg policy 1665 * @pol: blkcg policy to register 1666 * 1667 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1668 * successful registration. Returns 0 on success and -errno on failure. 1669 */ 1670 int blkcg_policy_register(struct blkcg_policy *pol) 1671 { 1672 struct blkcg *blkcg; 1673 int i, ret; 1674 1675 mutex_lock(&blkcg_pol_register_mutex); 1676 mutex_lock(&blkcg_pol_mutex); 1677 1678 /* find an empty slot */ 1679 ret = -ENOSPC; 1680 for (i = 0; i < BLKCG_MAX_POLS; i++) 1681 if (!blkcg_policy[i]) 1682 break; 1683 if (i >= BLKCG_MAX_POLS) { 1684 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1685 goto err_unlock; 1686 } 1687 1688 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1689 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1690 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1691 goto err_unlock; 1692 1693 /* register @pol */ 1694 pol->plid = i; 1695 blkcg_policy[pol->plid] = pol; 1696 1697 /* allocate and install cpd's */ 1698 if (pol->cpd_alloc_fn) { 1699 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1700 struct blkcg_policy_data *cpd; 1701 1702 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1703 if (!cpd) 1704 goto err_free_cpds; 1705 1706 blkcg->cpd[pol->plid] = cpd; 1707 cpd->blkcg = blkcg; 1708 cpd->plid = pol->plid; 1709 } 1710 } 1711 1712 mutex_unlock(&blkcg_pol_mutex); 1713 1714 /* everything is in place, add intf files for the new policy */ 1715 if (pol->dfl_cftypes) 1716 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1717 pol->dfl_cftypes)); 1718 if (pol->legacy_cftypes) 1719 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1720 pol->legacy_cftypes)); 1721 mutex_unlock(&blkcg_pol_register_mutex); 1722 return 0; 1723 1724 err_free_cpds: 1725 if (pol->cpd_free_fn) 1726 blkcg_free_all_cpd(pol); 1727 1728 blkcg_policy[pol->plid] = NULL; 1729 err_unlock: 1730 mutex_unlock(&blkcg_pol_mutex); 1731 mutex_unlock(&blkcg_pol_register_mutex); 1732 return ret; 1733 } 1734 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1735 1736 /** 1737 * blkcg_policy_unregister - unregister a blkcg policy 1738 * @pol: blkcg policy to unregister 1739 * 1740 * Undo blkcg_policy_register(@pol). Might sleep. 1741 */ 1742 void blkcg_policy_unregister(struct blkcg_policy *pol) 1743 { 1744 mutex_lock(&blkcg_pol_register_mutex); 1745 1746 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1747 goto out_unlock; 1748 1749 /* kill the intf files first */ 1750 if (pol->dfl_cftypes) 1751 cgroup_rm_cftypes(pol->dfl_cftypes); 1752 if (pol->legacy_cftypes) 1753 cgroup_rm_cftypes(pol->legacy_cftypes); 1754 1755 /* remove cpds and unregister */ 1756 mutex_lock(&blkcg_pol_mutex); 1757 1758 if (pol->cpd_free_fn) 1759 blkcg_free_all_cpd(pol); 1760 1761 blkcg_policy[pol->plid] = NULL; 1762 1763 mutex_unlock(&blkcg_pol_mutex); 1764 out_unlock: 1765 mutex_unlock(&blkcg_pol_register_mutex); 1766 } 1767 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1768 1769 /* 1770 * Scale the accumulated delay based on how long it has been since we updated 1771 * the delay. We only call this when we are adding delay, in case it's been a 1772 * while since we added delay, and when we are checking to see if we need to 1773 * delay a task, to account for any delays that may have occurred. 1774 */ 1775 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1776 { 1777 u64 old = atomic64_read(&blkg->delay_start); 1778 1779 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1780 if (atomic_read(&blkg->use_delay) < 0) 1781 return; 1782 1783 /* 1784 * We only want to scale down every second. The idea here is that we 1785 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1786 * time window. We only want to throttle tasks for recent delay that 1787 * has occurred, in 1 second time windows since that's the maximum 1788 * things can be throttled. We save the current delay window in 1789 * blkg->last_delay so we know what amount is still left to be charged 1790 * to the blkg from this point onward. blkg->last_use keeps track of 1791 * the use_delay counter. The idea is if we're unthrottling the blkg we 1792 * are ok with whatever is happening now, and we can take away more of 1793 * the accumulated delay as we've already throttled enough that 1794 * everybody is happy with their IO latencies. 