1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/ctype.h> 29 #include <linux/resume_user_mode.h> 30 #include <linux/psi.h> 31 #include <linux/part_stat.h> 32 #include "blk.h" 33 #include "blk-cgroup.h" 34 #include "blk-ioprio.h" 35 #include "blk-throttle.h" 36 37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu); 38 39 /* 40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 42 * policy [un]register operations including cgroup file additions / 43 * removals. Putting cgroup file registration outside blkcg_pol_mutex 44 * allows grabbing it from cgroup callbacks. 45 */ 46 static DEFINE_MUTEX(blkcg_pol_register_mutex); 47 static DEFINE_MUTEX(blkcg_pol_mutex); 48 49 struct blkcg blkcg_root; 50 EXPORT_SYMBOL_GPL(blkcg_root); 51 52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 53 EXPORT_SYMBOL_GPL(blkcg_root_css); 54 55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 56 57 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 58 59 bool blkcg_debug_stats = false; 60 61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock); 62 63 #define BLKG_DESTROY_BATCH_SIZE 64 64 65 /* 66 * Lockless lists for tracking IO stats update 67 * 68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg). 69 * There are multiple blkg's (one for each block device) attached to each 70 * blkcg. The rstat code keeps track of which cpu has IO stats updated, 71 * but it doesn't know which blkg has the updated stats. If there are many 72 * block devices in a system, the cost of iterating all the blkg's to flush 73 * out the IO stats can be high. To reduce such overhead, a set of percpu 74 * lockless lists (lhead) per blkcg are used to track the set of recently 75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put 76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if 77 * not there yet and then removed when being flushed [blkcg_rstat_flush()]. 78 * References to blkg are gotten and then put back in the process to 79 * protect against blkg removal. 80 * 81 * Return: 0 if successful or -ENOMEM if allocation fails. 82 */ 83 static int init_blkcg_llists(struct blkcg *blkcg) 84 { 85 int cpu; 86 87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL); 88 if (!blkcg->lhead) 89 return -ENOMEM; 90 91 for_each_possible_cpu(cpu) 92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu)); 93 return 0; 94 } 95 96 /** 97 * blkcg_css - find the current css 98 * 99 * Find the css associated with either the kthread or the current task. 100 * This may return a dying css, so it is up to the caller to use tryget logic 101 * to confirm it is alive and well. 102 */ 103 static struct cgroup_subsys_state *blkcg_css(void) 104 { 105 struct cgroup_subsys_state *css; 106 107 css = kthread_blkcg(); 108 if (css) 109 return css; 110 return task_css(current, io_cgrp_id); 111 } 112 113 static bool blkcg_policy_enabled(struct request_queue *q, 114 const struct blkcg_policy *pol) 115 { 116 return pol && test_bit(pol->plid, q->blkcg_pols); 117 } 118 119 static void blkg_free_workfn(struct work_struct *work) 120 { 121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 122 free_work); 123 struct request_queue *q = blkg->q; 124 int i; 125 126 /* 127 * pd_free_fn() can also be called from blkcg_deactivate_policy(), 128 * in order to make sure pd_free_fn() is called in order, the deletion 129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and 130 * blkcg_mutex is used to synchronize blkg_free_workfn() and 131 * blkcg_deactivate_policy(). 132 */ 133 mutex_lock(&q->blkcg_mutex); 134 for (i = 0; i < BLKCG_MAX_POLS; i++) 135 if (blkg->pd[i]) 136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 137 if (blkg->parent) 138 blkg_put(blkg->parent); 139 list_del_init(&blkg->q_node); 140 mutex_unlock(&q->blkcg_mutex); 141 142 blk_put_queue(q); 143 free_percpu(blkg->iostat_cpu); 144 percpu_ref_exit(&blkg->refcnt); 145 kfree(blkg); 146 } 147 148 /** 149 * blkg_free - free a blkg 150 * @blkg: blkg to free 151 * 152 * Free @blkg which may be partially allocated. 153 */ 154 static void blkg_free(struct blkcg_gq *blkg) 155 { 156 if (!blkg) 157 return; 158 159 /* 160 * Both ->pd_free_fn() and request queue's release handler may 161 * sleep, so free us by scheduling one work func 162 */ 163 INIT_WORK(&blkg->free_work, blkg_free_workfn); 164 schedule_work(&blkg->free_work); 165 } 166 167 static void __blkg_release(struct rcu_head *rcu) 168 { 169 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 170 struct blkcg *blkcg = blkg->blkcg; 171 int cpu; 172 173 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 174 WARN_ON(!bio_list_empty(&blkg->async_bios)); 175 #endif 176 /* 177 * Flush all the non-empty percpu lockless lists before releasing 178 * us, given these stat belongs to us. 179 * 180 * blkg_stat_lock is for serializing blkg stat update 181 */ 182 for_each_possible_cpu(cpu) 183 __blkcg_rstat_flush(blkcg, cpu); 184 185 /* release the blkcg and parent blkg refs this blkg has been holding */ 186 css_put(&blkg->blkcg->css); 187 blkg_free(blkg); 188 } 189 190 /* 191 * A group is RCU protected, but having an rcu lock does not mean that one 192 * can access all the fields of blkg and assume these are valid. For 193 * example, don't try to follow throtl_data and request queue links. 194 * 195 * Having a reference to blkg under an rcu allows accesses to only values 196 * local to groups like group stats and group rate limits. 197 */ 198 static void blkg_release(struct percpu_ref *ref) 199 { 200 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 201 202 call_rcu(&blkg->rcu_head, __blkg_release); 203 } 204 205 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 206 static struct workqueue_struct *blkcg_punt_bio_wq; 207 208 static void blkg_async_bio_workfn(struct work_struct *work) 209 { 210 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 211 async_bio_work); 212 struct bio_list bios = BIO_EMPTY_LIST; 213 struct bio *bio; 214 struct blk_plug plug; 215 bool need_plug = false; 216 217 /* as long as there are pending bios, @blkg can't go away */ 218 spin_lock(&blkg->async_bio_lock); 219 bio_list_merge(&bios, &blkg->async_bios); 220 bio_list_init(&blkg->async_bios); 221 spin_unlock(&blkg->async_bio_lock); 222 223 /* start plug only when bio_list contains at least 2 bios */ 224 if (bios.head && bios.head->bi_next) { 225 need_plug = true; 226 blk_start_plug(&plug); 227 } 228 while ((bio = bio_list_pop(&bios))) 229 submit_bio(bio); 230 if (need_plug) 231 blk_finish_plug(&plug); 232 } 233 234 /* 235 * When a shared kthread issues a bio for a cgroup, doing so synchronously can 236 * lead to priority inversions as the kthread can be trapped waiting for that 237 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to 238 * a dedicated per-blkcg work item to avoid such priority inversions. 239 */ 240 void blkcg_punt_bio_submit(struct bio *bio) 241 { 242 struct blkcg_gq *blkg = bio->bi_blkg; 243 244 if (blkg->parent) { 245 spin_lock(&blkg->async_bio_lock); 246 bio_list_add(&blkg->async_bios, bio); 247 spin_unlock(&blkg->async_bio_lock); 248 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 249 } else { 250 /* never bounce for the root cgroup */ 251 submit_bio(bio); 252 } 253 } 254 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit); 255 256 static int __init blkcg_punt_bio_init(void) 257 { 258 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 259 WQ_MEM_RECLAIM | WQ_FREEZABLE | 260 WQ_UNBOUND | WQ_SYSFS, 0); 261 if (!blkcg_punt_bio_wq) 262 return -ENOMEM; 263 return 0; 264 } 265 subsys_initcall(blkcg_punt_bio_init); 266 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */ 267 268 /** 269 * bio_blkcg_css - return the blkcg CSS associated with a bio 270 * @bio: target bio 271 * 272 * This returns the CSS for the blkcg associated with a bio, or %NULL if not 273 * associated. Callers are expected to either handle %NULL or know association 274 * has been done prior to calling this. 275 */ 276 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio) 277 { 278 if (!bio || !bio->bi_blkg) 279 return NULL; 280 return &bio->bi_blkg->blkcg->css; 281 } 282 EXPORT_SYMBOL_GPL(bio_blkcg_css); 283 284 /** 285 * blkcg_parent - get the parent of a blkcg 286 * @blkcg: blkcg of interest 287 * 288 * Return the parent blkcg of @blkcg. Can be called anytime. 