1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/genhd.h> 27 #include <linux/delay.h> 28 #include <linux/atomic.h> 29 #include <linux/ctype.h> 30 #include <linux/blk-cgroup.h> 31 #include <linux/tracehook.h> 32 #include <linux/psi.h> 33 #include "blk.h" 34 35 /* 36 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 37 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 38 * policy [un]register operations including cgroup file additions / 39 * removals. Putting cgroup file registration outside blkcg_pol_mutex 40 * allows grabbing it from cgroup callbacks. 41 */ 42 static DEFINE_MUTEX(blkcg_pol_register_mutex); 43 static DEFINE_MUTEX(blkcg_pol_mutex); 44 45 struct blkcg blkcg_root; 46 EXPORT_SYMBOL_GPL(blkcg_root); 47 48 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 49 EXPORT_SYMBOL_GPL(blkcg_root_css); 50 51 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 52 53 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 54 55 bool blkcg_debug_stats = false; 56 static struct workqueue_struct *blkcg_punt_bio_wq; 57 58 static bool blkcg_policy_enabled(struct request_queue *q, 59 const struct blkcg_policy *pol) 60 { 61 return pol && test_bit(pol->plid, q->blkcg_pols); 62 } 63 64 /** 65 * blkg_free - free a blkg 66 * @blkg: blkg to free 67 * 68 * Free @blkg which may be partially allocated. 69 */ 70 static void blkg_free(struct blkcg_gq *blkg) 71 { 72 int i; 73 74 if (!blkg) 75 return; 76 77 for (i = 0; i < BLKCG_MAX_POLS; i++) 78 if (blkg->pd[i]) 79 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 80 81 free_percpu(blkg->iostat_cpu); 82 percpu_ref_exit(&blkg->refcnt); 83 kfree(blkg); 84 } 85 86 static void __blkg_release(struct rcu_head *rcu) 87 { 88 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 89 90 WARN_ON(!bio_list_empty(&blkg->async_bios)); 91 92 /* release the blkcg and parent blkg refs this blkg has been holding */ 93 css_put(&blkg->blkcg->css); 94 if (blkg->parent) 95 blkg_put(blkg->parent); 96 blkg_free(blkg); 97 } 98 99 /* 100 * A group is RCU protected, but having an rcu lock does not mean that one 101 * can access all the fields of blkg and assume these are valid. For 102 * example, don't try to follow throtl_data and request queue links. 103 * 104 * Having a reference to blkg under an rcu allows accesses to only values 105 * local to groups like group stats and group rate limits. 106 */ 107 static void blkg_release(struct percpu_ref *ref) 108 { 109 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 110 111 call_rcu(&blkg->rcu_head, __blkg_release); 112 } 113 114 static void blkg_async_bio_workfn(struct work_struct *work) 115 { 116 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 117 async_bio_work); 118 struct bio_list bios = BIO_EMPTY_LIST; 119 struct bio *bio; 120 struct blk_plug plug; 121 bool need_plug = false; 122 123 /* as long as there are pending bios, @blkg can't go away */ 124 spin_lock_bh(&blkg->async_bio_lock); 125 bio_list_merge(&bios, &blkg->async_bios); 126 bio_list_init(&blkg->async_bios); 127 spin_unlock_bh(&blkg->async_bio_lock); 128 129 /* start plug only when bio_list contains at least 2 bios */ 130 if (bios.head && bios.head->bi_next) { 131 need_plug = true; 132 blk_start_plug(&plug); 133 } 134 while ((bio = bio_list_pop(&bios))) 135 submit_bio(bio); 136 if (need_plug) 137 blk_finish_plug(&plug); 138 } 139 140 /** 141 * blkg_alloc - allocate a blkg 142 * @blkcg: block cgroup the new blkg is associated with 143 * @q: request_queue the new blkg is associated with 144 * @gfp_mask: allocation mask to use 145 * 146 * Allocate a new blkg assocating @blkcg and @q. 147 */ 148 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, 149 gfp_t gfp_mask) 150 { 151 struct blkcg_gq *blkg; 152 int i, cpu; 153 154 /* alloc and init base part */ 155 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); 156 if (!blkg) 157 return NULL; 158 159 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 160 goto err_free; 161 162 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 163 if (!blkg->iostat_cpu) 164 goto err_free; 165 166 blkg->q = q; 167 INIT_LIST_HEAD(&blkg->q_node); 168 spin_lock_init(&blkg->async_bio_lock); 169 bio_list_init(&blkg->async_bios); 170 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 171 blkg->blkcg = blkcg; 172 173 u64_stats_init(&blkg->iostat.sync); 174 for_each_possible_cpu(cpu) 175 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 176 177 for (i = 0; i < BLKCG_MAX_POLS; i++) { 178 struct blkcg_policy *pol = blkcg_policy[i]; 179 struct blkg_policy_data *pd; 180 181 if (!blkcg_policy_enabled(q, pol)) 182 continue; 183 184 /* alloc per-policy data and attach it to blkg */ 185 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); 186 if (!pd) 187 goto err_free; 188 189 blkg->pd[i] = pd; 190 pd->blkg = blkg; 191 pd->plid = i; 192 } 193 194 return blkg; 195 196 err_free: 197 blkg_free(blkg); 198 return NULL; 199 } 200 201 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, 202 struct request_queue *q, bool update_hint) 203 { 204 struct blkcg_gq *blkg; 205 206 /* 207 * Hint didn't match. Look up from the radix tree. Note that the 208 * hint can only be updated under queue_lock as otherwise @blkg 209 * could have already been removed from blkg_tree. The caller is 210 * responsible for grabbing queue_lock if @update_hint. 211 */ 212 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); 213 if (blkg && blkg->q == q) { 214 if (update_hint) { 215 lockdep_assert_held(&q->queue_lock); 216 rcu_assign_pointer(blkcg->blkg_hint, blkg); 217 } 218 return blkg; 219 } 220 221 return NULL; 222 } 223 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); 224 225 /* 226 * If @new_blkg is %NULL, this function tries to allocate a new one as 227 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 228 */ 229 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, 230 struct request_queue *q, 231 struct blkcg_gq *new_blkg) 232 { 233 struct blkcg_gq *blkg; 234 int i, ret; 235 236 WARN_ON_ONCE(!rcu_read_lock_held()); 237 lockdep_assert_held(&q->queue_lock); 238 239 /* request_queue is dying, do not create/recreate a blkg */ 240 if (blk_queue_dying(q)) { 241 ret = -ENODEV; 242 goto err_free_blkg; 243 } 244 245 /* blkg holds a reference to blkcg */ 246 if (!css_tryget_online(&blkcg->css)) { 247 ret = -ENODEV; 248 goto err_free_blkg; 249 } 250 251 /* allocate */ 252 if (!new_blkg) { 253 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); 254 if (unlikely(!new_blkg)) { 255 ret = -ENOMEM; 256 goto err_put_css; 257 } 258 } 259 blkg = new_blkg; 260 261 /* link parent */ 262 if (blkcg_parent(blkcg)) { 263 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); 264 if (WARN_ON_ONCE(!blkg->parent)) { 265 ret = -ENODEV; 266 goto err_put_css; 267 } 268 blkg_get(blkg->parent); 269 } 270 271 /* invoke per-policy init */ 272 for (i = 0; i < BLKCG_MAX_POLS; i++) { 273 struct blkcg_policy *pol = blkcg_policy[i]; 274 275 if (blkg->pd[i] && pol->pd_init_fn) 276 pol->pd_init_fn(blkg->pd[i]); 277 } 278 279 /* insert */ 