xref: /linux/block/blk-cgroup.c (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34 
35 /*
36  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
37  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
38  * policy [un]register operations including cgroup file additions /
39  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
40  * allows grabbing it from cgroup callbacks.
41  */
42 static DEFINE_MUTEX(blkcg_pol_register_mutex);
43 static DEFINE_MUTEX(blkcg_pol_mutex);
44 
45 struct blkcg blkcg_root;
46 EXPORT_SYMBOL_GPL(blkcg_root);
47 
48 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
49 EXPORT_SYMBOL_GPL(blkcg_root_css);
50 
51 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
52 
53 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
54 
55 bool blkcg_debug_stats = false;
56 static struct workqueue_struct *blkcg_punt_bio_wq;
57 
58 static bool blkcg_policy_enabled(struct request_queue *q,
59 				 const struct blkcg_policy *pol)
60 {
61 	return pol && test_bit(pol->plid, q->blkcg_pols);
62 }
63 
64 /**
65  * blkg_free - free a blkg
66  * @blkg: blkg to free
67  *
68  * Free @blkg which may be partially allocated.
69  */
70 static void blkg_free(struct blkcg_gq *blkg)
71 {
72 	int i;
73 
74 	if (!blkg)
75 		return;
76 
77 	for (i = 0; i < BLKCG_MAX_POLS; i++)
78 		if (blkg->pd[i])
79 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
80 
81 	free_percpu(blkg->iostat_cpu);
82 	percpu_ref_exit(&blkg->refcnt);
83 	kfree(blkg);
84 }
85 
86 static void __blkg_release(struct rcu_head *rcu)
87 {
88 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
89 
90 	WARN_ON(!bio_list_empty(&blkg->async_bios));
91 
92 	/* release the blkcg and parent blkg refs this blkg has been holding */
93 	css_put(&blkg->blkcg->css);
94 	if (blkg->parent)
95 		blkg_put(blkg->parent);
96 	blkg_free(blkg);
97 }
98 
99 /*
100  * A group is RCU protected, but having an rcu lock does not mean that one
101  * can access all the fields of blkg and assume these are valid.  For
102  * example, don't try to follow throtl_data and request queue links.
103  *
104  * Having a reference to blkg under an rcu allows accesses to only values
105  * local to groups like group stats and group rate limits.
106  */
107 static void blkg_release(struct percpu_ref *ref)
108 {
109 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
110 
111 	call_rcu(&blkg->rcu_head, __blkg_release);
112 }
113 
114 static void blkg_async_bio_workfn(struct work_struct *work)
115 {
116 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
117 					     async_bio_work);
118 	struct bio_list bios = BIO_EMPTY_LIST;
119 	struct bio *bio;
120 	struct blk_plug plug;
121 	bool need_plug = false;
122 
123 	/* as long as there are pending bios, @blkg can't go away */
124 	spin_lock_bh(&blkg->async_bio_lock);
125 	bio_list_merge(&bios, &blkg->async_bios);
126 	bio_list_init(&blkg->async_bios);
127 	spin_unlock_bh(&blkg->async_bio_lock);
128 
129 	/* start plug only when bio_list contains at least 2 bios */
130 	if (bios.head && bios.head->bi_next) {
131 		need_plug = true;
132 		blk_start_plug(&plug);
133 	}
134 	while ((bio = bio_list_pop(&bios)))
135 		submit_bio(bio);
136 	if (need_plug)
137 		blk_finish_plug(&plug);
138 }
139 
140 /**
141  * blkg_alloc - allocate a blkg
142  * @blkcg: block cgroup the new blkg is associated with
143  * @q: request_queue the new blkg is associated with
144  * @gfp_mask: allocation mask to use
145  *
146  * Allocate a new blkg assocating @blkcg and @q.
147  */
148 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
149 				   gfp_t gfp_mask)
150 {
151 	struct blkcg_gq *blkg;
152 	int i, cpu;
153 
154 	/* alloc and init base part */
155 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
156 	if (!blkg)
157 		return NULL;
158 
159 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
160 		goto err_free;
161 
162 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
163 	if (!blkg->iostat_cpu)
164 		goto err_free;
165 
166 	blkg->q = q;
167 	INIT_LIST_HEAD(&blkg->q_node);
168 	spin_lock_init(&blkg->async_bio_lock);
169 	bio_list_init(&blkg->async_bios);
170 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
171 	blkg->blkcg = blkcg;
172 
173 	u64_stats_init(&blkg->iostat.sync);
174 	for_each_possible_cpu(cpu)
175 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
176 
177 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
178 		struct blkcg_policy *pol = blkcg_policy[i];
179 		struct blkg_policy_data *pd;
180 
181 		if (!blkcg_policy_enabled(q, pol))
182 			continue;
183 
184 		/* alloc per-policy data and attach it to blkg */
185 		pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
186 		if (!pd)
187 			goto err_free;
188 
189 		blkg->pd[i] = pd;
190 		pd->blkg = blkg;
191 		pd->plid = i;
192 	}
193 
194 	return blkg;
195 
196 err_free:
197 	blkg_free(blkg);
198 	return NULL;
199 }
200 
201 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
202 				      struct request_queue *q, bool update_hint)
203 {
204 	struct blkcg_gq *blkg;
205 
206 	/*
207 	 * Hint didn't match.  Look up from the radix tree.  Note that the
208 	 * hint can only be updated under queue_lock as otherwise @blkg
209 	 * could have already been removed from blkg_tree.  The caller is
210 	 * responsible for grabbing queue_lock if @update_hint.
211 	 */
212 	blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
213 	if (blkg && blkg->q == q) {
214 		if (update_hint) {
215 			lockdep_assert_held(&q->queue_lock);
216 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
217 		}
218 		return blkg;
219 	}
220 
221 	return NULL;
222 }
223 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
224 
225 /*
226  * If @new_blkg is %NULL, this function tries to allocate a new one as
227  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
228  */
229 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
230 				    struct request_queue *q,
231 				    struct blkcg_gq *new_blkg)
232 {
233 	struct blkcg_gq *blkg;
234 	int i, ret;
235 
236 	WARN_ON_ONCE(!rcu_read_lock_held());
237 	lockdep_assert_held(&q->queue_lock);
238 
239 	/* request_queue is dying, do not create/recreate a blkg */
240 	if (blk_queue_dying(q)) {
241 		ret = -ENODEV;
242 		goto err_free_blkg;
243 	}
244 
245 	/* blkg holds a reference to blkcg */
246 	if (!css_tryget_online(&blkcg->css)) {
247 		ret = -ENODEV;
248 		goto err_free_blkg;
249 	}
250 
251 	/* allocate */
252 	if (!new_blkg) {
253 		new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
254 		if (unlikely(!new_blkg)) {
255 			ret = -ENOMEM;
256 			goto err_put_css;
257 		}
258 	}
259 	blkg = new_blkg;
260 
261 	/* link parent */
262 	if (blkcg_parent(blkcg)) {
263 		blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
264 		if (WARN_ON_ONCE(!blkg->parent)) {
265 			ret = -ENODEV;
266 			goto err_put_css;
267 		}
268 		blkg_get(blkg->parent);
269 	}
270 
271 	/* invoke per-policy init */
272 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
273 		struct blkcg_policy *pol = blkcg_policy[i];
274 
275 		if (blkg->pd[i] && pol->pd_init_fn)
276 			pol->pd_init_fn(blkg->pd[i]);
277 	}
278 
279 	/* insert */
280 	spin_lock(&blkcg->lock);
281 	ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
282 	if (likely(!ret)) {
283 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
284 		list_add(&blkg->q_node, &q->blkg_list);
285 
286 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
287 			struct blkcg_policy *pol = blkcg_policy[i];
288 
289 			if (blkg->pd[i] && pol->pd_online_fn)
290 				pol->pd_online_fn(blkg->pd[i]);
291 		}
292 	}
293 	blkg->online = true;
294 	spin_unlock(&blkcg->lock);
295 
296 	if (!ret)
297 		return blkg;
298 
299 	/* @blkg failed fully initialized, use the usual release path */
300 	blkg_put(blkg);
301 	return ERR_PTR(ret);
302 
303 err_put_css:
304 	css_put(&blkcg->css);
305 err_free_blkg:
306 	blkg_free(new_blkg);
307 	return ERR_PTR(ret);
308 }
309 
310 /**
311  * blkg_lookup_create - lookup blkg, try to create one if not there
312  * @blkcg: blkcg of interest
313  * @q: request_queue of interest
314  *
315  * Lookup blkg for the @blkcg - @q pair.  If it doesn't exist, try to
316  * create one.  blkg creation is performed recursively from blkcg_root such
317  * that all non-root blkg's have access to the parent blkg.  This function
318  * should be called under RCU read lock and takes @q->queue_lock.