1795 */ 1796 if (time_before64(old + NSEC_PER_SEC, now) && 1797 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) { 1798 u64 cur = atomic64_read(&blkg->delay_nsec); 1799 u64 sub = min_t(u64, blkg->last_delay, now - old); 1800 int cur_use = atomic_read(&blkg->use_delay); 1801 1802 /* 1803 * We've been unthrottled, subtract a larger chunk of our 1804 * accumulated delay. 1805 */ 1806 if (cur_use < blkg->last_use) 1807 sub = max_t(u64, sub, blkg->last_delay >> 1); 1808 1809 /* 1810 * This shouldn't happen, but handle it anyway. Our delay_nsec 1811 * should only ever be growing except here where we subtract out 1812 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1813 * rather not end up with negative numbers. 1814 */ 1815 if (unlikely(cur < sub)) { 1816 atomic64_set(&blkg->delay_nsec, 0); 1817 blkg->last_delay = 0; 1818 } else { 1819 atomic64_sub(sub, &blkg->delay_nsec); 1820 blkg->last_delay = cur - sub; 1821 } 1822 blkg->last_use = cur_use; 1823 } 1824 } 1825 1826 /* 1827 * This is called when we want to actually walk up the hierarchy and check to 1828 * see if we need to throttle, and then actually throttle if there is some 1829 * accumulated delay. This should only be called upon return to user space so 1830 * we're not holding some lock that would induce a priority inversion. 1831 */ 1832 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1833 { 1834 unsigned long pflags; 1835 bool clamp; 1836 u64 now = ktime_to_ns(ktime_get()); 1837 u64 exp; 1838 u64 delay_nsec = 0; 1839 int tok; 1840 1841 while (blkg->parent) { 1842 int use_delay = atomic_read(&blkg->use_delay); 1843 1844 if (use_delay) { 1845 u64 this_delay; 1846 1847 blkcg_scale_delay(blkg, now); 1848 this_delay = atomic64_read(&blkg->delay_nsec); 1849 if (this_delay > delay_nsec) { 1850 delay_nsec = this_delay; 1851 clamp = use_delay > 0; 1852 } 1853 } 1854 blkg = blkg->parent; 1855 } 1856 1857 if (!delay_nsec) 1858 return; 1859 1860 /* 1861 * Let's not sleep for all eternity if we've amassed a huge delay. 1862 * Swapping or metadata IO can accumulate 10's of seconds worth of 1863 * delay, and we want userspace to be able to do _something_ so cap the 1864 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1865 * tasks will be delayed for 0.25 second for every syscall. If 1866 * blkcg_set_delay() was used as indicated by negative use_delay, the 1867 * caller is responsible for regulating the range. 1868 */ 1869 if (clamp) 1870 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1871 1872 if (use_memdelay) 1873 psi_memstall_enter(&pflags); 1874 1875 exp = ktime_add_ns(now, delay_nsec); 1876 tok = io_schedule_prepare(); 1877 do { 1878 __set_current_state(TASK_KILLABLE); 1879 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1880 break; 1881 } while (!fatal_signal_pending(current)); 1882 io_schedule_finish(tok); 1883 1884 if (use_memdelay) 1885 psi_memstall_leave(&pflags); 1886 } 1887 1888 /** 1889 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1890 * 1891 * This is only called if we've been marked with set_notify_resume(). Obviously 1892 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1893 * check to see if current->throttle_disk is set and if not this doesn't do 1894 * anything. This should only ever be called by the resume code, it's not meant 1895 * to be called by people willy-nilly as it will actually do the work to 1896 * throttle the task if it is setup for throttling. 