xref: /linux/block/blk-cgroup.c (revision 2634682fdffd9ba6e74b76be8aa91cf8b2e05c41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34 
35 #define MAX_KEY_LEN 100
36 
37 /*
38  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40  * policy [un]register operations including cgroup file additions /
41  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
42  * allows grabbing it from cgroup callbacks.
43  */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46 
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49 
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52 
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54 
55 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
56 
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59 
60 static bool blkcg_policy_enabled(struct request_queue *q,
61 				 const struct blkcg_policy *pol)
62 {
63 	return pol && test_bit(pol->plid, q->blkcg_pols);
64 }
65 
66 /**
67  * blkg_free - free a blkg
68  * @blkg: blkg to free
69  *
70  * Free @blkg which may be partially allocated.
71  */
72 static void blkg_free(struct blkcg_gq *blkg)
73 {
74 	int i;
75 
76 	if (!blkg)
77 		return;
78 
79 	for (i = 0; i < BLKCG_MAX_POLS; i++)
80 		if (blkg->pd[i])
81 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
82 
83 	free_percpu(blkg->iostat_cpu);
84 	percpu_ref_exit(&blkg->refcnt);
85 	kfree(blkg);
86 }
87 
88 static void __blkg_release(struct rcu_head *rcu)
89 {
90 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
91 
92 	WARN_ON(!bio_list_empty(&blkg->async_bios));
93 
94 	/* release the blkcg and parent blkg refs this blkg has been holding */
95 	css_put(&blkg->blkcg->css);
96 	if (blkg->parent)
97 		blkg_put(blkg->parent);
98 	blkg_free(blkg);
99 }
100 
101 /*
102  * A group is RCU protected, but having an rcu lock does not mean that one
103  * can access all the fields of blkg and assume these are valid.  For
104  * example, don't try to follow throtl_data and request queue links.
105  *
106  * Having a reference to blkg under an rcu allows accesses to only values
107  * local to groups like group stats and group rate limits.
108  */
109 static void blkg_release(struct percpu_ref *ref)
110 {
111 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
112 
113 	call_rcu(&blkg->rcu_head, __blkg_release);
114 }
115 
116 static void blkg_async_bio_workfn(struct work_struct *work)
117 {
118 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
119 					     async_bio_work);
120 	struct bio_list bios = BIO_EMPTY_LIST;
121 	struct bio *bio;
122 
123 	/* as long as there are pending bios, @blkg can't go away */
124 	spin_lock_bh(&blkg->async_bio_lock);
125 	bio_list_merge(&bios, &blkg->async_bios);
126 	bio_list_init(&blkg->async_bios);
127 	spin_unlock_bh(&blkg->async_bio_lock);
128 
129 	while ((bio = bio_list_pop(&bios)))
130 		submit_bio(bio);
131 }
132 
133 /**
134  * blkg_alloc - allocate a blkg
135  * @blkcg: block cgroup the new blkg is associated with
136  * @q: request_queue the new blkg is associated with
137  * @gfp_mask: allocation mask to use
138  *
139  * Allocate a new blkg assocating @blkcg and @q.
140  */
141 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
142 				   gfp_t gfp_mask)
143 {
144 	struct blkcg_gq *blkg;
145 	int i, cpu;
146 
147 	/* alloc and init base part */
148 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
149 	if (!blkg)
150 		return NULL;
151 
152 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
153 		goto err_free;
154 
155 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
156 	if (!blkg->iostat_cpu)
157 		goto err_free;
158 
159 	blkg->q = q;
160 	INIT_LIST_HEAD(&blkg->q_node);
161 	spin_lock_init(&blkg->async_bio_lock);
162 	bio_list_init(&blkg->async_bios);
163 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
164 	blkg->blkcg = blkcg;
165 
166 	u64_stats_init(&blkg->iostat.sync);
167 	for_each_possible_cpu(cpu)
168 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
169 
170 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
171 		struct blkcg_policy *pol = blkcg_policy[i];
172 		struct blkg_policy_data *pd;
173 
174 		if (!blkcg_policy_enabled(q, pol))
175 			continue;
176 
177 		/* alloc per-policy data and attach it to blkg */
178 		pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
179 		if (!pd)
180 			goto err_free;
181 
182 		blkg->pd[i] = pd;
183 		pd->blkg = blkg;
184 		pd->plid = i;
185 	}
186 
187 	return blkg;
188 
189 err_free:
190 	blkg_free(blkg);
191 	return NULL;
192 }
193 
194 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
195 				      struct request_queue *q, bool update_hint)
196 {
197 	struct blkcg_gq *blkg;
198 
199 	/*
200 	 * Hint didn't match.  Look up from the radix tree.  Note that the
201 	 * hint can only be updated under queue_lock as otherwise @blkg
202 	 * could have already been removed from blkg_tree.  The caller is
203 	 * responsible for grabbing queue_lock if @update_hint.
204 	 */
205 	blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
206 	if (blkg && blkg->q == q) {
207 		if (update_hint) {
208 			lockdep_assert_held(&q->queue_lock);
209 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
210 		}
211 		return blkg;
212 	}
213 
214 	return NULL;
215 }
216 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
217 
218 /*
219  * If @new_blkg is %NULL, this function tries to allocate a new one as
220  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
221  */
222 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
223 				    struct request_queue *q,
224 				    struct blkcg_gq *new_blkg)
225 {
226 	struct blkcg_gq *blkg;
227 	int i, ret;
228 
229 	WARN_ON_ONCE(!rcu_read_lock_held());
230 	lockdep_assert_held(&q->queue_lock);
231 
232 	/* request_queue is dying, do not create/recreate a blkg */
233 	if (blk_queue_dying(q)) {
234 		ret = -ENODEV;
235 		goto err_free_blkg;
236 	}
237 
238 	/* blkg holds a reference to blkcg */
239 	if (!css_tryget_online(&blkcg->css)) {
240 		ret = -ENODEV;
241 		goto err_free_blkg;
242 	}
243 
244 	/* allocate */
245 	if (!new_blkg) {
246 		new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
247 		if (unlikely(!new_blkg)) {
248 			ret = -ENOMEM;
249 			goto err_put_css;
250 		}
251 	}
252 	blkg = new_blkg;
253 
254 	/* link parent */
255 	if (blkcg_parent(blkcg)) {
256 		blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
257 		if (WARN_ON_ONCE(!blkg->parent)) {
258 			ret = -ENODEV;
259 			goto err_put_css;
260 		}
261 		blkg_get(blkg->parent);
262 	}
263 
264 	/* invoke per-policy init */
265 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
266 		struct blkcg_policy *pol = blkcg_policy[i];
267 
268 		if (blkg->pd[i] && pol->pd_init_fn)
269 			pol->pd_init_fn(blkg->pd[i]);
270 	}
271 
272 	/* insert */
273 	spin_lock(&blkcg->lock);
274 	ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
275 	if (likely(!ret)) {
276 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
277 		list_add(&blkg->q_node, &q->blkg_list);
278 
279 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
280 			struct blkcg_policy *pol = blkcg_policy[i];
281 
282 			if (blkg->pd[i] && pol->pd_online_fn)
283 				pol->pd_online_fn(blkg->pd[i]);
284 		}
285 	}
286 	blkg->online = true;
287 	spin_unlock(&blkcg->lock);
288 
289 	if (!ret)
290 		return blkg;
291 
292 	/* @blkg failed fully initialized, use the usual release path */
293 	blkg_put(blkg);
294 	return ERR_PTR(ret);
295 
296 err_put_css:
297 	css_put(&blkcg->css);
298 err_free_blkg:
299 	blkg_free(new_blkg);
300 	return ERR_PTR(ret);
301 }
302 
303 /**
304  * blkg_lookup_create - lookup blkg, try to create one if not there
305  * @blkcg: blkcg of interest
306  * @q: request_queue of interest
307  *
308  * Lookup blkg for the @blkcg - @q pair.  If it doesn't exist, try to
309  * create one.  blkg creation is performed recursively from blkcg_root such
310  * that all non-root blkg's have access to the parent blkg.  This function
311  * should be called under RCU read lock and takes @q->queue_lock.