289 */ 290 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg) 291 { 292 return css_to_blkcg(blkcg->css.parent); 293 } 294 295 /** 296 * blkg_alloc - allocate a blkg 297 * @blkcg: block cgroup the new blkg is associated with 298 * @disk: gendisk the new blkg is associated with 299 * @gfp_mask: allocation mask to use 300 * 301 * Allocate a new blkg assocating @blkcg and @q. 302 */ 303 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk, 304 gfp_t gfp_mask) 305 { 306 struct blkcg_gq *blkg; 307 int i, cpu; 308 309 /* alloc and init base part */ 310 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node); 311 if (!blkg) 312 return NULL; 313 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 314 goto out_free_blkg; 315 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 316 if (!blkg->iostat_cpu) 317 goto out_exit_refcnt; 318 if (!blk_get_queue(disk->queue)) 319 goto out_free_iostat; 320 321 blkg->q = disk->queue; 322 INIT_LIST_HEAD(&blkg->q_node); 323 blkg->blkcg = blkcg; 324 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 325 spin_lock_init(&blkg->async_bio_lock); 326 bio_list_init(&blkg->async_bios); 327 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 328 #endif 329 330 u64_stats_init(&blkg->iostat.sync); 331 for_each_possible_cpu(cpu) { 332 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 333 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg; 334 } 335 336 for (i = 0; i < BLKCG_MAX_POLS; i++) { 337 struct blkcg_policy *pol = blkcg_policy[i]; 338 struct blkg_policy_data *pd; 339 340 if (!blkcg_policy_enabled(disk->queue, pol)) 341 continue; 342 343 /* alloc per-policy data and attach it to blkg */ 344 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask); 345 if (!pd) 346 goto out_free_pds; 347 blkg->pd[i] = pd; 348 pd->blkg = blkg; 349 pd->plid = i; 350 pd->online = false; 351 } 352 353 return blkg; 354 355 out_free_pds: 356 while (--i >= 0) 357 if (blkg->pd[i]) 358 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 359 blk_put_queue(disk->queue); 360 out_free_iostat: 361 free_percpu(blkg->iostat_cpu); 362 out_exit_refcnt: 363 percpu_ref_exit(&blkg->refcnt); 364 out_free_blkg: 365 kfree(blkg); 366 return NULL; 367 } 368 369 /* 370 * If @new_blkg is %NULL, this function tries to allocate a new one as 371 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 372 */ 373 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk, 374 struct blkcg_gq *new_blkg) 375 { 376 struct blkcg_gq *blkg; 377 int i, ret; 378 379 lockdep_assert_held(&disk->queue->queue_lock); 380 381 /* request_queue is dying, do not create/recreate a blkg */ 382 if (blk_queue_dying(disk->queue)) { 383 ret = -ENODEV; 384 goto err_free_blkg; 385 } 386 387 /* blkg holds a reference to blkcg */ 388 if (!css_tryget_online(&blkcg->css)) { 389 ret = -ENODEV; 390 goto err_free_blkg; 391 } 392 393 /* allocate */ 394 if (!new_blkg) { 395 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN); 396 if (unlikely(!new_blkg)) { 397 ret = -ENOMEM; 398 goto err_put_css; 399 } 400 } 401 blkg = new_blkg; 402 403 /* link parent */ 404 if (blkcg_parent(blkcg)) { 405 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue); 406 if (WARN_ON_ONCE(!blkg->parent)) { 407 ret = -ENODEV; 408 goto err_put_css; 409 } 410 blkg_get(blkg->parent); 411 } 412 413 /* invoke per-policy init */ 414 for (i = 0; i < BLKCG_MAX_POLS; i++) { 415 struct blkcg_policy *pol = blkcg_policy[i]; 416 417 if (blkg->pd[i] && pol->pd_init_fn) 418 pol->pd_init_fn(blkg->pd[i]); 419 } 420 421 /* insert */ 422 spin_lock(&blkcg->lock); 423 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg); 424 if (likely(!ret)) { 425 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 426 list_add(&blkg->q_node, &disk->queue->blkg_list); 427 428 for (i = 0; i < BLKCG_MAX_POLS; i++) { 429 struct blkcg_policy *pol = blkcg_policy[i]; 430 431 if (blkg->pd[i]) { 432 if (pol->pd_online_fn) 433 pol->pd_online_fn(blkg->pd[i]); 434 blkg->pd[i]->online = true; 435 } 436 } 437 } 438 blkg->online = true; 439 spin_unlock(&blkcg->lock); 440 441 if (!ret) 442 return blkg; 443 444 /* @blkg failed fully initialized, use the usual release path */ 445 blkg_put(blkg); 446 return ERR_PTR(ret); 447 448 err_put_css: 449 css_put(&blkcg->css); 450 err_free_blkg: 451 if (new_blkg) 452 blkg_free(new_blkg); 453 return ERR_PTR(ret); 454 } 455 456 /** 457 * blkg_lookup_create - lookup blkg, try to create one if not there 458 * @blkcg: blkcg of interest 459 * @disk: gendisk of interest 460 * 461 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to 462 * create one. blkg creation is performed recursively from blkcg_root such 463 * that all non-root blkg's have access to the parent blkg. This function 464 * should be called under RCU read lock and takes @disk->queue->queue_lock. 465 * 466 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 467 * down from root. 468 */ 469 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 470 struct gendisk *disk) 471 { 472 struct request_queue *q = disk->queue; 473 struct blkcg_gq *blkg; 474 unsigned long flags; 475 476 WARN_ON_ONCE(!rcu_read_lock_held()); 477 478 blkg = blkg_lookup(blkcg, q); 479 if (blkg) 480 return blkg; 481 482 spin_lock_irqsave(&q->queue_lock, flags); 483 blkg = blkg_lookup(blkcg, q); 484 if (blkg) { 485 if (blkcg != &blkcg_root && 486 blkg != rcu_dereference(blkcg->blkg_hint)) 487 rcu_assign_pointer(blkcg->blkg_hint, blkg); 488 goto found; 489 } 490 491 /* 492 * Create blkgs walking down from blkcg_root to @blkcg, so that all 493 * non-root blkgs have access to their parents. Returns the closest 494 * blkg to the intended blkg should blkg_create() fail. 495 */ 496 while (true) { 497 struct blkcg *pos = blkcg; 498 struct blkcg *parent = blkcg_parent(blkcg); 499 struct blkcg_gq *ret_blkg = q->root_blkg; 500 501 while (parent) { 502 blkg = blkg_lookup(parent, q); 503 if (blkg) { 504 /* remember closest blkg */ 505 ret_blkg = blkg; 506 break; 507 } 508 pos = parent; 509 parent = blkcg_parent(parent); 510 } 511 512 blkg = blkg_create(pos, disk, NULL); 513 if (IS_ERR(blkg)) { 514 blkg = ret_blkg; 515 break; 516 } 517 if (pos == blkcg) 518 break; 519 } 520 521 found: 522 spin_unlock_irqrestore(&q->queue_lock, flags); 523 return blkg; 524 } 525 526 static void blkg_destroy(struct blkcg_gq *blkg) 527 { 528 struct blkcg *blkcg = blkg->blkcg; 529 int i; 530 531 lockdep_assert_held(&blkg->q->queue_lock); 532 lockdep_assert_held(&blkcg->lock); 533 534 /* 535 * blkg stays on the queue list until blkg_free_workfn(), see details in 536 * blkg_free_workfn(), hence this function can be called from 537 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before 538 * blkg_free_workfn(). 539 */ 540 if (hlist_unhashed(&blkg->blkcg_node)) 541 return; 542 543 for (i = 0; i < BLKCG_MAX_POLS; i++) { 544 struct blkcg_policy *pol = blkcg_policy[i]; 545 546 if (blkg->pd[i] && blkg->pd[i]->online) { 547 blkg->pd[i]->online = false; 548 if (pol->pd_offline_fn) 549 pol->pd_offline_fn(blkg->pd[i]); 550 } 551 } 552 553 blkg->online = false; 554 555 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 556 hlist_del_init_rcu(&blkg->blkcg_node); 557 558 /* 559 * Both setting lookup hint to and clearing it from @blkg are done 560 * under queue_lock. If it's not pointing to @blkg now, it never 561 * will. Hint assignment itself can race safely. 