1897 */ 1898 void blkcg_maybe_throttle_current(void) 1899 { 1900 struct gendisk *disk = current->throttle_disk; 1901 struct blkcg *blkcg; 1902 struct blkcg_gq *blkg; 1903 bool use_memdelay = current->use_memdelay; 1904 1905 if (!disk) 1906 return; 1907 1908 current->throttle_disk = NULL; 1909 current->use_memdelay = false; 1910 1911 rcu_read_lock(); 1912 blkcg = css_to_blkcg(blkcg_css()); 1913 if (!blkcg) 1914 goto out; 1915 blkg = blkg_lookup(blkcg, disk->queue); 1916 if (!blkg) 1917 goto out; 1918 if (!blkg_tryget(blkg)) 1919 goto out; 1920 rcu_read_unlock(); 1921 1922 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1923 blkg_put(blkg); 1924 put_disk(disk); 1925 return; 1926 out: 1927 rcu_read_unlock(); 1928 } 1929 1930 /** 1931 * blkcg_schedule_throttle - this task needs to check for throttling 1932 * @disk: disk to throttle 1933 * @use_memdelay: do we charge this to memory delay for PSI 1934 * 1935 * This is called by the IO controller when we know there's delay accumulated 1936 * for the blkg for this task. We do not pass the blkg because there are places 1937 * we call this that may not have that information, the swapping code for 1938 * instance will only have a block_device at that point. This set's the 1939 * notify_resume for the task to check and see if it requires throttling before 1940 * returning to user space. 1941 * 1942 * We will only schedule once per syscall. You can call this over and over 1943 * again and it will only do the check once upon return to user space, and only 1944 * throttle once. If the task needs to be throttled again it'll need to be 1945 * re-set at the next time we see the task. 1946 */ 1947 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay) 1948 { 1949 if (unlikely(current->flags & PF_KTHREAD)) 1950 return; 1951 1952 if (current->throttle_disk != disk) { 1953 if (test_bit(GD_DEAD, &disk->state)) 1954 return; 1955 get_device(disk_to_dev(disk)); 1956 1957 if (current->throttle_disk) 1958 put_disk(current->throttle_disk); 1959 current->throttle_disk = disk; 1960 } 1961 1962 if (use_memdelay) 1963 current->use_memdelay = use_memdelay; 1964 set_notify_resume(current); 1965 } 1966 1967 /** 1968 * blkcg_add_delay - add delay to this blkg 1969 * @blkg: blkg of interest 1970 * @now: the current time in nanoseconds 1971 * @delta: how many nanoseconds of delay to add 1972 * 1973 * Charge @delta to the blkg's current delay accumulation. This is used to 1974 * throttle tasks if an IO controller thinks we need more throttling. 1975 */ 1976 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1977 { 1978 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1979 return; 1980 blkcg_scale_delay(blkg, now); 1981 atomic64_add(delta, &blkg->delay_nsec); 1982 } 1983 1984 /** 1985 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1986 * @bio: target bio 1987 * @css: target css 1988 * 1989 * As the failure mode here is to walk up the blkg tree, this ensure that the 1990 * blkg->parent pointers are always valid. This returns the blkg that it ended 1991 * up taking a reference on or %NULL if no reference was taken. 1992 */ 1993 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1994 struct cgroup_subsys_state *css) 1995 { 1996 struct blkcg_gq *blkg, *ret_blkg = NULL; 1997 1998 rcu_read_lock(); 1999 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk); 2000 while (blkg) { 2001 if (blkg_tryget(blkg)) { 2002 ret_blkg = blkg; 2003 break; 2004 } 2005 blkg = blkg->parent; 2006 } 2007 rcu_read_unlock(); 2008 2009 return ret_blkg; 2010 } 2011 2012 /** 2013 * bio_associate_blkg_from_css - associate a bio with a specified css 2014 * @bio: target bio 2015 * @css: target css 2016 * 2017 * Associate @bio with the blkg found by combining the css's blkg and the 2018 * request_queue of the @bio. An association failure is handled by walking up 2019 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 2020 * and q->root_blkg. This situation only happens when a cgroup is dying and 2021 * then the remaining bios will spill to the closest alive blkg. 2022 * 2023 * A reference will be taken on the blkg and will be released when @bio is 2024 * freed. 