319  *
320  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
321  * down from root.
322  */
323 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
324 		struct request_queue *q)
325 {
326 	struct blkcg_gq *blkg;
327 	unsigned long flags;
328 
329 	WARN_ON_ONCE(!rcu_read_lock_held());
330 
331 	blkg = blkg_lookup(blkcg, q);
332 	if (blkg)
333 		return blkg;
334 
335 	spin_lock_irqsave(&q->queue_lock, flags);
336 	blkg = __blkg_lookup(blkcg, q, true);
337 	if (blkg)
338 		goto found;
339 
340 	/*
341 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
342 	 * non-root blkgs have access to their parents.  Returns the closest
343 	 * blkg to the intended blkg should blkg_create() fail.
344 	 */
345 	while (true) {
346 		struct blkcg *pos = blkcg;
347 		struct blkcg *parent = blkcg_parent(blkcg);
348 		struct blkcg_gq *ret_blkg = q->root_blkg;
349 
350 		while (parent) {
351 			blkg = __blkg_lookup(parent, q, false);
352 			if (blkg) {
353 				/* remember closest blkg */
354 				ret_blkg = blkg;
355 				break;
356 			}
357 			pos = parent;
358 			parent = blkcg_parent(parent);
359 		}
360 
361 		blkg = blkg_create(pos, q, NULL);
362 		if (IS_ERR(blkg)) {
363 			blkg = ret_blkg;
364 			break;
365 		}
366 		if (pos == blkcg)
367 			break;
368 	}
369 
370 found:
371 	spin_unlock_irqrestore(&q->queue_lock, flags);
372 	return blkg;
373 }
374 
375 static void blkg_destroy(struct blkcg_gq *blkg)
376 {
377 	struct blkcg *blkcg = blkg->blkcg;
378 	int i;
379 
380 	lockdep_assert_held(&blkg->q->queue_lock);
381 	lockdep_assert_held(&blkcg->lock);
382 
383 	/* Something wrong if we are trying to remove same group twice */
384 	WARN_ON_ONCE(list_empty(&blkg->q_node));
385 	WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
386 
387 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
388 		struct blkcg_policy *pol = blkcg_policy[i];
389 
390 		if (blkg->pd[i] && pol->pd_offline_fn)
391 			pol->pd_offline_fn(blkg->pd[i]);
392 	}
393 
394 	blkg->online = false;
395 
396 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
397 	list_del_init(&blkg->q_node);
398 	hlist_del_init_rcu(&blkg->blkcg_node);
399 
400 	/*
401 	 * Both setting lookup hint to and clearing it from @blkg are done
402 	 * under queue_lock.  If it's not pointing to @blkg now, it never
403 	 * will.  Hint assignment itself can race safely.
404 	 */
405 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
406 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
407 
408 	/*
409 	 * Put the reference taken at the time of creation so that when all
410 	 * queues are gone, group can be destroyed.
411 	 */
412 	percpu_ref_kill(&blkg->refcnt);
413 }
414 
415 /**
416  * blkg_destroy_all - destroy all blkgs associated with a request_queue
417  * @q: request_queue of interest
418  *
419  * Destroy all blkgs associated with @q.
420  */
421 static void blkg_destroy_all(struct request_queue *q)
422 {
423 	struct blkcg_gq *blkg, *n;
424 
425 	spin_lock_irq(&q->queue_lock);
426 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
427 		struct blkcg *blkcg = blkg->blkcg;
428 
429 		spin_lock(&blkcg->lock);
430 		blkg_destroy(blkg);
431 		spin_unlock(&blkcg->lock);
432 	}
433 
434 	q->root_blkg = NULL;
435 	spin_unlock_irq(&q->queue_lock);
436 }
437 
438 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
439 			     struct cftype *cftype, u64 val)
440 {
441 	struct blkcg *blkcg = css_to_blkcg(css);
442 	struct blkcg_gq *blkg;
443 	int i, cpu;
444 
445 	mutex_lock(&blkcg_pol_mutex);
446 	spin_lock_irq(&blkcg->lock);
447 
448 	/*
449 	 * Note that stat reset is racy - it doesn't synchronize against
450 	 * stat updates.  This is a debug feature which shouldn't exist
451 	 * anyway.  If you get hit by a race, retry.
452 	 */
453 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
454 		for_each_possible_cpu(cpu) {
455 			struct blkg_iostat_set *bis =
456 				per_cpu_ptr(blkg->iostat_cpu, cpu);
457 			memset(bis, 0, sizeof(*bis));
458 		}
459 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
460 
461 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
462 			struct blkcg_policy *pol = blkcg_policy[i];
463 
464 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
465 				pol->pd_reset_stats_fn(blkg->pd[i]);
466 		}
467 	}
468 
469 	spin_unlock_irq(&blkcg->lock);
470 	mutex_unlock(&blkcg_pol_mutex);
471 	return 0;
472 }
473 
474 const char *blkg_dev_name(struct blkcg_gq *blkg)
475 {
476 	/* some drivers (floppy) instantiate a queue w/o disk registered */
477 	if (blkg->q->backing_dev_info->dev)
478 		return bdi_dev_name(blkg->q->backing_dev_info);
479 	return NULL;
480 }
481 
482 /**
483  * blkcg_print_blkgs - helper for printing per-blkg data
484  * @sf: seq_file to print to
485  * @blkcg: blkcg of interest
486  * @prfill: fill function to print out a blkg
487  * @pol: policy in question
488  * @data: data to be passed to @prfill
489  * @show_total: to print out sum of prfill return values or not
490  *
491  * This function invokes @prfill on each blkg of @blkcg if pd for the
492  * policy specified by @pol exists.  @prfill is invoked with @sf, the
493  * policy data and @data and the matching queue lock held.  If @show_total
494  * is %true, the sum of the return values from @prfill is printed with
495  * "Total" label at the end.
496  *
497  * This is to be used to construct print functions for
498  * cftype->read_seq_string method.
499  */
500 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
501 		       u64 (*prfill)(struct seq_file *,
502 				     struct blkg_policy_data *, int),
503 		       const struct blkcg_policy *pol, int data,
504 		       bool show_total)
505 {
506 	struct blkcg_gq *blkg;
507 	u64 total = 0;
508 
509 	rcu_read_lock();
510 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
511 		spin_lock_irq(&blkg->q->queue_lock);
512 		if (blkcg_policy_enabled(blkg->q, pol))
513 			total += prfill(sf, blkg->pd[pol->plid], data);
514 		spin_unlock_irq(&blkg->q->queue_lock);
515 	}
516 	rcu_read_unlock();
517 
518 	if (show_total)
519 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
520 }
521 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
522 
523 /**
524  * __blkg_prfill_u64 - prfill helper for a single u64 value
525  * @sf: seq_file to print to
526  * @pd: policy private data of interest
527  * @v: value to print
528  *
529  * Print @v to @sf for the device assocaited with @pd.