562 */ 563 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 564 rcu_assign_pointer(blkcg->blkg_hint, NULL); 565 566 /* 567 * Put the reference taken at the time of creation so that when all 568 * queues are gone, group can be destroyed. 569 */ 570 percpu_ref_kill(&blkg->refcnt); 571 } 572 573 static void blkg_destroy_all(struct gendisk *disk) 574 { 575 struct request_queue *q = disk->queue; 576 struct blkcg_gq *blkg, *n; 577 int count = BLKG_DESTROY_BATCH_SIZE; 578 579 restart: 580 spin_lock_irq(&q->queue_lock); 581 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 582 struct blkcg *blkcg = blkg->blkcg; 583 584 if (hlist_unhashed(&blkg->blkcg_node)) 585 continue; 586 587 spin_lock(&blkcg->lock); 588 blkg_destroy(blkg); 589 spin_unlock(&blkcg->lock); 590 591 /* 592 * in order to avoid holding the spin lock for too long, release 593 * it when a batch of blkgs are destroyed. 594 */ 595 if (!(--count)) { 596 count = BLKG_DESTROY_BATCH_SIZE; 597 spin_unlock_irq(&q->queue_lock); 598 cond_resched(); 599 goto restart; 600 } 601 } 602 603 q->root_blkg = NULL; 604 spin_unlock_irq(&q->queue_lock); 605 } 606 607 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 608 struct cftype *cftype, u64 val) 609 { 610 struct blkcg *blkcg = css_to_blkcg(css); 611 struct blkcg_gq *blkg; 612 int i, cpu; 613 614 mutex_lock(&blkcg_pol_mutex); 615 spin_lock_irq(&blkcg->lock); 616 617 /* 618 * Note that stat reset is racy - it doesn't synchronize against 619 * stat updates. This is a debug feature which shouldn't exist 620 * anyway. If you get hit by a race, retry. 621 */ 622 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 623 for_each_possible_cpu(cpu) { 624 struct blkg_iostat_set *bis = 625 per_cpu_ptr(blkg->iostat_cpu, cpu); 626 memset(bis, 0, sizeof(*bis)); 627 628 /* Re-initialize the cleared blkg_iostat_set */ 629 u64_stats_init(&bis->sync); 630 bis->blkg = blkg; 631 } 632 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 633 u64_stats_init(&blkg->iostat.sync); 634 635 for (i = 0; i < BLKCG_MAX_POLS; i++) { 636 struct blkcg_policy *pol = blkcg_policy[i]; 637 638 if (blkg->pd[i] && pol->pd_reset_stats_fn) 639 pol->pd_reset_stats_fn(blkg->pd[i]); 640 } 641 } 642 643 spin_unlock_irq(&blkcg->lock); 644 mutex_unlock(&blkcg_pol_mutex); 645 return 0; 646 } 647 648 const char *blkg_dev_name(struct blkcg_gq *blkg) 649 { 650 if (!blkg->q->disk) 651 return NULL; 652 return bdi_dev_name(blkg->q->disk->bdi); 653 } 654 655 /** 656 * blkcg_print_blkgs - helper for printing per-blkg data 657 * @sf: seq_file to print to 658 * @blkcg: blkcg of interest 659 * @prfill: fill function to print out a blkg 660 * @pol: policy in question 661 * @data: data to be passed to @prfill 662 * @show_total: to print out sum of prfill return values or not 663 * 664 * This function invokes @prfill on each blkg of @blkcg if pd for the 665 * policy specified by @pol exists. @prfill is invoked with @sf, the 666 * policy data and @data and the matching queue lock held. If @show_total 667 * is %true, the sum of the return values from @prfill is printed with 668 * "Total" label at the end. 669 * 670 * This is to be used to construct print functions for 671 * cftype->read_seq_string method. 672 */ 673 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 674 u64 (*prfill)(struct seq_file *, 675 struct blkg_policy_data *, int), 676 const struct blkcg_policy *pol, int data, 677 bool show_total) 678 { 679 struct blkcg_gq *blkg; 680 u64 total = 0; 681 682 rcu_read_lock(); 683 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 684 spin_lock_irq(&blkg->q->queue_lock); 685 if (blkcg_policy_enabled(blkg->q, pol)) 686 total += prfill(sf, blkg->pd[pol->plid], data); 687 spin_unlock_irq(&blkg->q->queue_lock); 688 } 689 rcu_read_unlock(); 690 691 if (show_total) 692 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 693 } 694 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 695 696 /** 697 * __blkg_prfill_u64 - prfill helper for a single u64 value 698 * @sf: seq_file to print to 699 * @pd: policy private data of interest 700 * @v: value to print 701 * 702 * Print @v to @sf for the device associated with @pd. 703 */ 704 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 705 { 706 const char *dname = blkg_dev_name(pd->blkg); 707 708 if (!dname) 709 return 0; 710 711 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 712 return v; 713 } 714 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 715 716 /** 717 * blkg_conf_init - initialize a blkg_conf_ctx 718 * @ctx: blkg_conf_ctx to initialize 719 * @input: input string 720 * 721 * Initialize @ctx which can be used to parse blkg config input string @input. 722 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and 723 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit(). 724 */ 725 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input) 726 { 727 *ctx = (struct blkg_conf_ctx){ .input = input }; 728 } 729 EXPORT_SYMBOL_GPL(blkg_conf_init); 730 731 /** 732 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update 733 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 734 * 735 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from 736 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is 737 * set to point past the device node prefix. 738 * 739 * This function may be called multiple times on @ctx and the extra calls become 740 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function 741 * explicitly if bdev access is needed without resolving the blkcg / policy part 742 * of @ctx->input. Returns -errno on error. 743 */ 744 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx) 745 { 746 char *input = ctx->input; 747 unsigned int major, minor; 748 struct block_device *bdev; 749 int key_len; 750 751 if (ctx->bdev) 752 return 0; 753 754 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 755 return -EINVAL; 756 757 input += key_len; 758 if (!isspace(*input)) 759 return -EINVAL; 760 input = skip_spaces(input); 761 762 bdev = blkdev_get_no_open(MKDEV(major, minor)); 763 if (!bdev) 764 return -ENODEV; 765 if (bdev_is_partition(bdev)) { 766 blkdev_put_no_open(bdev); 767 return -ENODEV; 768 } 769 770 mutex_lock(&bdev->bd_queue->rq_qos_mutex); 771 if (!disk_live(bdev->bd_disk)) { 772 blkdev_put_no_open(bdev); 773 mutex_unlock(&bdev->bd_queue->rq_qos_mutex); 774 return -ENODEV; 775 } 776 777 ctx->body = input; 778 ctx->bdev = bdev; 779 return 0; 780 } 781 782 /** 783 * blkg_conf_prep - parse and prepare for per-blkg config update 784 * @blkcg: target block cgroup 785 * @pol: target policy 786 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 787 * 788 * Parse per-blkg config update from @ctx->input and initialize @ctx 789 * accordingly. On success, @ctx->body points to the part of @ctx->input 790 * following MAJ:MIN, @ctx->bdev points to the target block device and 791 * @ctx->blkg to the blkg being configured. 792 * 793 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this 794 * function returns with queue lock held and must be followed by 795 * blkg_conf_exit(). 796 */ 797 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 798 struct blkg_conf_ctx *ctx) 799 __acquires(&bdev->bd_queue->queue_lock) 800 { 801 struct gendisk *disk; 802 struct request_queue *q; 803 struct blkcg_gq *blkg; 804 int ret; 805 806 ret = blkg_conf_open_bdev(ctx); 807 if (ret) 808 return ret; 809 810 disk = ctx->bdev->bd_disk; 811 q = disk->queue; 812 813 /* 814 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 815 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 816 */ 817 ret = blk_queue_enter(q, 0); 818 if (ret) 819 goto fail; 820 821 spin_lock_irq(&q->queue_lock); 822 823 if (!blkcg_policy_enabled(q, pol)) { 824 ret = -EOPNOTSUPP; 825 goto fail_unlock; 826 } 827 828 blkg = blkg_lookup(blkcg, q); 829 if (blkg) 830 goto success; 831 832 /* 833 * Create blkgs walking down from blkcg_root to @blkcg, so that all 834 * non-root blkgs have access to their parents. 