280 spin_lock(&blkcg->lock); 281 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); 282 if (likely(!ret)) { 283 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 284 list_add(&blkg->q_node, &q->blkg_list); 285 286 for (i = 0; i < BLKCG_MAX_POLS; i++) { 287 struct blkcg_policy *pol = blkcg_policy[i]; 288 289 if (blkg->pd[i] && pol->pd_online_fn) 290 pol->pd_online_fn(blkg->pd[i]); 291 } 292 } 293 blkg->online = true; 294 spin_unlock(&blkcg->lock); 295 296 if (!ret) 297 return blkg; 298 299 /* @blkg failed fully initialized, use the usual release path */ 300 blkg_put(blkg); 301 return ERR_PTR(ret); 302 303 err_put_css: 304 css_put(&blkcg->css); 305 err_free_blkg: 306 blkg_free(new_blkg); 307 return ERR_PTR(ret); 308 } 309 310 /** 311 * blkg_lookup_create - lookup blkg, try to create one if not there 312 * @blkcg: blkcg of interest 313 * @q: request_queue of interest 314 * 315 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to 316 * create one. blkg creation is performed recursively from blkcg_root such 317 * that all non-root blkg's have access to the parent blkg. This function 318 * should be called under RCU read lock and takes @q->queue_lock. 319 * 320 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 321 * down from root. 322 */ 323 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 324 struct request_queue *q) 325 { 326 struct blkcg_gq *blkg; 327 unsigned long flags; 328 329 WARN_ON_ONCE(!rcu_read_lock_held()); 330 331 blkg = blkg_lookup(blkcg, q); 332 if (blkg) 333 return blkg; 334 335 spin_lock_irqsave(&q->queue_lock, flags); 336 blkg = __blkg_lookup(blkcg, q, true); 337 if (blkg) 338 goto found; 339 340 /* 341 * Create blkgs walking down from blkcg_root to @blkcg, so that all 342 * non-root blkgs have access to their parents. Returns the closest 343 * blkg to the intended blkg should blkg_create() fail. 344 */ 345 while (true) { 346 struct blkcg *pos = blkcg; 347 struct blkcg *parent = blkcg_parent(blkcg); 348 struct blkcg_gq *ret_blkg = q->root_blkg; 349 350 while (parent) { 351 blkg = __blkg_lookup(parent, q, false); 352 if (blkg) { 353 /* remember closest blkg */ 354 ret_blkg = blkg; 355 break; 356 } 357 pos = parent; 358 parent = blkcg_parent(parent); 359 } 360 361 blkg = blkg_create(pos, q, NULL); 362 if (IS_ERR(blkg)) { 363 blkg = ret_blkg; 364 break; 365 } 366 if (pos == blkcg) 367 break; 368 } 369 370 found: 371 spin_unlock_irqrestore(&q->queue_lock, flags); 372 return blkg; 373 } 374 375 static void blkg_destroy(struct blkcg_gq *blkg) 376 { 377 struct blkcg *blkcg = blkg->blkcg; 378 int i; 379 380 lockdep_assert_held(&blkg->q->queue_lock); 381 lockdep_assert_held(&blkcg->lock); 382 383 /* Something wrong if we are trying to remove same group twice */ 384 WARN_ON_ONCE(list_empty(&blkg->q_node)); 385 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 386 387 for (i = 0; i < BLKCG_MAX_POLS; i++) { 388 struct blkcg_policy *pol = blkcg_policy[i]; 389 390 if (blkg->pd[i] && pol->pd_offline_fn) 391 pol->pd_offline_fn(blkg->pd[i]); 392 } 393 394 blkg->online = false; 395 396 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 397 list_del_init(&blkg->q_node); 398 hlist_del_init_rcu(&blkg->blkcg_node); 399 400 /* 401 * Both setting lookup hint to and clearing it from @blkg are done 402 * under queue_lock. If it's not pointing to @blkg now, it never 403 * will. Hint assignment itself can race safely. 404 */ 405 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 406 rcu_assign_pointer(blkcg->blkg_hint, NULL); 407 408 /* 409 * Put the reference taken at the time of creation so that when all 410 * queues are gone, group can be destroyed. 411 */ 412 percpu_ref_kill(&blkg->refcnt); 413 } 414 415 /** 416 * blkg_destroy_all - destroy all blkgs associated with a request_queue 417 * @q: request_queue of interest 418 * 419 * Destroy all blkgs associated with @q. 420 */ 421 static void blkg_destroy_all(struct request_queue *q) 422 { 423 struct blkcg_gq *blkg, *n; 424 425 spin_lock_irq(&q->queue_lock); 426 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 427 struct blkcg *blkcg = blkg->blkcg; 428 429 spin_lock(&blkcg->lock); 430 blkg_destroy(blkg); 431 spin_unlock(&blkcg->lock); 432 } 433 434 q->root_blkg = NULL; 435 spin_unlock_irq(&q->queue_lock); 436 } 437 438 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 439 struct cftype *cftype, u64 val) 440 { 441 struct blkcg *blkcg = css_to_blkcg(css); 442 struct blkcg_gq *blkg; 443 int i, cpu; 444 445 mutex_lock(&blkcg_pol_mutex); 446 spin_lock_irq(&blkcg->lock); 447 448 /* 449 * Note that stat reset is racy - it doesn't synchronize against 450 * stat updates. This is a debug feature which shouldn't exist 451 * anyway. If you get hit by a race, retry. 452 */ 453 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 454 for_each_possible_cpu(cpu) { 455 struct blkg_iostat_set *bis = 456 per_cpu_ptr(blkg->iostat_cpu, cpu); 457 memset(bis, 0, sizeof(*bis)); 458 } 459 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 460 461 for (i = 0; i < BLKCG_MAX_POLS; i++) { 462 struct blkcg_policy *pol = blkcg_policy[i]; 463 464 if (blkg->pd[i] && pol->pd_reset_stats_fn) 465 pol->pd_reset_stats_fn(blkg->pd[i]); 466 } 467 } 468 469 spin_unlock_irq(&blkcg->lock); 470 mutex_unlock(&blkcg_pol_mutex); 471 return 0; 472 } 473 474 const char *blkg_dev_name(struct blkcg_gq *blkg) 475 { 476 /* some drivers (floppy) instantiate a queue w/o disk registered */ 477 if (blkg->q->backing_dev_info->dev) 478 return bdi_dev_name(blkg->q->backing_dev_info); 479 return NULL; 480 } 481 482 /** 483 * blkcg_print_blkgs - helper for printing per-blkg data 484 * @sf: seq_file to print to 485 * @blkcg: blkcg of interest 486 * @prfill: fill function to print out a blkg 487 * @pol: policy in question 488 * @data: data to be passed to @prfill 489 * @show_total: to print out sum of prfill return values or not 490 * 491 * This function invokes @prfill on each blkg of @blkcg if pd for the 492 * policy specified by @pol exists. @prfill is invoked with @sf, the 493 * policy data and @data and the matching queue lock held. If @show_total 494 * is %true, the sum of the return values from @prfill is printed with 495 * "Total" label at the end. 496 * 497 * This is to be used to construct print functions for 498 * cftype->read_seq_string method. 