312  *
313  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
314  * down from root.
315  */
316 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
317 		struct request_queue *q)
318 {
319 	struct blkcg_gq *blkg;
320 	unsigned long flags;
321 
322 	WARN_ON_ONCE(!rcu_read_lock_held());
323 
324 	blkg = blkg_lookup(blkcg, q);
325 	if (blkg)
326 		return blkg;
327 
328 	spin_lock_irqsave(&q->queue_lock, flags);
329 	blkg = __blkg_lookup(blkcg, q, true);
330 	if (blkg)
331 		goto found;
332 
333 	/*
334 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
335 	 * non-root blkgs have access to their parents.  Returns the closest
336 	 * blkg to the intended blkg should blkg_create() fail.
337 	 */
338 	while (true) {
339 		struct blkcg *pos = blkcg;
340 		struct blkcg *parent = blkcg_parent(blkcg);
341 		struct blkcg_gq *ret_blkg = q->root_blkg;
342 
343 		while (parent) {
344 			blkg = __blkg_lookup(parent, q, false);
345 			if (blkg) {
346 				/* remember closest blkg */
347 				ret_blkg = blkg;
348 				break;
349 			}
350 			pos = parent;
351 			parent = blkcg_parent(parent);
352 		}
353 
354 		blkg = blkg_create(pos, q, NULL);
355 		if (IS_ERR(blkg)) {
356 			blkg = ret_blkg;
357 			break;
358 		}
359 		if (pos == blkcg)
360 			break;
361 	}
362 
363 found:
364 	spin_unlock_irqrestore(&q->queue_lock, flags);
365 	return blkg;
366 }
367 
368 static void blkg_destroy(struct blkcg_gq *blkg)
369 {
370 	struct blkcg *blkcg = blkg->blkcg;
371 	int i;
372 
373 	lockdep_assert_held(&blkg->q->queue_lock);
374 	lockdep_assert_held(&blkcg->lock);
375 
376 	/* Something wrong if we are trying to remove same group twice */
377 	WARN_ON_ONCE(list_empty(&blkg->q_node));
378 	WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
379 
380 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
381 		struct blkcg_policy *pol = blkcg_policy[i];
382 
383 		if (blkg->pd[i] && pol->pd_offline_fn)
384 			pol->pd_offline_fn(blkg->pd[i]);
385 	}
386 
387 	blkg->online = false;
388 
389 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
390 	list_del_init(&blkg->q_node);
391 	hlist_del_init_rcu(&blkg->blkcg_node);
392 
393 	/*
394 	 * Both setting lookup hint to and clearing it from @blkg are done
395 	 * under queue_lock.  If it's not pointing to @blkg now, it never
396 	 * will.  Hint assignment itself can race safely.
397 	 */
398 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
399 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
400 
401 	/*
402 	 * Put the reference taken at the time of creation so that when all
403 	 * queues are gone, group can be destroyed.
404 	 */
405 	percpu_ref_kill(&blkg->refcnt);
406 }
407 
408 /**
409  * blkg_destroy_all - destroy all blkgs associated with a request_queue
410  * @q: request_queue of interest
411  *
412  * Destroy all blkgs associated with @q.
413  */
414 static void blkg_destroy_all(struct request_queue *q)
415 {
416 	struct blkcg_gq *blkg, *n;
417 
418 	spin_lock_irq(&q->queue_lock);
419 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
420 		struct blkcg *blkcg = blkg->blkcg;
421 
422 		spin_lock(&blkcg->lock);
423 		blkg_destroy(blkg);
424 		spin_unlock(&blkcg->lock);
425 	}
426 
427 	q->root_blkg = NULL;
428 	spin_unlock_irq(&q->queue_lock);
429 }
430 
431 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
432 			     struct cftype *cftype, u64 val)
433 {
434 	struct blkcg *blkcg = css_to_blkcg(css);
435 	struct blkcg_gq *blkg;
436 	int i, cpu;
437 
438 	mutex_lock(&blkcg_pol_mutex);
439 	spin_lock_irq(&blkcg->lock);
440 
441 	/*
442 	 * Note that stat reset is racy - it doesn't synchronize against
443 	 * stat updates.  This is a debug feature which shouldn't exist
444 	 * anyway.  If you get hit by a race, retry.