835 */ 836 while (true) { 837 struct blkcg *pos = blkcg; 838 struct blkcg *parent; 839 struct blkcg_gq *new_blkg; 840 841 parent = blkcg_parent(blkcg); 842 while (parent && !blkg_lookup(parent, q)) { 843 pos = parent; 844 parent = blkcg_parent(parent); 845 } 846 847 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 848 spin_unlock_irq(&q->queue_lock); 849 850 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL); 851 if (unlikely(!new_blkg)) { 852 ret = -ENOMEM; 853 goto fail_exit_queue; 854 } 855 856 if (radix_tree_preload(GFP_KERNEL)) { 857 blkg_free(new_blkg); 858 ret = -ENOMEM; 859 goto fail_exit_queue; 860 } 861 862 spin_lock_irq(&q->queue_lock); 863 864 if (!blkcg_policy_enabled(q, pol)) { 865 blkg_free(new_blkg); 866 ret = -EOPNOTSUPP; 867 goto fail_preloaded; 868 } 869 870 blkg = blkg_lookup(pos, q); 871 if (blkg) { 872 blkg_free(new_blkg); 873 } else { 874 blkg = blkg_create(pos, disk, new_blkg); 875 if (IS_ERR(blkg)) { 876 ret = PTR_ERR(blkg); 877 goto fail_preloaded; 878 } 879 } 880 881 radix_tree_preload_end(); 882 883 if (pos == blkcg) 884 goto success; 885 } 886 success: 887 blk_queue_exit(q); 888 ctx->blkg = blkg; 889 return 0; 890 891 fail_preloaded: 892 radix_tree_preload_end(); 893 fail_unlock: 894 spin_unlock_irq(&q->queue_lock); 895 fail_exit_queue: 896 blk_queue_exit(q); 897 fail: 898 /* 899 * If queue was bypassing, we should retry. Do so after a 900 * short msleep(). It isn't strictly necessary but queue 901 * can be bypassing for some time and it's always nice to 902 * avoid busy looping. 903 */ 904 if (ret == -EBUSY) { 905 msleep(10); 906 ret = restart_syscall(); 907 } 908 return ret; 909 } 910 EXPORT_SYMBOL_GPL(blkg_conf_prep); 911 912 /** 913 * blkg_conf_exit - clean up per-blkg config update 914 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 915 * 916 * Clean up after per-blkg config update. This function must be called on all 917 * blkg_conf_ctx's initialized with blkg_conf_init(). 918 */ 919 void blkg_conf_exit(struct blkg_conf_ctx *ctx) 920 __releases(&ctx->bdev->bd_queue->queue_lock) 921 __releases(&ctx->bdev->bd_queue->rq_qos_mutex) 922 { 923 if (ctx->blkg) { 924 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 925 ctx->blkg = NULL; 926 } 927 928 if (ctx->bdev) { 929 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex); 930 blkdev_put_no_open(ctx->bdev); 931 ctx->body = NULL; 932 ctx->bdev = NULL; 933 } 934 } 935 EXPORT_SYMBOL_GPL(blkg_conf_exit); 936 937 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 938 { 939 int i; 940 941 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 942 dst->bytes[i] = src->bytes[i]; 943 dst->ios[i] = src->ios[i]; 944 } 945 } 946 947 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 948 { 949 int i; 950 951 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 952 dst->bytes[i] += src->bytes[i]; 953 dst->ios[i] += src->ios[i]; 954 } 955 } 956 957 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 958 { 959 int i; 960 961 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 962 dst->bytes[i] -= src->bytes[i]; 963 dst->ios[i] -= src->ios[i]; 964 } 965 } 966 967 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur, 968 struct blkg_iostat *last) 969 { 970 struct blkg_iostat delta; 971 unsigned long flags; 972 973 /* propagate percpu delta to global */ 974 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 975 blkg_iostat_set(&delta, cur); 976 blkg_iostat_sub(&delta, last); 977 blkg_iostat_add(&blkg->iostat.cur, &delta); 978 blkg_iostat_add(last, &delta); 979 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 980 } 981 982 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu) 983 { 984 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu); 985 struct llist_node *lnode; 986 struct blkg_iostat_set *bisc, *next_bisc; 987 unsigned long flags; 988 989 rcu_read_lock(); 990 991 lnode = llist_del_all(lhead); 992 if (!lnode) 993 goto out; 994 995 /* 996 * For covering concurrent parent blkg update from blkg_release(). 997 * 998 * When flushing from cgroup, cgroup_rstat_lock is always held, so 999 * this lock won't cause contention most of time. 1000 */ 1001 raw_spin_lock_irqsave(&blkg_stat_lock, flags); 1002 1003 /* 1004 * Iterate only the iostat_cpu's queued in the lockless list. 1005 */ 1006 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) { 1007 struct blkcg_gq *blkg = bisc->blkg; 1008 struct blkcg_gq *parent = blkg->parent; 1009 struct blkg_iostat cur; 1010 unsigned int seq; 1011 1012 WRITE_ONCE(bisc->lqueued, false); 1013 1014 /* fetch the current per-cpu values */ 1015 do { 1016 seq = u64_stats_fetch_begin(&bisc->sync); 1017 blkg_iostat_set(&cur, &bisc->cur); 1018 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 1019 1020 blkcg_iostat_update(blkg, &cur, &bisc->last); 1021 1022 /* propagate global delta to parent (unless that's root) */ 1023 if (parent && parent->parent) 1024 blkcg_iostat_update(parent, &blkg->iostat.cur, 1025 &blkg->iostat.last); 1026 } 1027 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags); 1028 out: 1029 rcu_read_unlock(); 1030 } 1031 1032 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 1033 { 1034 /* Root-level stats are sourced from system-wide IO stats */ 1035 if (cgroup_parent(css->cgroup)) 1036 __blkcg_rstat_flush(css_to_blkcg(css), cpu); 1037 } 1038 1039 /* 1040 * We source root cgroup stats from the system-wide stats to avoid 1041 * tracking the same information twice and incurring overhead when no 1042 * cgroups are defined. For that reason, cgroup_rstat_flush in 1043 * blkcg_print_stat does not actually fill out the iostat in the root 1044 * cgroup's blkcg_gq. 1045 * 1046 * However, we would like to re-use the printing code between the root and 1047 * non-root cgroups to the extent possible. For that reason, we simulate 1048 * flushing the root cgroup's stats by explicitly filling in the iostat 1049 * with disk level statistics. 1050 */ 1051 static void blkcg_fill_root_iostats(void) 1052 { 1053 struct class_dev_iter iter; 1054 struct device *dev; 1055 1056 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1057 while ((dev = class_dev_iter_next(&iter))) { 1058 struct block_device *bdev = dev_to_bdev(dev); 1059 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg; 1060 struct blkg_iostat tmp; 1061 int cpu; 1062 unsigned long flags; 1063 1064 memset(&tmp, 0, sizeof(tmp)); 1065 for_each_possible_cpu(cpu) { 1066 struct disk_stats *cpu_dkstats; 1067 1068 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 1069 tmp.ios[BLKG_IOSTAT_READ] += 1070 cpu_dkstats->ios[STAT_READ]; 1071 tmp.ios[BLKG_IOSTAT_WRITE] += 1072 cpu_dkstats->ios[STAT_WRITE]; 1073 tmp.ios[BLKG_IOSTAT_DISCARD] += 1074 cpu_dkstats->ios[STAT_DISCARD]; 1075 // convert sectors to bytes 1076 tmp.bytes[BLKG_IOSTAT_READ] += 1077 cpu_dkstats->sectors[STAT_READ] << 9; 1078 tmp.bytes[BLKG_IOSTAT_WRITE] += 1079 cpu_dkstats->sectors[STAT_WRITE] << 9; 1080 tmp.bytes[BLKG_IOSTAT_DISCARD] += 1081 cpu_dkstats->sectors[STAT_DISCARD] << 9; 1082 } 1083 1084 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 1085 blkg_iostat_set(&blkg->iostat.cur, &tmp); 1086 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 1087 } 1088 } 1089 1090 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 1091 { 1092 struct blkg_iostat_set *bis = &blkg->iostat; 1093 u64 rbytes, wbytes, rios, wios, dbytes, dios; 1094 const char *dname; 1095 unsigned seq; 1096 int i; 1097 1098 if (!blkg->online) 1099 return; 1100 1101 dname = blkg_dev_name(blkg); 1102 if (!dname) 1103 return; 1104 1105 seq_printf(s, "%s ", dname); 1106 1107 do { 1108 seq = u64_stats_fetch_begin(&bis->sync); 1109 1110 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 1111 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 1112 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 