499 */ 500 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 501 u64 (*prfill)(struct seq_file *, 502 struct blkg_policy_data *, int), 503 const struct blkcg_policy *pol, int data, 504 bool show_total) 505 { 506 struct blkcg_gq *blkg; 507 u64 total = 0; 508 509 rcu_read_lock(); 510 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 511 spin_lock_irq(&blkg->q->queue_lock); 512 if (blkcg_policy_enabled(blkg->q, pol)) 513 total += prfill(sf, blkg->pd[pol->plid], data); 514 spin_unlock_irq(&blkg->q->queue_lock); 515 } 516 rcu_read_unlock(); 517 518 if (show_total) 519 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 520 } 521 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 522 523 /** 524 * __blkg_prfill_u64 - prfill helper for a single u64 value 525 * @sf: seq_file to print to 526 * @pd: policy private data of interest 527 * @v: value to print 528 * 529 * Print @v to @sf for the device assocaited with @pd. 530 */ 531 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 532 { 533 const char *dname = blkg_dev_name(pd->blkg); 534 535 if (!dname) 536 return 0; 537 538 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 539 return v; 540 } 541 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 542 543 /* Performs queue bypass and policy enabled checks then looks up blkg. */ 544 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, 545 const struct blkcg_policy *pol, 546 struct request_queue *q) 547 { 548 WARN_ON_ONCE(!rcu_read_lock_held()); 549 lockdep_assert_held(&q->queue_lock); 550 551 if (!blkcg_policy_enabled(q, pol)) 552 return ERR_PTR(-EOPNOTSUPP); 553 return __blkg_lookup(blkcg, q, true /* update_hint */); 554 } 555 556 /** 557 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update 558 * @inputp: input string pointer 559 * 560 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 561 * from @input and get and return the matching bdev. *@inputp is 562 * updated to point past the device node prefix. Returns an ERR_PTR() 563 * value on error. 564 * 565 * Use this function iff blkg_conf_prep() can't be used for some reason. 566 */ 567 struct block_device *blkcg_conf_open_bdev(char **inputp) 568 { 569 char *input = *inputp; 570 unsigned int major, minor; 571 struct block_device *bdev; 572 int key_len; 573 574 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 575 return ERR_PTR(-EINVAL); 576 577 input += key_len; 578 if (!isspace(*input)) 579 return ERR_PTR(-EINVAL); 580 input = skip_spaces(input); 581 582 bdev = blkdev_get_no_open(MKDEV(major, minor)); 583 if (!bdev) 584 return ERR_PTR(-ENODEV); 585 if (bdev_is_partition(bdev)) { 586 blkdev_put_no_open(bdev); 587 return ERR_PTR(-ENODEV); 588 } 589 590 *inputp = input; 591 return bdev; 592 } 593 594 /** 595 * blkg_conf_prep - parse and prepare for per-blkg config update 596 * @blkcg: target block cgroup 597 * @pol: target policy 598 * @input: input string 599 * @ctx: blkg_conf_ctx to be filled 600 * 601 * Parse per-blkg config update from @input and initialize @ctx with the 602 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 603 * part of @input following MAJ:MIN. This function returns with RCU read 604 * lock and queue lock held and must be paired with blkg_conf_finish(). 605 */ 606 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 607 char *input, struct blkg_conf_ctx *ctx) 608 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock) 609 { 610 struct block_device *bdev; 611 struct request_queue *q; 612 struct blkcg_gq *blkg; 613 int ret; 614 615 bdev = blkcg_conf_open_bdev(&input); 616 if (IS_ERR(bdev)) 617 return PTR_ERR(bdev); 618 619 q = bdev->bd_disk->queue; 620 621 rcu_read_lock(); 622 spin_lock_irq(&q->queue_lock); 623 624 blkg = blkg_lookup_check(blkcg, pol, q); 625 if (IS_ERR(blkg)) { 626 ret = PTR_ERR(blkg); 627 goto fail_unlock; 628 } 629 630 if (blkg) 631 goto success; 632 633 /* 634 * Create blkgs walking down from blkcg_root to @blkcg, so that all 635 * non-root blkgs have access to their parents. 636 */ 637 while (true) { 638 struct blkcg *pos = blkcg; 639 struct blkcg *parent; 640 struct blkcg_gq *new_blkg; 641 642 parent = blkcg_parent(blkcg); 643 while (parent && !__blkg_lookup(parent, q, false)) { 644 pos = parent; 645 parent = blkcg_parent(parent); 646 } 647 648 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 649 spin_unlock_irq(&q->queue_lock); 650 rcu_read_unlock(); 651 652 new_blkg = blkg_alloc(pos, q, GFP_KERNEL); 653 if (unlikely(!new_blkg)) { 654 ret = -ENOMEM; 655 goto fail; 656 } 657 658 if (radix_tree_preload(GFP_KERNEL)) { 659 blkg_free(new_blkg); 660 ret = -ENOMEM; 661 goto fail; 662 } 663 664 rcu_read_lock(); 665 spin_lock_irq(&q->queue_lock); 666 667 blkg = blkg_lookup_check(pos, pol, q); 668 if (IS_ERR(blkg)) { 669 ret = PTR_ERR(blkg); 670 blkg_free(new_blkg); 671 goto fail_preloaded; 672 } 673 674 if (blkg) { 675 blkg_free(new_blkg); 676 } else { 677 blkg = blkg_create(pos, q, new_blkg); 678 if (IS_ERR(blkg)) { 679 ret = PTR_ERR(blkg); 680 goto fail_preloaded; 681 } 682 } 683 684 radix_tree_preload_end(); 685 686 if (pos == blkcg) 687 goto success; 688 } 689 success: 690 ctx->bdev = bdev; 691 ctx->blkg = blkg; 692 ctx->body = input; 693 return 0; 694 695 fail_preloaded: 696 radix_tree_preload_end(); 697 fail_unlock: 698 spin_unlock_irq(&q->queue_lock); 699 rcu_read_unlock(); 700 fail: 701 blkdev_put_no_open(bdev); 702 /* 703 * If queue was bypassing, we should retry. Do so after a 704 * short msleep(). It isn't strictly necessary but queue 705 * can be bypassing for some time and it's always nice to 706 * avoid busy looping. 707 */ 708 if (ret == -EBUSY) { 709 msleep(10); 710 ret = restart_syscall(); 711 } 712 return ret; 713 } 714 EXPORT_SYMBOL_GPL(blkg_conf_prep); 715 716 /** 717 * blkg_conf_finish - finish up per-blkg config update 718 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 719 * 720 * Finish up after per-blkg config update. This function must be paired 721 * with blkg_conf_prep(). 722 */ 723 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 724 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu) 725 { 726 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock); 727 rcu_read_unlock(); 728 blkdev_put_no_open(ctx->bdev); 729 } 730 EXPORT_SYMBOL_GPL(blkg_conf_finish); 731 732 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 733 { 734 int i; 735 736 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 737 dst->bytes[i] = src->bytes[i]; 738 dst->ios[i] = src->ios[i]; 739 } 740 } 741 742 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 743 { 744 int i; 745 746 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 747 dst->bytes[i] += src->bytes[i]; 748 dst->ios[i] += src->ios[i]; 749 } 750 } 751 752 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 753 { 754 int i; 755 756 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 757 dst->bytes[i] -= src->bytes[i]; 758 dst->ios[i] -= src->ios[i]; 759 } 760 } 761 762 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 763 { 764 struct blkcg *blkcg = css_to_blkcg(css); 765 struct blkcg_gq *blkg; 766 767 /* Root-level stats are sourced from system-wide IO stats */ 768 if (!cgroup_parent(css->cgroup)) 769 return; 770 771 rcu_read_lock(); 772 773 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 774 struct blkcg_gq *parent = blkg->parent; 775 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 776 struct blkg_iostat cur, delta; 777 unsigned int seq; 778 779 /* fetch the current per-cpu values */ 780 do { 781 seq = u64_stats_fetch_begin(&bisc->sync); 782 blkg_iostat_set(&cur, &bisc->cur); 783 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 784 785 /* propagate percpu delta to global */ 786 u64_stats_update_begin(&blkg->iostat.sync); 787 