1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/ctype.h> 29 #include <linux/resume_user_mode.h> 30 #include <linux/psi.h> 31 #include <linux/part_stat.h> 32 #include "blk.h" 33 #include "blk-cgroup.h" 34 #include "blk-ioprio.h" 35 #include "blk-throttle.h" 36 #include "blk-rq-qos.h" 37 38 /* 39 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 40 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 41 * policy [un]register operations including cgroup file additions / 42 * removals. Putting cgroup file registration outside blkcg_pol_mutex 43 * allows grabbing it from cgroup callbacks. 44 */ 45 static DEFINE_MUTEX(blkcg_pol_register_mutex); 46 static DEFINE_MUTEX(blkcg_pol_mutex); 47 48 struct blkcg blkcg_root; 49 EXPORT_SYMBOL_GPL(blkcg_root); 50 51 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 52 EXPORT_SYMBOL_GPL(blkcg_root_css); 53 54 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 55 56 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 57 58 bool blkcg_debug_stats = false; 59 static struct workqueue_struct *blkcg_punt_bio_wq; 60 61 #define BLKG_DESTROY_BATCH_SIZE 64 62 63 /* 64 * Lockless lists for tracking IO stats update 65 * 66 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg). 67 * There are multiple blkg's (one for each block device) attached to each 68 * blkcg. The rstat code keeps track of which cpu has IO stats updated, 69 * but it doesn't know which blkg has the updated stats. If there are many 70 * block devices in a system, the cost of iterating all the blkg's to flush 71 * out the IO stats can be high. To reduce such overhead, a set of percpu 72 * lockless lists (lhead) per blkcg are used to track the set of recently 73 * updated iostat_cpu's since the last flush. An iostat_cpu will be put 74 * onto the lockless list on the update side [blk_cgroup_bio_start()] if 75 * not there yet and then removed when being flushed [blkcg_rstat_flush()]. 76 * References to blkg are gotten and then put back in the process to 77 * protect against blkg removal. 78 * 79 * Return: 0 if successful or -ENOMEM if allocation fails. 80 */ 81 static int init_blkcg_llists(struct blkcg *blkcg) 82 { 83 int cpu; 84 85 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL); 86 if (!blkcg->lhead) 87 return -ENOMEM; 88 89 for_each_possible_cpu(cpu) 90 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu)); 91 return 0; 92 } 93 94 /** 95 * blkcg_css - find the current css 96 * 97 * Find the css associated with either the kthread or the current task. 98 * This may return a dying css, so it is up to the caller to use tryget logic 99 * to confirm it is alive and well. 100 */ 101 static struct cgroup_subsys_state *blkcg_css(void) 102 { 103 struct cgroup_subsys_state *css; 104 105 css = kthread_blkcg(); 106 if (css) 107 return css; 108 return task_css(current, io_cgrp_id); 109 } 110 111 static bool blkcg_policy_enabled(struct request_queue *q, 112 const struct blkcg_policy *pol) 113 { 114 return pol && test_bit(pol->plid, q->blkcg_pols); 115 } 116 117 static void blkg_free_workfn(struct work_struct *work) 118 { 119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 120 free_work); 121 int i; 122 123 for (i = 0; i < BLKCG_MAX_POLS; i++) 124 if (blkg->pd[i]) 125 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 126 127 if (blkg->q) 128 blk_put_queue(blkg->q); 129 free_percpu(blkg->iostat_cpu); 130 percpu_ref_exit(&blkg->refcnt); 131 kfree(blkg); 132 } 133 134 /** 135 * blkg_free - free a blkg 136 * @blkg: blkg to free 137 * 138 * Free @blkg which may be partially allocated. 139 */ 140 static void blkg_free(struct blkcg_gq *blkg) 141 { 142 if (!blkg) 143 return; 144 145 /* 146 * Both ->pd_free_fn() and request queue's release handler may 147 * sleep, so free us by scheduling one work func 148 */ 149 INIT_WORK(&blkg->free_work, blkg_free_workfn); 150 schedule_work(&blkg->free_work); 151 } 152 153 static void __blkg_release(struct rcu_head *rcu) 154 { 155 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 156 157 WARN_ON(!bio_list_empty(&blkg->async_bios)); 158 159 /* release the blkcg and parent blkg refs this blkg has been holding */ 160 css_put(&blkg->blkcg->css); 161 if (blkg->parent) 162 blkg_put(blkg->parent); 163 blkg_free(blkg); 164 } 165 166 /* 167 * A group is RCU protected, but having an rcu lock does not mean that one 168 * can access all the fields of blkg and assume these are valid. For 169 * example, don't try to follow throtl_data and request queue links. 170 * 171 * Having a reference to blkg under an rcu allows accesses to only values 172 * local to groups like group stats and group rate limits. 173 */ 174 static void blkg_release(struct percpu_ref *ref) 175 { 176 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 177 178 call_rcu(&blkg->rcu_head, __blkg_release); 179 } 180 181 static void blkg_async_bio_workfn(struct work_struct *work) 182 { 183 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 184 async_bio_work); 185 struct bio_list bios = BIO_EMPTY_LIST; 186 struct bio *bio; 187 struct blk_plug plug; 188 bool need_plug = false; 189 190 /* as long as there are pending bios, @blkg can't go away */ 191 spin_lock_bh(&blkg->async_bio_lock); 192 bio_list_merge(&bios, &blkg->async_bios); 193 bio_list_init(&blkg->async_bios); 194 spin_unlock_bh(&blkg->async_bio_lock); 195 196 /* start plug only when bio_list contains at least 2 bios */ 197 if (bios.head && bios.head->bi_next) { 198 need_plug = true; 199 blk_start_plug(&plug); 200 } 201 while ((bio = bio_list_pop(&bios))) 202 submit_bio(bio); 203 if (need_plug) 204 blk_finish_plug(&plug); 205 } 206 207 /** 208 * bio_blkcg_css - return the blkcg CSS associated with a bio 209 * @bio: target bio 210 * 211 * This returns the CSS for the blkcg associated with a bio, or %NULL if not 212 * associated. Callers are expected to either handle %NULL or know association 213 * has been done prior to calling this. 214 */ 215 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio) 216 { 217 if (!bio || !bio->bi_blkg) 218 return NULL; 219 return &bio->bi_blkg->blkcg->css; 220 } 221 EXPORT_SYMBOL_GPL(bio_blkcg_css); 222 223 /** 224 * blkcg_parent - get the parent of a blkcg 225 * @blkcg: blkcg of interest 226 * 227 * Return the parent blkcg of @blkcg. Can be called anytime. 228 */ 229 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg) 230 { 231 return css_to_blkcg(blkcg->css.parent); 232 } 233 234 /** 235 * blkg_alloc - allocate a blkg 236 * @blkcg: block cgroup the new blkg is associated with 237 * @disk: gendisk the new blkg is associated with 238 * @gfp_mask: allocation mask to use 239 * 240 * Allocate a new blkg assocating @blkcg and @q. 241 */ 242 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk, 243 gfp_t gfp_mask) 244 { 245 struct blkcg_gq *blkg; 246 int i, cpu; 247 248 /* alloc and init base part */ 249 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node); 250 if (!blkg) 251 return NULL; 252 253 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 254 goto err_free; 255 256 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 257 if (!blkg->iostat_cpu) 258 goto err_free; 259 260 if (!blk_get_queue(disk->queue)) 261 goto err_free; 262 263 blkg->q = disk->queue; 264 INIT_LIST_HEAD(&blkg->q_node); 265 spin_lock_init(&blkg->async_bio_lock); 266 bio_list_init(&blkg->async_bios); 267 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 268 blkg->blkcg = blkcg; 269 270 u64_stats_init(&blkg->iostat.sync); 271 