xref: /linux/block/blk-cgroup.c (revision 55a42f78ffd386e01a5404419f8c5ded7db70a21)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38 
39 /*
40  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42  * policy [un]register operations including cgroup file additions /
43  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
44  * allows grabbing it from cgroup callbacks.
45  */
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
48 
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
51 
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
54 
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56 
57 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
58 
59 bool blkcg_debug_stats = false;
60 
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62 
63 #define BLKG_DESTROY_BATCH_SIZE  64
64 
65 /*
66  * Lockless lists for tracking IO stats update
67  *
68  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69  * There are multiple blkg's (one for each block device) attached to each
70  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71  * but it doesn't know which blkg has the updated stats. If there are many
72  * block devices in a system, the cost of iterating all the blkg's to flush
73  * out the IO stats can be high. To reduce such overhead, a set of percpu
74  * lockless lists (lhead) per blkcg are used to track the set of recently
75  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78  * References to blkg are gotten and then put back in the process to
79  * protect against blkg removal.
80  *
81  * Return: 0 if successful or -ENOMEM if allocation fails.
82  */
83 static int init_blkcg_llists(struct blkcg *blkcg)
84 {
85 	int cpu;
86 
87 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 	if (!blkcg->lhead)
89 		return -ENOMEM;
90 
91 	for_each_possible_cpu(cpu)
92 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 	return 0;
94 }
95 
96 /**
97  * blkcg_css - find the current css
98  *
99  * Find the css associated with either the kthread or the current task.
100  * This may return a dying css, so it is up to the caller to use tryget logic
101  * to confirm it is alive and well.
102  */
103 static struct cgroup_subsys_state *blkcg_css(void)
104 {
105 	struct cgroup_subsys_state *css;
106 
107 	css = kthread_blkcg();
108 	if (css)
109 		return css;
110 	return task_css(current, io_cgrp_id);
111 }
112 
113 static void blkg_free_workfn(struct work_struct *work)
114 {
115 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
116 					     free_work);
117 	struct request_queue *q = blkg->q;
118 	int i;
119 
120 	/*
121 	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
122 	 * in order to make sure pd_free_fn() is called in order, the deletion
123 	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
124 	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
125 	 * blkcg_deactivate_policy().
126 	 */
127 	mutex_lock(&q->blkcg_mutex);
128 	for (i = 0; i < BLKCG_MAX_POLS; i++)
129 		if (blkg->pd[i])
130 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
131 	if (blkg->parent)
132 		blkg_put(blkg->parent);
133 	spin_lock_irq(&q->queue_lock);
134 	list_del_init(&blkg->q_node);
135 	spin_unlock_irq(&q->queue_lock);
136 	mutex_unlock(&q->blkcg_mutex);
137 
138 	blk_put_queue(q);
139 	free_percpu(blkg->iostat_cpu);
140 	percpu_ref_exit(&blkg->refcnt);
141 	kfree(blkg);
142 }
143 
144 /**
145  * blkg_free - free a blkg
146  * @blkg: blkg to free
147  *
148  * Free @blkg which may be partially allocated.
149  */
150 static void blkg_free(struct blkcg_gq *blkg)
151 {
152 	if (!blkg)
153 		return;
154 
155 	/*
156 	 * Both ->pd_free_fn() and request queue's release handler may
157 	 * sleep, so free us by scheduling one work func
158 	 */
159 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
160 	schedule_work(&blkg->free_work);
161 }
162 
163 static void __blkg_release(struct rcu_head *rcu)
164 {
165 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
166 	struct blkcg *blkcg = blkg->blkcg;
167 	int cpu;
168 
169 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
170 	WARN_ON(!bio_list_empty(&blkg->async_bios));
171 #endif
172 	/*
173 	 * Flush all the non-empty percpu lockless lists before releasing
174 	 * us, given these stat belongs to us.
175 	 *
176 	 * blkg_stat_lock is for serializing blkg stat update
177 	 */
178 	for_each_possible_cpu(cpu)
179 		__blkcg_rstat_flush(blkcg, cpu);
180 
181 	/* release the blkcg and parent blkg refs this blkg has been holding */
182 	css_put(&blkg->blkcg->css);
183 	blkg_free(blkg);
184 }
185 
186 /*
187  * A group is RCU protected, but having an rcu lock does not mean that one
188  * can access all the fields of blkg and assume these are valid.  For
189  * example, don't try to follow throtl_data and request queue links.
190  *
191  * Having a reference to blkg under an rcu allows accesses to only values
192  * local to groups like group stats and group rate limits.
193  */
194 static void blkg_release(struct percpu_ref *ref)
195 {
196 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
197 
198 	call_rcu(&blkg->rcu_head, __blkg_release);
199 }
200 
201 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
202 static struct workqueue_struct *blkcg_punt_bio_wq;
203 
204 static void blkg_async_bio_workfn(struct work_struct *work)
205 {
206 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
207 					     async_bio_work);
208 	struct bio_list bios = BIO_EMPTY_LIST;
209 	struct bio *bio;
210 	struct blk_plug plug;
211 	bool need_plug = false;
212 
213 	/* as long as there are pending bios, @blkg can't go away */
214 	spin_lock(&blkg->async_bio_lock);
215 	bio_list_merge_init(&bios, &blkg->async_bios);
216 	spin_unlock(&blkg->async_bio_lock);
217 
218 	/* start plug only when bio_list contains at least 2 bios */
219 	if (bios.head && bios.head->bi_next) {
220 		need_plug = true;
221 		blk_start_plug(&plug);
222 	}
223 	while ((bio = bio_list_pop(&bios)))
224 		submit_bio(bio);
225 	if (need_plug)
226 		blk_finish_plug(&plug);
227 }
228 
229 /*
230  * When a shared kthread issues a bio for a cgroup, doing so synchronously can
231  * lead to priority inversions as the kthread can be trapped waiting for that
232  * cgroup.  Use this helper instead of submit_bio to punt the actual issuing to
233  * a dedicated per-blkcg work item to avoid such priority inversions.
234  */
235 void blkcg_punt_bio_submit(struct bio *bio)
236 {
237 	struct blkcg_gq *blkg = bio->bi_blkg;
238 
239 	if (blkg->parent) {
240 		spin_lock(&blkg->async_bio_lock);
241 		bio_list_add(&blkg->async_bios, bio);
242 		spin_unlock(&blkg->async_bio_lock);
243 		queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
244 	} else {
245 		/* never bounce for the root cgroup */
246 		submit_bio(bio);
247 	}
248 }
249 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
250 
251 static int __init blkcg_punt_bio_init(void)
252 {
253 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
254 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
255 					    WQ_UNBOUND | WQ_SYSFS, 0);
256 	if (!blkcg_punt_bio_wq)
257 		return -ENOMEM;
258 	return 0;
259 }
260 subsys_initcall(blkcg_punt_bio_init);
261 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
262 
263 /**
264  * bio_blkcg_css - return the blkcg CSS associated with a bio
265  * @bio: target bio
266  *
267  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
268  * associated. Callers are expected to either handle %NULL or know association
269  * has been done prior to calling this.
270  */
271 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
272 {
273 	if (!bio || !bio->bi_blkg)
274 		return NULL;
275 	return &bio->bi_blkg->blkcg->css;
276 }
277 EXPORT_SYMBOL_GPL(bio_blkcg_css);
278 
279 /**
280  * blkcg_parent - get the parent of a blkcg
281  * @blkcg: blkcg of interest
282  *
283  * Return the parent blkcg of @blkcg.  Can be called anytime.
284  */
285 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
286 {
287 	return css_to_blkcg(blkcg->css.parent);
288 }
289 
290 /**
291  * blkg_alloc - allocate a blkg
292  * @blkcg: block cgroup the new blkg is associated with
293  * @disk: gendisk the new blkg is associated with
294  * @gfp_mask: allocation mask to use
295  *
296  * Allocate a new blkg associating @blkcg and @disk.