1113 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 1114 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 1115 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 1116 } while (u64_stats_fetch_retry(&bis->sync, seq)); 1117 1118 if (rbytes || wbytes || rios || wios) { 1119 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 1120 rbytes, wbytes, rios, wios, 1121 dbytes, dios); 1122 } 1123 1124 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 1125 seq_printf(s, " use_delay=%d delay_nsec=%llu", 1126 atomic_read(&blkg->use_delay), 1127 atomic64_read(&blkg->delay_nsec)); 1128 } 1129 1130 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1131 struct blkcg_policy *pol = blkcg_policy[i]; 1132 1133 if (!blkg->pd[i] || !pol->pd_stat_fn) 1134 continue; 1135 1136 pol->pd_stat_fn(blkg->pd[i], s); 1137 } 1138 1139 seq_puts(s, "\n"); 1140 } 1141 1142 static int blkcg_print_stat(struct seq_file *sf, void *v) 1143 { 1144 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1145 struct blkcg_gq *blkg; 1146 1147 if (!seq_css(sf)->parent) 1148 blkcg_fill_root_iostats(); 1149 else 1150 cgroup_rstat_flush(blkcg->css.cgroup); 1151 1152 rcu_read_lock(); 1153 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 1154 spin_lock_irq(&blkg->q->queue_lock); 1155 blkcg_print_one_stat(blkg, sf); 1156 spin_unlock_irq(&blkg->q->queue_lock); 1157 } 1158 rcu_read_unlock(); 1159 return 0; 1160 } 1161 1162 static struct cftype blkcg_files[] = { 1163 { 1164 .name = "stat", 1165 .seq_show = blkcg_print_stat, 1166 }, 1167 { } /* terminate */ 1168 }; 1169 1170 static struct cftype blkcg_legacy_files[] = { 1171 { 1172 .name = "reset_stats", 1173 .write_u64 = blkcg_reset_stats, 1174 }, 1175 { } /* terminate */ 1176 }; 1177 1178 #ifdef CONFIG_CGROUP_WRITEBACK 1179 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css) 1180 { 1181 return &css_to_blkcg(css)->cgwb_list; 1182 } 1183 #endif 1184 1185 /* 1186 * blkcg destruction is a three-stage process. 1187 * 1188 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 1189 * which offlines writeback. Here we tie the next stage of blkg destruction 1190 * to the completion of writeback associated with the blkcg. This lets us 1191 * avoid punting potentially large amounts of outstanding writeback to root 1192 * while maintaining any ongoing policies. The next stage is triggered when 1193 * the nr_cgwbs count goes to zero. 1194 * 1195 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 1196 * and handles the destruction of blkgs. Here the css reference held by 1197 * the blkg is put back eventually allowing blkcg_css_free() to be called. 1198 * This work may occur in cgwb_release_workfn() on the cgwb_release 1199 * workqueue. Any submitted ios that fail to get the blkg ref will be 1200 * punted to the root_blkg. 1201 * 1202 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1203 * This finally frees the blkcg. 1204 */ 1205 1206 /** 1207 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1208 * @blkcg: blkcg of interest 1209 * 1210 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1211 * is nested inside q lock, this function performs reverse double lock dancing. 1212 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1213 * blkcg_css_free to eventually be called. 1214 * 1215 * This is the blkcg counterpart of ioc_release_fn(). 1216 */ 1217 static void blkcg_destroy_blkgs(struct blkcg *blkcg) 1218 { 1219 might_sleep(); 1220 1221 spin_lock_irq(&blkcg->lock); 1222 1223 while (!hlist_empty(&blkcg->blkg_list)) { 1224 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1225 struct blkcg_gq, blkcg_node); 1226 struct request_queue *q = blkg->q; 1227 1228 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1229 /* 1230 * Given that the system can accumulate a huge number 1231 * of blkgs in pathological cases, check to see if we 1232 * need to rescheduling to avoid softlockup. 1233 */ 1234 spin_unlock_irq(&blkcg->lock); 1235 cond_resched(); 1236 spin_lock_irq(&blkcg->lock); 1237 continue; 1238 } 1239 1240 blkg_destroy(blkg); 1241 spin_unlock(&q->queue_lock); 1242 } 1243 1244 spin_unlock_irq(&blkcg->lock); 1245 } 1246 1247 /** 1248 * blkcg_pin_online - pin online state 1249 * @blkcg_css: blkcg of interest 1250 * 1251 * While pinned, a blkcg is kept online. This is primarily used to 1252 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline 1253 * while an associated cgwb is still active. 1254 */ 1255 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css) 1256 { 1257 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin); 1258 } 1259 1260 /** 1261 * blkcg_unpin_online - unpin online state 1262 * @blkcg_css: blkcg of interest 1263 * 1264 * This is primarily used to impedance-match blkg and cgwb lifetimes so 1265 * that blkg doesn't go offline while an associated cgwb is still active. 1266 * When this count goes to zero, all active cgwbs have finished so the 1267 * blkcg can continue destruction by calling blkcg_destroy_blkgs(). 1268 */ 1269 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css) 1270 { 1271 struct blkcg *blkcg = css_to_blkcg(blkcg_css); 1272 1273 do { 1274 if (!refcount_dec_and_test(&blkcg->online_pin)) 1275 break; 1276 blkcg_destroy_blkgs(blkcg); 1277 blkcg = blkcg_parent(blkcg); 1278 } while (blkcg); 1279 } 1280 1281 /** 1282 * blkcg_css_offline - cgroup css_offline callback 1283 * @css: css of interest 1284 * 1285 * This function is called when @css is about to go away. Here the cgwbs are 1286 * offlined first and only once writeback associated with the blkcg has 1287 * finished do we start step 2 (see above). 1288 */ 1289 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1290 { 1291 /* this prevents anyone from attaching or migrating to this blkcg */ 1292 wb_blkcg_offline(css); 1293 1294 /* put the base online pin allowing step 2 to be triggered */ 1295 blkcg_unpin_online(css); 1296 } 1297 1298 static void blkcg_css_free(struct cgroup_subsys_state *css) 1299 { 1300 struct blkcg *blkcg = css_to_blkcg(css); 1301 int i; 1302 1303 mutex_lock(&blkcg_pol_mutex); 1304 1305 list_del(&blkcg->all_blkcgs_node); 1306 1307 for (i = 0; i < BLKCG_MAX_POLS; i++) 1308 if (blkcg->cpd[i]) 1309 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1310 1311 mutex_unlock(&blkcg_pol_mutex); 1312 1313 free_percpu(blkcg->lhead); 1314 kfree(blkcg); 1315 } 1316 1317 static struct cgroup_subsys_state * 1318 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1319 { 1320 struct blkcg *blkcg; 1321 int i; 1322 1323 mutex_lock(&blkcg_pol_mutex); 1324 1325 if (!parent_css) { 1326 blkcg = &blkcg_root; 1327 } else { 1328 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1329 if (!blkcg) 1330 goto unlock; 1331 } 1332 1333 if (init_blkcg_llists(blkcg)) 1334 goto free_blkcg; 1335 1336 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1337 struct blkcg_policy *pol = blkcg_policy[i]; 1338 struct blkcg_policy_data *cpd; 1339 1340 /* 1341 * If the policy hasn't been attached yet, wait for it 1342 * to be attached before doing anything else. Otherwise, 1343 * check if the policy requires any specific per-cgroup 1344 * data: if it does, allocate and initialize it. 1345 */ 1346 if (!pol || !pol->cpd_alloc_fn) 1347 continue; 1348 1349 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1350 if (!cpd) 1351 goto free_pd_blkcg; 1352 1353 blkcg->cpd[i] = cpd; 1354 cpd->blkcg = blkcg; 1355 cpd->plid = i; 1356 } 1357 1358 spin_lock_init(&blkcg->lock); 1359 refcount_set(&blkcg->online_pin, 1); 1360 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1361 INIT_HLIST_HEAD(&blkcg->blkg_list); 1362 #ifdef CONFIG_CGROUP_WRITEBACK 1363 INIT_LIST_HEAD(&blkcg->cgwb_list); 1364 #endif 1365 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1366 1367 mutex_unlock(&blkcg_pol_mutex); 1368 return &blkcg->css; 1369 1370 free_pd_blkcg: 1371 