for_each_possible_cpu(cpu) { 272 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 273 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg; 274 } 275 276 for (i = 0; i < BLKCG_MAX_POLS; i++) { 277 struct blkcg_policy *pol = blkcg_policy[i]; 278 struct blkg_policy_data *pd; 279 280 if (!blkcg_policy_enabled(disk->queue, pol)) 281 continue; 282 283 /* alloc per-policy data and attach it to blkg */ 284 pd = pol->pd_alloc_fn(gfp_mask, disk->queue, blkcg); 285 if (!pd) 286 goto err_free; 287 288 blkg->pd[i] = pd; 289 pd->blkg = blkg; 290 pd->plid = i; 291 } 292 293 return blkg; 294 295 err_free: 296 blkg_free(blkg); 297 return NULL; 298 } 299 300 /* 301 * If @new_blkg is %NULL, this function tries to allocate a new one as 302 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 303 */ 304 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk, 305 struct blkcg_gq *new_blkg) 306 { 307 struct blkcg_gq *blkg; 308 int i, ret; 309 310 lockdep_assert_held(&disk->queue->queue_lock); 311 312 /* request_queue is dying, do not create/recreate a blkg */ 313 if (blk_queue_dying(disk->queue)) { 314 ret = -ENODEV; 315 goto err_free_blkg; 316 } 317 318 /* blkg holds a reference to blkcg */ 319 if (!css_tryget_online(&blkcg->css)) { 320 ret = -ENODEV; 321 goto err_free_blkg; 322 } 323 324 /* allocate */ 325 if (!new_blkg) { 326 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN); 327 if (unlikely(!new_blkg)) { 328 ret = -ENOMEM; 329 goto err_put_css; 330 } 331 } 332 blkg = new_blkg; 333 334 /* link parent */ 335 if (blkcg_parent(blkcg)) { 336 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue); 337 if (WARN_ON_ONCE(!blkg->parent)) { 338 ret = -ENODEV; 339 goto err_put_css; 340 } 341 blkg_get(blkg->parent); 342 } 343 344 /* invoke per-policy init */ 345 for (i = 0; i < BLKCG_MAX_POLS; i++) { 346 struct blkcg_policy *pol = blkcg_policy[i]; 347 348 if (blkg->pd[i] && pol->pd_init_fn) 349 pol->pd_init_fn(blkg->pd[i]); 350 } 351 352 /* insert */ 353 spin_lock(&blkcg->lock); 354 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg); 355 if (likely(!ret)) { 356 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 357 list_add(&blkg->q_node, &disk->queue->blkg_list); 358 359 for (i = 0; i < BLKCG_MAX_POLS; i++) { 360 struct blkcg_policy *pol = blkcg_policy[i]; 361 362 if (blkg->pd[i] && pol->pd_online_fn) 363 pol->pd_online_fn(blkg->pd[i]); 364 } 365 } 366 blkg->online = true; 367 spin_unlock(&blkcg->lock); 368 369 if (!ret) 370 return blkg; 371 372 /* @blkg failed fully initialized, use the usual release path */ 373 blkg_put(blkg); 374 return ERR_PTR(ret); 375 376 err_put_css: 377 css_put(&blkcg->css); 378 err_free_blkg: 379 blkg_free(new_blkg); 380 return ERR_PTR(ret); 381 } 382 383 /** 384 * blkg_lookup_create - lookup blkg, try to create one if not there 385 * @blkcg: blkcg of interest 386 * @disk: gendisk of interest 387 * 388 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to 389 * create one. blkg creation is performed recursively from blkcg_root such 390 * that all non-root blkg's have access to the parent blkg. This function 391 * should be called under RCU read lock and takes @disk->queue->queue_lock. 392 * 393 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 394 * down from root. 395 */ 396 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 397 struct gendisk *disk) 398 { 399 struct request_queue *q = disk->queue; 400 struct blkcg_gq *blkg; 401 unsigned long flags; 402 403 WARN_ON_ONCE(!rcu_read_lock_held()); 404 405 blkg = blkg_lookup(blkcg, q); 406 if (blkg) 407 return blkg; 408 409 spin_lock_irqsave(&q->queue_lock, flags); 410 blkg = blkg_lookup(blkcg, q); 411 if (blkg) { 412 if (blkcg != &blkcg_root && 413 blkg != rcu_dereference(blkcg->blkg_hint)) 414 rcu_assign_pointer(blkcg->blkg_hint, blkg); 415 goto found; 416 } 417 418 /* 419 * Create blkgs walking down from blkcg_root to @blkcg, so that all 420 * non-root blkgs have access to their parents. Returns the closest 421 * blkg to the intended blkg should blkg_create() fail. 422 */ 423 while (true) { 424 struct blkcg *pos = blkcg; 425 struct blkcg *parent = blkcg_parent(blkcg); 426 struct blkcg_gq *ret_blkg = q->root_blkg; 427 428 while (parent) { 429 blkg = blkg_lookup(parent, q); 430 if (blkg) { 431 /* remember closest blkg */ 432 ret_blkg = blkg; 433 break; 434 } 435 pos = parent; 436 parent = blkcg_parent(parent); 437 } 438 439 blkg = blkg_create(pos, disk, NULL); 440 if (IS_ERR(blkg)) { 441 blkg = ret_blkg; 442 break; 443 } 444 if (pos == blkcg) 445 break; 446 } 447 448 found: 449 spin_unlock_irqrestore(&q->queue_lock, flags); 450 return blkg; 451 } 452 453 static void blkg_destroy(struct blkcg_gq *blkg) 454 { 455 struct blkcg *blkcg = blkg->blkcg; 456 int i; 457 458 lockdep_assert_held(&blkg->q->queue_lock); 459 lockdep_assert_held(&blkcg->lock); 460 461 /* Something wrong if we are trying to remove same group twice */ 462 WARN_ON_ONCE(list_empty(&blkg->q_node)); 463 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 464 465 for (i = 0; i < BLKCG_MAX_POLS; i++) { 466 struct blkcg_policy *pol = blkcg_policy[i]; 467 468 if (blkg->pd[i] && pol->pd_offline_fn) 469 pol->pd_offline_fn(blkg->pd[i]); 470 } 471 472 blkg->online = false; 473 474 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 475 list_del_init(&blkg->q_node); 476 hlist_del_init_rcu(&blkg->blkcg_node); 477 478 /* 479 * Both setting lookup hint to and clearing it from @blkg are done 480 * under queue_lock. If it's not pointing to @blkg now, it never 481 * will. Hint assignment itself can race safely. 482 */ 483 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 484 rcu_assign_pointer(blkcg->blkg_hint, NULL); 485 486 /* 487 * Put the reference taken at the time of creation so that when all 488 * queues are gone, group can be destroyed. 489 */ 490 percpu_ref_kill(&blkg->refcnt); 491 } 492 493 static void blkg_destroy_all(struct gendisk *disk) 494 { 495 struct request_queue *q = disk->queue; 496 struct blkcg_gq *blkg, *n; 497 int count = BLKG_DESTROY_BATCH_SIZE; 498 499 restart: 500 spin_lock_irq(&q->queue_lock); 501 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 502 struct blkcg *blkcg = blkg->blkcg; 503 504 spin_lock(&blkcg->lock); 505 blkg_destroy(blkg); 506 spin_unlock(&blkcg->lock); 507 508 /* 509 * in order to avoid holding the spin lock for too long, release 510 * it when a batch of blkgs are destroyed. 511 */ 512 if (!(--count)) { 513 count = BLKG_DESTROY_BATCH_SIZE; 514 spin_unlock_irq(&q->queue_lock); 515 cond_resched(); 516 goto restart; 517 } 518 } 519 520 q->root_blkg = NULL; 521 spin_unlock_irq(&q->queue_lock); 522 } 523 524 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 525 struct cftype *cftype, u64 val) 526 { 527 struct blkcg *blkcg = css_to_blkcg(css); 528 struct blkcg_gq *blkg; 529 int i, cpu; 530 531 mutex_lock(&blkcg_pol_mutex); 532 spin_lock_irq(&blkcg->lock); 533 534 /* 535 * Note that stat reset is racy - it doesn't synchronize against 536 * stat updates. This is a debug feature which shouldn't exist 537 * anyway. If you get hit by a race, retry. 