297  */
298 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
299 				   gfp_t gfp_mask)
300 {
301 	struct blkcg_gq *blkg;
302 	int i, cpu;
303 
304 	/* alloc and init base part */
305 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
306 	if (!blkg)
307 		return NULL;
308 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
309 		goto out_free_blkg;
310 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
311 	if (!blkg->iostat_cpu)
312 		goto out_exit_refcnt;
313 	if (!blk_get_queue(disk->queue))
314 		goto out_free_iostat;
315 
316 	blkg->q = disk->queue;
317 	INIT_LIST_HEAD(&blkg->q_node);
318 	blkg->blkcg = blkcg;
319 	blkg->iostat.blkg = blkg;
320 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
321 	spin_lock_init(&blkg->async_bio_lock);
322 	bio_list_init(&blkg->async_bios);
323 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
324 #endif
325 
326 	u64_stats_init(&blkg->iostat.sync);
327 	for_each_possible_cpu(cpu) {
328 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
329 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
330 	}
331 
332 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
333 		struct blkcg_policy *pol = blkcg_policy[i];
334 		struct blkg_policy_data *pd;
335 
336 		if (!blkcg_policy_enabled(disk->queue, pol))
337 			continue;
338 
339 		/* alloc per-policy data and attach it to blkg */
340 		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
341 		if (!pd)
342 			goto out_free_pds;
343 		blkg->pd[i] = pd;
344 		pd->blkg = blkg;
345 		pd->plid = i;
346 		pd->online = false;
347 	}
348 
349 	return blkg;
350 
351 out_free_pds:
352 	while (--i >= 0)
353 		if (blkg->pd[i])
354 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
355 	blk_put_queue(disk->queue);
356 out_free_iostat:
357 	free_percpu(blkg->iostat_cpu);
358 out_exit_refcnt:
359 	percpu_ref_exit(&blkg->refcnt);
360 out_free_blkg:
361 	kfree(blkg);
362 	return NULL;
363 }
364 
365 /*
366  * If @new_blkg is %NULL, this function tries to allocate a new one as
367  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
368  */
369 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
370 				    struct blkcg_gq *new_blkg)
371 {
372 	struct blkcg_gq *blkg;
373 	int i, ret;
374 
375 	lockdep_assert_held(&disk->queue->queue_lock);
376 
377 	/* request_queue is dying, do not create/recreate a blkg */
378 	if (blk_queue_dying(disk->queue)) {
379 		ret = -ENODEV;
380 		goto err_free_blkg;
381 	}
382 
383 	/* blkg holds a reference to blkcg */
384 	if (!css_tryget_online(&blkcg->css)) {
385 		ret = -ENODEV;
386 		goto err_free_blkg;
387 	}
388 
389 	/* allocate */
390 	if (!new_blkg) {
391 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT);
392 		if (unlikely(!new_blkg)) {
393 			ret = -ENOMEM;
394 			goto err_put_css;
395 		}
396 	}
397 	blkg = new_blkg;
398 
399 	/* link parent */
400 	if (blkcg_parent(blkcg)) {
401 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
402 		if (WARN_ON_ONCE(!blkg->parent)) {
403 			ret = -ENODEV;
404 			goto err_put_css;
405 		}
406 		blkg_get(blkg->parent);
407 	}
408 
409 	/* invoke per-policy init */
410 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
411 		struct blkcg_policy *pol = blkcg_policy[i];
412 
413 		if (blkg->pd[i] && pol->pd_init_fn)
414 			pol->pd_init_fn(blkg->pd[i]);
415 	}
416 
417 	/* insert */
418 	spin_lock(&blkcg->lock);
419 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
420 	if (likely(!ret)) {
421 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
422 		list_add(&blkg->q_node, &disk->queue->blkg_list);
423 
424 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
425 			struct blkcg_policy *pol = blkcg_policy[i];
426 
427 			if (blkg->pd[i]) {
428 				if (pol->pd_online_fn)
429 					pol->pd_online_fn(blkg->pd[i]);
430 				blkg->pd[i]->online = true;
431 			}
432 		}
433 	}
434 	blkg->online = true;
435 	spin_unlock(&blkcg->lock);
436 
437 	if (!ret)
438 		return blkg;
439 
440 	/* @blkg failed fully initialized, use the usual release path */
441 	blkg_put(blkg);
442 	return ERR_PTR(ret);
443 
444 err_put_css:
445 	css_put(&blkcg->css);
446 err_free_blkg:
447 	if (new_blkg)
448 		blkg_free(new_blkg);
449 	return ERR_PTR(ret);
450 }
451 
452 /**
453  * blkg_lookup_create - lookup blkg, try to create one if not there
454  * @blkcg: blkcg of interest
455  * @disk: gendisk of interest
456  *
457  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
458  * create one.  blkg creation is performed recursively from blkcg_root such
459  * that all non-root blkg's have access to the parent blkg.  This function
460  * should be called under RCU read lock and takes @disk->queue->queue_lock.
461  *
462  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
463  * down from root.
464  */
465 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
466 		struct gendisk *disk)
467 {
468 	struct request_queue *q = disk->queue;
469 	struct blkcg_gq *blkg;
470 	unsigned long flags;
471 
472 	WARN_ON_ONCE(!rcu_read_lock_held());
473 
474 	blkg = blkg_lookup(blkcg, q);
475 	if (blkg)
476 		return blkg;
477 
478 	spin_lock_irqsave(&q->queue_lock, flags);
479 	blkg = blkg_lookup(blkcg, q);
480 	if (blkg) {
481 		if (blkcg != &blkcg_root &&
482 		    blkg != rcu_dereference(blkcg->blkg_hint))
483 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
484 		goto found;
485 	}
486 
487 	/*
488 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
489 	 * non-root blkgs have access to their parents.  Returns the closest
490 	 * blkg to the intended blkg should blkg_create() fail.
491 	 */
492 	while (true) {
493 		struct blkcg *pos = blkcg;
494 		struct blkcg *parent = blkcg_parent(blkcg);
495 		struct blkcg_gq *ret_blkg = q->root_blkg;
496 
497 		while (parent) {
498 			blkg = blkg_lookup(parent, q);
499 			if (blkg) {
500 				/* remember closest blkg */
501 				ret_blkg = blkg;
502 				break;
503 			}
504 			pos = parent;
505 			parent = blkcg_parent(parent);
506 		}
507 
508 		blkg = blkg_create(pos, disk, NULL);
509 		if (IS_ERR(blkg)) {
510 			blkg = ret_blkg;
511 			break;
512 		}
513 		if (pos == blkcg)
514 			break;
515 	}
516 
517 found:
518 	spin_unlock_irqrestore(&q->queue_lock, flags);
519 	return blkg;
520 }
521 
522 static void blkg_destroy(struct blkcg_gq *blkg)
523 {
524 	struct blkcg *blkcg = blkg->blkcg;
525 	int i;
526 
527 	lockdep_assert_held(&blkg->q->queue_lock);
528 	lockdep_assert_held(&blkcg->lock);
529 
530 	/*
531 	 * blkg stays on the queue list until blkg_free_workfn(), see details in
532 	 * blkg_free_workfn(), hence this function can be called from
533 	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
534 	 * blkg_free_workfn().
535 	 */
536 	if (hlist_unhashed(&blkg->blkcg_node))
537 		return;
538 
539 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
540 		struct blkcg_policy *pol = blkcg_policy[i];
541 
542 		if (blkg->pd[i] && blkg->pd[i]->online) {
543 			blkg->pd[i]->online = false;
544 			if (pol->pd_offline_fn)
545 				pol->pd_offline_fn(blkg->pd[i]);
546 		}
547 	}
548 
549 	blkg->online = false;
550 
551 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
552 	hlist_del_init_rcu(&blkg->blkcg_node);
553 
554 	/*
555 	 * Both setting lookup hint to and clearing it from @blkg are done
556 	 * under queue_lock.  If it's not pointing to @blkg now, it never
557 	 * will.  Hint assignment itself can race safely.
558 	 */
559 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
560 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
561 
562 	/*
563 	 * Put the reference taken at the time of creation so that when all
564 	 * queues are gone, group can be destroyed.
565 	 */
566 	percpu_ref_kill(&blkg->refcnt);
567 }
568 
569 static void blkg_destroy_all(struct gendisk *disk)
570 {
571 	struct request_queue *q = disk->queue;
572 	struct blkcg_gq *blkg;
573 	int count = BLKG_DESTROY_BATCH_SIZE;
574 	int i;
575 
576 restart:
577 	spin_lock_irq(&q->queue_lock);
578 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
579 		struct blkcg *blkcg = blkg->blkcg;
580 
581 		if (hlist_unhashed(&blkg->blkcg_node))
582 			continue;
583 
584 		spin_lock(&blkcg->lock);
585 		blkg_destroy(blkg);
586 		spin_unlock(&blkcg->lock);
587 
588 		/*
589 		 * in order to avoid holding the spin lock for too long, release
590 		 * it when a batch of blkgs are destroyed.