445 	 */
446 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
447 		for_each_possible_cpu(cpu) {
448 			struct blkg_iostat_set *bis =
449 				per_cpu_ptr(blkg->iostat_cpu, cpu);
450 			memset(bis, 0, sizeof(*bis));
451 		}
452 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
453 
454 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
455 			struct blkcg_policy *pol = blkcg_policy[i];
456 
457 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
458 				pol->pd_reset_stats_fn(blkg->pd[i]);
459 		}
460 	}
461 
462 	spin_unlock_irq(&blkcg->lock);
463 	mutex_unlock(&blkcg_pol_mutex);
464 	return 0;
465 }
466 
467 const char *blkg_dev_name(struct blkcg_gq *blkg)
468 {
469 	/* some drivers (floppy) instantiate a queue w/o disk registered */
470 	if (blkg->q->backing_dev_info->dev)
471 		return bdi_dev_name(blkg->q->backing_dev_info);
472 	return NULL;
473 }
474 
475 /**
476  * blkcg_print_blkgs - helper for printing per-blkg data
477  * @sf: seq_file to print to
478  * @blkcg: blkcg of interest
479  * @prfill: fill function to print out a blkg
480  * @pol: policy in question
481  * @data: data to be passed to @prfill
482  * @show_total: to print out sum of prfill return values or not
483  *
484  * This function invokes @prfill on each blkg of @blkcg if pd for the
485  * policy specified by @pol exists.  @prfill is invoked with @sf, the
486  * policy data and @data and the matching queue lock held.  If @show_total
487  * is %true, the sum of the return values from @prfill is printed with
488  * "Total" label at the end.
489  *
490  * This is to be used to construct print functions for
491  * cftype->read_seq_string method.
492  */
493 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
494 		       u64 (*prfill)(struct seq_file *,
495 				     struct blkg_policy_data *, int),
496 		       const struct blkcg_policy *pol, int data,
497 		       bool show_total)
498 {
499 	struct blkcg_gq *blkg;
500 	u64 total = 0;
501 
502 	rcu_read_lock();
503 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
504 		spin_lock_irq(&blkg->q->queue_lock);
505 		if (blkcg_policy_enabled(blkg->q, pol))
506 			total += prfill(sf, blkg->pd[pol->plid], data);
507 		spin_unlock_irq(&blkg->q->queue_lock);
508 	}
509 	rcu_read_unlock();
510 
511 	if (show_total)
512 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
513 }
514 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
515 
516 /**
517  * __blkg_prfill_u64 - prfill helper for a single u64 value
518  * @sf: seq_file to print to
519  * @pd: policy private data of interest
520  * @v: value to print
521  *
522  * Print @v to @sf for the device assocaited with @pd.
523  */
524 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
525 {
526 	const char *dname = blkg_dev_name(pd->blkg);
527 
528 	if (!dname)
529 		return 0;
530 
531 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
532 	return v;
533 }
534 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
535 
536 /* Performs queue bypass and policy enabled checks then looks up blkg. */
537 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
538 					  const struct blkcg_policy *pol,
539 					  struct request_queue *q)
540 {
541 	WARN_ON_ONCE(!rcu_read_lock_held());
542 	lockdep_assert_held(&q->queue_lock);
543 
544 	if (!blkcg_policy_enabled(q, pol))
545 		return ERR_PTR(-EOPNOTSUPP);
546 	return __blkg_lookup(blkcg, q, true /* update_hint */);
547 }
548 
549 /**
550  * blkg_conf_prep - parse and prepare for per-blkg config update
551  * @inputp: input string pointer
552  *
553  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
554  * from @input and get and return the matching gendisk.  *@inputp is
555  * updated to point past the device node prefix.  Returns an ERR_PTR()
556  * value on error.
557  *
558  * Use this function iff blkg_conf_prep() can't be used for some reason.
559  */
560 struct gendisk *blkcg_conf_get_disk(char **inputp)
561 {
562 	char *input = *inputp;
563 	unsigned int major, minor;
564 	struct gendisk *disk;
565 	int key_len, part;
566 
567 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
568 		return ERR_PTR(-EINVAL);
569 
570 	input += key_len;
571 	if (!isspace(*input))
572 		return ERR_PTR(-EINVAL);
573 	input = skip_spaces(input);
574 
575 	disk = get_gendisk(MKDEV(major, minor), &part);
576 	if (!disk)
577 		return ERR_PTR(-ENODEV);
578 	if (part) {
579 		put_disk_and_module(disk);
580 		return ERR_PTR(-ENODEV);
581 	}
582 
583 	*inputp = input;
584 	return disk;
585 }
586 
587 /**
588  * blkg_conf_prep - parse and prepare for per-blkg config update
589  * @blkcg: target block cgroup
590  * @pol: target policy
591  * @input: input string
592  * @ctx: blkg_conf_ctx to be filled
593  *
594  * Parse per-blkg config update from @input and initialize @ctx with the
595  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
596  * part of @input following MAJ:MIN.  This function returns with RCU read
597  * lock and queue lock held and must be paired with blkg_conf_finish().
598  */
599 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
600 		   char *input, struct blkg_conf_ctx *ctx)
601 	__acquires(rcu) __acquires(&disk->queue->queue_lock)
602 {
603 	struct gendisk *disk;
604 	struct request_queue *q;
605 	struct blkcg_gq *blkg;
606 	int ret;
607 
608 	disk = blkcg_conf_get_disk(&input);
609 	if (IS_ERR(disk))
610 		return PTR_ERR(disk);
611 
612 	q = disk->queue;
613 
614 	rcu_read_lock();
615 	spin_lock_irq(&q->queue_lock);
616 
617 	blkg = blkg_lookup_check(blkcg, pol, q);
618 	if (IS_ERR(blkg)) {
619 		ret = PTR_ERR(blkg);
620 		goto fail_unlock;
621 	}
622 
623 	if (blkg)
624 		goto success;
625 
626 	/*
627 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
628 	 * non-root blkgs have access to their parents.
629 	 */
630 	while (true) {
631 		struct blkcg *pos = blkcg;
632 		struct blkcg *parent;
633 		struct blkcg_gq *new_blkg;
634 
635 		parent = blkcg_parent(blkcg);
636 		while (parent && !__blkg_lookup(parent, q, false)) {
637 			pos = parent;
638 			parent = blkcg_parent(parent);
639 		}
640 
641 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
642 		spin_unlock_irq(&q->queue_lock);
643 		rcu_read_unlock();
644 
645 		new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
646 		if (unlikely(!new_blkg)) {
647 			ret = -ENOMEM;
648 			goto fail;
649 		}
650 
651 		rcu_read_lock();
652 		spin_lock_irq(&q->queue_lock);
653 
654 		blkg = blkg_lookup_check(pos, pol, q);
655 		if (IS_ERR(blkg)) {
656 			ret = PTR_ERR(blkg);
657 			goto fail_unlock;
658 		}
659 
660 		if (blkg) {
661 			blkg_free(new_blkg);
662 		} else {
663 			blkg = blkg_create(pos, q, new_blkg);
664 			if (IS_ERR(blkg)) {
665 				ret = PTR_ERR(blkg);
666 				goto fail_unlock;
667 			}
668 		}
669 
670 		if (pos == blkcg)
671 			goto success;
672 	}
673 success:
674 	ctx->disk = disk;
675 	ctx->blkg = blkg;
676 	ctx->body = input;
677 	return 0;
678 
679 fail_unlock:
680 	spin_unlock_irq(&q->queue_lock);
681 	rcu_read_unlock();
682 fail:
683 	put_disk_and_module(disk);
684 	/*
685 	 * If queue was bypassing, we should retry.  Do so after a
686 	 * short msleep().  It isn't strictly necessary but queue
687 	 * can be bypassing for some time and it's always nice to
688 	 * avoid busy looping.