538 */ 539 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 540 for_each_possible_cpu(cpu) { 541 struct blkg_iostat_set *bis = 542 per_cpu_ptr(blkg->iostat_cpu, cpu); 543 memset(bis, 0, sizeof(*bis)); 544 } 545 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 546 547 for (i = 0; i < BLKCG_MAX_POLS; i++) { 548 struct blkcg_policy *pol = blkcg_policy[i]; 549 550 if (blkg->pd[i] && pol->pd_reset_stats_fn) 551 pol->pd_reset_stats_fn(blkg->pd[i]); 552 } 553 } 554 555 spin_unlock_irq(&blkcg->lock); 556 mutex_unlock(&blkcg_pol_mutex); 557 return 0; 558 } 559 560 const char *blkg_dev_name(struct blkcg_gq *blkg) 561 { 562 if (!blkg->q->disk || !blkg->q->disk->bdi->dev) 563 return NULL; 564 return bdi_dev_name(blkg->q->disk->bdi); 565 } 566 567 /** 568 * blkcg_print_blkgs - helper for printing per-blkg data 569 * @sf: seq_file to print to 570 * @blkcg: blkcg of interest 571 * @prfill: fill function to print out a blkg 572 * @pol: policy in question 573 * @data: data to be passed to @prfill 574 * @show_total: to print out sum of prfill return values or not 575 * 576 * This function invokes @prfill on each blkg of @blkcg if pd for the 577 * policy specified by @pol exists. @prfill is invoked with @sf, the 578 * policy data and @data and the matching queue lock held. If @show_total 579 * is %true, the sum of the return values from @prfill is printed with 580 * "Total" label at the end. 581 * 582 * This is to be used to construct print functions for 583 * cftype->read_seq_string method. 584 */ 585 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 586 u64 (*prfill)(struct seq_file *, 587 struct blkg_policy_data *, int), 588 const struct blkcg_policy *pol, int data, 589 bool show_total) 590 { 591 struct blkcg_gq *blkg; 592 u64 total = 0; 593 594 rcu_read_lock(); 595 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 596 spin_lock_irq(&blkg->q->queue_lock); 597 if (blkcg_policy_enabled(blkg->q, pol)) 598 total += prfill(sf, blkg->pd[pol->plid], data); 599 spin_unlock_irq(&blkg->q->queue_lock); 600 } 601 rcu_read_unlock(); 602 603 if (show_total) 604 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 605 } 606 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 607 608 /** 609 * __blkg_prfill_u64 - prfill helper for a single u64 value 610 * @sf: seq_file to print to 611 * @pd: policy private data of interest 612 * @v: value to print 613 * 614 * Print @v to @sf for the device associated with @pd. 615 */ 616 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 617 { 618 const char *dname = blkg_dev_name(pd->blkg); 619 620 if (!dname) 621 return 0; 622 623 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 624 return v; 625 } 626 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 627 628 /** 629 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update 630 * @inputp: input string pointer 631 * 632 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 633 * from @input and get and return the matching bdev. *@inputp is 634 * updated to point past the device node prefix. Returns an ERR_PTR() 635 * value on error. 636 * 637 * Use this function iff blkg_conf_prep() can't be used for some reason. 638 */ 639 struct block_device *blkcg_conf_open_bdev(char **inputp) 640 { 641 char *input = *inputp; 642 unsigned int major, minor; 643 struct block_device *bdev; 644 int key_len; 645 646 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 647 return ERR_PTR(-EINVAL); 648 649 input += key_len; 650 if (!isspace(*input)) 651 return ERR_PTR(-EINVAL); 652 input = skip_spaces(input); 653 654 bdev = blkdev_get_no_open(MKDEV(major, minor)); 655 if (!bdev) 656 return ERR_PTR(-ENODEV); 657 if (bdev_is_partition(bdev)) { 658 blkdev_put_no_open(bdev); 659 return ERR_PTR(-ENODEV); 660 } 661 662 *inputp = input; 663 return bdev; 664 } 665 666 /** 667 * blkg_conf_prep - parse and prepare for per-blkg config update 668 * @blkcg: target block cgroup 669 * @pol: target policy 670 * @input: input string 671 * @ctx: blkg_conf_ctx to be filled 672 * 673 * Parse per-blkg config update from @input and initialize @ctx with the 674 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 675 * part of @input following MAJ:MIN. This function returns with RCU read 676 * lock and queue lock held and must be paired with blkg_conf_finish(). 677 */ 678 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 679 char *input, struct blkg_conf_ctx *ctx) 680 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock) 681 { 682 struct block_device *bdev; 683 struct gendisk *disk; 684 struct request_queue *q; 685 struct blkcg_gq *blkg; 686 int ret; 687 688 bdev = blkcg_conf_open_bdev(&input); 689 if (IS_ERR(bdev)) 690 return PTR_ERR(bdev); 691 disk = bdev->bd_disk; 692 q = disk->queue; 693 694 /* 695 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 696 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 697 */ 698 ret = blk_queue_enter(q, 0); 699 if (ret) 700 goto fail; 701 702 rcu_read_lock(); 703 spin_lock_irq(&q->queue_lock); 704 705 if (!blkcg_policy_enabled(q, pol)) { 706 ret = -EOPNOTSUPP; 707 goto fail_unlock; 708 } 709 710 blkg = blkg_lookup(blkcg, q); 711 if (blkg) 712 goto success; 713 714 /* 715 * Create blkgs walking down from blkcg_root to @blkcg, so that all 716 * non-root blkgs have access to their parents. 717 */ 718 while (true) { 719 struct blkcg *pos = blkcg; 720 struct blkcg *parent; 721 struct blkcg_gq *new_blkg; 722 723 parent = blkcg_parent(blkcg); 724 while (parent && !blkg_lookup(parent, q)) { 725 pos = parent; 726 parent = blkcg_parent(parent); 727 } 728 729 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 730 spin_unlock_irq(&q->queue_lock); 731 rcu_read_unlock(); 732 733 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL); 734 if (unlikely(!new_blkg)) { 735 ret = -ENOMEM; 736 goto fail_exit_queue; 737 } 738 739 if (radix_tree_preload(GFP_KERNEL)) { 740 blkg_free(new_blkg); 741 ret = -ENOMEM; 742 goto fail_exit_queue; 743 } 744 745 rcu_read_lock(); 746 spin_lock_irq(&q->queue_lock); 747 748 if (!blkcg_policy_enabled(q, pol)) { 749 blkg_free(new_blkg); 750 ret = -EOPNOTSUPP; 751 goto fail_preloaded; 752 } 753 754 blkg = blkg_lookup(pos, q); 755 if (blkg) { 756 blkg_free(new_blkg); 757 } else { 758 blkg = blkg_create(pos, disk, new_blkg); 759 if (IS_ERR(blkg)) { 760 ret = PTR_ERR(blkg); 761 goto fail_preloaded; 762 } 763 } 764 765 radix_tree_preload_end(); 766 767 if (pos == blkcg) 768 goto success; 769 } 770 success: 771 blk_queue_exit(q); 772 ctx->bdev = bdev; 773 ctx->blkg = blkg; 774 ctx->body = input; 775 return 0; 776 777 fail_preloaded: 778 radix_tree_preload_end(); 779 fail_unlock: 780 spin_unlock_irq(&q->queue_lock); 781 rcu_read_unlock(); 782 fail_exit_queue: 783 blk_queue_exit(q); 784 fail: 785 blkdev_put_no_open(bdev); 786 /* 787 * If queue was bypassing, we should retry. Do so after a 788 * short msleep(). It isn't strictly necessary but queue 789 * can be bypassing for some time and it's always nice to 790 * avoid busy looping. 791 */ 792 if (ret == -EBUSY) { 793 msleep(10); 794 ret = restart_syscall(); 795 } 796 return ret; 797 } 798 EXPORT_SYMBOL_GPL(blkg_conf_prep); 799 800 /** 801 * blkg_conf_finish - finish up per-blkg config update 802 * @ctx: blkg_conf_ctx initialized by blkg_conf_prep() 803 * 804 * Finish up after per-blkg config update. This function must be paired 805 * with blkg_conf_prep(). 