591 		 */
592 		if (!(--count)) {
593 			count = BLKG_DESTROY_BATCH_SIZE;
594 			spin_unlock_irq(&q->queue_lock);
595 			cond_resched();
596 			goto restart;
597 		}
598 	}
599 
600 	/*
601 	 * Mark policy deactivated since policy offline has been done, and
602 	 * the free is scheduled, so future blkcg_deactivate_policy() can
603 	 * be bypassed
604 	 */
605 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
606 		struct blkcg_policy *pol = blkcg_policy[i];
607 
608 		if (pol)
609 			__clear_bit(pol->plid, q->blkcg_pols);
610 	}
611 
612 	q->root_blkg = NULL;
613 	spin_unlock_irq(&q->queue_lock);
614 }
615 
616 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
617 {
618 	int i;
619 
620 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
621 		dst->bytes[i] = src->bytes[i];
622 		dst->ios[i] = src->ios[i];
623 	}
624 }
625 
626 static void __blkg_clear_stat(struct blkg_iostat_set *bis)
627 {
628 	struct blkg_iostat cur = {0};
629 	unsigned long flags;
630 
631 	flags = u64_stats_update_begin_irqsave(&bis->sync);
632 	blkg_iostat_set(&bis->cur, &cur);
633 	blkg_iostat_set(&bis->last, &cur);
634 	u64_stats_update_end_irqrestore(&bis->sync, flags);
635 }
636 
637 static void blkg_clear_stat(struct blkcg_gq *blkg)
638 {
639 	int cpu;
640 
641 	for_each_possible_cpu(cpu) {
642 		struct blkg_iostat_set *s = per_cpu_ptr(blkg->iostat_cpu, cpu);
643 
644 		__blkg_clear_stat(s);
645 	}
646 	__blkg_clear_stat(&blkg->iostat);
647 }
648 
649 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
650 			     struct cftype *cftype, u64 val)
651 {
652 	struct blkcg *blkcg = css_to_blkcg(css);
653 	struct blkcg_gq *blkg;
654 	int i;
655 
656 	pr_info_once("blkio.%s is deprecated\n", cftype->name);
657 	mutex_lock(&blkcg_pol_mutex);
658 	spin_lock_irq(&blkcg->lock);
659 
660 	/*
661 	 * Note that stat reset is racy - it doesn't synchronize against
662 	 * stat updates.  This is a debug feature which shouldn't exist
663 	 * anyway.  If you get hit by a race, retry.
664 	 */
665 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
666 		blkg_clear_stat(blkg);
667 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
668 			struct blkcg_policy *pol = blkcg_policy[i];
669 
670 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
671 				pol->pd_reset_stats_fn(blkg->pd[i]);
672 		}
673 	}
674 
675 	spin_unlock_irq(&blkcg->lock);
676 	mutex_unlock(&blkcg_pol_mutex);
677 	return 0;
678 }
679 
680 const char *blkg_dev_name(struct blkcg_gq *blkg)
681 {
682 	if (!blkg->q->disk)
683 		return NULL;
684 	return bdi_dev_name(blkg->q->disk->bdi);
685 }
686 
687 /**
688  * blkcg_print_blkgs - helper for printing per-blkg data
689  * @sf: seq_file to print to
690  * @blkcg: blkcg of interest
691  * @prfill: fill function to print out a blkg
692  * @pol: policy in question
693  * @data: data to be passed to @prfill
694  * @show_total: to print out sum of prfill return values or not
695  *
696  * This function invokes @prfill on each blkg of @blkcg if pd for the
697  * policy specified by @pol exists.  @prfill is invoked with @sf, the
698  * policy data and @data and the matching queue lock held.  If @show_total
699  * is %true, the sum of the return values from @prfill is printed with
700  * "Total" label at the end.
701  *
702  * This is to be used to construct print functions for
703  * cftype->read_seq_string method.
704  */
705 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
706 		       u64 (*prfill)(struct seq_file *,
707 				     struct blkg_policy_data *, int),
708 		       const struct blkcg_policy *pol, int data,
709 		       bool show_total)
710 {
711 	struct blkcg_gq *blkg;
712 	u64 total = 0;
713 
714 	rcu_read_lock();
715 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
716 		spin_lock_irq(&blkg->q->queue_lock);
717 		if (blkcg_policy_enabled(blkg->q, pol))
718 			total += prfill(sf, blkg->pd[pol->plid], data);
719 		spin_unlock_irq(&blkg->q->queue_lock);
720 	}
721 	rcu_read_unlock();
722 
723 	if (show_total)
724 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
725 }
726 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
727 
728 /**
729  * __blkg_prfill_u64 - prfill helper for a single u64 value
730  * @sf: seq_file to print to
731  * @pd: policy private data of interest
732  * @v: value to print
733  *
734  * Print @v to @sf for the device associated with @pd.
735  */
736 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
737 {
738 	const char *dname = blkg_dev_name(pd->blkg);
739 
740 	if (!dname)
741 		return 0;
742 
743 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
744 	return v;
745 }
746 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
747 
748 /**
749  * blkg_conf_init - initialize a blkg_conf_ctx
750  * @ctx: blkg_conf_ctx to initialize
751  * @input: input string
752  *
753  * Initialize @ctx which can be used to parse blkg config input string @input.
754  * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
755  * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
756  */
757 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
758 {
759 	*ctx = (struct blkg_conf_ctx){ .input = input };
760 }
761 EXPORT_SYMBOL_GPL(blkg_conf_init);
762 
763 /**
764  * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
765  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
766  *
767  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
768  * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
769  * set to point past the device node prefix.
770  *
771  * This function may be called multiple times on @ctx and the extra calls become
772  * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
773  * explicitly if bdev access is needed without resolving the blkcg / policy part
774  * of @ctx->input. Returns -errno on error.
775  */
776 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
777 {
778 	char *input = ctx->input;
779 	unsigned int major, minor;
780 	struct block_device *bdev;
781 	int key_len;
782 
783 	if (ctx->bdev)
784 		return 0;
785 
786 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
787 		return -EINVAL;
788 
789 	input += key_len;
790 	if (!isspace(*input))
791 		return -EINVAL;
792 	input = skip_spaces(input);
793 
794 	bdev = blkdev_get_no_open(MKDEV(major, minor), false);
795 	if (!bdev)
796 		return -ENODEV;
797 	if (bdev_is_partition(bdev)) {
798 		blkdev_put_no_open(bdev);
799 		return -ENODEV;
800 	}
801 
802 	mutex_lock(&bdev->bd_queue->rq_qos_mutex);
803 	if (!disk_live(bdev->bd_disk)) {
804 		blkdev_put_no_open(bdev);
805 		mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
806 		return -ENODEV;
807 	}
808 
809 	ctx->body = input;
810 	ctx->bdev = bdev;
811 	return 0;
812 }
813 /*
814  * Similar to blkg_conf_open_bdev, but additionally freezes the queue,
815  * acquires q->elevator_lock, and ensures the correct locking order
816  * between q->elevator_lock and q->rq_qos_mutex.
817  *
818  * This function returns negative error on failure. On success it returns
819  * memflags which must be saved and later passed to blkg_conf_exit_frozen
820  * for restoring the memalloc scope.
821  */
822 unsigned long __must_check blkg_conf_open_bdev_frozen(struct blkg_conf_ctx *ctx)
823 {
824 	int ret;
825 	unsigned long memflags;
826 
827 	if (ctx->bdev)
828 		return -EINVAL;
829 
830 	ret = blkg_conf_open_bdev(ctx);
831 	if (ret < 0)
832 		return ret;
833 	/*
834 	 * At this point, we haven’t started protecting anything related to QoS,
835 	 * so we release q->rq_qos_mutex here, which was first acquired in blkg_
836 	 * conf_open_bdev. Later, we re-acquire q->rq_qos_mutex after freezing
837 	 * the queue and acquiring q->elevator_lock to maintain the correct
838 	 * locking order.
839 	 */
840 	mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
841 
842 	memflags = blk_mq_freeze_queue(ctx->bdev->bd_queue);
843 	mutex_lock(&ctx->bdev->bd_queue->elevator_lock);
844 	mutex_lock(&ctx->bdev->bd_queue->rq_qos_mutex);
845 
846 	return memflags;
847 }
848 
849 /**
850  * blkg_conf_prep - parse and prepare for per-blkg config update
851  * @blkcg: target block cgroup
852  * @pol: target policy
853  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
854  *
855  * Parse per-blkg config update from @ctx->input and initialize @ctx
856  * accordingly. On success, @ctx->body points to the part of @ctx->input
857  * following MAJ:MIN, @ctx->bdev points to the target block device and
858  * @ctx->blkg to the blkg being configured.
859  *
860  * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
861  * function returns with queue lock held and must be followed by
862  * blkg_conf_exit().
863  */
864 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
865 		   struct blkg_conf_ctx *ctx)
866 	__acquires(&bdev->bd_queue->queue_lock)
867 {
868 	struct gendisk *disk;
869 	struct request_queue *q;
870 	struct blkcg_gq *blkg;
871 	int ret;
872 
873 	ret = blkg_conf_open_bdev(ctx);
874 	if (ret)
875 		return ret;
876 
877 	disk = ctx->bdev->bd_disk;
878 	q = disk->queue;
879 
880 	/* Prevent concurrent with blkcg_deactivate_policy() */
881 	mutex_lock(&q->blkcg_mutex);
882 	spin_lock_irq(&q->queue_lock);
883 
884 	if (!blkcg_policy_enabled(q, pol)) {
885 		ret = -EOPNOTSUPP;
886 		goto fail_unlock;
887 	}
888 
889 	blkg = blkg_lookup(blkcg, q);
890 	if (blkg)
891 		goto success;
892 
893 	/*
894 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
895 	 * non-root blkgs have access to their parents.