2025 */ 2026 void bio_associate_blkg_from_css(struct bio *bio, 2027 struct cgroup_subsys_state *css) 2028 { 2029 if (bio->bi_blkg) 2030 blkg_put(bio->bi_blkg); 2031 2032 if (css && css->parent) { 2033 bio->bi_blkg = blkg_tryget_closest(bio, css); 2034 } else { 2035 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 2036 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 2037 } 2038 } 2039 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2040 2041 /** 2042 * bio_associate_blkg - associate a bio with a blkg 2043 * @bio: target bio 2044 * 2045 * Associate @bio with the blkg found from the bio's css and request_queue. 2046 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2047 * already associated, the css is reused and association redone as the 2048 * request_queue may have changed. 2049 */ 2050 void bio_associate_blkg(struct bio *bio) 2051 { 2052 struct cgroup_subsys_state *css; 2053 2054 rcu_read_lock(); 2055 2056 if (bio->bi_blkg) 2057 css = bio_blkcg_css(bio); 2058 else 2059 css = blkcg_css(); 2060 2061 bio_associate_blkg_from_css(bio, css); 2062 2063 rcu_read_unlock(); 2064 } 2065 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2066 2067 /** 2068 * bio_clone_blkg_association - clone blkg association from src to dst bio 2069 * @dst: destination bio 2070 * @src: source bio 2071 */ 2072 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2073 { 2074 if (src->bi_blkg) 2075 bio_associate_blkg_from_css(dst, bio_blkcg_css(src)); 2076 } 2077 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2078 2079 static int blk_cgroup_io_type(struct bio *bio) 2080 { 2081 if (op_is_discard(bio->bi_opf)) 2082 return BLKG_IOSTAT_DISCARD; 2083 if (op_is_write(bio->bi_opf)) 2084 return BLKG_IOSTAT_WRITE; 2085 return BLKG_IOSTAT_READ; 2086 } 2087 2088 void blk_cgroup_bio_start(struct bio *bio) 2089 { 2090 struct blkcg *blkcg = bio->bi_blkg->blkcg; 2091 int rwd = blk_cgroup_io_type(bio), cpu; 2092 struct blkg_iostat_set *bis; 2093 unsigned long flags; 2094 2095 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) 2096 return; 2097 2098 /* Root-level stats are sourced from system-wide IO stats */ 2099 if (!cgroup_parent(blkcg->css.cgroup)) 2100 return; 2101 2102 cpu = get_cpu(); 2103 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 2104 flags = u64_stats_update_begin_irqsave(&bis->sync); 2105 2106 /* 2107 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 2108 * bio and we would have already accounted for the size of the bio. 2109 */ 2110 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 2111 bio_set_flag(bio, BIO_CGROUP_ACCT); 2112 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 2113 } 2114 bis->cur.ios[rwd]++; 2115 2116 /* 2117 * If the iostat_cpu isn't in a lockless list, put it into the 2118 * list to indicate that a stat update is pending. 2119 */ 2120 if (!READ_ONCE(bis->lqueued)) { 2121 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead); 2122 2123 llist_add(&bis->lnode, lhead); 2124 WRITE_ONCE(bis->lqueued, true); 2125 } 2126 2127 u64_stats_update_end_irqrestore(&bis->sync, flags); 2128 cgroup_rstat_updated(blkcg->css.cgroup, cpu); 2129 put_cpu(); 2130 } 2131 2132 bool blk_cgroup_congested(void) 2133 { 2134 struct cgroup_subsys_state *css; 2135 bool ret = false; 2136 2137 rcu_read_lock(); 2138 for (css = blkcg_css(); css; css = css->parent) { 2139 if (atomic_read(&css->cgroup->congestion_count)) { 2140 ret = true; 2141 break; 2142 } 2143 } 2144 rcu_read_unlock(); 2145 return ret; 2146 } 2147 2148 module_param(blkcg_debug_stats, bool, 0644); 2149 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 2150