530  */
531 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
532 {
533 	const char *dname = blkg_dev_name(pd->blkg);
534 
535 	if (!dname)
536 		return 0;
537 
538 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
539 	return v;
540 }
541 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
542 
543 /* Performs queue bypass and policy enabled checks then looks up blkg. */
544 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
545 					  const struct blkcg_policy *pol,
546 					  struct request_queue *q)
547 {
548 	WARN_ON_ONCE(!rcu_read_lock_held());
549 	lockdep_assert_held(&q->queue_lock);
550 
551 	if (!blkcg_policy_enabled(q, pol))
552 		return ERR_PTR(-EOPNOTSUPP);
553 	return __blkg_lookup(blkcg, q, true /* update_hint */);
554 }
555 
556 /**
557  * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
558  * @inputp: input string pointer
559  *
560  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
561  * from @input and get and return the matching bdev.  *@inputp is
562  * updated to point past the device node prefix.  Returns an ERR_PTR()
563  * value on error.
564  *
565  * Use this function iff blkg_conf_prep() can't be used for some reason.
566  */
567 struct block_device *blkcg_conf_open_bdev(char **inputp)
568 {
569 	char *input = *inputp;
570 	unsigned int major, minor;
571 	struct block_device *bdev;
572 	int key_len;
573 
574 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
575 		return ERR_PTR(-EINVAL);
576 
577 	input += key_len;
578 	if (!isspace(*input))
579 		return ERR_PTR(-EINVAL);
580 	input = skip_spaces(input);
581 
582 	bdev = blkdev_get_no_open(MKDEV(major, minor));
583 	if (!bdev)
584 		return ERR_PTR(-ENODEV);
585 	if (bdev_is_partition(bdev)) {
586 		blkdev_put_no_open(bdev);
587 		return ERR_PTR(-ENODEV);
588 	}
589 
590 	*inputp = input;
591 	return bdev;
592 }
593 
594 /**
595  * blkg_conf_prep - parse and prepare for per-blkg config update
596  * @blkcg: target block cgroup
597  * @pol: target policy
598  * @input: input string
599  * @ctx: blkg_conf_ctx to be filled
600  *
601  * Parse per-blkg config update from @input and initialize @ctx with the
602  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
603  * part of @input following MAJ:MIN.  This function returns with RCU read
604  * lock and queue lock held and must be paired with blkg_conf_finish().
605  */
606 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
607 		   char *input, struct blkg_conf_ctx *ctx)
608 	__acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock)
609 {
610 	struct block_device *bdev;
611 	struct request_queue *q;
612 	struct blkcg_gq *blkg;
613 	int ret;
614 
615 	bdev = blkcg_conf_open_bdev(&input);
616 	if (IS_ERR(bdev))
617 		return PTR_ERR(bdev);
618 
619 	q = bdev->bd_disk->queue;
620 
621 	rcu_read_lock();
622 	spin_lock_irq(&q->queue_lock);
623 
624 	blkg = blkg_lookup_check(blkcg, pol, q);
625 	if (IS_ERR(blkg)) {
626 		ret = PTR_ERR(blkg);
627 		goto fail_unlock;
628 	}
629 
630 	if (blkg)
631 		goto success;
632 
633 	/*
634 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
635 	 * non-root blkgs have access to their parents.
636 	 */
637 	while (true) {
638 		struct blkcg *pos = blkcg;
639 		struct blkcg *parent;
640 		struct blkcg_gq *new_blkg;
641 
642 		parent = blkcg_parent(blkcg);
643 		while (parent && !__blkg_lookup(parent, q, false)) {
644 			pos = parent;
645 			parent = blkcg_parent(parent);
646 		}
647 
648 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
649 		spin_unlock_irq(&q->queue_lock);
650 		rcu_read_unlock();
651 
652 		new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
653 		if (unlikely(!new_blkg)) {
654 			ret = -ENOMEM;
655 			goto fail;
656 		}
657 
658 		if (radix_tree_preload(GFP_KERNEL)) {
659 			blkg_free(new_blkg);
660 			ret = -ENOMEM;
661 			goto fail;
662 		}
663 
664 		rcu_read_lock();
665 		spin_lock_irq(&q->queue_lock);
666 
667 		blkg = blkg_lookup_check(pos, pol, q);
668 		if (IS_ERR(blkg)) {
669 			ret = PTR_ERR(blkg);
670 			blkg_free(new_blkg);
671 			goto fail_preloaded;
672 		}
673 
674 		if (blkg) {
675 			blkg_free(new_blkg);
676 		} else {
677 			blkg = blkg_create(pos, q, new_blkg);
678 			if (IS_ERR(blkg)) {
679 				ret = PTR_ERR(blkg);
680 				goto fail_preloaded;
681 			}
682 		}
683 
684 		radix_tree_preload_end();
685 
686 		if (pos == blkcg)
687 			goto success;
688 	}
689 success:
690 	ctx->bdev = bdev;
691 	ctx->blkg = blkg;
692 	ctx->body = input;
693 	return 0;
694 
695 fail_preloaded:
696 	radix_tree_preload_end();
697 fail_unlock:
698 	spin_unlock_irq(&q->queue_lock);
699 	rcu_read_unlock();
700 fail:
701 	blkdev_put_no_open(bdev);
702 	/*
703 	 * If queue was bypassing, we should retry.  Do so after a
704 	 * short msleep().  It isn't strictly necessary but queue
705 	 * can be bypassing for some time and it's always nice to
706 	 * avoid busy looping.
707 	 */
708 	if (ret == -EBUSY) {
709 		msleep(10);
710 		ret = restart_syscall();
711 	}
712 	return ret;
713 }
714 EXPORT_SYMBOL_GPL(blkg_conf_prep);
715 
716 /**
717  * blkg_conf_finish - finish up per-blkg config update
718  * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
719  *
720  * Finish up after per-blkg config update.  This function must be paired
721  * with blkg_conf_prep().
722  */
723 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
724 	__releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu)
725 {
726 	spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock);
727 	rcu_read_unlock();
728 	blkdev_put_no_open(ctx->bdev);
729 }
730 EXPORT_SYMBOL_GPL(blkg_conf_finish);
731 
732 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
733 {
734 	int i;
735 
736 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
737 		dst->bytes[i] = src->bytes[i];
738 		dst->ios[i] = src->ios[i];
739 	}
740 }
741 
742 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
743 {
744 	int i;
745 
746 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
747 		dst->bytes[i] += src->bytes[i];
748 		dst->ios[i] += src->ios[i];
749 	}
750 }
751 
752 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
753 {
754 	int i;
755 
756 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
757 		dst->bytes[i] -= src->bytes[i];
758 		dst->ios[i] -= src->ios[i];
759 	}
760 }
761 
762 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
763 {
764 	struct blkcg *blkcg = css_to_blkcg(css);
765 	struct blkcg_gq *blkg;
766 
767 	/* Root-level stats are sourced from system-wide IO stats */
768 	if (!cgroup_parent(css->cgroup))
769 		return;
770 
771 	rcu_read_lock();
772 
773 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
774 		struct blkcg_gq *parent = blkg->parent;
775 		struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
776 		struct blkg_iostat cur, delta;
777 		unsigned int seq;
778 
779 		/* fetch the current per-cpu values */
780 		do {
781 			seq = u64_stats_fetch_begin(&bisc->sync);
782 			blkg_iostat_set(&cur, &bisc->cur);
783 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
784 
785 		/* propagate percpu delta to global */
786 		u64_stats_update_begin(&blkg->iostat.sync);
787 		blkg_iostat_set(&delta, &cur);
788 		blkg_iostat_sub(&delta, &bisc->last);
789 		blkg_iostat_add(&blkg->iostat.cur, &delta);
790 		blkg_iostat_add(&bisc->last, &delta);
791 		u64_stats_update_end(&blkg->iostat.sync);
792 
793 		/* propagate global delta to parent (unless that's root) */
794 		if (parent && parent->parent) {
795 			u64_stats_update_begin(&parent->iostat.sync);
796 			blkg_iostat_set(&delta, &blkg->iostat.cur);
797 			blkg_iostat_sub(&delta, &blkg->iostat.last);
798 			blkg_iostat_add(&parent->iostat.cur, &delta);
799 			blkg_iostat_add(&blkg->iostat.last, &delta);
800 			u64_stats_update_end(&parent->iostat.sync);
801 		}
802 	}
803 
804 	rcu_read_unlock();
805 }
806 
807 /*
808  * We source root cgroup stats from the system-wide stats to avoid
809  * tracking the same information twice and incurring overhead when no
810  * cgroups are defined. For that reason, cgroup_rstat_flush in
811  * blkcg_print_stat does not actually fill out the iostat in the root
812  * cgroup's blkcg_gq.