806 */ 807 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 808 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu) 809 { 810 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 811 rcu_read_unlock(); 812 blkdev_put_no_open(ctx->bdev); 813 } 814 EXPORT_SYMBOL_GPL(blkg_conf_finish); 815 816 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 817 { 818 int i; 819 820 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 821 dst->bytes[i] = src->bytes[i]; 822 dst->ios[i] = src->ios[i]; 823 } 824 } 825 826 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 827 { 828 int i; 829 830 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 831 dst->bytes[i] += src->bytes[i]; 832 dst->ios[i] += src->ios[i]; 833 } 834 } 835 836 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 837 { 838 int i; 839 840 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 841 dst->bytes[i] -= src->bytes[i]; 842 dst->ios[i] -= src->ios[i]; 843 } 844 } 845 846 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur, 847 struct blkg_iostat *last) 848 { 849 struct blkg_iostat delta; 850 unsigned long flags; 851 852 /* propagate percpu delta to global */ 853 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 854 blkg_iostat_set(&delta, cur); 855 blkg_iostat_sub(&delta, last); 856 blkg_iostat_add(&blkg->iostat.cur, &delta); 857 blkg_iostat_add(last, &delta); 858 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 859 } 860 861 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 862 { 863 struct blkcg *blkcg = css_to_blkcg(css); 864 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu); 865 struct llist_node *lnode; 866 struct blkg_iostat_set *bisc, *next_bisc; 867 868 /* Root-level stats are sourced from system-wide IO stats */ 869 if (!cgroup_parent(css->cgroup)) 870 return; 871 872 rcu_read_lock(); 873 874 lnode = llist_del_all(lhead); 875 if (!lnode) 876 goto out; 877 878 /* 879 * Iterate only the iostat_cpu's queued in the lockless list. 880 */ 881 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) { 882 struct blkcg_gq *blkg = bisc->blkg; 883 struct blkcg_gq *parent = blkg->parent; 884 struct blkg_iostat cur; 885 unsigned int seq; 886 887 WRITE_ONCE(bisc->lqueued, false); 888 889 /* fetch the current per-cpu values */ 890 do { 891 seq = u64_stats_fetch_begin(&bisc->sync); 892 blkg_iostat_set(&cur, &bisc->cur); 893 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 894 895 blkcg_iostat_update(blkg, &cur, &bisc->last); 896 897 /* propagate global delta to parent (unless that's root) */ 898 if (parent && parent->parent) 899 blkcg_iostat_update(parent, &blkg->iostat.cur, 900 &blkg->iostat.last); 901 percpu_ref_put(&blkg->refcnt); 902 } 903 904 out: 905 rcu_read_unlock(); 906 } 907 908 /* 909 * We source root cgroup stats from the system-wide stats to avoid 910 * tracking the same information twice and incurring overhead when no 911 * cgroups are defined. For that reason, cgroup_rstat_flush in 912 * blkcg_print_stat does not actually fill out the iostat in the root 913 * cgroup's blkcg_gq. 914 * 915 * However, we would like to re-use the printing code between the root and 916 * non-root cgroups to the extent possible. For that reason, we simulate 917 * flushing the root cgroup's stats by explicitly filling in the iostat 918 * with disk level statistics. 919 */ 920 static void blkcg_fill_root_iostats(void) 921 { 922 struct class_dev_iter iter; 923 struct device *dev; 924 925 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 926 while ((dev = class_dev_iter_next(&iter))) { 927 struct block_device *bdev = dev_to_bdev(dev); 928 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg; 929 struct blkg_iostat tmp; 930 int cpu; 931 unsigned long flags; 932 933 memset(&tmp, 0, sizeof(tmp)); 934 for_each_possible_cpu(cpu) { 935 struct disk_stats *cpu_dkstats; 936 937 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 938 tmp.ios[BLKG_IOSTAT_READ] += 939 cpu_dkstats->ios[STAT_READ]; 940 tmp.ios[BLKG_IOSTAT_WRITE] += 941 cpu_dkstats->ios[STAT_WRITE]; 942 tmp.ios[BLKG_IOSTAT_DISCARD] += 943 cpu_dkstats->ios[STAT_DISCARD]; 944 // convert sectors to bytes 945 tmp.bytes[BLKG_IOSTAT_READ] += 946 cpu_dkstats->sectors[STAT_READ] << 9; 947 tmp.bytes[BLKG_IOSTAT_WRITE] += 948 cpu_dkstats->sectors[STAT_WRITE] << 9; 949 tmp.bytes[BLKG_IOSTAT_DISCARD] += 950 cpu_dkstats->sectors[STAT_DISCARD] << 9; 951 } 952 953 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 954 blkg_iostat_set(&blkg->iostat.cur, &tmp); 955 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 956 } 957 } 958 959 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 960 { 961 struct blkg_iostat_set *bis = &blkg->iostat; 962 u64 rbytes, wbytes, rios, wios, dbytes, dios; 963 const char *dname; 964 unsigned seq; 965 int i; 966 967 if (!blkg->online) 968 return; 969 970 dname = blkg_dev_name(blkg); 971 if (!dname) 972 return; 973 974 seq_printf(s, "%s ", dname); 975 976 do { 977 seq = u64_stats_fetch_begin(&bis->sync); 978 979 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 980 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 981 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 982 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 983 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 984 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 985 } while (u64_stats_fetch_retry(&bis->sync, seq)); 986 987 if (rbytes || wbytes || rios || wios) { 988 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 989 rbytes, wbytes, rios, wios, 990 dbytes, dios); 991 } 992 993 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 994 seq_printf(s, " use_delay=%d delay_nsec=%llu", 995 atomic_read(&blkg->use_delay), 996 atomic64_read(&blkg->delay_nsec)); 997 } 998 999 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1000 struct blkcg_policy *pol = blkcg_policy[i]; 1001 1002 if (!blkg->pd[i] || !pol->pd_stat_fn) 1003 continue; 1004 1005 pol->pd_stat_fn(blkg->pd[i], s); 1006 } 1007 1008 seq_puts(s, "\n"); 1009 } 1010 1011 static int blkcg_print_stat(struct seq_file *sf, void *v) 1012 { 1013 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1014 struct blkcg_gq *blkg; 1015 1016 if (!seq_css(sf)->parent) 1017 blkcg_fill_root_iostats(); 1018 else 1019 cgroup_rstat_flush(blkcg->css.cgroup); 1020 1021 rcu_read_lock(); 1022 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 1023 spin_lock_irq(&blkg->q->queue_lock); 1024 blkcg_print_one_stat(blkg, sf); 1025 spin_unlock_irq(&blkg->q->queue_lock); 1026 } 1027 rcu_read_unlock(); 1028 return 0; 1029 } 1030 1031 static struct cftype blkcg_files[] = { 1032 { 1033 .name = "stat", 1034 .seq_show = blkcg_print_stat, 1035 }, 1036 { } /* terminate */ 1037 }; 1038 1039 static struct cftype blkcg_legacy_files[] = { 1040 { 1041 .name = "reset_stats", 1042 .write_u64 = blkcg_reset_stats, 1043 }, 1044 { } /* terminate */ 1045 }; 1046 1047 #ifdef CONFIG_CGROUP_WRITEBACK 1048 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css) 1049 { 1050 return &css_to_blkcg(css)->cgwb_list; 1051 } 1052 #endif 1053 1054 /* 1055 * blkcg destruction is a three-stage process. 1056 * 1057 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 1058 * which offlines writeback. Here we tie the next stage of blkg destruction 1059 * to the completion of writeback associated with the blkcg. This lets us 1060 * avoid punting potentially large amounts of outstanding writeback to root 1061 * while maintaining any ongoing policies. The next stage is triggered when 1062 * the nr_cgwbs count goes to zero. 1063 * 1064 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 1065 * and handles the destruction of blkgs. Here the css reference held by 1066 * the blkg is put back eventually allowing blkcg_css_free() to be called. 1067 * This work may occur in cgwb_release_workfn() on the cgwb_release 1068 * workqueue. Any submitted ios that fail to get the blkg ref will be 1069 * punted to the root_blkg. 1070 * 1071 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1072 * This finally frees the blkcg. 