blkg_iostat_set(&delta, &cur); 788 blkg_iostat_sub(&delta, &bisc->last); 789 blkg_iostat_add(&blkg->iostat.cur, &delta); 790 blkg_iostat_add(&bisc->last, &delta); 791 u64_stats_update_end(&blkg->iostat.sync); 792 793 /* propagate global delta to parent (unless that's root) */ 794 if (parent && parent->parent) { 795 u64_stats_update_begin(&parent->iostat.sync); 796 blkg_iostat_set(&delta, &blkg->iostat.cur); 797 blkg_iostat_sub(&delta, &blkg->iostat.last); 798 blkg_iostat_add(&parent->iostat.cur, &delta); 799 blkg_iostat_add(&blkg->iostat.last, &delta); 800 u64_stats_update_end(&parent->iostat.sync); 801 } 802 } 803 804 rcu_read_unlock(); 805 } 806 807 /* 808 * We source root cgroup stats from the system-wide stats to avoid 809 * tracking the same information twice and incurring overhead when no 810 * cgroups are defined. For that reason, cgroup_rstat_flush in 811 * blkcg_print_stat does not actually fill out the iostat in the root 812 * cgroup's blkcg_gq. 813 * 814 * However, we would like to re-use the printing code between the root and 815 * non-root cgroups to the extent possible. For that reason, we simulate 816 * flushing the root cgroup's stats by explicitly filling in the iostat 817 * with disk level statistics. 818 */ 819 static void blkcg_fill_root_iostats(void) 820 { 821 struct class_dev_iter iter; 822 struct device *dev; 823 824 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 825 while ((dev = class_dev_iter_next(&iter))) { 826 struct block_device *bdev = dev_to_bdev(dev); 827 struct blkcg_gq *blkg = 828 blk_queue_root_blkg(bdev->bd_disk->queue); 829 struct blkg_iostat tmp; 830 int cpu; 831 832 memset(&tmp, 0, sizeof(tmp)); 833 for_each_possible_cpu(cpu) { 834 struct disk_stats *cpu_dkstats; 835 836 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 837 tmp.ios[BLKG_IOSTAT_READ] += 838 cpu_dkstats->ios[STAT_READ]; 839 tmp.ios[BLKG_IOSTAT_WRITE] += 840 cpu_dkstats->ios[STAT_WRITE]; 841 tmp.ios[BLKG_IOSTAT_DISCARD] += 842 cpu_dkstats->ios[STAT_DISCARD]; 843 // convert sectors to bytes 844 tmp.bytes[BLKG_IOSTAT_READ] += 845 cpu_dkstats->sectors[STAT_READ] << 9; 846 tmp.bytes[BLKG_IOSTAT_WRITE] += 847 cpu_dkstats->sectors[STAT_WRITE] << 9; 848 tmp.bytes[BLKG_IOSTAT_DISCARD] += 849 cpu_dkstats->sectors[STAT_DISCARD] << 9; 850 851 u64_stats_update_begin(&blkg->iostat.sync); 852 blkg_iostat_set(&blkg->iostat.cur, &tmp); 853 u64_stats_update_end(&blkg->iostat.sync); 854 } 855 } 856 } 857 858 static int blkcg_print_stat(struct seq_file *sf, void *v) 859 { 860 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 861 struct blkcg_gq *blkg; 862 863 if (!seq_css(sf)->parent) 864 blkcg_fill_root_iostats(); 865 else 866 cgroup_rstat_flush(blkcg->css.cgroup); 867 868 rcu_read_lock(); 869 870 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 871 struct blkg_iostat_set *bis = &blkg->iostat; 872 const char *dname; 873 char *buf; 874 u64 rbytes, wbytes, rios, wios, dbytes, dios; 875 size_t size = seq_get_buf(sf, &buf), off = 0; 876 int i; 877 bool has_stats = false; 878 unsigned seq; 879 880 spin_lock_irq(&blkg->q->queue_lock); 881 882 if (!blkg->online) 883 goto skip; 884 885 dname = blkg_dev_name(blkg); 886 if (!dname) 887 goto skip; 888 889 /* 890 * Hooray string manipulation, count is the size written NOT 891 * INCLUDING THE \0, so size is now count+1 less than what we 892 * had before, but we want to start writing the next bit from 893 * the \0 so we only add count to buf. 894 */ 895 off += scnprintf(buf+off, size-off, "%s ", dname); 896 897 do { 898 seq = u64_stats_fetch_begin(&bis->sync); 899 900 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 901 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 902 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 903 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 904 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 905 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 906 } while (u64_stats_fetch_retry(&bis->sync, seq)); 907 908 if (rbytes || wbytes || rios || wios) { 909 has_stats = true; 910 off += scnprintf(buf+off, size-off, 911 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 912 rbytes, wbytes, rios, wios, 913 dbytes, dios); 914 } 915 916 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 917 has_stats = true; 918 off += scnprintf(buf+off, size-off, 919 " use_delay=%d delay_nsec=%llu", 920 atomic_read(&blkg->use_delay), 921 (unsigned long long)atomic64_read(&blkg->delay_nsec)); 922 } 923 924 for (i = 0; i < BLKCG_MAX_POLS; i++) { 925 struct blkcg_policy *pol = blkcg_policy[i]; 926 size_t written; 927 928 if (!blkg->pd[i] || !pol->pd_stat_fn) 929 continue; 930 931 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off); 932 if (written) 933 has_stats = true; 934 off += written; 935 } 936 937 if (has_stats) { 938 if (off < size - 1) { 939 off += scnprintf(buf+off, size-off, "\n"); 940 seq_commit(sf, off); 941 } else { 942 seq_commit(sf, -1); 943 } 944 } 945 skip: 946 spin_unlock_irq(&blkg->q->queue_lock); 947 } 948 949 rcu_read_unlock(); 950 return 0; 951 } 952 953 static struct cftype blkcg_files[] = { 954 { 955 .name = "stat", 956 .seq_show = blkcg_print_stat, 957 }, 958 { } /* terminate */ 959 }; 960 961 static struct cftype blkcg_legacy_files[] = { 962 { 963 .name = "reset_stats", 964 .write_u64 = blkcg_reset_stats, 965 }, 966 { } /* terminate */ 967 }; 968 969 /* 970 * blkcg destruction is a three-stage process. 971 * 972 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 973 * which offlines writeback. Here we tie the next stage of blkg destruction 974 * to the completion of writeback associated with the blkcg. This lets us 975 * avoid punting potentially large amounts of outstanding writeback to root 976 * while maintaining any ongoing policies. The next stage is triggered when 977 * the nr_cgwbs count goes to zero. 978 * 979 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 980 * and handles the destruction of blkgs. Here the css reference held by 981 * the blkg is put back eventually allowing blkcg_css_free() to be called. 982 * This work may occur in cgwb_release_workfn() on the cgwb_release 983 * workqueue. Any submitted ios that fail to get the blkg ref will be 984 * punted to the root_blkg. 985 * 986 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 987 * This finally frees the blkcg. 988 */ 989 990 /** 991 * blkcg_css_offline - cgroup css_offline callback 992 * @css: css of interest 993 * 994 * This function is called when @css is about to go away. Here the cgwbs are 995 * offlined first and only once writeback associated with the blkcg has 996 * finished do we start step 2 (see above). 997 */ 998 static void blkcg_css_offline(struct cgroup_subsys_state *css) 999 { 1000 struct blkcg *blkcg = css_to_blkcg(css); 1001 1002 /* this prevents anyone from attaching or migrating to this blkcg */ 1003 wb_blkcg_offline(blkcg); 1004 1005 /* put the base online pin allowing step 2 to be triggered */ 1006 blkcg_unpin_online(blkcg); 1007 } 1008 1009 /** 1010 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1011 * @blkcg: blkcg of interest 1012 * 1013 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1014 * is nested inside q lock, this function performs reverse double lock dancing. 