for (i--; i >= 0; i--) 1372 if (blkcg->cpd[i]) 1373 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1374 free_percpu(blkcg->lhead); 1375 free_blkcg: 1376 if (blkcg != &blkcg_root) 1377 kfree(blkcg); 1378 unlock: 1379 mutex_unlock(&blkcg_pol_mutex); 1380 return ERR_PTR(-ENOMEM); 1381 } 1382 1383 static int blkcg_css_online(struct cgroup_subsys_state *css) 1384 { 1385 struct blkcg *parent = blkcg_parent(css_to_blkcg(css)); 1386 1387 /* 1388 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1389 * don't go offline while cgwbs are still active on them. Pin the 1390 * parent so that offline always happens towards the root. 1391 */ 1392 if (parent) 1393 blkcg_pin_online(&parent->css); 1394 return 0; 1395 } 1396 1397 int blkcg_init_disk(struct gendisk *disk) 1398 { 1399 struct request_queue *q = disk->queue; 1400 struct blkcg_gq *new_blkg, *blkg; 1401 bool preloaded; 1402 int ret; 1403 1404 INIT_LIST_HEAD(&q->blkg_list); 1405 mutex_init(&q->blkcg_mutex); 1406 1407 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL); 1408 if (!new_blkg) 1409 return -ENOMEM; 1410 1411 preloaded = !radix_tree_preload(GFP_KERNEL); 1412 1413 /* Make sure the root blkg exists. */ 1414 /* spin_lock_irq can serve as RCU read-side critical section. */ 1415 spin_lock_irq(&q->queue_lock); 1416 blkg = blkg_create(&blkcg_root, disk, new_blkg); 1417 if (IS_ERR(blkg)) 1418 goto err_unlock; 1419 q->root_blkg = blkg; 1420 spin_unlock_irq(&q->queue_lock); 1421 1422 if (preloaded) 1423 radix_tree_preload_end(); 1424 1425 ret = blk_ioprio_init(disk); 1426 if (ret) 1427 goto err_destroy_all; 1428 1429 ret = blk_throtl_init(disk); 1430 if (ret) 1431 goto err_ioprio_exit; 1432 1433 return 0; 1434 1435 err_ioprio_exit: 1436 blk_ioprio_exit(disk); 1437 err_destroy_all: 1438 blkg_destroy_all(disk); 1439 return ret; 1440 err_unlock: 1441 spin_unlock_irq(&q->queue_lock); 1442 if (preloaded) 1443 radix_tree_preload_end(); 1444 return PTR_ERR(blkg); 1445 } 1446 1447 void blkcg_exit_disk(struct gendisk *disk) 1448 { 1449 blkg_destroy_all(disk); 1450 blk_throtl_exit(disk); 1451 } 1452 1453 static void blkcg_exit(struct task_struct *tsk) 1454 { 1455 if (tsk->throttle_disk) 1456 put_disk(tsk->throttle_disk); 1457 tsk->throttle_disk = NULL; 1458 } 1459 1460 struct cgroup_subsys io_cgrp_subsys = { 1461 .css_alloc = blkcg_css_alloc, 1462 .css_online = blkcg_css_online, 1463 .css_offline = blkcg_css_offline, 1464 .css_free = blkcg_css_free, 1465 .css_rstat_flush = blkcg_rstat_flush, 1466 .dfl_cftypes = blkcg_files, 1467 .legacy_cftypes = blkcg_legacy_files, 1468 .legacy_name = "blkio", 1469 .exit = blkcg_exit, 1470 #ifdef CONFIG_MEMCG 1471 /* 1472 * This ensures that, if available, memcg is automatically enabled 1473 * together on the default hierarchy so that the owner cgroup can 1474 * be retrieved from writeback pages. 1475 */ 1476 .depends_on = 1 << memory_cgrp_id, 1477 #endif 1478 }; 1479 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1480 1481 /** 1482 * blkcg_activate_policy - activate a blkcg policy on a gendisk 1483 * @disk: gendisk of interest 1484 * @pol: blkcg policy to activate 1485 * 1486 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through 1487 * bypass mode to populate its blkgs with policy_data for @pol. 1488 * 1489 * Activation happens with @disk bypassed, so nobody would be accessing blkgs 1490 * from IO path. Update of each blkg is protected by both queue and blkcg 1491 * locks so that holding either lock and testing blkcg_policy_enabled() is 1492 * always enough for dereferencing policy data. 1493 * 1494 * The caller is responsible for synchronizing [de]activations and policy 1495 * [un]registerations. Returns 0 on success, -errno on failure. 1496 */ 1497 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol) 1498 { 1499 struct request_queue *q = disk->queue; 1500 struct blkg_policy_data *pd_prealloc = NULL; 1501 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1502 int ret; 1503 1504 if (blkcg_policy_enabled(q, pol)) 1505 return 0; 1506 1507 if (queue_is_mq(q)) 1508 blk_mq_freeze_queue(q); 1509 retry: 1510 spin_lock_irq(&q->queue_lock); 1511 1512 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1513 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1514 struct blkg_policy_data *pd; 1515 1516 if (blkg->pd[pol->plid]) 1517 continue; 1518 1519 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1520 if (blkg == pinned_blkg) { 1521 pd = pd_prealloc; 1522 pd_prealloc = NULL; 1523 } else { 1524 pd = pol->pd_alloc_fn(disk, blkg->blkcg, 1525 GFP_NOWAIT | __GFP_NOWARN); 1526 } 1527 1528 if (!pd) { 1529 /* 1530 * GFP_NOWAIT failed. Free the existing one and 1531 * prealloc for @blkg w/ GFP_KERNEL. 1532 */ 1533 if (pinned_blkg) 1534 blkg_put(pinned_blkg); 1535 blkg_get(blkg); 1536 pinned_blkg = blkg; 1537 1538 spin_unlock_irq(&q->queue_lock); 1539 1540 if (pd_prealloc) 1541 pol->pd_free_fn(pd_prealloc); 1542 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg, 1543 GFP_KERNEL); 1544 if (pd_prealloc) 1545 goto retry; 1546 else 1547 goto enomem; 1548 } 1549 1550 blkg->pd[pol->plid] = pd; 1551 pd->blkg = blkg; 1552 pd->plid = pol->plid; 1553 pd->online = false; 1554 } 1555 1556 /* all allocated, init in the same order */ 1557 if (pol->pd_init_fn) 1558 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1559 pol->pd_init_fn(blkg->pd[pol->plid]); 1560 1561 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1562 if (pol->pd_online_fn) 1563 pol->pd_online_fn(blkg->pd[pol->plid]); 1564 blkg->pd[pol->plid]->online = true; 1565 } 1566 1567 __set_bit(pol->plid, q->blkcg_pols); 1568 ret = 0; 1569 1570 spin_unlock_irq(&q->queue_lock); 1571 out: 1572 if (queue_is_mq(q)) 1573 blk_mq_unfreeze_queue(q); 1574 if (pinned_blkg) 1575 blkg_put(pinned_blkg); 1576 if (pd_prealloc) 1577 pol->pd_free_fn(pd_prealloc); 1578 return ret; 1579 1580 enomem: 1581 /* alloc failed, nothing's initialized yet, free everything */ 1582 spin_lock_irq(&q->queue_lock); 1583 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1584 struct blkcg *blkcg = blkg->blkcg; 1585 1586 spin_lock(&blkcg->lock); 1587 if (blkg->pd[pol->plid]) { 1588 pol->pd_free_fn(blkg->pd[pol->plid]); 1589 blkg->pd[pol->plid] = NULL; 1590 } 1591 spin_unlock(&blkcg->lock); 1592 } 1593 spin_unlock_irq(&q->queue_lock); 1594 ret = -ENOMEM; 1595 goto out; 1596 } 1597 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1598 1599 /** 1600 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk 1601 * @disk: gendisk of interest 1602 * @pol: blkcg policy to deactivate 1603 * 1604 * Deactivate @pol on @disk. Follows the same synchronization rules as 1605 * blkcg_activate_policy(). 1606 */ 1607 void blkcg_deactivate_policy(struct gendisk *disk, 1608 const struct blkcg_policy *pol) 1609 { 1610 struct request_queue *q = disk->queue; 1611 struct blkcg_gq *blkg; 1612 1613 if (!blkcg_policy_enabled(q, pol)) 1614 return; 1615 1616 if (queue_is_mq(q)) 1617 blk_mq_freeze_queue(q); 1618 1619 mutex_lock(&q->blkcg_mutex); 1620 spin_lock_irq(&q->queue_lock); 1621 1622 __clear_bit(pol->plid, q->blkcg_pols); 1623 1624 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1625 struct blkcg *blkcg = blkg->blkcg; 1626 1627 spin_lock(&blkcg->lock); 1628 if (blkg->pd[pol->plid]) { 1629 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn) 1630 pol->pd_offline_fn(blkg->pd[pol->plid]); 1631 pol->pd_free_fn(blkg->pd[pol->plid]); 1632 blkg->pd[pol->plid] = NULL; 1633 } 1634 spin_unlock(&blkcg->lock); 1635 } 1636 1637 spin_unlock_irq(&q->queue_lock); 1638 mutex_unlock(&q->blkcg_mutex); 1639 1640 if (queue_is_mq(q)) 1641 blk_mq_unfreeze_queue(q); 1642 } 1643 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1644 1645 static void blkcg_free_all_cpd(struct blkcg_policy *pol) 1646 { 1647 struct blkcg *blkcg; 1648 1649 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1650 if (blkcg->cpd[pol->plid]) { 1651 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1652 blkcg->cpd[pol->plid] = NULL; 1653 } 1654 } 1655 } 1656 1657 /** 1658 * blkcg_policy_register - register a blkcg policy 1659 * @pol: blkcg policy to register 1660 * 1661 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1662 * successful registration. Returns 0 on success and -errno on failure. 