689 	 */
690 	if (ret == -EBUSY) {
691 		msleep(10);
692 		ret = restart_syscall();
693 	}
694 	return ret;
695 }
696 EXPORT_SYMBOL_GPL(blkg_conf_prep);
697 
698 /**
699  * blkg_conf_finish - finish up per-blkg config update
700  * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
701  *
702  * Finish up after per-blkg config update.  This function must be paired
703  * with blkg_conf_prep().
704  */
705 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
706 	__releases(&ctx->disk->queue->queue_lock) __releases(rcu)
707 {
708 	spin_unlock_irq(&ctx->disk->queue->queue_lock);
709 	rcu_read_unlock();
710 	put_disk_and_module(ctx->disk);
711 }
712 EXPORT_SYMBOL_GPL(blkg_conf_finish);
713 
714 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
715 {
716 	int i;
717 
718 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
719 		dst->bytes[i] = src->bytes[i];
720 		dst->ios[i] = src->ios[i];
721 	}
722 }
723 
724 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
725 {
726 	int i;
727 
728 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
729 		dst->bytes[i] += src->bytes[i];
730 		dst->ios[i] += src->ios[i];
731 	}
732 }
733 
734 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
735 {
736 	int i;
737 
738 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
739 		dst->bytes[i] -= src->bytes[i];
740 		dst->ios[i] -= src->ios[i];
741 	}
742 }
743 
744 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
745 {
746 	struct blkcg *blkcg = css_to_blkcg(css);
747 	struct blkcg_gq *blkg;
748 
749 	rcu_read_lock();
750 
751 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
752 		struct blkcg_gq *parent = blkg->parent;
753 		struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
754 		struct blkg_iostat cur, delta;
755 		unsigned int seq;
756 
757 		/* fetch the current per-cpu values */
758 		do {
759 			seq = u64_stats_fetch_begin(&bisc->sync);
760 			blkg_iostat_set(&cur, &bisc->cur);
761 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
762 
763 		/* propagate percpu delta to global */
764 		u64_stats_update_begin(&blkg->iostat.sync);
765 		blkg_iostat_set(&delta, &cur);
766 		blkg_iostat_sub(&delta, &bisc->last);
767 		blkg_iostat_add(&blkg->iostat.cur, &delta);
768 		blkg_iostat_add(&bisc->last, &delta);
769 		u64_stats_update_end(&blkg->iostat.sync);
770 
771 		/* propagate global delta to parent */
772 		if (parent) {
773 			u64_stats_update_begin(&parent->iostat.sync);
774 			blkg_iostat_set(&delta, &blkg->iostat.cur);
775 			blkg_iostat_sub(&delta, &blkg->iostat.last);
776 			blkg_iostat_add(&parent->iostat.cur, &delta);
777 			blkg_iostat_add(&blkg->iostat.last, &delta);
778 			u64_stats_update_end(&parent->iostat.sync);
779 		}
780 	}
781 
782 	rcu_read_unlock();
783 }
784 
785 /*
786  * The rstat algorithms intentionally don't handle the root cgroup to avoid
787  * incurring overhead when no cgroups are defined. For that reason,
788  * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the
789  * iostat in the root cgroup's blkcg_gq.
790  *
791  * However, we would like to re-use the printing code between the root and
792  * non-root cgroups to the extent possible. For that reason, we simulate
793  * flushing the root cgroup's stats by explicitly filling in the iostat
794  * with disk level statistics.
795  */
796 static void blkcg_fill_root_iostats(void)
797 {
798 	struct class_dev_iter iter;
799 	struct device *dev;
800 
801 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
802 	while ((dev = class_dev_iter_next(&iter))) {
803 		struct gendisk *disk = dev_to_disk(dev);
804 		struct hd_struct *part = disk_get_part(disk, 0);
805 		struct blkcg_gq *blkg = blk_queue_root_blkg(disk->queue);
806 		struct blkg_iostat tmp;
807 		int cpu;
808 
809 		memset(&tmp, 0, sizeof(tmp));
810 		for_each_possible_cpu(cpu) {
811 			struct disk_stats *cpu_dkstats;
812 
813 			cpu_dkstats = per_cpu_ptr(part->dkstats, cpu);
814 			tmp.ios[BLKG_IOSTAT_READ] +=
815 				cpu_dkstats->ios[STAT_READ];
816 			tmp.ios[BLKG_IOSTAT_WRITE] +=
817 				cpu_dkstats->ios[STAT_WRITE];
818 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
819 				cpu_dkstats->ios[STAT_DISCARD];
820 			// convert sectors to bytes
821 			tmp.bytes[BLKG_IOSTAT_READ] +=
822 				cpu_dkstats->sectors[STAT_READ] << 9;
823 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
824 				cpu_dkstats->sectors[STAT_WRITE] << 9;
825 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
826 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
827 
828 			u64_stats_update_begin(&blkg->iostat.sync);
829 			blkg_iostat_set(&blkg->iostat.cur, &tmp);
830 			u64_stats_update_end(&blkg->iostat.sync);
831 		}
832 	}
833 }
834 
835 static int blkcg_print_stat(struct seq_file *sf, void *v)
836 {
837 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
838 	struct blkcg_gq *blkg;
839 
840 	if (!seq_css(sf)->parent)
841 		blkcg_fill_root_iostats();
842 	else
843 		cgroup_rstat_flush(blkcg->css.cgroup);
844 
845 	rcu_read_lock();
846 
847 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
848 		struct blkg_iostat_set *bis = &blkg->iostat;
849 		const char *dname;
850 		char *buf;
851 		u64 rbytes, wbytes, rios, wios, dbytes, dios;
852 		size_t size = seq_get_buf(sf, &buf), off = 0;
853 		int i;
854 		bool has_stats = false;
855 		unsigned seq;
856 
857 		spin_lock_irq(&blkg->q->queue_lock);
858 
859 		if (!blkg->online)
860 			goto skip;
861 
862 		dname = blkg_dev_name(blkg);
863 		if (!dname)
864 			goto skip;
865 
866 		/*
867 		 * Hooray string manipulation, count is the size written NOT
868 		 * INCLUDING THE \0, so size is now count+1 less than what we
869 		 * had before, but we want to start writing the next bit from
870 		 * the \0 so we only add count to buf.