896 	 */
897 	while (true) {
898 		struct blkcg *pos = blkcg;
899 		struct blkcg *parent;
900 		struct blkcg_gq *new_blkg;
901 
902 		parent = blkcg_parent(blkcg);
903 		while (parent && !blkg_lookup(parent, q)) {
904 			pos = parent;
905 			parent = blkcg_parent(parent);
906 		}
907 
908 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
909 		spin_unlock_irq(&q->queue_lock);
910 
911 		new_blkg = blkg_alloc(pos, disk, GFP_NOIO);
912 		if (unlikely(!new_blkg)) {
913 			ret = -ENOMEM;
914 			goto fail_exit;
915 		}
916 
917 		if (radix_tree_preload(GFP_KERNEL)) {
918 			blkg_free(new_blkg);
919 			ret = -ENOMEM;
920 			goto fail_exit;
921 		}
922 
923 		spin_lock_irq(&q->queue_lock);
924 
925 		if (!blkcg_policy_enabled(q, pol)) {
926 			blkg_free(new_blkg);
927 			ret = -EOPNOTSUPP;
928 			goto fail_preloaded;
929 		}
930 
931 		blkg = blkg_lookup(pos, q);
932 		if (blkg) {
933 			blkg_free(new_blkg);
934 		} else {
935 			blkg = blkg_create(pos, disk, new_blkg);
936 			if (IS_ERR(blkg)) {
937 				ret = PTR_ERR(blkg);
938 				goto fail_preloaded;
939 			}
940 		}
941 
942 		radix_tree_preload_end();
943 
944 		if (pos == blkcg)
945 			goto success;
946 	}
947 success:
948 	mutex_unlock(&q->blkcg_mutex);
949 	ctx->blkg = blkg;
950 	return 0;
951 
952 fail_preloaded:
953 	radix_tree_preload_end();
954 fail_unlock:
955 	spin_unlock_irq(&q->queue_lock);
956 fail_exit:
957 	mutex_unlock(&q->blkcg_mutex);
958 	/*
959 	 * If queue was bypassing, we should retry.  Do so after a
960 	 * short msleep().  It isn't strictly necessary but queue
961 	 * can be bypassing for some time and it's always nice to
962 	 * avoid busy looping.
963 	 */
964 	if (ret == -EBUSY) {
965 		msleep(10);
966 		ret = restart_syscall();
967 	}
968 	return ret;
969 }
970 EXPORT_SYMBOL_GPL(blkg_conf_prep);
971 
972 /**
973  * blkg_conf_exit - clean up per-blkg config update
974  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
975  *
976  * Clean up after per-blkg config update. This function must be called on all
977  * blkg_conf_ctx's initialized with blkg_conf_init().
978  */
979 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
980 	__releases(&ctx->bdev->bd_queue->queue_lock)
981 	__releases(&ctx->bdev->bd_queue->rq_qos_mutex)
982 {
983 	if (ctx->blkg) {
984 		spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
985 		ctx->blkg = NULL;
986 	}
987 
988 	if (ctx->bdev) {
989 		mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
990 		blkdev_put_no_open(ctx->bdev);
991 		ctx->body = NULL;
992 		ctx->bdev = NULL;
993 	}
994 }
995 EXPORT_SYMBOL_GPL(blkg_conf_exit);
996 
997 /*
998  * Similar to blkg_conf_exit, but also unfreezes the queue and releases
999  * q->elevator_lock. Should be used when blkg_conf_open_bdev_frozen
1000  * is used to open the bdev.
1001  */
1002 void blkg_conf_exit_frozen(struct blkg_conf_ctx *ctx, unsigned long memflags)
1003 {
1004 	if (ctx->bdev) {
1005 		struct request_queue *q = ctx->bdev->bd_queue;
1006 
1007 		blkg_conf_exit(ctx);
1008 		mutex_unlock(&q->elevator_lock);
1009 		blk_mq_unfreeze_queue(q, memflags);
1010 	}
1011 }
1012 
1013 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
1014 {
1015 	int i;
1016 
1017 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1018 		dst->bytes[i] += src->bytes[i];
1019 		dst->ios[i] += src->ios[i];
1020 	}
1021 }
1022 
1023 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
1024 {
1025 	int i;
1026 
1027 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1028 		dst->bytes[i] -= src->bytes[i];
1029 		dst->ios[i] -= src->ios[i];
1030 	}
1031 }
1032 
1033 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
1034 				struct blkg_iostat *last)
1035 {
1036 	struct blkg_iostat delta;
1037 	unsigned long flags;
1038 
1039 	/* propagate percpu delta to global */
1040 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1041 	blkg_iostat_set(&delta, cur);
1042 	blkg_iostat_sub(&delta, last);
1043 	blkg_iostat_add(&blkg->iostat.cur, &delta);
1044 	blkg_iostat_add(last, &delta);
1045 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1046 }
1047 
1048 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
1049 {
1050 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1051 	struct llist_node *lnode;
1052 	struct blkg_iostat_set *bisc, *next_bisc;
1053 	unsigned long flags;
1054 
1055 	rcu_read_lock();
1056 
1057 	lnode = llist_del_all(lhead);
1058 	if (!lnode)
1059 		goto out;
1060 
1061 	/*
1062 	 * For covering concurrent parent blkg update from blkg_release().
1063 	 *
1064 	 * When flushing from cgroup, the subsystem rstat lock is always held,
1065 	 * so this lock won't cause contention most of time.
1066 	 */
1067 	raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1068 
1069 	/*
1070 	 * Iterate only the iostat_cpu's queued in the lockless list.
1071 	 */
1072 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1073 		struct blkcg_gq *blkg = bisc->blkg;
1074 		struct blkcg_gq *parent = blkg->parent;
1075 		struct blkg_iostat cur;
1076 		unsigned int seq;
1077 
1078 		/*
1079 		 * Order assignment of `next_bisc` from `bisc->lnode.next` in
1080 		 * llist_for_each_entry_safe and clearing `bisc->lqueued` for
1081 		 * avoiding to assign `next_bisc` with new next pointer added
1082 		 * in blk_cgroup_bio_start() in case of re-ordering.
1083 		 *
1084 		 * The pair barrier is implied in llist_add() in blk_cgroup_bio_start().
1085 		 */
1086 		smp_mb();
1087 
1088 		WRITE_ONCE(bisc->lqueued, false);
1089 		if (bisc == &blkg->iostat)
1090 			goto propagate_up; /* propagate up to parent only */
1091 
1092 		/* fetch the current per-cpu values */
1093 		do {
1094 			seq = u64_stats_fetch_begin(&bisc->sync);
1095 			blkg_iostat_set(&cur, &bisc->cur);
1096 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
1097 
1098 		blkcg_iostat_update(blkg, &cur, &bisc->last);
1099 
1100 propagate_up:
1101 		/* propagate global delta to parent (unless that's root) */
1102 		if (parent && parent->parent) {
1103 			blkcg_iostat_update(parent, &blkg->iostat.cur,
1104 					    &blkg->iostat.last);
1105 			/*
1106 			 * Queue parent->iostat to its blkcg's lockless
1107 			 * list to propagate up to the grandparent if the
1108 			 * iostat hasn't been queued yet.
1109 			 */
1110 			if (!parent->iostat.lqueued) {
1111 				struct llist_head *plhead;
1112 
1113 				plhead = per_cpu_ptr(parent->blkcg->lhead, cpu);
1114 				llist_add(&parent->iostat.lnode, plhead);
1115 				parent->iostat.lqueued = true;
1116 			}
1117 		}
1118 	}
1119 	raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1120 out:
1121 	rcu_read_unlock();
1122 }
1123 
1124 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1125 {
1126 	/* Root-level stats are sourced from system-wide IO stats */
1127 	if (cgroup_parent(css->cgroup))
1128 		__blkcg_rstat_flush(css_to_blkcg(css), cpu);
1129 }
1130 
1131 /*
1132  * We source root cgroup stats from the system-wide stats to avoid
1133  * tracking the same information twice and incurring overhead when no
1134  * cgroups are defined. For that reason, css_rstat_flush in
1135  * blkcg_print_stat does not actually fill out the iostat in the root
1136  * cgroup's blkcg_gq.
1137  *
1138  * However, we would like to re-use the printing code between the root and
1139  * non-root cgroups to the extent possible. For that reason, we simulate
1140  * flushing the root cgroup's stats by explicitly filling in the iostat
1141  * with disk level statistics.