1073 */ 1074 1075 /** 1076 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1077 * @blkcg: blkcg of interest 1078 * 1079 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1080 * is nested inside q lock, this function performs reverse double lock dancing. 1081 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1082 * blkcg_css_free to eventually be called. 1083 * 1084 * This is the blkcg counterpart of ioc_release_fn(). 1085 */ 1086 static void blkcg_destroy_blkgs(struct blkcg *blkcg) 1087 { 1088 might_sleep(); 1089 1090 spin_lock_irq(&blkcg->lock); 1091 1092 while (!hlist_empty(&blkcg->blkg_list)) { 1093 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1094 struct blkcg_gq, blkcg_node); 1095 struct request_queue *q = blkg->q; 1096 1097 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1098 /* 1099 * Given that the system can accumulate a huge number 1100 * of blkgs in pathological cases, check to see if we 1101 * need to rescheduling to avoid softlockup. 1102 */ 1103 spin_unlock_irq(&blkcg->lock); 1104 cond_resched(); 1105 spin_lock_irq(&blkcg->lock); 1106 continue; 1107 } 1108 1109 blkg_destroy(blkg); 1110 spin_unlock(&q->queue_lock); 1111 } 1112 1113 spin_unlock_irq(&blkcg->lock); 1114 } 1115 1116 /** 1117 * blkcg_pin_online - pin online state 1118 * @blkcg_css: blkcg of interest 1119 * 1120 * While pinned, a blkcg is kept online. This is primarily used to 1121 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline 1122 * while an associated cgwb is still active. 1123 */ 1124 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css) 1125 { 1126 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin); 1127 } 1128 1129 /** 1130 * blkcg_unpin_online - unpin online state 1131 * @blkcg_css: blkcg of interest 1132 * 1133 * This is primarily used to impedance-match blkg and cgwb lifetimes so 1134 * that blkg doesn't go offline while an associated cgwb is still active. 1135 * When this count goes to zero, all active cgwbs have finished so the 1136 * blkcg can continue destruction by calling blkcg_destroy_blkgs(). 1137 */ 1138 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css) 1139 { 1140 struct blkcg *blkcg = css_to_blkcg(blkcg_css); 1141 1142 do { 1143 if (!refcount_dec_and_test(&blkcg->online_pin)) 1144 break; 1145 blkcg_destroy_blkgs(blkcg); 1146 blkcg = blkcg_parent(blkcg); 1147 } while (blkcg); 1148 } 1149 1150 /** 1151 * blkcg_css_offline - cgroup css_offline callback 1152 * @css: css of interest 1153 * 1154 * This function is called when @css is about to go away. Here the cgwbs are 1155 * offlined first and only once writeback associated with the blkcg has 1156 * finished do we start step 2 (see above). 1157 */ 1158 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1159 { 1160 /* this prevents anyone from attaching or migrating to this blkcg */ 1161 wb_blkcg_offline(css); 1162 1163 /* put the base online pin allowing step 2 to be triggered */ 1164 blkcg_unpin_online(css); 1165 } 1166 1167 static void blkcg_css_free(struct cgroup_subsys_state *css) 1168 { 1169 struct blkcg *blkcg = css_to_blkcg(css); 1170 int i; 1171 1172 mutex_lock(&blkcg_pol_mutex); 1173 1174 list_del(&blkcg->all_blkcgs_node); 1175 1176 for (i = 0; i < BLKCG_MAX_POLS; i++) 1177 if (blkcg->cpd[i]) 1178 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1179 1180 mutex_unlock(&blkcg_pol_mutex); 1181 1182 free_percpu(blkcg->lhead); 1183 kfree(blkcg); 1184 } 1185 1186 static struct cgroup_subsys_state * 1187 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1188 { 1189 struct blkcg *blkcg; 1190 int i; 1191 1192 mutex_lock(&blkcg_pol_mutex); 1193 1194 if (!parent_css) { 1195 blkcg = &blkcg_root; 1196 } else { 1197 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1198 if (!blkcg) 1199 goto unlock; 1200 } 1201 1202 if (init_blkcg_llists(blkcg)) 1203 goto free_blkcg; 1204 1205 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1206 struct blkcg_policy *pol = blkcg_policy[i]; 1207 struct blkcg_policy_data *cpd; 1208 1209 /* 1210 * If the policy hasn't been attached yet, wait for it 1211 * to be attached before doing anything else. Otherwise, 1212 * check if the policy requires any specific per-cgroup 1213 * data: if it does, allocate and initialize it. 1214 */ 1215 if (!pol || !pol->cpd_alloc_fn) 1216 continue; 1217 1218 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1219 if (!cpd) 1220 goto free_pd_blkcg; 1221 1222 blkcg->cpd[i] = cpd; 1223 cpd->blkcg = blkcg; 1224 cpd->plid = i; 1225 if (pol->cpd_init_fn) 1226 pol->cpd_init_fn(cpd); 1227 } 1228 1229 spin_lock_init(&blkcg->lock); 1230 refcount_set(&blkcg->online_pin, 1); 1231 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1232 INIT_HLIST_HEAD(&blkcg->blkg_list); 1233 #ifdef CONFIG_CGROUP_WRITEBACK 1234 INIT_LIST_HEAD(&blkcg->cgwb_list); 1235 #endif 1236 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1237 1238 mutex_unlock(&blkcg_pol_mutex); 1239 return &blkcg->css; 1240 1241 free_pd_blkcg: 1242 for (i--; i >= 0; i--) 1243 if (blkcg->cpd[i]) 1244 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1245 free_percpu(blkcg->lhead); 1246 free_blkcg: 1247 if (blkcg != &blkcg_root) 1248 kfree(blkcg); 1249 unlock: 1250 mutex_unlock(&blkcg_pol_mutex); 1251 return ERR_PTR(-ENOMEM); 1252 } 1253 1254 static int blkcg_css_online(struct cgroup_subsys_state *css) 1255 { 1256 struct blkcg *parent = blkcg_parent(css_to_blkcg(css)); 1257 1258 /* 1259 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1260 * don't go offline while cgwbs are still active on them. Pin the 1261 * parent so that offline always happens towards the root. 1262 */ 1263 if (parent) 1264 blkcg_pin_online(&parent->css); 1265 return 0; 1266 } 1267 1268 int blkcg_init_disk(struct gendisk *disk) 1269 { 1270 struct request_queue *q = disk->queue; 1271 struct blkcg_gq *new_blkg, *blkg; 1272 bool preloaded; 1273 int ret; 1274 1275 INIT_LIST_HEAD(&q->blkg_list); 1276 1277 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL); 1278 if (!new_blkg) 1279 return -ENOMEM; 1280 1281 preloaded = !radix_tree_preload(GFP_KERNEL); 1282 1283 /* Make sure the root blkg exists. */ 1284 /* spin_lock_irq can serve as RCU read-side critical section. */ 1285 spin_lock_irq(&q->queue_lock); 1286 blkg = blkg_create(&blkcg_root, disk, new_blkg); 1287 if (IS_ERR(blkg)) 1288 goto err_unlock; 1289 q->root_blkg = blkg; 1290 spin_unlock_irq(&q->queue_lock); 1291 1292 if (preloaded) 1293 radix_tree_preload_end(); 1294 1295 ret = blk_ioprio_init(disk); 1296 if (ret) 1297 goto err_destroy_all; 1298 1299 ret = blk_throtl_init(disk); 1300 if (ret) 1301 goto err_ioprio_exit; 1302 1303 ret = blk_iolatency_init(disk); 1304 if (ret) 1305 goto err_throtl_exit; 1306 1307 return 0; 1308 1309 err_throtl_exit: 1310 blk_throtl_exit(disk); 1311 err_ioprio_exit: 1312 blk_ioprio_exit(disk); 1313 err_destroy_all: 1314 blkg_destroy_all(disk); 1315 return ret; 1316 err_unlock: 1317 spin_unlock_irq(&q->queue_lock); 1318 if (preloaded) 1319 radix_tree_preload_end(); 1320 return PTR_ERR(blkg); 1321 } 1322 1323 void blkcg_exit_disk(struct gendisk *disk) 1324 { 1325 blkg_destroy_all(disk); 1326 rq_qos_exit(disk->queue); 1327 blk_throtl_exit(disk); 1328 } 1329 1330 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1331 { 1332 int i; 1333 1334 mutex_lock(&blkcg_pol_mutex); 1335 1336 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1337 struct blkcg_policy *pol = blkcg_policy[i]; 1338 struct blkcg *blkcg; 1339 1340 if (!pol || !pol->cpd_bind_fn) 1341 continue; 1342 1343 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1344 if (blkcg->cpd[pol->plid]) 1345 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1346 } 1347 mutex_unlock(&blkcg_pol_mutex); 1348 } 1349 1350 static void blkcg_exit(struct task_struct *tsk) 1351 { 1352 if (tsk->throttle_queue) 1353 blk_put_queue(tsk->throttle_queue); 1354 tsk->throttle_queue = NULL; 1355 } 1356 1357 struct cgroup_subsys io_cgrp_subsys = { 1358 .css_alloc = blkcg_css_alloc, 1359 .css_online = blkcg_css_online, 1360 .css_offline = blkcg_css_offline, 1361 .css_free = blkcg_css_free, 1362 .css_rstat_flush = blkcg_rstat_flush, 1363 .bind = blkcg_bind, 1364 .dfl_cftypes = blkcg_files, 1365 .legacy_cftypes = blkcg_legacy_files, 1366 .legacy_name = "blkio", 1367 .exit = blkcg_exit, 1368 #ifdef CONFIG_MEMCG 1369 /* 1370 * This ensures that, if available, memcg is automatically enabled 1371 * together on the default hierarchy so that the owner cgroup can 1372 * be retrieved from writeback pages. 