813  *
814  * However, we would like to re-use the printing code between the root and
815  * non-root cgroups to the extent possible. For that reason, we simulate
816  * flushing the root cgroup's stats by explicitly filling in the iostat
817  * with disk level statistics.
818  */
819 static void blkcg_fill_root_iostats(void)
820 {
821 	struct class_dev_iter iter;
822 	struct device *dev;
823 
824 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
825 	while ((dev = class_dev_iter_next(&iter))) {
826 		struct block_device *bdev = dev_to_bdev(dev);
827 		struct blkcg_gq *blkg =
828 			blk_queue_root_blkg(bdev->bd_disk->queue);
829 		struct blkg_iostat tmp;
830 		int cpu;
831 
832 		memset(&tmp, 0, sizeof(tmp));
833 		for_each_possible_cpu(cpu) {
834 			struct disk_stats *cpu_dkstats;
835 
836 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
837 			tmp.ios[BLKG_IOSTAT_READ] +=
838 				cpu_dkstats->ios[STAT_READ];
839 			tmp.ios[BLKG_IOSTAT_WRITE] +=
840 				cpu_dkstats->ios[STAT_WRITE];
841 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
842 				cpu_dkstats->ios[STAT_DISCARD];
843 			// convert sectors to bytes
844 			tmp.bytes[BLKG_IOSTAT_READ] +=
845 				cpu_dkstats->sectors[STAT_READ] << 9;
846 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
847 				cpu_dkstats->sectors[STAT_WRITE] << 9;
848 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
849 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
850 
851 			u64_stats_update_begin(&blkg->iostat.sync);
852 			blkg_iostat_set(&blkg->iostat.cur, &tmp);
853 			u64_stats_update_end(&blkg->iostat.sync);
854 		}
855 	}
856 }
857 
858 static int blkcg_print_stat(struct seq_file *sf, void *v)
859 {
860 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
861 	struct blkcg_gq *blkg;
862 
863 	if (!seq_css(sf)->parent)
864 		blkcg_fill_root_iostats();
865 	else
866 		cgroup_rstat_flush(blkcg->css.cgroup);
867 
868 	rcu_read_lock();
869 
870 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
871 		struct blkg_iostat_set *bis = &blkg->iostat;
872 		const char *dname;
873 		char *buf;
874 		u64 rbytes, wbytes, rios, wios, dbytes, dios;
875 		size_t size = seq_get_buf(sf, &buf), off = 0;
876 		int i;
877 		bool has_stats = false;
878 		unsigned seq;
879 
880 		spin_lock_irq(&blkg->q->queue_lock);
881 
882 		if (!blkg->online)
883 			goto skip;
884 
885 		dname = blkg_dev_name(blkg);
886 		if (!dname)
887 			goto skip;
888 
889 		/*
890 		 * Hooray string manipulation, count is the size written NOT
891 		 * INCLUDING THE \0, so size is now count+1 less than what we
892 		 * had before, but we want to start writing the next bit from
893 		 * the \0 so we only add count to buf.
894 		 */
895 		off += scnprintf(buf+off, size-off, "%s ", dname);
896 
897 		do {
898 			seq = u64_stats_fetch_begin(&bis->sync);
899 
900 			rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
901 			wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
902 			dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
903 			rios = bis->cur.ios[BLKG_IOSTAT_READ];
904 			wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
905 			dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
906 		} while (u64_stats_fetch_retry(&bis->sync, seq));
907 
908 		if (rbytes || wbytes || rios || wios) {
909 			has_stats = true;
910 			off += scnprintf(buf+off, size-off,
911 					 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
912 					 rbytes, wbytes, rios, wios,
913 					 dbytes, dios);
914 		}
915 
916 		if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
917 			has_stats = true;
918 			off += scnprintf(buf+off, size-off,
919 					 " use_delay=%d delay_nsec=%llu",
920 					 atomic_read(&blkg->use_delay),
921 					(unsigned long long)atomic64_read(&blkg->delay_nsec));
922 		}
923 
924 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
925 			struct blkcg_policy *pol = blkcg_policy[i];
926 			size_t written;
927 
928 			if (!blkg->pd[i] || !pol->pd_stat_fn)
929 				continue;
930 
931 			written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
932 			if (written)
933 				has_stats = true;
934 			off += written;
935 		}
936 
937 		if (has_stats) {
938 			if (off < size - 1) {
939 				off += scnprintf(buf+off, size-off, "\n");
940 				seq_commit(sf, off);
941 			} else {
942 				seq_commit(sf, -1);
943 			}
944 		}
945 	skip:
946 		spin_unlock_irq(&blkg->q->queue_lock);
947 	}
948 
949 	rcu_read_unlock();
950 	return 0;
951 }
952 
953 static struct cftype blkcg_files[] = {
954 	{
955 		.name = "stat",
956 		.seq_show = blkcg_print_stat,
957 	},
958 	{ }	/* terminate */
959 };
960 
961 static struct cftype blkcg_legacy_files[] = {
962 	{
963 		.name = "reset_stats",
964 		.write_u64 = blkcg_reset_stats,
965 	},
966 	{ }	/* terminate */
967 };
968 
969 /*
970  * blkcg destruction is a three-stage process.
971  *
972  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
973  *    which offlines writeback.  Here we tie the next stage of blkg destruction
974  *    to the completion of writeback associated with the blkcg.  This lets us
975  *    avoid punting potentially large amounts of outstanding writeback to root
976  *    while maintaining any ongoing policies.  The next stage is triggered when
977  *    the nr_cgwbs count goes to zero.
978  *
979  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
980  *    and handles the destruction of blkgs.  Here the css reference held by
981  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
982  *    This work may occur in cgwb_release_workfn() on the cgwb_release
983  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
984  *    punted to the root_blkg.
985  *
986  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
987  *    This finally frees the blkcg.
988  */
989 
990 /**
991  * blkcg_css_offline - cgroup css_offline callback
992  * @css: css of interest
993  *
994  * This function is called when @css is about to go away.  Here the cgwbs are
995  * offlined first and only once writeback associated with the blkcg has
996  * finished do we start step 2 (see above).
997  */
998 static void blkcg_css_offline(struct cgroup_subsys_state *css)
999 {
1000 	struct blkcg *blkcg = css_to_blkcg(css);
1001 
1002 	/* this prevents anyone from attaching or migrating to this blkcg */
1003 	wb_blkcg_offline(blkcg);
1004 
1005 	/* put the base online pin allowing step 2 to be triggered */
1006 	blkcg_unpin_online(blkcg);
1007 }
1008 
1009 /**
1010  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1011  * @blkcg: blkcg of interest
1012  *
1013  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1014  * is nested inside q lock, this function performs reverse double lock dancing.