1142  */
1143 static void blkcg_fill_root_iostats(void)
1144 {
1145 	struct class_dev_iter iter;
1146 	struct device *dev;
1147 
1148 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1149 	while ((dev = class_dev_iter_next(&iter))) {
1150 		struct block_device *bdev = dev_to_bdev(dev);
1151 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1152 		struct blkg_iostat tmp;
1153 		int cpu;
1154 		unsigned long flags;
1155 
1156 		memset(&tmp, 0, sizeof(tmp));
1157 		for_each_possible_cpu(cpu) {
1158 			struct disk_stats *cpu_dkstats;
1159 
1160 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1161 			tmp.ios[BLKG_IOSTAT_READ] +=
1162 				cpu_dkstats->ios[STAT_READ];
1163 			tmp.ios[BLKG_IOSTAT_WRITE] +=
1164 				cpu_dkstats->ios[STAT_WRITE];
1165 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
1166 				cpu_dkstats->ios[STAT_DISCARD];
1167 			// convert sectors to bytes
1168 			tmp.bytes[BLKG_IOSTAT_READ] +=
1169 				cpu_dkstats->sectors[STAT_READ] << 9;
1170 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
1171 				cpu_dkstats->sectors[STAT_WRITE] << 9;
1172 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1173 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
1174 		}
1175 
1176 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1177 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
1178 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1179 	}
1180 	class_dev_iter_exit(&iter);
1181 }
1182 
1183 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1184 {
1185 	struct blkg_iostat_set *bis = &blkg->iostat;
1186 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
1187 	const char *dname;
1188 	unsigned seq;
1189 	int i;
1190 
1191 	if (!blkg->online)
1192 		return;
1193 
1194 	dname = blkg_dev_name(blkg);
1195 	if (!dname)
1196 		return;
1197 
1198 	seq_printf(s, "%s ", dname);
1199 
1200 	do {
1201 		seq = u64_stats_fetch_begin(&bis->sync);
1202 
1203 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1204 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1205 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1206 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1207 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1208 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1209 	} while (u64_stats_fetch_retry(&bis->sync, seq));
1210 
1211 	if (rbytes || wbytes || rios || wios) {
1212 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1213 			rbytes, wbytes, rios, wios,
1214 			dbytes, dios);
1215 	}
1216 
1217 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1218 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1219 			atomic_read(&blkg->use_delay),
1220 			atomic64_read(&blkg->delay_nsec));
1221 	}
1222 
1223 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1224 		struct blkcg_policy *pol = blkcg_policy[i];
1225 
1226 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1227 			continue;
1228 
1229 		pol->pd_stat_fn(blkg->pd[i], s);
1230 	}
1231 
1232 	seq_puts(s, "\n");
1233 }
1234 
1235 static int blkcg_print_stat(struct seq_file *sf, void *v)
1236 {
1237 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1238 	struct blkcg_gq *blkg;
1239 
1240 	if (!seq_css(sf)->parent)
1241 		blkcg_fill_root_iostats();
1242 	else
1243 		css_rstat_flush(&blkcg->css);
1244 
1245 	rcu_read_lock();
1246 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1247 		spin_lock_irq(&blkg->q->queue_lock);
1248 		blkcg_print_one_stat(blkg, sf);
1249 		spin_unlock_irq(&blkg->q->queue_lock);
1250 	}
1251 	rcu_read_unlock();
1252 	return 0;
1253 }
1254 
1255 static struct cftype blkcg_files[] = {
1256 	{
1257 		.name = "stat",
1258 		.seq_show = blkcg_print_stat,
1259 	},
1260 	{ }	/* terminate */
1261 };
1262 
1263 static struct cftype blkcg_legacy_files[] = {
1264 	{
1265 		.name = "reset_stats",
1266 		.write_u64 = blkcg_reset_stats,
1267 	},
1268 	{ }	/* terminate */
1269 };
1270 
1271 #ifdef CONFIG_CGROUP_WRITEBACK
1272 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1273 {
1274 	return &css_to_blkcg(css)->cgwb_list;
1275 }
1276 #endif
1277 
1278 /*
1279  * blkcg destruction is a three-stage process.
1280  *
1281  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1282  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1283  *    to the completion of writeback associated with the blkcg.  This lets us
1284  *    avoid punting potentially large amounts of outstanding writeback to root
1285  *    while maintaining any ongoing policies.  The next stage is triggered when
1286  *    the nr_cgwbs count goes to zero.
1287  *
1288  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1289  *    and handles the destruction of blkgs.  Here the css reference held by
1290  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1291  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1292  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1293  *    punted to the root_blkg.
1294  *
1295  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1296  *    This finally frees the blkcg.
1297  */
1298 
1299 /**
1300  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1301  * @blkcg: blkcg of interest
1302  *
1303  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1304  * is nested inside q lock, this function performs reverse double lock dancing.
1305  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1306  * blkcg_css_free to eventually be called.
1307  *
1308  * This is the blkcg counterpart of ioc_release_fn().
1309  */
1310 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1311 {
1312 	might_sleep();
1313 
1314 	spin_lock_irq(&blkcg->lock);
1315 
1316 	while (!hlist_empty(&blkcg->blkg_list)) {
1317 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1318 						struct blkcg_gq, blkcg_node);
1319 		struct request_queue *q = blkg->q;
1320 
1321 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1322 			/*
1323 			 * Given that the system can accumulate a huge number
1324 			 * of blkgs in pathological cases, check to see if we
1325 			 * need to rescheduling to avoid softlockup.
1326 			 */
1327 			spin_unlock_irq(&blkcg->lock);
1328 			cond_resched();
1329 			spin_lock_irq(&blkcg->lock);
1330 			continue;
1331 		}
1332 
1333 		blkg_destroy(blkg);
1334 		spin_unlock(&q->queue_lock);
1335 	}
1336 
1337 	spin_unlock_irq(&blkcg->lock);
1338 }
1339 
1340 /**
1341  * blkcg_pin_online - pin online state
1342  * @blkcg_css: blkcg of interest
1343  *
1344  * While pinned, a blkcg is kept online.  This is primarily used to
1345  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1346  * while an associated cgwb is still active.
1347  */
1348 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1349 {
1350 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1351 }
1352 
1353 /**
1354  * blkcg_unpin_online - unpin online state
1355  * @blkcg_css: blkcg of interest
1356  *
1357  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1358  * that blkg doesn't go offline while an associated cgwb is still active.
1359  * When this count goes to zero, all active cgwbs have finished so the
1360  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1361  */
1362 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1363 {
1364 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1365 
1366 	do {
1367 		struct blkcg *parent;
1368 
1369 		if (!refcount_dec_and_test(&blkcg->online_pin))
1370 			break;
1371 
1372 		parent = blkcg_parent(blkcg);
1373 		blkcg_destroy_blkgs(blkcg);
1374 		blkcg = parent;
1375 	} while (blkcg);
1376 }
1377 
1378 /**
1379  * blkcg_css_offline - cgroup css_offline callback
1380  * @css: css of interest
1381  *
1382  * This function is called when @css is about to go away.  Here the cgwbs are
1383  * offlined first and only once writeback associated with the blkcg has
1384  * finished do we start step 2 (see above).
1385  */
1386 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1387 {
1388 	/* this prevents anyone from attaching or migrating to this blkcg */
1389 	wb_blkcg_offline(css);
1390 
1391 	/* put the base online pin allowing step 2 to be triggered */
1392 	blkcg_unpin_online(css);
1393 }
1394 
1395 static void blkcg_css_free(struct cgroup_subsys_state *css)
1396 {
1397 	struct blkcg *blkcg = css_to_blkcg(css);
1398 	int i;
1399 
1400 	mutex_lock(&blkcg_pol_mutex);
1401 
1402 	list_del(&blkcg->all_blkcgs_node);
1403 
1404 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1405 		if (blkcg->cpd[i])
1406 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1407 
1408 	mutex_unlock(&blkcg_pol_mutex);
1409 
1410 	free_percpu(blkcg->lhead);
1411 	kfree(blkcg);
1412 }
1413 
1414 static struct cgroup_subsys_state *
1415 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1416 {
1417 	struct blkcg *blkcg;
1418 	int i;
1419 
1420 	mutex_lock(&blkcg_pol_mutex);
1421 
1422 	if (!parent_css) {
1423 		blkcg = &blkcg_root;
1424 	} else {
1425 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1426 		if (!blkcg)
1427 			goto unlock;
1428 	}
1429 
1430 	if (init_blkcg_llists(blkcg))
1431 		goto free_blkcg;
1432 
1433 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1434 		struct blkcg_policy *pol = blkcg_policy[i];
1435 		struct blkcg_policy_data *cpd;
1436 
1437 		/*
1438 		 * If the policy hasn't been attached yet, wait for it
1439 		 * to be attached before doing anything else. Otherwise,
1440 		 * check if the policy requires any specific per-cgroup
1441 		 * data: if it does, allocate and initialize it.