1373 */ 1374 .depends_on = 1 << memory_cgrp_id, 1375 #endif 1376 }; 1377 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1378 1379 /** 1380 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1381 * @q: request_queue of interest 1382 * @pol: blkcg policy to activate 1383 * 1384 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1385 * bypass mode to populate its blkgs with policy_data for @pol. 1386 * 1387 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1388 * from IO path. Update of each blkg is protected by both queue and blkcg 1389 * locks so that holding either lock and testing blkcg_policy_enabled() is 1390 * always enough for dereferencing policy data. 1391 * 1392 * The caller is responsible for synchronizing [de]activations and policy 1393 * [un]registerations. Returns 0 on success, -errno on failure. 1394 */ 1395 int blkcg_activate_policy(struct request_queue *q, 1396 const struct blkcg_policy *pol) 1397 { 1398 struct blkg_policy_data *pd_prealloc = NULL; 1399 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1400 int ret; 1401 1402 if (blkcg_policy_enabled(q, pol)) 1403 return 0; 1404 1405 if (queue_is_mq(q)) 1406 blk_mq_freeze_queue(q); 1407 retry: 1408 spin_lock_irq(&q->queue_lock); 1409 1410 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1411 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1412 struct blkg_policy_data *pd; 1413 1414 if (blkg->pd[pol->plid]) 1415 continue; 1416 1417 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1418 if (blkg == pinned_blkg) { 1419 pd = pd_prealloc; 1420 pd_prealloc = NULL; 1421 } else { 1422 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1423 blkg->blkcg); 1424 } 1425 1426 if (!pd) { 1427 /* 1428 * GFP_NOWAIT failed. Free the existing one and 1429 * prealloc for @blkg w/ GFP_KERNEL. 1430 */ 1431 if (pinned_blkg) 1432 blkg_put(pinned_blkg); 1433 blkg_get(blkg); 1434 pinned_blkg = blkg; 1435 1436 spin_unlock_irq(&q->queue_lock); 1437 1438 if (pd_prealloc) 1439 pol->pd_free_fn(pd_prealloc); 1440 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1441 blkg->blkcg); 1442 if (pd_prealloc) 1443 goto retry; 1444 else 1445 goto enomem; 1446 } 1447 1448 blkg->pd[pol->plid] = pd; 1449 pd->blkg = blkg; 1450 pd->plid = pol->plid; 1451 } 1452 1453 /* all allocated, init in the same order */ 1454 if (pol->pd_init_fn) 1455 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1456 pol->pd_init_fn(blkg->pd[pol->plid]); 1457 1458 if (pol->pd_online_fn) 1459 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1460 pol->pd_online_fn(blkg->pd[pol->plid]); 1461 1462 __set_bit(pol->plid, q->blkcg_pols); 1463 ret = 0; 1464 1465 spin_unlock_irq(&q->queue_lock); 1466 out: 1467 if (queue_is_mq(q)) 1468 blk_mq_unfreeze_queue(q); 1469 if (pinned_blkg) 1470 blkg_put(pinned_blkg); 1471 if (pd_prealloc) 1472 pol->pd_free_fn(pd_prealloc); 1473 return ret; 1474 1475 enomem: 1476 /* alloc failed, nothing's initialized yet, free everything */ 1477 spin_lock_irq(&q->queue_lock); 1478 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1479 struct blkcg *blkcg = blkg->blkcg; 1480 1481 spin_lock(&blkcg->lock); 1482 if (blkg->pd[pol->plid]) { 1483 pol->pd_free_fn(blkg->pd[pol->plid]); 1484 blkg->pd[pol->plid] = NULL; 1485 } 1486 spin_unlock(&blkcg->lock); 1487 } 1488 spin_unlock_irq(&q->queue_lock); 1489 ret = -ENOMEM; 1490 goto out; 1491 } 1492 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1493 1494 /** 1495 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1496 * @q: request_queue of interest 1497 * @pol: blkcg policy to deactivate 1498 * 1499 * Deactivate @pol on @q. Follows the same synchronization rules as 1500 * blkcg_activate_policy(). 1501 */ 1502 void blkcg_deactivate_policy(struct request_queue *q, 1503 const struct blkcg_policy *pol) 1504 { 1505 struct blkcg_gq *blkg; 1506 1507 if (!blkcg_policy_enabled(q, pol)) 1508 return; 1509 1510 if (queue_is_mq(q)) 1511 blk_mq_freeze_queue(q); 1512 1513 spin_lock_irq(&q->queue_lock); 1514 1515 __clear_bit(pol->plid, q->blkcg_pols); 1516 1517 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1518 struct blkcg *blkcg = blkg->blkcg; 1519 1520 spin_lock(&blkcg->lock); 1521 if (blkg->pd[pol->plid]) { 1522 if (pol->pd_offline_fn) 1523 pol->pd_offline_fn(blkg->pd[pol->plid]); 1524 pol->pd_free_fn(blkg->pd[pol->plid]); 1525 blkg->pd[pol->plid] = NULL; 1526 } 1527 spin_unlock(&blkcg->lock); 1528 } 1529 1530 spin_unlock_irq(&q->queue_lock); 1531 1532 if (queue_is_mq(q)) 1533 blk_mq_unfreeze_queue(q); 1534 } 1535 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1536 1537 static void blkcg_free_all_cpd(struct blkcg_policy *pol) 1538 { 1539 struct blkcg *blkcg; 1540 1541 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1542 if (blkcg->cpd[pol->plid]) { 1543 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1544 blkcg->cpd[pol->plid] = NULL; 1545 } 1546 } 1547 } 1548 1549 /** 1550 * blkcg_policy_register - register a blkcg policy 1551 * @pol: blkcg policy to register 1552 * 1553 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1554 * successful registration. Returns 0 on success and -errno on failure. 1555 */ 1556 int blkcg_policy_register(struct blkcg_policy *pol) 1557 { 1558 struct blkcg *blkcg; 1559 int i, ret; 1560 1561 mutex_lock(&blkcg_pol_register_mutex); 1562 mutex_lock(&blkcg_pol_mutex); 1563 1564 /* find an empty slot */ 1565 ret = -ENOSPC; 1566 for (i = 0; i < BLKCG_MAX_POLS; i++) 1567 if (!blkcg_policy[i]) 1568 break; 1569 if (i >= BLKCG_MAX_POLS) { 1570 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1571 goto err_unlock; 1572 } 1573 1574 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1575 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1576 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1577 goto err_unlock; 1578 1579 /* register @pol */ 1580 pol->plid = i; 1581 blkcg_policy[pol->plid] = pol; 1582 1583 /* allocate and install cpd's */ 1584 if (pol->cpd_alloc_fn) { 1585 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1586 struct blkcg_policy_data *cpd; 1587 1588 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1589 if (!cpd) 1590 goto err_free_cpds; 1591 1592 blkcg->cpd[pol->plid] = cpd; 1593 cpd->blkcg = blkcg; 1594 cpd->plid = pol->plid; 1595 if (pol->cpd_init_fn) 1596 pol->cpd_init_fn(cpd); 1597 } 1598 } 1599 1600 mutex_unlock(&blkcg_pol_mutex); 1601 1602 /* everything is in place, add intf files for the new policy */ 1603 if (pol->dfl_cftypes) 1604 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1605 pol->dfl_cftypes)); 1606 if (pol->legacy_cftypes) 1607 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1608 pol->legacy_cftypes)); 1609 mutex_unlock(&blkcg_pol_register_mutex); 1610 return 0; 1611 1612 err_free_cpds: 1613 if (pol->cpd_free_fn) 1614 blkcg_free_all_cpd(pol); 1615 1616 blkcg_policy[pol->plid] = NULL; 1617 err_unlock: 1618 mutex_unlock(&blkcg_pol_mutex); 1619 mutex_unlock(&blkcg_pol_register_mutex); 1620 return ret; 1621 } 1622 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1623 1624 /** 1625 * blkcg_policy_unregister - unregister a blkcg policy 1626 * @pol: blkcg policy to unregister 1627 * 1628 * Undo blkcg_policy_register(@pol). Might sleep. 