871 		 */
872 		off += scnprintf(buf+off, size-off, "%s ", dname);
873 
874 		do {
875 			seq = u64_stats_fetch_begin(&bis->sync);
876 
877 			rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
878 			wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
879 			dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
880 			rios = bis->cur.ios[BLKG_IOSTAT_READ];
881 			wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
882 			dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
883 		} while (u64_stats_fetch_retry(&bis->sync, seq));
884 
885 		if (rbytes || wbytes || rios || wios) {
886 			has_stats = true;
887 			off += scnprintf(buf+off, size-off,
888 					 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
889 					 rbytes, wbytes, rios, wios,
890 					 dbytes, dios);
891 		}
892 
893 		if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
894 			has_stats = true;
895 			off += scnprintf(buf+off, size-off,
896 					 " use_delay=%d delay_nsec=%llu",
897 					 atomic_read(&blkg->use_delay),
898 					(unsigned long long)atomic64_read(&blkg->delay_nsec));
899 		}
900 
901 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
902 			struct blkcg_policy *pol = blkcg_policy[i];
903 			size_t written;
904 
905 			if (!blkg->pd[i] || !pol->pd_stat_fn)
906 				continue;
907 
908 			written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
909 			if (written)
910 				has_stats = true;
911 			off += written;
912 		}
913 
914 		if (has_stats) {
915 			if (off < size - 1) {
916 				off += scnprintf(buf+off, size-off, "\n");
917 				seq_commit(sf, off);
918 			} else {
919 				seq_commit(sf, -1);
920 			}
921 		}
922 	skip:
923 		spin_unlock_irq(&blkg->q->queue_lock);
924 	}
925 
926 	rcu_read_unlock();
927 	return 0;
928 }
929 
930 static struct cftype blkcg_files[] = {
931 	{
932 		.name = "stat",
933 		.seq_show = blkcg_print_stat,
934 	},
935 	{ }	/* terminate */
936 };
937 
938 static struct cftype blkcg_legacy_files[] = {
939 	{
940 		.name = "reset_stats",
941 		.write_u64 = blkcg_reset_stats,
942 	},
943 	{ }	/* terminate */
944 };
945 
946 /*
947  * blkcg destruction is a three-stage process.
948  *
949  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
950  *    which offlines writeback.  Here we tie the next stage of blkg destruction
951  *    to the completion of writeback associated with the blkcg.  This lets us
952  *    avoid punting potentially large amounts of outstanding writeback to root
953  *    while maintaining any ongoing policies.  The next stage is triggered when
954  *    the nr_cgwbs count goes to zero.
955  *
956  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
957  *    and handles the destruction of blkgs.  Here the css reference held by
958  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
959  *    This work may occur in cgwb_release_workfn() on the cgwb_release
960  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
961  *    punted to the root_blkg.
962  *
963  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
964  *    This finally frees the blkcg.
965  */
966 
967 /**
968  * blkcg_css_offline - cgroup css_offline callback
969  * @css: css of interest
970  *
971  * This function is called when @css is about to go away.  Here the cgwbs are
972  * offlined first and only once writeback associated with the blkcg has
973  * finished do we start step 2 (see above).
974  */
975 static void blkcg_css_offline(struct cgroup_subsys_state *css)
976 {
977 	struct blkcg *blkcg = css_to_blkcg(css);
978 
979 	/* this prevents anyone from attaching or migrating to this blkcg */
980 	wb_blkcg_offline(blkcg);
981 
982 	/* put the base online pin allowing step 2 to be triggered */
983 	blkcg_unpin_online(blkcg);
984 }
985 
986 /**
987  * blkcg_destroy_blkgs - responsible for shooting down blkgs
988  * @blkcg: blkcg of interest
989  *
990  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
991  * is nested inside q lock, this function performs reverse double lock dancing.
992  * Destroying the blkgs releases the reference held on the blkcg's css allowing
993  * blkcg_css_free to eventually be called.
994  *
995  * This is the blkcg counterpart of ioc_release_fn().
996  */
997 void blkcg_destroy_blkgs(struct blkcg *blkcg)
998 {
999 	spin_lock_irq(&blkcg->lock);
1000 
1001 	while (!hlist_empty(&blkcg->blkg_list)) {
1002 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1003 						struct blkcg_gq, blkcg_node);
1004 		struct request_queue *q = blkg->q;
1005 
1006 		if (spin_trylock(&q->queue_lock)) {
1007 			blkg_destroy(blkg);
1008 			spin_unlock(&q->queue_lock);
1009 		} else {
1010 			spin_unlock_irq(&blkcg->lock);
1011 			cpu_relax();
1012 			spin_lock_irq(&blkcg->lock);
1013 		}
1014 	}
1015 
1016 	spin_unlock_irq(&blkcg->lock);
1017 }
1018 
1019 static void blkcg_css_free(struct cgroup_subsys_state *css)
1020 {
1021 	struct blkcg *blkcg = css_to_blkcg(css);
1022 	int i;
1023 
1024 	mutex_lock(&blkcg_pol_mutex);
1025 
1026 	list_del(&blkcg->all_blkcgs_node);
1027 
1028 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1029 		if (blkcg->cpd[i])
1030 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1031 
1032 	mutex_unlock(&blkcg_pol_mutex);
1033 
1034 	kfree(blkcg);
1035 }
1036 
1037 static struct cgroup_subsys_state *
1038 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1039 {
1040 	struct blkcg *blkcg;
1041 	struct cgroup_subsys_state *ret;
1042 	int i;
1043 
1044 	mutex_lock(&blkcg_pol_mutex);
1045 
1046 	if (!parent_css) {
1047 		blkcg = &blkcg_root;
1048 	} else {
1049 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1050 		if (!blkcg) {
1051 			ret = ERR_PTR(-ENOMEM);
1052 			goto unlock;
1053 		}
1054 	}
1055 
1056 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1057 		struct blkcg_policy *pol = blkcg_policy[i];
1058 		struct blkcg_policy_data *cpd;
1059 
1060 		/*
1061 		 * If the policy hasn't been attached yet, wait for it
1062 		 * to be attached before doing anything else. Otherwise,
1063 		 * check if the policy requires any specific per-cgroup
1064 		 * data: if it does, allocate and initialize it.