1015  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1016  * blkcg_css_free to eventually be called.
1017  *
1018  * This is the blkcg counterpart of ioc_release_fn().
1019  */
1020 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1021 {
1022 	might_sleep();
1023 
1024 	spin_lock_irq(&blkcg->lock);
1025 
1026 	while (!hlist_empty(&blkcg->blkg_list)) {
1027 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1028 						struct blkcg_gq, blkcg_node);
1029 		struct request_queue *q = blkg->q;
1030 
1031 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1032 			/*
1033 			 * Given that the system can accumulate a huge number
1034 			 * of blkgs in pathological cases, check to see if we
1035 			 * need to rescheduling to avoid softlockup.
1036 			 */
1037 			spin_unlock_irq(&blkcg->lock);
1038 			cond_resched();
1039 			spin_lock_irq(&blkcg->lock);
1040 			continue;
1041 		}
1042 
1043 		blkg_destroy(blkg);
1044 		spin_unlock(&q->queue_lock);
1045 	}
1046 
1047 	spin_unlock_irq(&blkcg->lock);
1048 }
1049 
1050 static void blkcg_css_free(struct cgroup_subsys_state *css)
1051 {
1052 	struct blkcg *blkcg = css_to_blkcg(css);
1053 	int i;
1054 
1055 	mutex_lock(&blkcg_pol_mutex);
1056 
1057 	list_del(&blkcg->all_blkcgs_node);
1058 
1059 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1060 		if (blkcg->cpd[i])
1061 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1062 
1063 	mutex_unlock(&blkcg_pol_mutex);
1064 
1065 	kfree(blkcg);
1066 }
1067 
1068 static struct cgroup_subsys_state *
1069 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1070 {
1071 	struct blkcg *blkcg;
1072 	struct cgroup_subsys_state *ret;
1073 	int i;
1074 
1075 	mutex_lock(&blkcg_pol_mutex);
1076 
1077 	if (!parent_css) {
1078 		blkcg = &blkcg_root;
1079 	} else {
1080 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1081 		if (!blkcg) {
1082 			ret = ERR_PTR(-ENOMEM);
1083 			goto unlock;
1084 		}
1085 	}
1086 
1087 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1088 		struct blkcg_policy *pol = blkcg_policy[i];
1089 		struct blkcg_policy_data *cpd;
1090 
1091 		/*
1092 		 * If the policy hasn't been attached yet, wait for it
1093 		 * to be attached before doing anything else. Otherwise,
1094 		 * check if the policy requires any specific per-cgroup
1095 		 * data: if it does, allocate and initialize it.
1096 		 */
1097 		if (!pol || !pol->cpd_alloc_fn)
1098 			continue;
1099 
1100 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1101 		if (!cpd) {
1102 			ret = ERR_PTR(-ENOMEM);
1103 			goto free_pd_blkcg;
1104 		}
1105 		blkcg->cpd[i] = cpd;
1106 		cpd->blkcg = blkcg;
1107 		cpd->plid = i;
1108 		if (pol->cpd_init_fn)
1109 			pol->cpd_init_fn(cpd);
1110 	}
1111 
1112 	spin_lock_init(&blkcg->lock);
1113 	refcount_set(&blkcg->online_pin, 1);
1114 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1115 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1116 #ifdef CONFIG_CGROUP_WRITEBACK
1117 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1118 #endif
1119 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1120 
1121 	mutex_unlock(&blkcg_pol_mutex);
1122 	return &blkcg->css;
1123 
1124 free_pd_blkcg:
1125 	for (i--; i >= 0; i--)
1126 		if (blkcg->cpd[i])
1127 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1128 
1129 	if (blkcg != &blkcg_root)
1130 		kfree(blkcg);
1131 unlock:
1132 	mutex_unlock(&blkcg_pol_mutex);
1133 	return ret;
1134 }
1135 
1136 static int blkcg_css_online(struct cgroup_subsys_state *css)
1137 {
1138 	struct blkcg *blkcg = css_to_blkcg(css);
1139 	struct blkcg *parent = blkcg_parent(blkcg);
1140 
1141 	/*
1142 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1143 	 * don't go offline while cgwbs are still active on them.  Pin the
1144 	 * parent so that offline always happens towards the root.
1145 	 */
1146 	if (parent)
1147 		blkcg_pin_online(parent);
1148 	return 0;
1149 }
1150 
1151 /**
1152  * blkcg_init_queue - initialize blkcg part of request queue
1153  * @q: request_queue to initialize
1154  *
1155  * Called from blk_alloc_queue(). Responsible for initializing blkcg
1156  * part of new request_queue @q.
1157  *
1158  * RETURNS:
1159  * 0 on success, -errno on failure.
1160  */
1161 int blkcg_init_queue(struct request_queue *q)
1162 {
1163 	struct blkcg_gq *new_blkg, *blkg;
1164 	bool preloaded;
1165 	int ret;
1166 
1167 	new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1168 	if (!new_blkg)
1169 		return -ENOMEM;
1170 
1171 	preloaded = !radix_tree_preload(GFP_KERNEL);
1172 
1173 	/* Make sure the root blkg exists. */
1174 	rcu_read_lock();
1175 	spin_lock_irq(&q->queue_lock);
1176 	blkg = blkg_create(&blkcg_root, q, new_blkg);
1177 	if (IS_ERR(blkg))
1178 		goto err_unlock;
1179 	q->root_blkg = blkg;
1180 	spin_unlock_irq(&q->queue_lock);
1181 	rcu_read_unlock();
1182 
1183 	if (preloaded)
1184 		radix_tree_preload_end();
1185 
1186 	ret = blk_throtl_init(q);
1187 	if (ret)
1188 		goto err_destroy_all;
1189 
1190 	ret = blk_iolatency_init(q);
1191 	if (ret) {
1192 		blk_throtl_exit(q);
1193 		goto err_destroy_all;
1194 	}
1195 	return 0;
1196 
1197 err_destroy_all:
1198 	blkg_destroy_all(q);
1199 	return ret;
1200 err_unlock:
1201 	spin_unlock_irq(&q->queue_lock);
1202 	rcu_read_unlock();
1203 	if (preloaded)
1204 		radix_tree_preload_end();
1205 	return PTR_ERR(blkg);
1206 }
1207 
1208 /**
1209  * blkcg_exit_queue - exit and release blkcg part of request_queue
1210  * @q: request_queue being released
1211  *
1212  * Called from blk_exit_queue().  Responsible for exiting blkcg part.
1213  */
1214 void blkcg_exit_queue(struct request_queue *q)
1215 {
1216 	blkg_destroy_all(q);
1217 	blk_throtl_exit(q);
1218 }
1219 
1220 /*
1221  * We cannot support shared io contexts, as we have no mean to support
1222  * two tasks with the same ioc in two different groups without major rework
1223  * of the main cic data structures.  For now we allow a task to change
1224  * its cgroup only if it's the only owner of its ioc.