1663 */ 1664 int blkcg_policy_register(struct blkcg_policy *pol) 1665 { 1666 struct blkcg *blkcg; 1667 int i, ret; 1668 1669 mutex_lock(&blkcg_pol_register_mutex); 1670 mutex_lock(&blkcg_pol_mutex); 1671 1672 /* find an empty slot */ 1673 ret = -ENOSPC; 1674 for (i = 0; i < BLKCG_MAX_POLS; i++) 1675 if (!blkcg_policy[i]) 1676 break; 1677 if (i >= BLKCG_MAX_POLS) { 1678 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1679 goto err_unlock; 1680 } 1681 1682 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1683 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1684 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1685 goto err_unlock; 1686 1687 /* register @pol */ 1688 pol->plid = i; 1689 blkcg_policy[pol->plid] = pol; 1690 1691 /* allocate and install cpd's */ 1692 if (pol->cpd_alloc_fn) { 1693 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1694 struct blkcg_policy_data *cpd; 1695 1696 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1697 if (!cpd) 1698 goto err_free_cpds; 1699 1700 blkcg->cpd[pol->plid] = cpd; 1701 cpd->blkcg = blkcg; 1702 cpd->plid = pol->plid; 1703 } 1704 } 1705 1706 mutex_unlock(&blkcg_pol_mutex); 1707 1708 /* everything is in place, add intf files for the new policy */ 1709 if (pol->dfl_cftypes) 1710 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1711 pol->dfl_cftypes)); 1712 if (pol->legacy_cftypes) 1713 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1714 pol->legacy_cftypes)); 1715 mutex_unlock(&blkcg_pol_register_mutex); 1716 return 0; 1717 1718 err_free_cpds: 1719 if (pol->cpd_free_fn) 1720 blkcg_free_all_cpd(pol); 1721 1722 blkcg_policy[pol->plid] = NULL; 1723 err_unlock: 1724 mutex_unlock(&blkcg_pol_mutex); 1725 mutex_unlock(&blkcg_pol_register_mutex); 1726 return ret; 1727 } 1728 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1729 1730 /** 1731 * blkcg_policy_unregister - unregister a blkcg policy 1732 * @pol: blkcg policy to unregister 1733 * 1734 * Undo blkcg_policy_register(@pol). Might sleep. 1735 */ 1736 void blkcg_policy_unregister(struct blkcg_policy *pol) 1737 { 1738 mutex_lock(&blkcg_pol_register_mutex); 1739 1740 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1741 goto out_unlock; 1742 1743 /* kill the intf files first */ 1744 if (pol->dfl_cftypes) 1745 cgroup_rm_cftypes(pol->dfl_cftypes); 1746 if (pol->legacy_cftypes) 1747 cgroup_rm_cftypes(pol->legacy_cftypes); 1748 1749 /* remove cpds and unregister */ 1750 mutex_lock(&blkcg_pol_mutex); 1751 1752 if (pol->cpd_free_fn) 1753 blkcg_free_all_cpd(pol); 1754 1755 blkcg_policy[pol->plid] = NULL; 1756 1757 mutex_unlock(&blkcg_pol_mutex); 1758 out_unlock: 1759 mutex_unlock(&blkcg_pol_register_mutex); 1760 } 1761 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1762 1763 /* 1764 * Scale the accumulated delay based on how long it has been since we updated 1765 * the delay. We only call this when we are adding delay, in case it's been a 1766 * while since we added delay, and when we are checking to see if we need to 1767 * delay a task, to account for any delays that may have occurred. 1768 */ 1769 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1770 { 1771 u64 old = atomic64_read(&blkg->delay_start); 1772 1773 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1774 if (atomic_read(&blkg->use_delay) < 0) 1775 return; 1776 1777 /* 1778 * We only want to scale down every second. The idea here is that we 1779 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1780 * time window. We only want to throttle tasks for recent delay that 1781 * has occurred, in 1 second time windows since that's the maximum 1782 * things can be throttled. We save the current delay window in 1783 * blkg->last_delay so we know what amount is still left to be charged 1784 * to the blkg from this point onward. blkg->last_use keeps track of 1785 * the use_delay counter. The idea is if we're unthrottling the blkg we 1786 * are ok with whatever is happening now, and we can take away more of 1787 * the accumulated delay as we've already throttled enough that 1788 * everybody is happy with their IO latencies. 1789 */ 1790 if (time_before64(old + NSEC_PER_SEC, now) && 1791 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) { 1792 u64 cur = atomic64_read(&blkg->delay_nsec); 1793 u64 sub = min_t(u64, blkg->last_delay, now - old); 1794 int cur_use = atomic_read(&blkg->use_delay); 1795 1796 /* 1797 * We've been unthrottled, subtract a larger chunk of our 1798 * accumulated delay. 1799 */ 1800 if (cur_use < blkg->last_use) 1801 sub = max_t(u64, sub, blkg->last_delay >> 1); 1802 1803 /* 1804 * This shouldn't happen, but handle it anyway. Our delay_nsec 1805 * should only ever be growing except here where we subtract out 1806 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1807 * rather not end up with negative numbers. 1808 */ 1809 if (unlikely(cur < sub)) { 1810 atomic64_set(&blkg->delay_nsec, 0); 1811 blkg->last_delay = 0; 1812 } else { 1813 atomic64_sub(sub, &blkg->delay_nsec); 1814 blkg->last_delay = cur - sub; 1815 } 1816 blkg->last_use = cur_use; 1817 } 1818 } 1819 1820 /* 1821 * This is called when we want to actually walk up the hierarchy and check to 1822 * see if we need to throttle, and then actually throttle if there is some 1823 * accumulated delay. This should only be called upon return to user space so 1824 * we're not holding some lock that would induce a priority inversion. 1825 */ 1826 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1827 { 1828 unsigned long pflags; 1829 bool clamp; 1830 u64 now = ktime_to_ns(ktime_get()); 1831 u64 exp; 1832 u64 delay_nsec = 0; 1833 int tok; 1834 1835 while (blkg->parent) { 1836 int use_delay = atomic_read(&blkg->use_delay); 1837 1838 if (use_delay) { 1839 u64 this_delay; 1840 1841 blkcg_scale_delay(blkg, now); 1842 this_delay = atomic64_read(&blkg->delay_nsec); 1843 if (this_delay > delay_nsec) { 1844 delay_nsec = this_delay; 1845 clamp = use_delay > 0; 1846 } 1847 } 1848 blkg = blkg->parent; 1849 } 1850 1851 if (!delay_nsec) 1852 return; 1853 1854 /* 1855 * Let's not sleep for all eternity if we've amassed a huge delay. 1856 * Swapping or metadata IO can accumulate 10's of seconds worth of 1857 * delay, and we want userspace to be able to do _something_ so cap the 1858 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1859 * tasks will be delayed for 0.25 second for every syscall. If 1860 * blkcg_set_delay() was used as indicated by negative use_delay, the 1861 * caller is responsible for regulating the range. 1862 */ 1863 if (clamp) 1864 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1865 1866 if (use_memdelay) 1867 psi_memstall_enter(&pflags); 1868 1869 exp = ktime_add_ns(now, delay_nsec); 1870 tok = io_schedule_prepare(); 1871 do { 1872 __set_current_state(TASK_KILLABLE); 1873 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1874 break; 1875 } while (!fatal_signal_pending(current)); 1876 io_schedule_finish(tok); 1877 1878 if (use_memdelay) 1879 psi_memstall_leave(&pflags); 1880 } 1881 1882 /** 1883 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1884 * 1885 * This is only called if we've been marked with set_notify_resume(). Obviously 1886 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1887 * check to see if current->throttle_disk is set and if not this doesn't do 1888 * anything. This should only ever be called by the resume code, it's not meant 1889 * to be called by people willy-nilly as it will actually do the work to 1890 * throttle the task if it is setup for throttling. 