1015 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1016 * blkcg_css_free to eventually be called. 1017 * 1018 * This is the blkcg counterpart of ioc_release_fn(). 1019 */ 1020 void blkcg_destroy_blkgs(struct blkcg *blkcg) 1021 { 1022 might_sleep(); 1023 1024 spin_lock_irq(&blkcg->lock); 1025 1026 while (!hlist_empty(&blkcg->blkg_list)) { 1027 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1028 struct blkcg_gq, blkcg_node); 1029 struct request_queue *q = blkg->q; 1030 1031 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1032 /* 1033 * Given that the system can accumulate a huge number 1034 * of blkgs in pathological cases, check to see if we 1035 * need to rescheduling to avoid softlockup. 1036 */ 1037 spin_unlock_irq(&blkcg->lock); 1038 cond_resched(); 1039 spin_lock_irq(&blkcg->lock); 1040 continue; 1041 } 1042 1043 blkg_destroy(blkg); 1044 spin_unlock(&q->queue_lock); 1045 } 1046 1047 spin_unlock_irq(&blkcg->lock); 1048 } 1049 1050 static void blkcg_css_free(struct cgroup_subsys_state *css) 1051 { 1052 struct blkcg *blkcg = css_to_blkcg(css); 1053 int i; 1054 1055 mutex_lock(&blkcg_pol_mutex); 1056 1057 list_del(&blkcg->all_blkcgs_node); 1058 1059 for (i = 0; i < BLKCG_MAX_POLS; i++) 1060 if (blkcg->cpd[i]) 1061 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1062 1063 mutex_unlock(&blkcg_pol_mutex); 1064 1065 kfree(blkcg); 1066 } 1067 1068 static struct cgroup_subsys_state * 1069 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1070 { 1071 struct blkcg *blkcg; 1072 struct cgroup_subsys_state *ret; 1073 int i; 1074 1075 mutex_lock(&blkcg_pol_mutex); 1076 1077 if (!parent_css) { 1078 blkcg = &blkcg_root; 1079 } else { 1080 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1081 if (!blkcg) { 1082 ret = ERR_PTR(-ENOMEM); 1083 goto unlock; 1084 } 1085 } 1086 1087 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1088 struct blkcg_policy *pol = blkcg_policy[i]; 1089 struct blkcg_policy_data *cpd; 1090 1091 /* 1092 * If the policy hasn't been attached yet, wait for it 1093 * to be attached before doing anything else. Otherwise, 1094 * check if the policy requires any specific per-cgroup 1095 * data: if it does, allocate and initialize it. 1096 */ 1097 if (!pol || !pol->cpd_alloc_fn) 1098 continue; 1099 1100 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1101 if (!cpd) { 1102 ret = ERR_PTR(-ENOMEM); 1103 goto free_pd_blkcg; 1104 } 1105 blkcg->cpd[i] = cpd; 1106 cpd->blkcg = blkcg; 1107 cpd->plid = i; 1108 if (pol->cpd_init_fn) 1109 pol->cpd_init_fn(cpd); 1110 } 1111 1112 spin_lock_init(&blkcg->lock); 1113 refcount_set(&blkcg->online_pin, 1); 1114 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1115 INIT_HLIST_HEAD(&blkcg->blkg_list); 1116 #ifdef CONFIG_CGROUP_WRITEBACK 1117 INIT_LIST_HEAD(&blkcg->cgwb_list); 1118 #endif 1119 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1120 1121 mutex_unlock(&blkcg_pol_mutex); 1122 return &blkcg->css; 1123 1124 free_pd_blkcg: 1125 for (i--; i >= 0; i--) 1126 if (blkcg->cpd[i]) 1127 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1128 1129 if (blkcg != &blkcg_root) 1130 kfree(blkcg); 1131 unlock: 1132 mutex_unlock(&blkcg_pol_mutex); 1133 return ret; 1134 } 1135 1136 static int blkcg_css_online(struct cgroup_subsys_state *css) 1137 { 1138 struct blkcg *blkcg = css_to_blkcg(css); 1139 struct blkcg *parent = blkcg_parent(blkcg); 1140 1141 /* 1142 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1143 * don't go offline while cgwbs are still active on them. Pin the 1144 * parent so that offline always happens towards the root. 1145 */ 1146 if (parent) 1147 blkcg_pin_online(parent); 1148 return 0; 1149 } 1150 1151 /** 1152 * blkcg_init_queue - initialize blkcg part of request queue 1153 * @q: request_queue to initialize 1154 * 1155 * Called from blk_alloc_queue(). Responsible for initializing blkcg 1156 * part of new request_queue @q. 1157 * 1158 * RETURNS: 1159 * 0 on success, -errno on failure. 1160 */ 1161 int blkcg_init_queue(struct request_queue *q) 1162 { 1163 struct blkcg_gq *new_blkg, *blkg; 1164 bool preloaded; 1165 int ret; 1166 1167 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); 1168 if (!new_blkg) 1169 return -ENOMEM; 1170 1171 preloaded = !radix_tree_preload(GFP_KERNEL); 1172 1173 /* Make sure the root blkg exists. */ 1174 rcu_read_lock(); 1175 spin_lock_irq(&q->queue_lock); 1176 blkg = blkg_create(&blkcg_root, q, new_blkg); 1177 if (IS_ERR(blkg)) 1178 goto err_unlock; 1179 q->root_blkg = blkg; 1180 spin_unlock_irq(&q->queue_lock); 1181 rcu_read_unlock(); 1182 1183 if (preloaded) 1184 radix_tree_preload_end(); 1185 1186 ret = blk_throtl_init(q); 1187 if (ret) 1188 goto err_destroy_all; 1189 1190 ret = blk_iolatency_init(q); 1191 if (ret) { 1192 blk_throtl_exit(q); 1193 goto err_destroy_all; 1194 } 1195 return 0; 1196 1197 err_destroy_all: 1198 blkg_destroy_all(q); 1199 return ret; 1200 err_unlock: 1201 spin_unlock_irq(&q->queue_lock); 1202 rcu_read_unlock(); 1203 if (preloaded) 1204 radix_tree_preload_end(); 1205 return PTR_ERR(blkg); 1206 } 1207 1208 /** 1209 * blkcg_exit_queue - exit and release blkcg part of request_queue 1210 * @q: request_queue being released 1211 * 1212 * Called from blk_exit_queue(). Responsible for exiting blkcg part. 1213 */ 1214 void blkcg_exit_queue(struct request_queue *q) 1215 { 1216 blkg_destroy_all(q); 1217 blk_throtl_exit(q); 1218 } 1219 1220 /* 1221 * We cannot support shared io contexts, as we have no mean to support 1222 * two tasks with the same ioc in two different groups without major rework 1223 * of the main cic data structures. For now we allow a task to change 1224 * its cgroup only if it's the only owner of its ioc. 1225 */ 1226 static int blkcg_can_attach(struct cgroup_taskset *tset) 1227 { 1228 struct task_struct *task; 1229 struct cgroup_subsys_state *dst_css; 1230 struct io_context *ioc; 1231 int ret = 0; 1232 1233 /* task_lock() is needed to avoid races with exit_io_context() */ 1234 cgroup_taskset_for_each(task, dst_css, tset) { 1235 task_lock(task); 1236 ioc = task->io_context; 1237 if (ioc && atomic_read(&ioc->nr_tasks) > 1) 1238 ret = -EINVAL; 1239 task_unlock(task); 1240 if (ret) 1241 break; 1242 } 1243 return ret; 1244 } 1245 1246 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1247 { 1248 int i; 1249 1250 mutex_lock(&blkcg_pol_mutex); 1251 1252 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1253 struct blkcg_policy *pol = blkcg_policy[i]; 1254 struct blkcg *blkcg; 1255 1256 if (!pol || !pol->cpd_bind_fn) 1257 continue; 1258 1259 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1260 if (blkcg->cpd[pol->plid]) 1261 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1262 } 1263 mutex_unlock(&blkcg_pol_mutex); 1264 } 1265 1266 static void blkcg_exit(struct task_struct *tsk) 1267 { 1268 if (tsk->throttle_queue) 1269 blk_put_queue(tsk->throttle_queue); 1270 tsk->throttle_queue = NULL; 1271 } 1272 1273 struct cgroup_subsys io_cgrp_subsys = { 1274 .css_alloc = blkcg_css_alloc, 1275 .css_online = blkcg_css_online, 1276 .css_offline = blkcg_css_offline, 1277 .css_free = blkcg_css_free, 1278 .can_attach = blkcg_can_attach, 1279 .css_rstat_flush = blkcg_rstat_flush, 1280 .bind = blkcg_bind, 1281 .dfl_cftypes = blkcg_files, 1282 .legacy_cftypes = blkcg_legacy_files, 1283 .legacy_name = "blkio", 1284 .exit = blkcg_exit, 1285 #ifdef CONFIG_MEMCG 1286 /* 1287 * This ensures that, if available, memcg is automatically enabled 1288 * together on the default hierarchy so that the owner cgroup can 1289 * be retrieved from writeback pages. 