1225  */
1226 static int blkcg_can_attach(struct cgroup_taskset *tset)
1227 {
1228 	struct task_struct *task;
1229 	struct cgroup_subsys_state *dst_css;
1230 	struct io_context *ioc;
1231 	int ret = 0;
1232 
1233 	/* task_lock() is needed to avoid races with exit_io_context() */
1234 	cgroup_taskset_for_each(task, dst_css, tset) {
1235 		task_lock(task);
1236 		ioc = task->io_context;
1237 		if (ioc && atomic_read(&ioc->nr_tasks) > 1)
1238 			ret = -EINVAL;
1239 		task_unlock(task);
1240 		if (ret)
1241 			break;
1242 	}
1243 	return ret;
1244 }
1245 
1246 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1247 {
1248 	int i;
1249 
1250 	mutex_lock(&blkcg_pol_mutex);
1251 
1252 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1253 		struct blkcg_policy *pol = blkcg_policy[i];
1254 		struct blkcg *blkcg;
1255 
1256 		if (!pol || !pol->cpd_bind_fn)
1257 			continue;
1258 
1259 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1260 			if (blkcg->cpd[pol->plid])
1261 				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1262 	}
1263 	mutex_unlock(&blkcg_pol_mutex);
1264 }
1265 
1266 static void blkcg_exit(struct task_struct *tsk)
1267 {
1268 	if (tsk->throttle_queue)
1269 		blk_put_queue(tsk->throttle_queue);
1270 	tsk->throttle_queue = NULL;
1271 }
1272 
1273 struct cgroup_subsys io_cgrp_subsys = {
1274 	.css_alloc = blkcg_css_alloc,
1275 	.css_online = blkcg_css_online,
1276 	.css_offline = blkcg_css_offline,
1277 	.css_free = blkcg_css_free,
1278 	.can_attach = blkcg_can_attach,
1279 	.css_rstat_flush = blkcg_rstat_flush,
1280 	.bind = blkcg_bind,
1281 	.dfl_cftypes = blkcg_files,
1282 	.legacy_cftypes = blkcg_legacy_files,
1283 	.legacy_name = "blkio",
1284 	.exit = blkcg_exit,
1285 #ifdef CONFIG_MEMCG
1286 	/*
1287 	 * This ensures that, if available, memcg is automatically enabled
1288 	 * together on the default hierarchy so that the owner cgroup can
1289 	 * be retrieved from writeback pages.
1290 	 */
1291 	.depends_on = 1 << memory_cgrp_id,
1292 #endif
1293 };
1294 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1295 
1296 /**
1297  * blkcg_activate_policy - activate a blkcg policy on a request_queue
1298  * @q: request_queue of interest
1299  * @pol: blkcg policy to activate
1300  *
1301  * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1302  * bypass mode to populate its blkgs with policy_data for @pol.
1303  *
1304  * Activation happens with @q bypassed, so nobody would be accessing blkgs
1305  * from IO path.  Update of each blkg is protected by both queue and blkcg
1306  * locks so that holding either lock and testing blkcg_policy_enabled() is
1307  * always enough for dereferencing policy data.
1308  *
1309  * The caller is responsible for synchronizing [de]activations and policy
1310  * [un]registerations.  Returns 0 on success, -errno on failure.
1311  */
1312 int blkcg_activate_policy(struct request_queue *q,
1313 			  const struct blkcg_policy *pol)
1314 {
1315 	struct blkg_policy_data *pd_prealloc = NULL;
1316 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1317 	int ret;
1318 
1319 	if (blkcg_policy_enabled(q, pol))
1320 		return 0;
1321 
1322 	if (queue_is_mq(q))
1323 		blk_mq_freeze_queue(q);
1324 retry:
1325 	spin_lock_irq(&q->queue_lock);
1326 
1327 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1328 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1329 		struct blkg_policy_data *pd;
1330 
1331 		if (blkg->pd[pol->plid])
1332 			continue;
1333 
1334 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1335 		if (blkg == pinned_blkg) {
1336 			pd = pd_prealloc;
1337 			pd_prealloc = NULL;
1338 		} else {
1339 			pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1340 					      blkg->blkcg);
1341 		}
1342 
1343 		if (!pd) {
1344 			/*
1345 			 * GFP_NOWAIT failed.  Free the existing one and
1346 			 * prealloc for @blkg w/ GFP_KERNEL.
1347 			 */
1348 			if (pinned_blkg)
1349 				blkg_put(pinned_blkg);
1350 			blkg_get(blkg);
1351 			pinned_blkg = blkg;
1352 
1353 			spin_unlock_irq(&q->queue_lock);
1354 
1355 			if (pd_prealloc)
1356 				pol->pd_free_fn(pd_prealloc);
1357 			pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1358 						       blkg->blkcg);
1359 			if (pd_prealloc)
1360 				goto retry;
1361 			else
1362 				goto enomem;
1363 		}
1364 
1365 		blkg->pd[pol->plid] = pd;
1366 		pd->blkg = blkg;
1367 		pd->plid = pol->plid;
1368 	}
1369 
1370 	/* all allocated, init in the same order */
1371 	if (pol->pd_init_fn)
1372 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1373 			pol->pd_init_fn(blkg->pd[pol->plid]);
1374 
1375 	__set_bit(pol->plid, q->blkcg_pols);
1376 	ret = 0;
1377 
1378 	spin_unlock_irq(&q->queue_lock);
1379 out:
1380 	if (queue_is_mq(q))
1381 		blk_mq_unfreeze_queue(q);
1382 	if (pinned_blkg)
1383 		blkg_put(pinned_blkg);
1384 	if (pd_prealloc)
1385 		pol->pd_free_fn(pd_prealloc);
1386 	return ret;
1387 
1388 enomem:
1389 	/* alloc failed, nothing's initialized yet, free everything */
1390 	spin_lock_irq(&q->queue_lock);
1391 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1392 		if (blkg->pd[pol->plid]) {
1393 			pol->pd_free_fn(blkg->pd[pol->plid]);
1394 			blkg->pd[pol->plid] = NULL;
1395 		}
1396 	}
1397 	spin_unlock_irq(&q->queue_lock);
1398 	ret = -ENOMEM;
1399 	goto out;
1400 }
1401 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1402 
1403 /**
1404  * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1405  * @q: request_queue of interest
1406  * @pol: blkcg policy to deactivate
1407  *
1408  * Deactivate @pol on @q.  Follows the same synchronization rules as
1409  * blkcg_activate_policy().
1410  */
1411 void blkcg_deactivate_policy(struct request_queue *q,
1412 			     const struct blkcg_policy *pol)
1413 {
1414 	struct blkcg_gq *blkg;
1415 
1416 	if (!blkcg_policy_enabled(q, pol))
1417 		return;
1418 
1419 	if (queue_is_mq(q))
1420 		blk_mq_freeze_queue(q);
1421 
1422 	spin_lock_irq(&q->queue_lock);
1423 
1424 	__clear_bit(pol->plid, q->blkcg_pols);
1425 
1426 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1427 		if (blkg->pd[pol->plid]) {
1428 			if (pol->pd_offline_fn)
1429 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1430 			pol->pd_free_fn(blkg->pd[pol->plid]);
1431 			blkg->pd[pol->plid] = NULL;
1432 		}
1433 	}
1434 
1435 	spin_unlock_irq(&q->queue_lock);
1436 
1437 	if (queue_is_mq(q))
1438 		blk_mq_unfreeze_queue(q);
1439 }
1440 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1441 
1442 /**
1443  * blkcg_policy_register - register a blkcg policy
1444  * @pol: blkcg policy to register
1445  *
1446  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1447  * successful registration.  Returns 0 on success and -errno on failure.