1891 */ 1892 void blkcg_maybe_throttle_current(void) 1893 { 1894 struct gendisk *disk = current->throttle_disk; 1895 struct blkcg *blkcg; 1896 struct blkcg_gq *blkg; 1897 bool use_memdelay = current->use_memdelay; 1898 1899 if (!disk) 1900 return; 1901 1902 current->throttle_disk = NULL; 1903 current->use_memdelay = false; 1904 1905 rcu_read_lock(); 1906 blkcg = css_to_blkcg(blkcg_css()); 1907 if (!blkcg) 1908 goto out; 1909 blkg = blkg_lookup(blkcg, disk->queue); 1910 if (!blkg) 1911 goto out; 1912 if (!blkg_tryget(blkg)) 1913 goto out; 1914 rcu_read_unlock(); 1915 1916 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1917 blkg_put(blkg); 1918 put_disk(disk); 1919 return; 1920 out: 1921 rcu_read_unlock(); 1922 } 1923 1924 /** 1925 * blkcg_schedule_throttle - this task needs to check for throttling 1926 * @disk: disk to throttle 1927 * @use_memdelay: do we charge this to memory delay for PSI 1928 * 1929 * This is called by the IO controller when we know there's delay accumulated 1930 * for the blkg for this task. We do not pass the blkg because there are places 1931 * we call this that may not have that information, the swapping code for 1932 * instance will only have a block_device at that point. This set's the 1933 * notify_resume for the task to check and see if it requires throttling before 1934 * returning to user space. 1935 * 1936 * We will only schedule once per syscall. You can call this over and over 1937 * again and it will only do the check once upon return to user space, and only 1938 * throttle once. If the task needs to be throttled again it'll need to be 1939 * re-set at the next time we see the task. 1940 */ 1941 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay) 1942 { 1943 if (unlikely(current->flags & PF_KTHREAD)) 1944 return; 1945 1946 if (current->throttle_disk != disk) { 1947 if (test_bit(GD_DEAD, &disk->state)) 1948 return; 1949 get_device(disk_to_dev(disk)); 1950 1951 if (current->throttle_disk) 1952 put_disk(current->throttle_disk); 1953 current->throttle_disk = disk; 1954 } 1955 1956 if (use_memdelay) 1957 current->use_memdelay = use_memdelay; 1958 set_notify_resume(current); 1959 } 1960 1961 /** 1962 * blkcg_add_delay - add delay to this blkg 1963 * @blkg: blkg of interest 1964 * @now: the current time in nanoseconds 1965 * @delta: how many nanoseconds of delay to add 1966 * 1967 * Charge @delta to the blkg's current delay accumulation. This is used to 1968 * throttle tasks if an IO controller thinks we need more throttling. 1969 */ 1970 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1971 { 1972 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1973 return; 1974 blkcg_scale_delay(blkg, now); 1975 atomic64_add(delta, &blkg->delay_nsec); 1976 } 1977 1978 /** 1979 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1980 * @bio: target bio 1981 * @css: target css 1982 * 1983 * As the failure mode here is to walk up the blkg tree, this ensure that the 1984 * blkg->parent pointers are always valid. This returns the blkg that it ended 1985 * up taking a reference on or %NULL if no reference was taken. 1986 */ 1987 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1988 struct cgroup_subsys_state *css) 1989 { 1990 struct blkcg_gq *blkg, *ret_blkg = NULL; 1991 1992 rcu_read_lock(); 1993 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk); 1994 while (blkg) { 1995 if (blkg_tryget(blkg)) { 1996 ret_blkg = blkg; 1997 break; 1998 } 1999 blkg = blkg->parent; 2000 } 2001 rcu_read_unlock(); 2002 2003 return ret_blkg; 2004 } 2005 2006 /** 2007 * bio_associate_blkg_from_css - associate a bio with a specified css 2008 * @bio: target bio 2009 * @css: target css 2010 * 2011 * Associate @bio with the blkg found by combining the css's blkg and the 2012 * request_queue of the @bio. An association failure is handled by walking up 2013 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 2014 * and q->root_blkg. This situation only happens when a cgroup is dying and 2015 * then the remaining bios will spill to the closest alive blkg. 2016 * 2017 * A reference will be taken on the blkg and will be released when @bio is 2018 * freed. 2019 */ 2020 void bio_associate_blkg_from_css(struct bio *bio, 2021 struct cgroup_subsys_state *css) 2022 { 2023 if (bio->bi_blkg) 2024 blkg_put(bio->bi_blkg); 2025 2026 if (css && css->parent) { 2027 bio->bi_blkg = blkg_tryget_closest(bio, css); 2028 } else { 2029 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 2030 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 2031 } 2032 } 2033 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2034 2035 /** 2036 * bio_associate_blkg - associate a bio with a blkg 2037 * @bio: target bio 2038 * 2039 * Associate @bio with the blkg found from the bio's css and request_queue. 2040 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2041 * already associated, the css is reused and association redone as the 2042 * request_queue may have changed. 2043 */ 2044 void bio_associate_blkg(struct bio *bio) 2045 { 2046 struct cgroup_subsys_state *css; 2047 2048 rcu_read_lock(); 2049 2050 if (bio->bi_blkg) 2051 css = bio_blkcg_css(bio); 2052 else 2053 css = blkcg_css(); 2054 2055 bio_associate_blkg_from_css(bio, css); 2056 2057 rcu_read_unlock(); 2058 } 2059 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2060 2061 /** 2062 * bio_clone_blkg_association - clone blkg association from src to dst bio 2063 * @dst: destination bio 2064 * @src: source bio 2065 */ 2066 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2067 { 2068 if (src->bi_blkg) 2069 bio_associate_blkg_from_css(dst, bio_blkcg_css(src)); 2070 } 2071 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2072 2073 static int blk_cgroup_io_type(struct bio *bio) 2074 { 2075 if (op_is_discard(bio->bi_opf)) 2076 return BLKG_IOSTAT_DISCARD; 2077 if (op_is_write(bio->bi_opf)) 2078 return BLKG_IOSTAT_WRITE; 2079 return BLKG_IOSTAT_READ; 2080 } 2081 2082 void blk_cgroup_bio_start(struct bio *bio) 2083 { 2084 struct blkcg *blkcg = bio->bi_blkg->blkcg; 2085 int rwd = blk_cgroup_io_type(bio), cpu; 2086 struct blkg_iostat_set *bis; 2087 unsigned long flags; 2088 2089 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) 2090 return; 2091 2092 /* Root-level stats are sourced from system-wide IO stats */ 2093 if (!cgroup_parent(blkcg->css.cgroup)) 2094 return; 2095 2096 cpu = get_cpu(); 2097 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 2098 flags = u64_stats_update_begin_irqsave(&bis->sync); 2099 2100 /* 2101 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 2102 * bio and we would have already accounted for the size of the bio. 2103 */ 2104 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 2105 bio_set_flag(bio, BIO_CGROUP_ACCT); 2106 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 2107 } 2108 bis->cur.ios[rwd]++; 2109 2110 /* 2111 * If the iostat_cpu isn't in a lockless list, put it into the 2112 * list to indicate that a stat update is pending. 2113 */ 2114 if (!READ_ONCE(bis->lqueued)) { 2115 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead); 2116 2117 llist_add(&bis->lnode, lhead); 2118 WRITE_ONCE(bis->lqueued, true); 2119 } 2120 2121 u64_stats_update_end_irqrestore(&bis->sync, flags); 2122 cgroup_rstat_updated(blkcg->css.cgroup, cpu); 2123 put_cpu(); 2124 } 2125 2126 bool blk_cgroup_congested(void) 2127 { 2128 struct cgroup_subsys_state *css; 2129 bool ret = false; 2130 2131 rcu_read_lock(); 2132 for (css = blkcg_css(); css; css = css->parent) { 2133 if (atomic_read(&css->cgroup->congestion_count)) { 2134 ret = true; 2135 break; 2136 } 2137 } 2138 rcu_read_unlock(); 2139 return ret; 2140 } 2141 2142 module_param(blkcg_debug_stats, bool, 0644); 2143 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 2144