1065 		 */
1066 		if (!pol || !pol->cpd_alloc_fn)
1067 			continue;
1068 
1069 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1070 		if (!cpd) {
1071 			ret = ERR_PTR(-ENOMEM);
1072 			goto free_pd_blkcg;
1073 		}
1074 		blkcg->cpd[i] = cpd;
1075 		cpd->blkcg = blkcg;
1076 		cpd->plid = i;
1077 		if (pol->cpd_init_fn)
1078 			pol->cpd_init_fn(cpd);
1079 	}
1080 
1081 	spin_lock_init(&blkcg->lock);
1082 	refcount_set(&blkcg->online_pin, 1);
1083 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1084 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1085 #ifdef CONFIG_CGROUP_WRITEBACK
1086 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1087 #endif
1088 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1089 
1090 	mutex_unlock(&blkcg_pol_mutex);
1091 	return &blkcg->css;
1092 
1093 free_pd_blkcg:
1094 	for (i--; i >= 0; i--)
1095 		if (blkcg->cpd[i])
1096 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1097 
1098 	if (blkcg != &blkcg_root)
1099 		kfree(blkcg);
1100 unlock:
1101 	mutex_unlock(&blkcg_pol_mutex);
1102 	return ret;
1103 }
1104 
1105 static int blkcg_css_online(struct cgroup_subsys_state *css)
1106 {
1107 	struct blkcg *blkcg = css_to_blkcg(css);
1108 	struct blkcg *parent = blkcg_parent(blkcg);
1109 
1110 	/*
1111 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1112 	 * don't go offline while cgwbs are still active on them.  Pin the
1113 	 * parent so that offline always happens towards the root.
1114 	 */
1115 	if (parent)
1116 		blkcg_pin_online(parent);
1117 	return 0;
1118 }
1119 
1120 /**
1121  * blkcg_init_queue - initialize blkcg part of request queue
1122  * @q: request_queue to initialize
1123  *
1124  * Called from blk_alloc_queue(). Responsible for initializing blkcg
1125  * part of new request_queue @q.
1126  *
1127  * RETURNS:
1128  * 0 on success, -errno on failure.
1129  */
1130 int blkcg_init_queue(struct request_queue *q)
1131 {
1132 	struct blkcg_gq *new_blkg, *blkg;
1133 	bool preloaded;
1134 	int ret;
1135 
1136 	new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1137 	if (!new_blkg)
1138 		return -ENOMEM;
1139 
1140 	preloaded = !radix_tree_preload(GFP_KERNEL);
1141 
1142 	/* Make sure the root blkg exists. */
1143 	rcu_read_lock();
1144 	spin_lock_irq(&q->queue_lock);
1145 	blkg = blkg_create(&blkcg_root, q, new_blkg);
1146 	if (IS_ERR(blkg))
1147 		goto err_unlock;
1148 	q->root_blkg = blkg;
1149 	spin_unlock_irq(&q->queue_lock);
1150 	rcu_read_unlock();
1151 
1152 	if (preloaded)
1153 		radix_tree_preload_end();
1154 
1155 	ret = blk_throtl_init(q);
1156 	if (ret)
1157 		goto err_destroy_all;
1158 
1159 	ret = blk_iolatency_init(q);
1160 	if (ret) {
1161 		blk_throtl_exit(q);
1162 		goto err_destroy_all;
1163 	}
1164 	return 0;
1165 
1166 err_destroy_all:
1167 	blkg_destroy_all(q);
1168 	return ret;
1169 err_unlock:
1170 	spin_unlock_irq(&q->queue_lock);
1171 	rcu_read_unlock();
1172 	if (preloaded)
1173 		radix_tree_preload_end();
1174 	return PTR_ERR(blkg);
1175 }
1176 
1177 /**
1178  * blkcg_exit_queue - exit and release blkcg part of request_queue
1179  * @q: request_queue being released
1180  *
1181  * Called from blk_exit_queue().  Responsible for exiting blkcg part.
1182  */
1183 void blkcg_exit_queue(struct request_queue *q)
1184 {
1185 	blkg_destroy_all(q);
1186 	blk_throtl_exit(q);
1187 }
1188 
1189 /*
1190  * We cannot support shared io contexts, as we have no mean to support
1191  * two tasks with the same ioc in two different groups without major rework
1192  * of the main cic data structures.  For now we allow a task to change
1193  * its cgroup only if it's the only owner of its ioc.
1194  */
1195 static int blkcg_can_attach(struct cgroup_taskset *tset)
1196 {
1197 	struct task_struct *task;
1198 	struct cgroup_subsys_state *dst_css;
1199 	struct io_context *ioc;
1200 	int ret = 0;
1201 
1202 	/* task_lock() is needed to avoid races with exit_io_context() */
1203 	cgroup_taskset_for_each(task, dst_css, tset) {
1204 		task_lock(task);
1205 		ioc = task->io_context;
1206 		if (ioc && atomic_read(&ioc->nr_tasks) > 1)
1207 			ret = -EINVAL;
1208 		task_unlock(task);
1209 		if (ret)
1210 			break;
1211 	}
1212 	return ret;
1213 }
1214 
1215 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1216 {
1217 	int i;
1218 
1219 	mutex_lock(&blkcg_pol_mutex);
1220 
1221 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1222 		struct blkcg_policy *pol = blkcg_policy[i];
1223 		struct blkcg *blkcg;
1224 
1225 		if (!pol || !pol->cpd_bind_fn)
1226 			continue;
1227 
1228 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1229 			if (blkcg->cpd[pol->plid])
1230 				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1231 	}
1232 	mutex_unlock(&blkcg_pol_mutex);
1233 }
1234 
1235 static void blkcg_exit(struct task_struct *tsk)
1236 {
1237 	if (tsk->throttle_queue)
1238 		blk_put_queue(tsk->throttle_queue);
1239 	tsk->throttle_queue = NULL;
1240 }
1241 
1242 struct cgroup_subsys io_cgrp_subsys = {
1243 	.css_alloc = blkcg_css_alloc,
1244 	.css_online = blkcg_css_online,
1245 	.css_offline = blkcg_css_offline,
1246 	.css_free = blkcg_css_free,
1247 	.can_attach = blkcg_can_attach,
1248 	.css_rstat_flush = blkcg_rstat_flush,
1249 	.bind = blkcg_bind,
1250 	.dfl_cftypes = blkcg_files,
1251 	.legacy_cftypes = blkcg_legacy_files,
1252 	.legacy_name = "blkio",
1253 	.exit = blkcg_exit,
1254 #ifdef CONFIG_MEMCG
1255 	/*
1256 	 * This ensures that, if available, memcg is automatically enabled
1257 	 * together on the default hierarchy so that the owner cgroup can
1258 	 * be retrieved from writeback pages.