1448  */
1449 int blkcg_policy_register(struct blkcg_policy *pol)
1450 {
1451 	struct blkcg *blkcg;
1452 	int i, ret;
1453 
1454 	mutex_lock(&blkcg_pol_register_mutex);
1455 	mutex_lock(&blkcg_pol_mutex);
1456 
1457 	/* find an empty slot */
1458 	ret = -ENOSPC;
1459 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1460 		if (!blkcg_policy[i])
1461 			break;
1462 	if (i >= BLKCG_MAX_POLS) {
1463 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1464 		goto err_unlock;
1465 	}
1466 
1467 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1468 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1469 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1470 		goto err_unlock;
1471 
1472 	/* register @pol */
1473 	pol->plid = i;
1474 	blkcg_policy[pol->plid] = pol;
1475 
1476 	/* allocate and install cpd's */
1477 	if (pol->cpd_alloc_fn) {
1478 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1479 			struct blkcg_policy_data *cpd;
1480 
1481 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1482 			if (!cpd)
1483 				goto err_free_cpds;
1484 
1485 			blkcg->cpd[pol->plid] = cpd;
1486 			cpd->blkcg = blkcg;
1487 			cpd->plid = pol->plid;
1488 			if (pol->cpd_init_fn)
1489 				pol->cpd_init_fn(cpd);
1490 		}
1491 	}
1492 
1493 	mutex_unlock(&blkcg_pol_mutex);
1494 
1495 	/* everything is in place, add intf files for the new policy */
1496 	if (pol->dfl_cftypes)
1497 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1498 					       pol->dfl_cftypes));
1499 	if (pol->legacy_cftypes)
1500 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1501 						  pol->legacy_cftypes));
1502 	mutex_unlock(&blkcg_pol_register_mutex);
1503 	return 0;
1504 
1505 err_free_cpds:
1506 	if (pol->cpd_free_fn) {
1507 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1508 			if (blkcg->cpd[pol->plid]) {
1509 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1510 				blkcg->cpd[pol->plid] = NULL;
1511 			}
1512 		}
1513 	}
1514 	blkcg_policy[pol->plid] = NULL;
1515 err_unlock:
1516 	mutex_unlock(&blkcg_pol_mutex);
1517 	mutex_unlock(&blkcg_pol_register_mutex);
1518 	return ret;
1519 }
1520 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1521 
1522 /**
1523  * blkcg_policy_unregister - unregister a blkcg policy
1524  * @pol: blkcg policy to unregister
1525  *
1526  * Undo blkcg_policy_register(@pol).  Might sleep.
1527  */
1528 void blkcg_policy_unregister(struct blkcg_policy *pol)
1529 {
1530 	struct blkcg *blkcg;
1531 
1532 	mutex_lock(&blkcg_pol_register_mutex);
1533 
1534 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1535 		goto out_unlock;
1536 
1537 	/* kill the intf files first */
1538 	if (pol->dfl_cftypes)
1539 		cgroup_rm_cftypes(pol->dfl_cftypes);
1540 	if (pol->legacy_cftypes)
1541 		cgroup_rm_cftypes(pol->legacy_cftypes);
1542 
1543 	/* remove cpds and unregister */
1544 	mutex_lock(&blkcg_pol_mutex);
1545 
1546 	if (pol->cpd_free_fn) {
1547 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1548 			if (blkcg->cpd[pol->plid]) {
1549 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1550 				blkcg->cpd[pol->plid] = NULL;
1551 			}
1552 		}
1553 	}
1554 	blkcg_policy[pol->plid] = NULL;
1555 
1556 	mutex_unlock(&blkcg_pol_mutex);
1557 out_unlock:
1558 	mutex_unlock(&blkcg_pol_register_mutex);
1559 }
1560 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1561 
1562 bool __blkcg_punt_bio_submit(struct bio *bio)
1563 {
1564 	struct blkcg_gq *blkg = bio->bi_blkg;
1565 
1566 	/* consume the flag first */
1567 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1568 
1569 	/* never bounce for the root cgroup */
1570 	if (!blkg->parent)
1571 		return false;
1572 
1573 	spin_lock_bh(&blkg->async_bio_lock);
1574 	bio_list_add(&blkg->async_bios, bio);
1575 	spin_unlock_bh(&blkg->async_bio_lock);
1576 
1577 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1578 	return true;
1579 }
1580 
1581 /*
1582  * Scale the accumulated delay based on how long it has been since we updated
1583  * the delay.  We only call this when we are adding delay, in case it's been a
1584  * while since we added delay, and when we are checking to see if we need to
1585  * delay a task, to account for any delays that may have occurred.
1586  */
1587 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1588 {
1589 	u64 old = atomic64_read(&blkg->delay_start);
1590 
1591 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1592 	if (atomic_read(&blkg->use_delay) < 0)
1593 		return;
1594 
1595 	/*
1596 	 * We only want to scale down every second.  The idea here is that we
1597 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1598 	 * time window.  We only want to throttle tasks for recent delay that
1599 	 * has occurred, in 1 second time windows since that's the maximum
1600 	 * things can be throttled.  We save the current delay window in
1601 	 * blkg->last_delay so we know what amount is still left to be charged
1602 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1603 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1604 	 * are ok with whatever is happening now, and we can take away more of
1605 	 * the accumulated delay as we've already throttled enough that
1606 	 * everybody is happy with their IO latencies.
1607 	 */
1608 	if (time_before64(old + NSEC_PER_SEC, now) &&
1609 	    atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1610 		u64 cur = atomic64_read(&blkg->delay_nsec);
1611 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1612 		int cur_use = atomic_read(&blkg->use_delay);
1613 
1614 		/*
1615 		 * We've been unthrottled, subtract a larger chunk of our
1616 		 * accumulated delay.
1617 		 */
1618 		if (cur_use < blkg->last_use)
1619 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1620 
1621 		/*
1622 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1623 		 * should only ever be growing except here where we subtract out
1624 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1625 		 * rather not end up with negative numbers.
1626 		 */
1627 		if (unlikely(cur < sub)) {
1628 			atomic64_set(&blkg->delay_nsec, 0);
1629 			blkg->last_delay = 0;
1630 		} else {
1631 			atomic64_sub(sub, &blkg->delay_nsec);
1632 			blkg->last_delay = cur - sub;
1633 		}
1634 		blkg->last_use = cur_use;
1635 	}
1636 }
1637 
1638 /*
1639  * This is called when we want to actually walk up the hierarchy and check to
1640  * see if we need to throttle, and then actually throttle if there is some
1641  * accumulated delay.  This should only be called upon return to user space so
1642  * we're not holding some lock that would induce a priority inversion.
1643  */
1644 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1645 {
1646 	unsigned long pflags;
1647 	bool clamp;
1648 	u64 now = ktime_to_ns(ktime_get());
1649 	u64 exp;
1650 	u64 delay_nsec = 0;
1651 	int tok;
1652 
1653 	while (blkg->parent) {
1654 		int use_delay = atomic_read(&blkg->use_delay);
1655 
1656 		if (use_delay) {
1657 			u64 this_delay;
1658 
1659 			blkcg_scale_delay(blkg, now);
1660 			this_delay = atomic64_read(&blkg->delay_nsec);
1661 			if (this_delay > delay_nsec) {
1662 				delay_nsec = this_delay;
1663 				clamp = use_delay > 0;
1664 			}
1665 		}
1666 		blkg = blkg->parent;
1667 	}
1668 
1669 	if (!delay_nsec)
1670 		return;
1671 
1672 	/*
1673 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1674 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1675 	 * delay, and we want userspace to be able to do _something_ so cap the
1676 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1677 	 * tasks will be delayed for 0.25 second for every syscall. If
1678 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1679 	 * caller is responsible for regulating the range.
1680 	 */
1681 	if (clamp)
1682 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1683 
1684 	if (use_memdelay)
1685 		psi_memstall_enter(&pflags);
1686 
1687 	exp = ktime_add_ns(now, delay_nsec);
1688 	tok = io_schedule_prepare();
1689 	do {
1690 		__set_current_state(TASK_KILLABLE);
1691 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1692 			break;
1693 	} while (!fatal_signal_pending(current));
1694 	io_schedule_finish(tok);
1695 
1696 	if (use_memdelay)
1697 		psi_memstall_leave(&pflags);
1698 }
1699 
1700 /**
1701  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1702  *
1703  * This is only called if we've been marked with set_notify_resume().  Obviously
1704  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1705  * check to see if current->throttle_queue is set and if not this doesn't do
1706  * anything.  This should only ever be called by the resume code, it's not meant
1707  * to be called by people willy-nilly as it will actually do the work to
1708  * throttle the task if it is setup for throttling.