1442 		 */
1443 		if (!pol || !pol->cpd_alloc_fn)
1444 			continue;
1445 
1446 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1447 		if (!cpd)
1448 			goto free_pd_blkcg;
1449 
1450 		blkcg->cpd[i] = cpd;
1451 		cpd->blkcg = blkcg;
1452 		cpd->plid = i;
1453 	}
1454 
1455 	spin_lock_init(&blkcg->lock);
1456 	refcount_set(&blkcg->online_pin, 1);
1457 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT);
1458 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1459 #ifdef CONFIG_CGROUP_WRITEBACK
1460 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1461 #endif
1462 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1463 
1464 	mutex_unlock(&blkcg_pol_mutex);
1465 	return &blkcg->css;
1466 
1467 free_pd_blkcg:
1468 	for (i--; i >= 0; i--)
1469 		if (blkcg->cpd[i])
1470 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1471 	free_percpu(blkcg->lhead);
1472 free_blkcg:
1473 	if (blkcg != &blkcg_root)
1474 		kfree(blkcg);
1475 unlock:
1476 	mutex_unlock(&blkcg_pol_mutex);
1477 	return ERR_PTR(-ENOMEM);
1478 }
1479 
1480 static int blkcg_css_online(struct cgroup_subsys_state *css)
1481 {
1482 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1483 
1484 	/*
1485 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1486 	 * don't go offline while cgwbs are still active on them.  Pin the
1487 	 * parent so that offline always happens towards the root.
1488 	 */
1489 	if (parent)
1490 		blkcg_pin_online(&parent->css);
1491 	return 0;
1492 }
1493 
1494 void blkg_init_queue(struct request_queue *q)
1495 {
1496 	INIT_LIST_HEAD(&q->blkg_list);
1497 	mutex_init(&q->blkcg_mutex);
1498 }
1499 
1500 int blkcg_init_disk(struct gendisk *disk)
1501 {
1502 	struct request_queue *q = disk->queue;
1503 	struct blkcg_gq *new_blkg, *blkg;
1504 	bool preloaded;
1505 
1506 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1507 	if (!new_blkg)
1508 		return -ENOMEM;
1509 
1510 	preloaded = !radix_tree_preload(GFP_KERNEL);
1511 
1512 	/* Make sure the root blkg exists. */
1513 	/* spin_lock_irq can serve as RCU read-side critical section. */
1514 	spin_lock_irq(&q->queue_lock);
1515 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1516 	if (IS_ERR(blkg))
1517 		goto err_unlock;
1518 	q->root_blkg = blkg;
1519 	spin_unlock_irq(&q->queue_lock);
1520 
1521 	if (preloaded)
1522 		radix_tree_preload_end();
1523 
1524 	return 0;
1525 
1526 err_unlock:
1527 	spin_unlock_irq(&q->queue_lock);
1528 	if (preloaded)
1529 		radix_tree_preload_end();
1530 	return PTR_ERR(blkg);
1531 }
1532 
1533 void blkcg_exit_disk(struct gendisk *disk)
1534 {
1535 	blkg_destroy_all(disk);
1536 	blk_throtl_exit(disk);
1537 }
1538 
1539 static void blkcg_exit(struct task_struct *tsk)
1540 {
1541 	if (tsk->throttle_disk)
1542 		put_disk(tsk->throttle_disk);
1543 	tsk->throttle_disk = NULL;
1544 }
1545 
1546 struct cgroup_subsys io_cgrp_subsys = {
1547 	.css_alloc = blkcg_css_alloc,
1548 	.css_online = blkcg_css_online,
1549 	.css_offline = blkcg_css_offline,
1550 	.css_free = blkcg_css_free,
1551 	.css_rstat_flush = blkcg_rstat_flush,
1552 	.dfl_cftypes = blkcg_files,
1553 	.legacy_cftypes = blkcg_legacy_files,
1554 	.legacy_name = "blkio",
1555 	.exit = blkcg_exit,
1556 #ifdef CONFIG_MEMCG
1557 	/*
1558 	 * This ensures that, if available, memcg is automatically enabled
1559 	 * together on the default hierarchy so that the owner cgroup can
1560 	 * be retrieved from writeback pages.
1561 	 */
1562 	.depends_on = 1 << memory_cgrp_id,
1563 #endif
1564 };
1565 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1566 
1567 /**
1568  * blkcg_activate_policy - activate a blkcg policy on a gendisk
1569  * @disk: gendisk of interest
1570  * @pol: blkcg policy to activate
1571  *
1572  * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1573  * bypass mode to populate its blkgs with policy_data for @pol.
1574  *
1575  * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1576  * from IO path.  Update of each blkg is protected by both queue and blkcg
1577  * locks so that holding either lock and testing blkcg_policy_enabled() is
1578  * always enough for dereferencing policy data.
1579  *
1580  * The caller is responsible for synchronizing [de]activations and policy
1581  * [un]registerations.  Returns 0 on success, -errno on failure.
1582  */
1583 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1584 {
1585 	struct request_queue *q = disk->queue;
1586 	struct blkg_policy_data *pd_prealloc = NULL;
1587 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1588 	unsigned int memflags;
1589 	int ret;
1590 
1591 	if (blkcg_policy_enabled(q, pol))
1592 		return 0;
1593 
1594 	/*
1595 	 * Policy is allowed to be registered without pd_alloc_fn/pd_free_fn,
1596 	 * for example, ioprio. Such policy will work on blkcg level, not disk
1597 	 * level, and don't need to be activated.
1598 	 */
1599 	if (WARN_ON_ONCE(!pol->pd_alloc_fn || !pol->pd_free_fn))
1600 		return -EINVAL;
1601 
1602 	if (queue_is_mq(q))
1603 		memflags = blk_mq_freeze_queue(q);
1604 retry:
1605 	spin_lock_irq(&q->queue_lock);
1606 
1607 	/* blkg_list is pushed at the head, reverse walk to initialize parents first */
1608 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1609 		struct blkg_policy_data *pd;
1610 
1611 		if (blkg->pd[pol->plid])
1612 			continue;
1613 
1614 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1615 		if (blkg == pinned_blkg) {
1616 			pd = pd_prealloc;
1617 			pd_prealloc = NULL;
1618 		} else {
1619 			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1620 					      GFP_NOWAIT);
1621 		}
1622 
1623 		if (!pd) {
1624 			/*
1625 			 * GFP_NOWAIT failed.  Free the existing one and
1626 			 * prealloc for @blkg w/ GFP_KERNEL.
1627 			 */
1628 			if (pinned_blkg)
1629 				blkg_put(pinned_blkg);
1630 			blkg_get(blkg);
1631 			pinned_blkg = blkg;
1632 
1633 			spin_unlock_irq(&q->queue_lock);
1634 
1635 			if (pd_prealloc)
1636 				pol->pd_free_fn(pd_prealloc);
1637 			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1638 						       GFP_KERNEL);
1639 			if (pd_prealloc)
1640 				goto retry;
1641 			else
1642 				goto enomem;
1643 		}
1644 
1645 		spin_lock(&blkg->blkcg->lock);
1646 
1647 		pd->blkg = blkg;
1648 		pd->plid = pol->plid;
1649 		blkg->pd[pol->plid] = pd;
1650 
1651 		if (pol->pd_init_fn)
1652 			pol->pd_init_fn(pd);
1653 
1654 		if (pol->pd_online_fn)
1655 			pol->pd_online_fn(pd);
1656 		pd->online = true;
1657 
1658 		spin_unlock(&blkg->blkcg->lock);
1659 	}
1660 
1661 	__set_bit(pol->plid, q->blkcg_pols);
1662 	ret = 0;
1663 
1664 	spin_unlock_irq(&q->queue_lock);
1665 out:
1666 	if (queue_is_mq(q))
1667 		blk_mq_unfreeze_queue(q, memflags);
1668 	if (pinned_blkg)
1669 		blkg_put(pinned_blkg);
1670 	if (pd_prealloc)
1671 		pol->pd_free_fn(pd_prealloc);
1672 	return ret;
1673 
1674 enomem:
1675 	/* alloc failed, take down everything */
1676 	spin_lock_irq(&q->queue_lock);
1677 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1678 		struct blkcg *blkcg = blkg->blkcg;
1679 		struct blkg_policy_data *pd;
1680 
1681 		spin_lock(&blkcg->lock);
1682 		pd = blkg->pd[pol->plid];
1683 		if (pd) {
1684 			if (pd->online && pol->pd_offline_fn)
1685 				pol->pd_offline_fn(pd);
1686 			pd->online = false;
1687 			pol->pd_free_fn(pd);
1688 			blkg->pd[pol->plid] = NULL;
1689 		}
1690 		spin_unlock(&blkcg->lock);
1691 	}
1692 	spin_unlock_irq(&q->queue_lock);
1693 	ret = -ENOMEM;
1694 	goto out;
1695 }
1696 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1697 
1698 /**
1699  * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1700  * @disk: gendisk of interest
1701  * @pol: blkcg policy to deactivate
1702  *
1703  * Deactivate @pol on @disk.  Follows the same synchronization rules as
1704  * blkcg_activate_policy().