1290 */ 1291 .depends_on = 1 << memory_cgrp_id, 1292 #endif 1293 }; 1294 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1295 1296 /** 1297 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1298 * @q: request_queue of interest 1299 * @pol: blkcg policy to activate 1300 * 1301 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1302 * bypass mode to populate its blkgs with policy_data for @pol. 1303 * 1304 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1305 * from IO path. Update of each blkg is protected by both queue and blkcg 1306 * locks so that holding either lock and testing blkcg_policy_enabled() is 1307 * always enough for dereferencing policy data. 1308 * 1309 * The caller is responsible for synchronizing [de]activations and policy 1310 * [un]registerations. Returns 0 on success, -errno on failure. 1311 */ 1312 int blkcg_activate_policy(struct request_queue *q, 1313 const struct blkcg_policy *pol) 1314 { 1315 struct blkg_policy_data *pd_prealloc = NULL; 1316 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1317 int ret; 1318 1319 if (blkcg_policy_enabled(q, pol)) 1320 return 0; 1321 1322 if (queue_is_mq(q)) 1323 blk_mq_freeze_queue(q); 1324 retry: 1325 spin_lock_irq(&q->queue_lock); 1326 1327 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1328 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1329 struct blkg_policy_data *pd; 1330 1331 if (blkg->pd[pol->plid]) 1332 continue; 1333 1334 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1335 if (blkg == pinned_blkg) { 1336 pd = pd_prealloc; 1337 pd_prealloc = NULL; 1338 } else { 1339 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1340 blkg->blkcg); 1341 } 1342 1343 if (!pd) { 1344 /* 1345 * GFP_NOWAIT failed. Free the existing one and 1346 * prealloc for @blkg w/ GFP_KERNEL. 1347 */ 1348 if (pinned_blkg) 1349 blkg_put(pinned_blkg); 1350 blkg_get(blkg); 1351 pinned_blkg = blkg; 1352 1353 spin_unlock_irq(&q->queue_lock); 1354 1355 if (pd_prealloc) 1356 pol->pd_free_fn(pd_prealloc); 1357 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1358 blkg->blkcg); 1359 if (pd_prealloc) 1360 goto retry; 1361 else 1362 goto enomem; 1363 } 1364 1365 blkg->pd[pol->plid] = pd; 1366 pd->blkg = blkg; 1367 pd->plid = pol->plid; 1368 } 1369 1370 /* all allocated, init in the same order */ 1371 if (pol->pd_init_fn) 1372 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1373 pol->pd_init_fn(blkg->pd[pol->plid]); 1374 1375 __set_bit(pol->plid, q->blkcg_pols); 1376 ret = 0; 1377 1378 spin_unlock_irq(&q->queue_lock); 1379 out: 1380 if (queue_is_mq(q)) 1381 blk_mq_unfreeze_queue(q); 1382 if (pinned_blkg) 1383 blkg_put(pinned_blkg); 1384 if (pd_prealloc) 1385 pol->pd_free_fn(pd_prealloc); 1386 return ret; 1387 1388 enomem: 1389 /* alloc failed, nothing's initialized yet, free everything */ 1390 spin_lock_irq(&q->queue_lock); 1391 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1392 if (blkg->pd[pol->plid]) { 1393 pol->pd_free_fn(blkg->pd[pol->plid]); 1394 blkg->pd[pol->plid] = NULL; 1395 } 1396 } 1397 spin_unlock_irq(&q->queue_lock); 1398 ret = -ENOMEM; 1399 goto out; 1400 } 1401 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1402 1403 /** 1404 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1405 * @q: request_queue of interest 1406 * @pol: blkcg policy to deactivate 1407 * 1408 * Deactivate @pol on @q. Follows the same synchronization rules as 1409 * blkcg_activate_policy(). 1410 */ 1411 void blkcg_deactivate_policy(struct request_queue *q, 1412 const struct blkcg_policy *pol) 1413 { 1414 struct blkcg_gq *blkg; 1415 1416 if (!blkcg_policy_enabled(q, pol)) 1417 return; 1418 1419 if (queue_is_mq(q)) 1420 blk_mq_freeze_queue(q); 1421 1422 spin_lock_irq(&q->queue_lock); 1423 1424 __clear_bit(pol->plid, q->blkcg_pols); 1425 1426 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1427 if (blkg->pd[pol->plid]) { 1428 if (pol->pd_offline_fn) 1429 pol->pd_offline_fn(blkg->pd[pol->plid]); 1430 pol->pd_free_fn(blkg->pd[pol->plid]); 1431 blkg->pd[pol->plid] = NULL; 1432 } 1433 } 1434 1435 spin_unlock_irq(&q->queue_lock); 1436 1437 if (queue_is_mq(q)) 1438 blk_mq_unfreeze_queue(q); 1439 } 1440 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1441 1442 /** 1443 * blkcg_policy_register - register a blkcg policy 1444 * @pol: blkcg policy to register 1445 * 1446 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1447 * successful registration. Returns 0 on success and -errno on failure. 1448 */ 1449 int blkcg_policy_register(struct blkcg_policy *pol) 1450 { 1451 struct blkcg *blkcg; 1452 int i, ret; 1453 1454 mutex_lock(&blkcg_pol_register_mutex); 1455 mutex_lock(&blkcg_pol_mutex); 1456 1457 /* find an empty slot */ 1458 ret = -ENOSPC; 1459 for (i = 0; i < BLKCG_MAX_POLS; i++) 1460 if (!blkcg_policy[i]) 1461 break; 1462 if (i >= BLKCG_MAX_POLS) { 1463 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1464 goto err_unlock; 1465 } 1466 1467 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1468 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1469 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1470 goto err_unlock; 1471 1472 /* register @pol */ 1473 pol->plid = i; 1474 blkcg_policy[pol->plid] = pol; 1475 1476 /* allocate and install cpd's */ 1477 if (pol->cpd_alloc_fn) { 1478 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1479 struct blkcg_policy_data *cpd; 1480 1481 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1482 if (!cpd) 1483 goto err_free_cpds; 1484 1485 blkcg->cpd[pol->plid] = cpd; 1486 cpd->blkcg = blkcg; 1487 cpd->plid = pol->plid; 1488 if (pol->cpd_init_fn) 1489 pol->cpd_init_fn(cpd); 1490 } 1491 } 1492 1493 mutex_unlock(&blkcg_pol_mutex); 1494 1495 /* everything is in place, add intf files for the new policy */ 1496 if (pol->dfl_cftypes) 1497 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1498 pol->dfl_cftypes)); 1499 if (pol->legacy_cftypes) 1500 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1501 pol->legacy_cftypes)); 1502 mutex_unlock(&blkcg_pol_register_mutex); 1503 return 0; 1504 1505 err_free_cpds: 1506 if (pol->cpd_free_fn) { 1507 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1508 if (blkcg->cpd[pol->plid]) { 1509 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1510 blkcg->cpd[pol->plid] = NULL; 1511 } 1512 } 1513 } 1514 blkcg_policy[pol->plid] = NULL; 1515 err_unlock: 1516 mutex_unlock(&blkcg_pol_mutex); 1517 mutex_unlock(&blkcg_pol_register_mutex); 1518 return ret; 1519 } 1520 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1521 1522 /** 1523 * blkcg_policy_unregister - unregister a blkcg policy 1524 * @pol: blkcg policy to unregister 1525 * 1526 * Undo blkcg_policy_register(@pol). Might sleep. 