1709  */
1710 void blkcg_maybe_throttle_current(void)
1711 {
1712 	struct request_queue *q = current->throttle_queue;
1713 	struct cgroup_subsys_state *css;
1714 	struct blkcg *blkcg;
1715 	struct blkcg_gq *blkg;
1716 	bool use_memdelay = current->use_memdelay;
1717 
1718 	if (!q)
1719 		return;
1720 
1721 	current->throttle_queue = NULL;
1722 	current->use_memdelay = false;
1723 
1724 	rcu_read_lock();
1725 	css = kthread_blkcg();
1726 	if (css)
1727 		blkcg = css_to_blkcg(css);
1728 	else
1729 		blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1730 
1731 	if (!blkcg)
1732 		goto out;
1733 	blkg = blkg_lookup(blkcg, q);
1734 	if (!blkg)
1735 		goto out;
1736 	if (!blkg_tryget(blkg))
1737 		goto out;
1738 	rcu_read_unlock();
1739 
1740 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1741 	blkg_put(blkg);
1742 	blk_put_queue(q);
1743 	return;
1744 out:
1745 	rcu_read_unlock();
1746 	blk_put_queue(q);
1747 }
1748 
1749 /**
1750  * blkcg_schedule_throttle - this task needs to check for throttling
1751  * @q: the request queue IO was submitted on
1752  * @use_memdelay: do we charge this to memory delay for PSI
1753  *
1754  * This is called by the IO controller when we know there's delay accumulated
1755  * for the blkg for this task.  We do not pass the blkg because there are places
1756  * we call this that may not have that information, the swapping code for
1757  * instance will only have a request_queue at that point.  This set's the
1758  * notify_resume for the task to check and see if it requires throttling before
1759  * returning to user space.
1760  *
1761  * We will only schedule once per syscall.  You can call this over and over
1762  * again and it will only do the check once upon return to user space, and only
1763  * throttle once.  If the task needs to be throttled again it'll need to be
1764  * re-set at the next time we see the task.
1765  */
1766 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1767 {
1768 	if (unlikely(current->flags & PF_KTHREAD))
1769 		return;
1770 
1771 	if (current->throttle_queue != q) {
1772 		if (!blk_get_queue(q))
1773 			return;
1774 
1775 		if (current->throttle_queue)
1776 			blk_put_queue(current->throttle_queue);
1777 		current->throttle_queue = q;
1778 	}
1779 
1780 	if (use_memdelay)
1781 		current->use_memdelay = use_memdelay;
1782 	set_notify_resume(current);
1783 }
1784 
1785 /**
1786  * blkcg_add_delay - add delay to this blkg
1787  * @blkg: blkg of interest
1788  * @now: the current time in nanoseconds
1789  * @delta: how many nanoseconds of delay to add
1790  *
1791  * Charge @delta to the blkg's current delay accumulation.  This is used to
1792  * throttle tasks if an IO controller thinks we need more throttling.
1793  */
1794 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1795 {
1796 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1797 		return;
1798 	blkcg_scale_delay(blkg, now);
1799 	atomic64_add(delta, &blkg->delay_nsec);
1800 }
1801 
1802 /**
1803  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1804  * @bio: target bio
1805  * @css: target css
1806  *
1807  * As the failure mode here is to walk up the blkg tree, this ensure that the
1808  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1809  * up taking a reference on or %NULL if no reference was taken.
1810  */
1811 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1812 		struct cgroup_subsys_state *css)
1813 {
1814 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1815 
1816 	rcu_read_lock();
1817 	blkg = blkg_lookup_create(css_to_blkcg(css),
1818 				  bio->bi_bdev->bd_disk->queue);
1819 	while (blkg) {
1820 		if (blkg_tryget(blkg)) {
1821 			ret_blkg = blkg;
1822 			break;
1823 		}
1824 		blkg = blkg->parent;
1825 	}
1826 	rcu_read_unlock();
1827 
1828 	return ret_blkg;
1829 }
1830 
1831 /**
1832  * bio_associate_blkg_from_css - associate a bio with a specified css
1833  * @bio: target bio
1834  * @css: target css
1835  *
1836  * Associate @bio with the blkg found by combining the css's blkg and the
1837  * request_queue of the @bio.  An association failure is handled by walking up
1838  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1839  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1840  * then the remaining bios will spill to the closest alive blkg.
1841  *
1842  * A reference will be taken on the blkg and will be released when @bio is
1843  * freed.
1844  */
1845 void bio_associate_blkg_from_css(struct bio *bio,
1846 				 struct cgroup_subsys_state *css)
1847 {
1848 	if (bio->bi_blkg)
1849 		blkg_put(bio->bi_blkg);
1850 
1851 	if (css && css->parent) {
1852 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1853 	} else {
1854 		blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg);
1855 		bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg;
1856 	}
1857 }
1858 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1859 
1860 /**
1861  * bio_associate_blkg - associate a bio with a blkg
1862  * @bio: target bio
1863  *
1864  * Associate @bio with the blkg found from the bio's css and request_queue.
1865  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1866  * already associated, the css is reused and association redone as the
1867  * request_queue may have changed.
1868  */
1869 void bio_associate_blkg(struct bio *bio)
1870 {
1871 	struct cgroup_subsys_state *css;
1872 
1873 	rcu_read_lock();
1874 
1875 	if (bio->bi_blkg)
1876 		css = &bio_blkcg(bio)->css;
1877 	else
1878 		css = blkcg_css();
1879 
1880 	bio_associate_blkg_from_css(bio, css);
1881 
1882 	rcu_read_unlock();
1883 }
1884 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1885 
1886 /**
1887  * bio_clone_blkg_association - clone blkg association from src to dst bio
1888  * @dst: destination bio
1889  * @src: source bio
1890  */
1891 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1892 {
1893 	if (src->bi_blkg) {
1894 		if (dst->bi_blkg)
1895 			blkg_put(dst->bi_blkg);
1896 		blkg_get(src->bi_blkg);
1897 		dst->bi_blkg = src->bi_blkg;
1898 	}
1899 }
1900 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1901 
1902 static int blk_cgroup_io_type(struct bio *bio)
1903 {
1904 	if (op_is_discard(bio->bi_opf))
1905 		return BLKG_IOSTAT_DISCARD;
1906 	if (op_is_write(bio->bi_opf))
1907 		return BLKG_IOSTAT_WRITE;
1908 	return BLKG_IOSTAT_READ;
1909 }
1910 
1911 void blk_cgroup_bio_start(struct bio *bio)
1912 {
1913 	int rwd = blk_cgroup_io_type(bio), cpu;
1914 	struct blkg_iostat_set *bis;
1915 
1916 	cpu = get_cpu();
1917 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1918 	u64_stats_update_begin(&bis->sync);
1919 
1920 	/*
1921 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1922 	 * bio and we would have already accounted for the size of the bio.
1923 	 */
1924 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1925 		bio_set_flag(bio, BIO_CGROUP_ACCT);
1926 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1927 	}
1928 	bis->cur.ios[rwd]++;
1929 
1930 	u64_stats_update_end(&bis->sync);
1931 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1932 		cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1933 	put_cpu();
1934 }
1935 
1936 static int __init blkcg_init(void)
1937 {
1938 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1939 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
1940 					    WQ_UNBOUND | WQ_SYSFS, 0);
1941 	if (!blkcg_punt_bio_wq)
1942 		return -ENOMEM;
1943 	return 0;
1944 }
1945 subsys_initcall(blkcg_init);
1946 
1947 module_param(blkcg_debug_stats, bool, 0644);
1948 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1949