1629 */ 1630 void blkcg_policy_unregister(struct blkcg_policy *pol) 1631 { 1632 mutex_lock(&blkcg_pol_register_mutex); 1633 1634 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1635 goto out_unlock; 1636 1637 /* kill the intf files first */ 1638 if (pol->dfl_cftypes) 1639 cgroup_rm_cftypes(pol->dfl_cftypes); 1640 if (pol->legacy_cftypes) 1641 cgroup_rm_cftypes(pol->legacy_cftypes); 1642 1643 /* remove cpds and unregister */ 1644 mutex_lock(&blkcg_pol_mutex); 1645 1646 if (pol->cpd_free_fn) 1647 blkcg_free_all_cpd(pol); 1648 1649 blkcg_policy[pol->plid] = NULL; 1650 1651 mutex_unlock(&blkcg_pol_mutex); 1652 out_unlock: 1653 mutex_unlock(&blkcg_pol_register_mutex); 1654 } 1655 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1656 1657 bool __blkcg_punt_bio_submit(struct bio *bio) 1658 { 1659 struct blkcg_gq *blkg = bio->bi_blkg; 1660 1661 /* consume the flag first */ 1662 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1663 1664 /* never bounce for the root cgroup */ 1665 if (!blkg->parent) 1666 return false; 1667 1668 spin_lock_bh(&blkg->async_bio_lock); 1669 bio_list_add(&blkg->async_bios, bio); 1670 spin_unlock_bh(&blkg->async_bio_lock); 1671 1672 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1673 return true; 1674 } 1675 1676 /* 1677 * Scale the accumulated delay based on how long it has been since we updated 1678 * the delay. We only call this when we are adding delay, in case it's been a 1679 * while since we added delay, and when we are checking to see if we need to 1680 * delay a task, to account for any delays that may have occurred. 1681 */ 1682 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1683 { 1684 u64 old = atomic64_read(&blkg->delay_start); 1685 1686 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1687 if (atomic_read(&blkg->use_delay) < 0) 1688 return; 1689 1690 /* 1691 * We only want to scale down every second. The idea here is that we 1692 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1693 * time window. We only want to throttle tasks for recent delay that 1694 * has occurred, in 1 second time windows since that's the maximum 1695 * things can be throttled. We save the current delay window in 1696 * blkg->last_delay so we know what amount is still left to be charged 1697 * to the blkg from this point onward. blkg->last_use keeps track of 1698 * the use_delay counter. The idea is if we're unthrottling the blkg we 1699 * are ok with whatever is happening now, and we can take away more of 1700 * the accumulated delay as we've already throttled enough that 1701 * everybody is happy with their IO latencies. 1702 */ 1703 if (time_before64(old + NSEC_PER_SEC, now) && 1704 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) { 1705 u64 cur = atomic64_read(&blkg->delay_nsec); 1706 u64 sub = min_t(u64, blkg->last_delay, now - old); 1707 int cur_use = atomic_read(&blkg->use_delay); 1708 1709 /* 1710 * We've been unthrottled, subtract a larger chunk of our 1711 * accumulated delay. 1712 */ 1713 if (cur_use < blkg->last_use) 1714 sub = max_t(u64, sub, blkg->last_delay >> 1); 1715 1716 /* 1717 * This shouldn't happen, but handle it anyway. Our delay_nsec 1718 * should only ever be growing except here where we subtract out 1719 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1720 * rather not end up with negative numbers. 1721 */ 1722 if (unlikely(cur < sub)) { 1723 atomic64_set(&blkg->delay_nsec, 0); 1724 blkg->last_delay = 0; 1725 } else { 1726 atomic64_sub(sub, &blkg->delay_nsec); 1727 blkg->last_delay = cur - sub; 1728 } 1729 blkg->last_use = cur_use; 1730 } 1731 } 1732 1733 /* 1734 * This is called when we want to actually walk up the hierarchy and check to 1735 * see if we need to throttle, and then actually throttle if there is some 1736 * accumulated delay. This should only be called upon return to user space so 1737 * we're not holding some lock that would induce a priority inversion. 1738 */ 1739 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1740 { 1741 unsigned long pflags; 1742 bool clamp; 1743 u64 now = ktime_to_ns(ktime_get()); 1744 u64 exp; 1745 u64 delay_nsec = 0; 1746 int tok; 1747 1748 while (blkg->parent) { 1749 int use_delay = atomic_read(&blkg->use_delay); 1750 1751 if (use_delay) { 1752 u64 this_delay; 1753 1754 blkcg_scale_delay(blkg, now); 1755 this_delay = atomic64_read(&blkg->delay_nsec); 1756 if (this_delay > delay_nsec) { 1757 delay_nsec = this_delay; 1758 clamp = use_delay > 0; 1759 } 1760 } 1761 blkg = blkg->parent; 1762 } 1763 1764 if (!delay_nsec) 1765 return; 1766 1767 /* 1768 * Let's not sleep for all eternity if we've amassed a huge delay. 1769 * Swapping or metadata IO can accumulate 10's of seconds worth of 1770 * delay, and we want userspace to be able to do _something_ so cap the 1771 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1772 * tasks will be delayed for 0.25 second for every syscall. If 1773 * blkcg_set_delay() was used as indicated by negative use_delay, the 1774 * caller is responsible for regulating the range. 1775 */ 1776 if (clamp) 1777 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1778 1779 if (use_memdelay) 1780 psi_memstall_enter(&pflags); 1781 1782 exp = ktime_add_ns(now, delay_nsec); 1783 tok = io_schedule_prepare(); 1784 do { 1785 __set_current_state(TASK_KILLABLE); 1786 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1787 break; 1788 } while (!fatal_signal_pending(current)); 1789 io_schedule_finish(tok); 1790 1791 if (use_memdelay) 1792 psi_memstall_leave(&pflags); 1793 } 1794 1795 /** 1796 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1797 * 1798 * This is only called if we've been marked with set_notify_resume(). Obviously 1799 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1800 * check to see if current->throttle_queue is set and if not this doesn't do 1801 * anything. This should only ever be called by the resume code, it's not meant 1802 * to be called by people willy-nilly as it will actually do the work to 1803 * throttle the task if it is setup for throttling. 