1527 */ 1528 void blkcg_policy_unregister(struct blkcg_policy *pol) 1529 { 1530 struct blkcg *blkcg; 1531 1532 mutex_lock(&blkcg_pol_register_mutex); 1533 1534 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1535 goto out_unlock; 1536 1537 /* kill the intf files first */ 1538 if (pol->dfl_cftypes) 1539 cgroup_rm_cftypes(pol->dfl_cftypes); 1540 if (pol->legacy_cftypes) 1541 cgroup_rm_cftypes(pol->legacy_cftypes); 1542 1543 /* remove cpds and unregister */ 1544 mutex_lock(&blkcg_pol_mutex); 1545 1546 if (pol->cpd_free_fn) { 1547 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1548 if (blkcg->cpd[pol->plid]) { 1549 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1550 blkcg->cpd[pol->plid] = NULL; 1551 } 1552 } 1553 } 1554 blkcg_policy[pol->plid] = NULL; 1555 1556 mutex_unlock(&blkcg_pol_mutex); 1557 out_unlock: 1558 mutex_unlock(&blkcg_pol_register_mutex); 1559 } 1560 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1561 1562 bool __blkcg_punt_bio_submit(struct bio *bio) 1563 { 1564 struct blkcg_gq *blkg = bio->bi_blkg; 1565 1566 /* consume the flag first */ 1567 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1568 1569 /* never bounce for the root cgroup */ 1570 if (!blkg->parent) 1571 return false; 1572 1573 spin_lock_bh(&blkg->async_bio_lock); 1574 bio_list_add(&blkg->async_bios, bio); 1575 spin_unlock_bh(&blkg->async_bio_lock); 1576 1577 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1578 return true; 1579 } 1580 1581 /* 1582 * Scale the accumulated delay based on how long it has been since we updated 1583 * the delay. We only call this when we are adding delay, in case it's been a 1584 * while since we added delay, and when we are checking to see if we need to 1585 * delay a task, to account for any delays that may have occurred. 1586 */ 1587 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1588 { 1589 u64 old = atomic64_read(&blkg->delay_start); 1590 1591 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1592 if (atomic_read(&blkg->use_delay) < 0) 1593 return; 1594 1595 /* 1596 * We only want to scale down every second. The idea here is that we 1597 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1598 * time window. We only want to throttle tasks for recent delay that 1599 * has occurred, in 1 second time windows since that's the maximum 1600 * things can be throttled. We save the current delay window in 1601 * blkg->last_delay so we know what amount is still left to be charged 1602 * to the blkg from this point onward. blkg->last_use keeps track of 1603 * the use_delay counter. The idea is if we're unthrottling the blkg we 1604 * are ok with whatever is happening now, and we can take away more of 1605 * the accumulated delay as we've already throttled enough that 1606 * everybody is happy with their IO latencies. 1607 */ 1608 if (time_before64(old + NSEC_PER_SEC, now) && 1609 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) { 1610 u64 cur = atomic64_read(&blkg->delay_nsec); 1611 u64 sub = min_t(u64, blkg->last_delay, now - old); 1612 int cur_use = atomic_read(&blkg->use_delay); 1613 1614 /* 1615 * We've been unthrottled, subtract a larger chunk of our 1616 * accumulated delay. 1617 */ 1618 if (cur_use < blkg->last_use) 1619 sub = max_t(u64, sub, blkg->last_delay >> 1); 1620 1621 /* 1622 * This shouldn't happen, but handle it anyway. Our delay_nsec 1623 * should only ever be growing except here where we subtract out 1624 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1625 * rather not end up with negative numbers. 1626 */ 1627 if (unlikely(cur < sub)) { 1628 atomic64_set(&blkg->delay_nsec, 0); 1629 blkg->last_delay = 0; 1630 } else { 1631 atomic64_sub(sub, &blkg->delay_nsec); 1632 blkg->last_delay = cur - sub; 1633 } 1634 blkg->last_use = cur_use; 1635 } 1636 } 1637 1638 /* 1639 * This is called when we want to actually walk up the hierarchy and check to 1640 * see if we need to throttle, and then actually throttle if there is some 1641 * accumulated delay. This should only be called upon return to user space so 1642 * we're not holding some lock that would induce a priority inversion. 1643 */ 1644 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1645 { 1646 unsigned long pflags; 1647 bool clamp; 1648 u64 now = ktime_to_ns(ktime_get()); 1649 u64 exp; 1650 u64 delay_nsec = 0; 1651 int tok; 1652 1653 while (blkg->parent) { 1654 int use_delay = atomic_read(&blkg->use_delay); 1655 1656 if (use_delay) { 1657 u64 this_delay; 1658 1659 blkcg_scale_delay(blkg, now); 1660 this_delay = atomic64_read(&blkg->delay_nsec); 1661 if (this_delay > delay_nsec) { 1662 delay_nsec = this_delay; 1663 clamp = use_delay > 0; 1664 } 1665 } 1666 blkg = blkg->parent; 1667 } 1668 1669 if (!delay_nsec) 1670 return; 1671 1672 /* 1673 * Let's not sleep for all eternity if we've amassed a huge delay. 1674 * Swapping or metadata IO can accumulate 10's of seconds worth of 1675 * delay, and we want userspace to be able to do _something_ so cap the 1676 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1677 * tasks will be delayed for 0.25 second for every syscall. If 1678 * blkcg_set_delay() was used as indicated by negative use_delay, the 1679 * caller is responsible for regulating the range. 1680 */ 1681 if (clamp) 1682 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1683 1684 if (use_memdelay) 1685 psi_memstall_enter(&pflags); 1686 1687 exp = ktime_add_ns(now, delay_nsec); 1688 tok = io_schedule_prepare(); 1689 do { 1690 __set_current_state(TASK_KILLABLE); 1691 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1692 break; 1693 } while (!fatal_signal_pending(current)); 1694 io_schedule_finish(tok); 1695 1696 if (use_memdelay) 1697 psi_memstall_leave(&pflags); 1698 } 1699 1700 /** 1701 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1702 * 1703 * This is only called if we've been marked with set_notify_resume(). Obviously 1704 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1705 * check to see if current->throttle_queue is set and if not this doesn't do 1706 * anything. This should only ever be called by the resume code, it's not meant 1707 * to be called by people willy-nilly as it will actually do the work to 1708 * throttle the task if it is setup for throttling. 