1259 	 */
1260 	.depends_on = 1 << memory_cgrp_id,
1261 #endif
1262 };
1263 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1264 
1265 /**
1266  * blkcg_activate_policy - activate a blkcg policy on a request_queue
1267  * @q: request_queue of interest
1268  * @pol: blkcg policy to activate
1269  *
1270  * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1271  * bypass mode to populate its blkgs with policy_data for @pol.
1272  *
1273  * Activation happens with @q bypassed, so nobody would be accessing blkgs
1274  * from IO path.  Update of each blkg is protected by both queue and blkcg
1275  * locks so that holding either lock and testing blkcg_policy_enabled() is
1276  * always enough for dereferencing policy data.
1277  *
1278  * The caller is responsible for synchronizing [de]activations and policy
1279  * [un]registerations.  Returns 0 on success, -errno on failure.
1280  */
1281 int blkcg_activate_policy(struct request_queue *q,
1282 			  const struct blkcg_policy *pol)
1283 {
1284 	struct blkg_policy_data *pd_prealloc = NULL;
1285 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1286 	int ret;
1287 
1288 	if (blkcg_policy_enabled(q, pol))
1289 		return 0;
1290 
1291 	if (queue_is_mq(q))
1292 		blk_mq_freeze_queue(q);
1293 retry:
1294 	spin_lock_irq(&q->queue_lock);
1295 
1296 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1297 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1298 		struct blkg_policy_data *pd;
1299 
1300 		if (blkg->pd[pol->plid])
1301 			continue;
1302 
1303 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1304 		if (blkg == pinned_blkg) {
1305 			pd = pd_prealloc;
1306 			pd_prealloc = NULL;
1307 		} else {
1308 			pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1309 					      blkg->blkcg);
1310 		}
1311 
1312 		if (!pd) {
1313 			/*
1314 			 * GFP_NOWAIT failed.  Free the existing one and
1315 			 * prealloc for @blkg w/ GFP_KERNEL.
1316 			 */
1317 			if (pinned_blkg)
1318 				blkg_put(pinned_blkg);
1319 			blkg_get(blkg);
1320 			pinned_blkg = blkg;
1321 
1322 			spin_unlock_irq(&q->queue_lock);
1323 
1324 			if (pd_prealloc)
1325 				pol->pd_free_fn(pd_prealloc);
1326 			pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1327 						       blkg->blkcg);
1328 			if (pd_prealloc)
1329 				goto retry;
1330 			else
1331 				goto enomem;
1332 		}
1333 
1334 		blkg->pd[pol->plid] = pd;
1335 		pd->blkg = blkg;
1336 		pd->plid = pol->plid;
1337 	}
1338 
1339 	/* all allocated, init in the same order */
1340 	if (pol->pd_init_fn)
1341 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1342 			pol->pd_init_fn(blkg->pd[pol->plid]);
1343 
1344 	__set_bit(pol->plid, q->blkcg_pols);
1345 	ret = 0;
1346 
1347 	spin_unlock_irq(&q->queue_lock);
1348 out:
1349 	if (queue_is_mq(q))
1350 		blk_mq_unfreeze_queue(q);
1351 	if (pinned_blkg)
1352 		blkg_put(pinned_blkg);
1353 	if (pd_prealloc)
1354 		pol->pd_free_fn(pd_prealloc);
1355 	return ret;
1356 
1357 enomem:
1358 	/* alloc failed, nothing's initialized yet, free everything */
1359 	spin_lock_irq(&q->queue_lock);
1360 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1361 		if (blkg->pd[pol->plid]) {
1362 			pol->pd_free_fn(blkg->pd[pol->plid]);
1363 			blkg->pd[pol->plid] = NULL;
1364 		}
1365 	}
1366 	spin_unlock_irq(&q->queue_lock);
1367 	ret = -ENOMEM;
1368 	goto out;
1369 }
1370 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1371 
1372 /**
1373  * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1374  * @q: request_queue of interest
1375  * @pol: blkcg policy to deactivate
1376  *
1377  * Deactivate @pol on @q.  Follows the same synchronization rules as
1378  * blkcg_activate_policy().
1379  */
1380 void blkcg_deactivate_policy(struct request_queue *q,
1381 			     const struct blkcg_policy *pol)
1382 {
1383 	struct blkcg_gq *blkg;
1384 
1385 	if (!blkcg_policy_enabled(q, pol))
1386 		return;
1387 
1388 	if (queue_is_mq(q))
1389 		blk_mq_freeze_queue(q);
1390 
1391 	spin_lock_irq(&q->queue_lock);
1392 
1393 	__clear_bit(pol->plid, q->blkcg_pols);
1394 
1395 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1396 		if (blkg->pd[pol->plid]) {
1397 			if (pol->pd_offline_fn)
1398 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1399 			pol->pd_free_fn(blkg->pd[pol->plid]);
1400 			blkg->pd[pol->plid] = NULL;
1401 		}
1402 	}
1403 
1404 	spin_unlock_irq(&q->queue_lock);
1405 
1406 	if (queue_is_mq(q))
1407 		blk_mq_unfreeze_queue(q);
1408 }
1409 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1410 
1411 /**
1412  * blkcg_policy_register - register a blkcg policy
1413  * @pol: blkcg policy to register
1414  *
1415  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1416  * successful registration.  Returns 0 on success and -errno on failure.