1804 */ 1805 void blkcg_maybe_throttle_current(void) 1806 { 1807 struct request_queue *q = current->throttle_queue; 1808 struct blkcg *blkcg; 1809 struct blkcg_gq *blkg; 1810 bool use_memdelay = current->use_memdelay; 1811 1812 if (!q) 1813 return; 1814 1815 current->throttle_queue = NULL; 1816 current->use_memdelay = false; 1817 1818 rcu_read_lock(); 1819 blkcg = css_to_blkcg(blkcg_css()); 1820 if (!blkcg) 1821 goto out; 1822 blkg = blkg_lookup(blkcg, q); 1823 if (!blkg) 1824 goto out; 1825 if (!blkg_tryget(blkg)) 1826 goto out; 1827 rcu_read_unlock(); 1828 1829 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1830 blkg_put(blkg); 1831 blk_put_queue(q); 1832 return; 1833 out: 1834 rcu_read_unlock(); 1835 blk_put_queue(q); 1836 } 1837 1838 /** 1839 * blkcg_schedule_throttle - this task needs to check for throttling 1840 * @disk: disk to throttle 1841 * @use_memdelay: do we charge this to memory delay for PSI 1842 * 1843 * This is called by the IO controller when we know there's delay accumulated 1844 * for the blkg for this task. We do not pass the blkg because there are places 1845 * we call this that may not have that information, the swapping code for 1846 * instance will only have a block_device at that point. This set's the 1847 * notify_resume for the task to check and see if it requires throttling before 1848 * returning to user space. 1849 * 1850 * We will only schedule once per syscall. You can call this over and over 1851 * again and it will only do the check once upon return to user space, and only 1852 * throttle once. If the task needs to be throttled again it'll need to be 1853 * re-set at the next time we see the task. 1854 */ 1855 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay) 1856 { 1857 struct request_queue *q = disk->queue; 1858 1859 if (unlikely(current->flags & PF_KTHREAD)) 1860 return; 1861 1862 if (current->throttle_queue != q) { 1863 if (!blk_get_queue(q)) 1864 return; 1865 1866 if (current->throttle_queue) 1867 blk_put_queue(current->throttle_queue); 1868 current->throttle_queue = q; 1869 } 1870 1871 if (use_memdelay) 1872 current->use_memdelay = use_memdelay; 1873 set_notify_resume(current); 1874 } 1875 1876 /** 1877 * blkcg_add_delay - add delay to this blkg 1878 * @blkg: blkg of interest 1879 * @now: the current time in nanoseconds 1880 * @delta: how many nanoseconds of delay to add 1881 * 1882 * Charge @delta to the blkg's current delay accumulation. This is used to 1883 * throttle tasks if an IO controller thinks we need more throttling. 1884 */ 1885 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1886 { 1887 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1888 return; 1889 blkcg_scale_delay(blkg, now); 1890 atomic64_add(delta, &blkg->delay_nsec); 1891 } 1892 1893 /** 1894 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1895 * @bio: target bio 1896 * @css: target css 1897 * 1898 * As the failure mode here is to walk up the blkg tree, this ensure that the 1899 * blkg->parent pointers are always valid. This returns the blkg that it ended 1900 * up taking a reference on or %NULL if no reference was taken. 1901 */ 1902 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1903 struct cgroup_subsys_state *css) 1904 { 1905 struct blkcg_gq *blkg, *ret_blkg = NULL; 1906 1907 rcu_read_lock(); 1908 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk); 1909 while (blkg) { 1910 if (blkg_tryget(blkg)) { 1911 ret_blkg = blkg; 1912 break; 1913 } 1914 blkg = blkg->parent; 1915 } 1916 rcu_read_unlock(); 1917 1918 return ret_blkg; 1919 } 1920 1921 /** 1922 * bio_associate_blkg_from_css - associate a bio with a specified css 1923 * @bio: target bio 1924 * @css: target css 1925 * 1926 * Associate @bio with the blkg found by combining the css's blkg and the 1927 * request_queue of the @bio. An association failure is handled by walking up 1928 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1929 * and q->root_blkg. This situation only happens when a cgroup is dying and 1930 * then the remaining bios will spill to the closest alive blkg. 1931 * 1932 * A reference will be taken on the blkg and will be released when @bio is 1933 * freed. 1934 */ 1935 void bio_associate_blkg_from_css(struct bio *bio, 1936 struct cgroup_subsys_state *css) 1937 { 1938 if (bio->bi_blkg) 1939 blkg_put(bio->bi_blkg); 1940 1941 if (css && css->parent) { 1942 bio->bi_blkg = blkg_tryget_closest(bio, css); 1943 } else { 1944 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 1945 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 1946 } 1947 } 1948 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1949 1950 /** 1951 * bio_associate_blkg - associate a bio with a blkg 1952 * @bio: target bio 1953 * 1954 * Associate @bio with the blkg found from the bio's css and request_queue. 1955 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1956 * already associated, the css is reused and association redone as the 1957 * request_queue may have changed. 1958 */ 1959 void bio_associate_blkg(struct bio *bio) 1960 { 1961 struct cgroup_subsys_state *css; 1962 1963 rcu_read_lock(); 1964 1965 if (bio->bi_blkg) 1966 css = bio_blkcg_css(bio); 1967 else 1968 css = blkcg_css(); 1969 1970 bio_associate_blkg_from_css(bio, css); 1971 1972 rcu_read_unlock(); 1973 } 1974 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1975 1976 /** 1977 * bio_clone_blkg_association - clone blkg association from src to dst bio 1978 * @dst: destination bio 1979 * @src: source bio 1980 */ 1981 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1982 { 1983 if (src->bi_blkg) 1984 bio_associate_blkg_from_css(dst, bio_blkcg_css(src)); 1985 } 1986 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1987 1988 static int blk_cgroup_io_type(struct bio *bio) 1989 { 1990 if (op_is_discard(bio->bi_opf)) 1991 return BLKG_IOSTAT_DISCARD; 1992 if (op_is_write(bio->bi_opf)) 1993 return BLKG_IOSTAT_WRITE; 1994 return BLKG_IOSTAT_READ; 1995 } 1996 1997 void blk_cgroup_bio_start(struct bio *bio) 1998 { 1999 struct blkcg *blkcg = bio->bi_blkg->blkcg; 2000 int rwd = blk_cgroup_io_type(bio), cpu; 2001 struct blkg_iostat_set *bis; 2002 unsigned long flags; 2003 2004 /* Root-level stats are sourced from system-wide IO stats */ 2005 if (!cgroup_parent(blkcg->css.cgroup)) 2006 return; 2007 2008 cpu = get_cpu(); 2009 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 2010 flags = u64_stats_update_begin_irqsave(&bis->sync); 2011 2012 /* 2013 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 2014 * bio and we would have already accounted for the size of the bio. 2015 */ 2016 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 2017 bio_set_flag(bio, BIO_CGROUP_ACCT); 2018 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 2019 } 2020 bis->cur.ios[rwd]++; 2021 2022 /* 2023 * If the iostat_cpu isn't in a lockless list, put it into the 2024 * list to indicate that a stat update is pending. 2025 */ 2026 if (!READ_ONCE(bis->lqueued)) { 2027 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead); 2028 2029 llist_add(&bis->lnode, lhead); 2030 WRITE_ONCE(bis->lqueued, true); 2031 percpu_ref_get(&bis->blkg->refcnt); 2032 } 2033 2034 u64_stats_update_end_irqrestore(&bis->sync, flags); 2035 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 2036 cgroup_rstat_updated(blkcg->css.cgroup, cpu); 2037 put_cpu(); 2038 } 2039 2040 bool blk_cgroup_congested(void) 2041 { 2042 struct cgroup_subsys_state *css; 2043 bool ret = false; 2044 2045 rcu_read_lock(); 2046 for (css = blkcg_css(); css; css = css->parent) { 2047 if (atomic_read(&css->cgroup->congestion_count)) { 2048 ret = true; 2049 break; 2050 } 2051 } 2052 rcu_read_unlock(); 2053 return ret; 2054 } 2055 2056 static int __init blkcg_init(void) 2057 { 2058 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 2059 WQ_MEM_RECLAIM | WQ_FREEZABLE | 2060 WQ_UNBOUND | WQ_SYSFS, 0); 2061 if (!blkcg_punt_bio_wq) 2062 return -ENOMEM; 2063 return 0; 2064 } 2065 subsys_initcall(blkcg_init); 2066 2067 module_param(blkcg_debug_stats, bool, 0644); 2068 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 2069