1709 */ 1710 void blkcg_maybe_throttle_current(void) 1711 { 1712 struct request_queue *q = current->throttle_queue; 1713 struct cgroup_subsys_state *css; 1714 struct blkcg *blkcg; 1715 struct blkcg_gq *blkg; 1716 bool use_memdelay = current->use_memdelay; 1717 1718 if (!q) 1719 return; 1720 1721 current->throttle_queue = NULL; 1722 current->use_memdelay = false; 1723 1724 rcu_read_lock(); 1725 css = kthread_blkcg(); 1726 if (css) 1727 blkcg = css_to_blkcg(css); 1728 else 1729 blkcg = css_to_blkcg(task_css(current, io_cgrp_id)); 1730 1731 if (!blkcg) 1732 goto out; 1733 blkg = blkg_lookup(blkcg, q); 1734 if (!blkg) 1735 goto out; 1736 if (!blkg_tryget(blkg)) 1737 goto out; 1738 rcu_read_unlock(); 1739 1740 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1741 blkg_put(blkg); 1742 blk_put_queue(q); 1743 return; 1744 out: 1745 rcu_read_unlock(); 1746 blk_put_queue(q); 1747 } 1748 1749 /** 1750 * blkcg_schedule_throttle - this task needs to check for throttling 1751 * @q: the request queue IO was submitted on 1752 * @use_memdelay: do we charge this to memory delay for PSI 1753 * 1754 * This is called by the IO controller when we know there's delay accumulated 1755 * for the blkg for this task. We do not pass the blkg because there are places 1756 * we call this that may not have that information, the swapping code for 1757 * instance will only have a request_queue at that point. This set's the 1758 * notify_resume for the task to check and see if it requires throttling before 1759 * returning to user space. 1760 * 1761 * We will only schedule once per syscall. You can call this over and over 1762 * again and it will only do the check once upon return to user space, and only 1763 * throttle once. If the task needs to be throttled again it'll need to be 1764 * re-set at the next time we see the task. 1765 */ 1766 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) 1767 { 1768 if (unlikely(current->flags & PF_KTHREAD)) 1769 return; 1770 1771 if (current->throttle_queue != q) { 1772 if (!blk_get_queue(q)) 1773 return; 1774 1775 if (current->throttle_queue) 1776 blk_put_queue(current->throttle_queue); 1777 current->throttle_queue = q; 1778 } 1779 1780 if (use_memdelay) 1781 current->use_memdelay = use_memdelay; 1782 set_notify_resume(current); 1783 } 1784 1785 /** 1786 * blkcg_add_delay - add delay to this blkg 1787 * @blkg: blkg of interest 1788 * @now: the current time in nanoseconds 1789 * @delta: how many nanoseconds of delay to add 1790 * 1791 * Charge @delta to the blkg's current delay accumulation. This is used to 1792 * throttle tasks if an IO controller thinks we need more throttling. 1793 */ 1794 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1795 { 1796 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1797 return; 1798 blkcg_scale_delay(blkg, now); 1799 atomic64_add(delta, &blkg->delay_nsec); 1800 } 1801 1802 /** 1803 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1804 * @bio: target bio 1805 * @css: target css 1806 * 1807 * As the failure mode here is to walk up the blkg tree, this ensure that the 1808 * blkg->parent pointers are always valid. This returns the blkg that it ended 1809 * up taking a reference on or %NULL if no reference was taken. 1810 */ 1811 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1812 struct cgroup_subsys_state *css) 1813 { 1814 struct blkcg_gq *blkg, *ret_blkg = NULL; 1815 1816 rcu_read_lock(); 1817 blkg = blkg_lookup_create(css_to_blkcg(css), 1818 bio->bi_bdev->bd_disk->queue); 1819 while (blkg) { 1820 if (blkg_tryget(blkg)) { 1821 ret_blkg = blkg; 1822 break; 1823 } 1824 blkg = blkg->parent; 1825 } 1826 rcu_read_unlock(); 1827 1828 return ret_blkg; 1829 } 1830 1831 /** 1832 * bio_associate_blkg_from_css - associate a bio with a specified css 1833 * @bio: target bio 1834 * @css: target css 1835 * 1836 * Associate @bio with the blkg found by combining the css's blkg and the 1837 * request_queue of the @bio. An association failure is handled by walking up 1838 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1839 * and q->root_blkg. This situation only happens when a cgroup is dying and 1840 * then the remaining bios will spill to the closest alive blkg. 1841 * 1842 * A reference will be taken on the blkg and will be released when @bio is 1843 * freed. 1844 */ 1845 void bio_associate_blkg_from_css(struct bio *bio, 1846 struct cgroup_subsys_state *css) 1847 { 1848 if (bio->bi_blkg) 1849 blkg_put(bio->bi_blkg); 1850 1851 if (css && css->parent) { 1852 bio->bi_blkg = blkg_tryget_closest(bio, css); 1853 } else { 1854 blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg); 1855 bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg; 1856 } 1857 } 1858 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1859 1860 /** 1861 * bio_associate_blkg - associate a bio with a blkg 1862 * @bio: target bio 1863 * 1864 * Associate @bio with the blkg found from the bio's css and request_queue. 1865 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1866 * already associated, the css is reused and association redone as the 1867 * request_queue may have changed. 1868 */ 1869 void bio_associate_blkg(struct bio *bio) 1870 { 1871 struct cgroup_subsys_state *css; 1872 1873 rcu_read_lock(); 1874 1875 if (bio->bi_blkg) 1876 css = &bio_blkcg(bio)->css; 1877 else 1878 css = blkcg_css(); 1879 1880 bio_associate_blkg_from_css(bio, css); 1881 1882 rcu_read_unlock(); 1883 } 1884 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1885 1886 /** 1887 * bio_clone_blkg_association - clone blkg association from src to dst bio 1888 * @dst: destination bio 1889 * @src: source bio 1890 */ 1891 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1892 { 1893 if (src->bi_blkg) { 1894 if (dst->bi_blkg) 1895 blkg_put(dst->bi_blkg); 1896 blkg_get(src->bi_blkg); 1897 dst->bi_blkg = src->bi_blkg; 1898 } 1899 } 1900 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1901 1902 static int blk_cgroup_io_type(struct bio *bio) 1903 { 1904 if (op_is_discard(bio->bi_opf)) 1905 return BLKG_IOSTAT_DISCARD; 1906 if (op_is_write(bio->bi_opf)) 1907 return BLKG_IOSTAT_WRITE; 1908 return BLKG_IOSTAT_READ; 1909 } 1910 1911 void blk_cgroup_bio_start(struct bio *bio) 1912 { 1913 int rwd = blk_cgroup_io_type(bio), cpu; 1914 struct blkg_iostat_set *bis; 1915 1916 cpu = get_cpu(); 1917 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 1918 u64_stats_update_begin(&bis->sync); 1919 1920 /* 1921 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 1922 * bio and we would have already accounted for the size of the bio. 1923 */ 1924 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 1925 bio_set_flag(bio, BIO_CGROUP_ACCT); 1926 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 1927 } 1928 bis->cur.ios[rwd]++; 1929 1930 u64_stats_update_end(&bis->sync); 1931 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 1932 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); 1933 put_cpu(); 1934 } 1935 1936 static int __init blkcg_init(void) 1937 { 1938 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 1939 WQ_MEM_RECLAIM | WQ_FREEZABLE | 1940 WQ_UNBOUND | WQ_SYSFS, 0); 1941 if (!blkcg_punt_bio_wq) 1942 return -ENOMEM; 1943 return 0; 1944 } 1945 subsys_initcall(blkcg_init); 1946 1947 module_param(blkcg_debug_stats, bool, 0644); 1948 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 1949