1705  */
1706 void blkcg_deactivate_policy(struct gendisk *disk,
1707 			     const struct blkcg_policy *pol)
1708 {
1709 	struct request_queue *q = disk->queue;
1710 	struct blkcg_gq *blkg;
1711 	unsigned int memflags;
1712 
1713 	if (!blkcg_policy_enabled(q, pol))
1714 		return;
1715 
1716 	if (queue_is_mq(q))
1717 		memflags = blk_mq_freeze_queue(q);
1718 
1719 	mutex_lock(&q->blkcg_mutex);
1720 	spin_lock_irq(&q->queue_lock);
1721 
1722 	__clear_bit(pol->plid, q->blkcg_pols);
1723 
1724 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1725 		struct blkcg *blkcg = blkg->blkcg;
1726 
1727 		spin_lock(&blkcg->lock);
1728 		if (blkg->pd[pol->plid]) {
1729 			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1730 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1731 			pol->pd_free_fn(blkg->pd[pol->plid]);
1732 			blkg->pd[pol->plid] = NULL;
1733 		}
1734 		spin_unlock(&blkcg->lock);
1735 	}
1736 
1737 	spin_unlock_irq(&q->queue_lock);
1738 	mutex_unlock(&q->blkcg_mutex);
1739 
1740 	if (queue_is_mq(q))
1741 		blk_mq_unfreeze_queue(q, memflags);
1742 }
1743 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1744 
1745 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1746 {
1747 	struct blkcg *blkcg;
1748 
1749 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1750 		if (blkcg->cpd[pol->plid]) {
1751 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1752 			blkcg->cpd[pol->plid] = NULL;
1753 		}
1754 	}
1755 }
1756 
1757 /**
1758  * blkcg_policy_register - register a blkcg policy
1759  * @pol: blkcg policy to register
1760  *
1761  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1762  * successful registration.  Returns 0 on success and -errno on failure.
1763  */
1764 int blkcg_policy_register(struct blkcg_policy *pol)
1765 {
1766 	struct blkcg *blkcg;
1767 	int i, ret;
1768 
1769 	/*
1770 	 * Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs, and policy
1771 	 * without pd_alloc_fn/pd_free_fn can't be activated.
1772 	 */
1773 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1774 	    (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1775 		return -EINVAL;
1776 
1777 	mutex_lock(&blkcg_pol_register_mutex);
1778 	mutex_lock(&blkcg_pol_mutex);
1779 
1780 	/* find an empty slot */
1781 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1782 		if (!blkcg_policy[i])
1783 			break;
1784 	if (i >= BLKCG_MAX_POLS) {
1785 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1786 		ret = -ENOSPC;
1787 		goto err_unlock;
1788 	}
1789 
1790 	/* register @pol */
1791 	pol->plid = i;
1792 	blkcg_policy[pol->plid] = pol;
1793 
1794 	/* allocate and install cpd's */
1795 	if (pol->cpd_alloc_fn) {
1796 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1797 			struct blkcg_policy_data *cpd;
1798 
1799 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1800 			if (!cpd) {
1801 				ret = -ENOMEM;
1802 				goto err_free_cpds;
1803 			}
1804 
1805 			blkcg->cpd[pol->plid] = cpd;
1806 			cpd->blkcg = blkcg;
1807 			cpd->plid = pol->plid;
1808 		}
1809 	}
1810 
1811 	mutex_unlock(&blkcg_pol_mutex);
1812 
1813 	/* everything is in place, add intf files for the new policy */
1814 	if (pol->dfl_cftypes == pol->legacy_cftypes) {
1815 		WARN_ON(cgroup_add_cftypes(&io_cgrp_subsys,
1816 					   pol->dfl_cftypes));
1817 	} else {
1818 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1819 					       pol->dfl_cftypes));
1820 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1821 						  pol->legacy_cftypes));
1822 	}
1823 	mutex_unlock(&blkcg_pol_register_mutex);
1824 	return 0;
1825 
1826 err_free_cpds:
1827 	if (pol->cpd_free_fn)
1828 		blkcg_free_all_cpd(pol);
1829 
1830 	blkcg_policy[pol->plid] = NULL;
1831 err_unlock:
1832 	mutex_unlock(&blkcg_pol_mutex);
1833 	mutex_unlock(&blkcg_pol_register_mutex);
1834 	return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1837 
1838 /**
1839  * blkcg_policy_unregister - unregister a blkcg policy
1840  * @pol: blkcg policy to unregister
1841  *
1842  * Undo blkcg_policy_register(@pol).  Might sleep.
1843  */
1844 void blkcg_policy_unregister(struct blkcg_policy *pol)
1845 {
1846 	mutex_lock(&blkcg_pol_register_mutex);
1847 
1848 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1849 		goto out_unlock;
1850 
1851 	/* kill the intf files first */
1852 	if (pol->dfl_cftypes)
1853 		cgroup_rm_cftypes(pol->dfl_cftypes);
1854 	if (pol->legacy_cftypes)
1855 		cgroup_rm_cftypes(pol->legacy_cftypes);
1856 
1857 	/* remove cpds and unregister */
1858 	mutex_lock(&blkcg_pol_mutex);
1859 
1860 	if (pol->cpd_free_fn)
1861 		blkcg_free_all_cpd(pol);
1862 
1863 	blkcg_policy[pol->plid] = NULL;
1864 
1865 	mutex_unlock(&blkcg_pol_mutex);
1866 out_unlock:
1867 	mutex_unlock(&blkcg_pol_register_mutex);
1868 }
1869 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1870 
1871 /*
1872  * Scale the accumulated delay based on how long it has been since we updated
1873  * the delay.  We only call this when we are adding delay, in case it's been a
1874  * while since we added delay, and when we are checking to see if we need to
1875  * delay a task, to account for any delays that may have occurred.
1876  */
1877 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1878 {
1879 	u64 old = atomic64_read(&blkg->delay_start);
1880 
1881 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1882 	if (atomic_read(&blkg->use_delay) < 0)
1883 		return;
1884 
1885 	/*
1886 	 * We only want to scale down every second.  The idea here is that we
1887 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1888 	 * time window.  We only want to throttle tasks for recent delay that
1889 	 * has occurred, in 1 second time windows since that's the maximum
1890 	 * things can be throttled.  We save the current delay window in
1891 	 * blkg->last_delay so we know what amount is still left to be charged
1892 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1893 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1894 	 * are ok with whatever is happening now, and we can take away more of
1895 	 * the accumulated delay as we've already throttled enough that
1896 	 * everybody is happy with their IO latencies.
1897 	 */
1898 	if (time_before64(old + NSEC_PER_SEC, now) &&
1899 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1900 		u64 cur = atomic64_read(&blkg->delay_nsec);
1901 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1902 		int cur_use = atomic_read(&blkg->use_delay);
1903 
1904 		/*
1905 		 * We've been unthrottled, subtract a larger chunk of our
1906 		 * accumulated delay.
1907 		 */
1908 		if (cur_use < blkg->last_use)
1909 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1910 
1911 		/*
1912 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1913 		 * should only ever be growing except here where we subtract out
1914 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1915 		 * rather not end up with negative numbers.
1916 		 */
1917 		if (unlikely(cur < sub)) {
1918 			atomic64_set(&blkg->delay_nsec, 0);
1919 			blkg->last_delay = 0;
1920 		} else {
1921 			atomic64_sub(sub, &blkg->delay_nsec);
1922 			blkg->last_delay = cur - sub;
1923 		}
1924 		blkg->last_use = cur_use;
1925 	}
1926 }
1927 
1928 /*
1929  * This is called when we want to actually walk up the hierarchy and check to
1930  * see if we need to throttle, and then actually throttle if there is some
1931  * accumulated delay.  This should only be called upon return to user space so
1932  * we're not holding some lock that would induce a priority inversion.
1933  */
1934 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1935 {
1936 	unsigned long pflags;
1937 	bool clamp;
1938 	u64 now = blk_time_get_ns();
1939 	u64 exp;
1940 	u64 delay_nsec = 0;
1941 	int tok;
1942 
1943 	while (blkg->parent) {
1944 		int use_delay = atomic_read(&blkg->use_delay);
1945 
1946 		if (use_delay) {
1947 			u64 this_delay;
1948 
1949 			blkcg_scale_delay(blkg, now);
1950 			this_delay = atomic64_read(&blkg->delay_nsec);
1951 			if (this_delay > delay_nsec) {
1952 				delay_nsec = this_delay;
1953 				clamp = use_delay > 0;
1954 			}
1955 		}
1956 		blkg = blkg->parent;
1957 	}
1958 
1959 	if (!delay_nsec)
1960 		return;
1961 
1962 	/*
1963 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1964 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1965 	 * delay, and we want userspace to be able to do _something_ so cap the
1966 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1967 	 * tasks will be delayed for 0.25 second for every syscall. If
1968 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1969 	 * caller is responsible for regulating the range.
1970 	 */
1971 	if (clamp)
1972 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1973 
1974 	if (use_memdelay)
1975 		psi_memstall_enter(&pflags);
1976 
1977 	exp = ktime_add_ns(now, delay_nsec);
1978 	tok = io_schedule_prepare();
1979 	do {
1980 		__set_current_state(TASK_KILLABLE);
1981 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1982 			break;
1983 	} while (!fatal_signal_pending(current));
1984 	io_schedule_finish(tok);
1985 
1986 	if (use_memdelay)
1987 		psi_memstall_leave(&pflags);
1988 }
1989 
1990 /**
1991  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1992  *
1993  * This is only called if we've been marked with set_notify_resume().  Obviously
1994  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1995  * check to see if current->throttle_disk is set and if not this doesn't do
1996  * anything.  This should only ever be called by the resume code, it's not meant
1997  * to be called by people willy-nilly as it will actually do the work to
1998  * throttle the task if it is setup for throttling.
1999  */
2000 void blkcg_maybe_throttle_current(void)
2001 {
2002 	struct gendisk *disk = current->throttle_disk;
2003 	struct blkcg *blkcg;
2004 	struct blkcg_gq *blkg;
2005 	bool use_memdelay = current->use_memdelay;
2006 
2007 	if (!disk)
2008 		return;
2009 
2010 	current->throttle_disk = NULL;
2011 	current->use_memdelay = false;
2012 
2013 	rcu_read_lock();
2014 	blkcg = css_to_blkcg(blkcg_css());
2015 	if (!blkcg)
2016 		goto out;
2017 	blkg = blkg_lookup(blkcg, disk->queue);
2018 	if (!blkg)
2019 		goto out;
2020 	if (!blkg_tryget(blkg))
2021 		goto out;
2022 	rcu_read_unlock();
2023 
2024 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
2025 	blkg_put(blkg);
2026 	put_disk(disk);
2027 	return;
2028 out:
2029 	rcu_read_unlock();
2030 }
2031 
2032 /**
2033  * blkcg_schedule_throttle - this task needs to check for throttling
2034  * @disk: disk to throttle
2035  * @use_memdelay: do we charge this to memory delay for PSI
2036  *
2037  * This is called by the IO controller when we know there's delay accumulated
2038  * for the blkg for this task.  We do not pass the blkg because there are places
2039  * we call this that may not have that information, the swapping code for
2040  * instance will only have a block_device at that point.  This set's the
2041  * notify_resume for the task to check and see if it requires throttling before
2042  * returning to user space.
2043  *
2044  * We will only schedule once per syscall.  You can call this over and over
2045  * again and it will only do the check once upon return to user space, and only
2046  * throttle once.  If the task needs to be throttled again it'll need to be
2047  * re-set at the next time we see the task.
2048  */
2049 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
2050 {
2051 	if (unlikely(current->flags & PF_KTHREAD))
2052 		return;
2053 
2054 	if (current->throttle_disk != disk) {
2055 		if (test_bit(GD_DEAD, &disk->state))
2056 			return;
2057 		get_device(disk_to_dev(disk));
2058 
2059 		if (current->throttle_disk)
2060 			put_disk(current->throttle_disk);
2061 		current->throttle_disk = disk;
2062 	}
2063 
2064 	if (use_memdelay)
2065 		current->use_memdelay = use_memdelay;
2066 	set_notify_resume(current);
2067 }
2068 
2069 /**
2070  * blkcg_add_delay - add delay to this blkg
2071  * @blkg: blkg of interest
2072  * @now: the current time in nanoseconds
2073  * @delta: how many nanoseconds of delay to add
2074  *
2075  * Charge @delta to the blkg's current delay accumulation.  This is used to
2076  * throttle tasks if an IO controller thinks we need more throttling.
2077  */
2078 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
2079 {
2080 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
2081 		return;
2082 	blkcg_scale_delay(blkg, now);
2083 	atomic64_add(delta, &blkg->delay_nsec);
2084 }
2085 
2086 /**
2087  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
2088  * @bio: target bio
2089  * @css: target css
2090  *
2091  * As the failure mode here is to walk up the blkg tree, this ensure that the
2092  * blkg->parent pointers are always valid.  This returns the blkg that it ended
2093  * up taking a reference on or %NULL if no reference was taken.
2094  */
2095 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2096 		struct cgroup_subsys_state *css)
2097 {
2098 	struct blkcg_gq *blkg, *ret_blkg = NULL;
2099 
2100 	rcu_read_lock();
2101 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2102 	while (blkg) {
2103 		if (blkg_tryget(blkg)) {
2104 			ret_blkg = blkg;
2105 			break;
2106 		}
2107 		blkg = blkg->parent;
2108 	}
2109 	rcu_read_unlock();
2110 
2111 	return ret_blkg;
2112 }
2113 
2114 /**
2115  * bio_associate_blkg_from_css - associate a bio with a specified css
2116  * @bio: target bio
2117  * @css: target css
2118  *
2119  * Associate @bio with the blkg found by combining the css's blkg and the
2120  * request_queue of the @bio.  An association failure is handled by walking up
2121  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
2122  * and q->root_blkg.  This situation only happens when a cgroup is dying and
2123  * then the remaining bios will spill to the closest alive blkg.
2124  *
2125  * A reference will be taken on the blkg and will be released when @bio is
2126  * freed.
2127  */
2128 void bio_associate_blkg_from_css(struct bio *bio,
2129 				 struct cgroup_subsys_state *css)
2130 {
2131 	if (bio->bi_blkg)
2132 		blkg_put(bio->bi_blkg);
2133 
2134 	if (css && css->parent) {
2135 		bio->bi_blkg = blkg_tryget_closest(bio, css);
2136 	} else {
2137 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2138 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2139 	}
2140 }
2141 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2142 
2143 /**
2144  * bio_associate_blkg - associate a bio with a blkg
2145  * @bio: target bio
2146  *
2147  * Associate @bio with the blkg found from the bio's css and request_queue.
2148  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2149  * already associated, the css is reused and association redone as the
2150  * request_queue may have changed.
2151  */
2152 void bio_associate_blkg(struct bio *bio)
2153 {
2154 	struct cgroup_subsys_state *css;
2155 
2156 	if (blk_op_is_passthrough(bio->bi_opf))
2157 		return;
2158 
2159 	rcu_read_lock();
2160 
2161 	if (bio->bi_blkg)
2162 		css = bio_blkcg_css(bio);
2163 	else
2164 		css = blkcg_css();
2165 
2166 	bio_associate_blkg_from_css(bio, css);
2167 
2168 	rcu_read_unlock();
2169 }
2170 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2171 
2172 /**
2173  * bio_clone_blkg_association - clone blkg association from src to dst bio
2174  * @dst: destination bio
2175  * @src: source bio
2176  */
2177 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2178 {
2179 	if (src->bi_blkg)
2180 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2181 }
2182 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2183 
2184 static int blk_cgroup_io_type(struct bio *bio)
2185 {
2186 	if (op_is_discard(bio->bi_opf))
2187 		return BLKG_IOSTAT_DISCARD;
2188 	if (op_is_write(bio->bi_opf))
2189 		return BLKG_IOSTAT_WRITE;
2190 	return BLKG_IOSTAT_READ;
2191 }
2192 
2193 void blk_cgroup_bio_start(struct bio *bio)
2194 {
2195 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2196 	int rwd = blk_cgroup_io_type(bio), cpu;
2197 	struct blkg_iostat_set *bis;
2198 	unsigned long flags;
2199 
2200 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2201 		return;
2202 
2203 	/* Root-level stats are sourced from system-wide IO stats */
2204 	if (!cgroup_parent(blkcg->css.cgroup))
2205 		return;
2206 
2207 	cpu = get_cpu();
2208 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2209 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2210 
2211 	/*
2212 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2213 	 * bio and we would have already accounted for the size of the bio.
2214 	 */
2215 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2216 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2217 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2218 	}
2219 	bis->cur.ios[rwd]++;
2220 
2221 	/*
2222 	 * If the iostat_cpu isn't in a lockless list, put it into the
2223 	 * list to indicate that a stat update is pending.
2224 	 */
2225 	if (!READ_ONCE(bis->lqueued)) {
2226 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2227 
2228 		llist_add(&bis->lnode, lhead);
2229 		WRITE_ONCE(bis->lqueued, true);
2230 	}
2231 
2232 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2233 	css_rstat_updated(&blkcg->css, cpu);
2234 	put_cpu();
2235 }
2236 
2237 bool blk_cgroup_congested(void)
2238 {
2239 	struct blkcg *blkcg;
2240 	bool ret = false;
2241 
2242 	rcu_read_lock();
2243 	for (blkcg = css_to_blkcg(blkcg_css()); blkcg;
2244 	     blkcg = blkcg_parent(blkcg)) {
2245 		if (atomic_read(&blkcg->congestion_count)) {
2246 			ret = true;
2247 			break;
2248 		}
2249 	}
2250 	rcu_read_unlock();
2251 	return ret;
2252 }
2253 
2254 module_param(blkcg_debug_stats, bool, 0644);
2255 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2256