1417  */
1418 int blkcg_policy_register(struct blkcg_policy *pol)
1419 {
1420 	struct blkcg *blkcg;
1421 	int i, ret;
1422 
1423 	mutex_lock(&blkcg_pol_register_mutex);
1424 	mutex_lock(&blkcg_pol_mutex);
1425 
1426 	/* find an empty slot */
1427 	ret = -ENOSPC;
1428 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1429 		if (!blkcg_policy[i])
1430 			break;
1431 	if (i >= BLKCG_MAX_POLS) {
1432 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1433 		goto err_unlock;
1434 	}
1435 
1436 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1437 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1438 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1439 		goto err_unlock;
1440 
1441 	/* register @pol */
1442 	pol->plid = i;
1443 	blkcg_policy[pol->plid] = pol;
1444 
1445 	/* allocate and install cpd's */
1446 	if (pol->cpd_alloc_fn) {
1447 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1448 			struct blkcg_policy_data *cpd;
1449 
1450 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1451 			if (!cpd)
1452 				goto err_free_cpds;
1453 
1454 			blkcg->cpd[pol->plid] = cpd;
1455 			cpd->blkcg = blkcg;
1456 			cpd->plid = pol->plid;
1457 			if (pol->cpd_init_fn)
1458 				pol->cpd_init_fn(cpd);
1459 		}
1460 	}
1461 
1462 	mutex_unlock(&blkcg_pol_mutex);
1463 
1464 	/* everything is in place, add intf files for the new policy */
1465 	if (pol->dfl_cftypes)
1466 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1467 					       pol->dfl_cftypes));
1468 	if (pol->legacy_cftypes)
1469 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1470 						  pol->legacy_cftypes));
1471 	mutex_unlock(&blkcg_pol_register_mutex);
1472 	return 0;
1473 
1474 err_free_cpds:
1475 	if (pol->cpd_free_fn) {
1476 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1477 			if (blkcg->cpd[pol->plid]) {
1478 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1479 				blkcg->cpd[pol->plid] = NULL;
1480 			}
1481 		}
1482 	}
1483 	blkcg_policy[pol->plid] = NULL;
1484 err_unlock:
1485 	mutex_unlock(&blkcg_pol_mutex);
1486 	mutex_unlock(&blkcg_pol_register_mutex);
1487 	return ret;
1488 }
1489 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1490 
1491 /**
1492  * blkcg_policy_unregister - unregister a blkcg policy
1493  * @pol: blkcg policy to unregister
1494  *
1495  * Undo blkcg_policy_register(@pol).  Might sleep.
1496  */
1497 void blkcg_policy_unregister(struct blkcg_policy *pol)
1498 {
1499 	struct blkcg *blkcg;
1500 
1501 	mutex_lock(&blkcg_pol_register_mutex);
1502 
1503 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1504 		goto out_unlock;
1505 
1506 	/* kill the intf files first */
1507 	if (pol->dfl_cftypes)
1508 		cgroup_rm_cftypes(pol->dfl_cftypes);
1509 	if (pol->legacy_cftypes)
1510 		cgroup_rm_cftypes(pol->legacy_cftypes);
1511 
1512 	/* remove cpds and unregister */
1513 	mutex_lock(&blkcg_pol_mutex);
1514 
1515 	if (pol->cpd_free_fn) {
1516 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1517 			if (blkcg->cpd[pol->plid]) {
1518 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1519 				blkcg->cpd[pol->plid] = NULL;
1520 			}
1521 		}
1522 	}
1523 	blkcg_policy[pol->plid] = NULL;
1524 
1525 	mutex_unlock(&blkcg_pol_mutex);
1526 out_unlock:
1527 	mutex_unlock(&blkcg_pol_register_mutex);
1528 }
1529 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1530 
1531 bool __blkcg_punt_bio_submit(struct bio *bio)
1532 {
1533 	struct blkcg_gq *blkg = bio->bi_blkg;
1534 
1535 	/* consume the flag first */
1536 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1537 
1538 	/* never bounce for the root cgroup */
1539 	if (!blkg->parent)
1540 		return false;
1541 
1542 	spin_lock_bh(&blkg->async_bio_lock);
1543 	bio_list_add(&blkg->async_bios, bio);
1544 	spin_unlock_bh(&blkg->async_bio_lock);
1545 
1546 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1547 	return true;
1548 }
1549 
1550 /*
1551  * Scale the accumulated delay based on how long it has been since we updated
1552  * the delay.  We only call this when we are adding delay, in case it's been a
1553  * while since we added delay, and when we are checking to see if we need to
1554  * delay a task, to account for any delays that may have occurred.
1555  */
1556 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1557 {
1558 	u64 old = atomic64_read(&blkg->delay_start);
1559 
1560 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1561 	if (atomic_read(&blkg->use_delay) < 0)
1562 		return;
1563 
1564 	/*
1565 	 * We only want to scale down every second.  The idea here is that we
1566 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1567 	 * time window.  We only want to throttle tasks for recent delay that
1568 	 * has occurred, in 1 second time windows since that's the maximum
1569 	 * things can be throttled.  We save the current delay window in
1570 	 * blkg->last_delay so we know what amount is still left to be charged
1571 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1572 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1573 	 * are ok with whatever is happening now, and we can take away more of
1574 	 * the accumulated delay as we've already throttled enough that
1575 	 * everybody is happy with their IO latencies.
1576 	 */
1577 	if (time_before64(old + NSEC_PER_SEC, now) &&
1578 	    atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1579 		u64 cur = atomic64_read(&blkg->delay_nsec);
1580 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1581 		int cur_use = atomic_read(&blkg->use_delay);
1582 
1583 		/*
1584 		 * We've been unthrottled, subtract a larger chunk of our
1585 		 * accumulated delay.
1586 		 */
1587 		if (cur_use < blkg->last_use)
1588 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1589 
1590 		/*
1591 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1592 		 * should only ever be growing except here where we subtract out
1593 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1594 		 * rather not end up with negative numbers.
1595 		 */
1596 		if (unlikely(cur < sub)) {
1597 			atomic64_set(&blkg->delay_nsec, 0);
1598 			blkg->last_delay = 0;
1599 		} else {
1600 			atomic64_sub(sub, &blkg->delay_nsec);
1601 			blkg->last_delay = cur - sub;
1602 		}
1603 		blkg->last_use = cur_use;
1604 	}
1605 }
1606 
1607 /*
1608  * This is called when we want to actually walk up the hierarchy and check to
1609  * see if we need to throttle, and then actually throttle if there is some
1610  * accumulated delay.  This should only be called upon return to user space so
1611  * we're not holding some lock that would induce a priority inversion.
1612  */
1613 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1614 {
1615 	unsigned long pflags;
1616 	u64 now = ktime_to_ns(ktime_get());
1617 	u64 exp;
1618 	u64 delay_nsec = 0;
1619 	int tok;
1620 
1621 	while (blkg->parent) {
1622 		if (atomic_read(&blkg->use_delay)) {
1623 			blkcg_scale_delay(blkg, now);
1624 			delay_nsec = max_t(u64, delay_nsec,
1625 					   atomic64_read(&blkg->delay_nsec));
1626 		}
1627 		blkg = blkg->parent;
1628 	}
1629 
1630 	if (!delay_nsec)
1631 		return;
1632 
1633 	/*
1634 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1635 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1636 	 * delay, and we want userspace to be able to do _something_ so cap the
1637 	 * delays at 1 second.  If there's 10's of seconds worth of delay then
1638 	 * the tasks will be delayed for 1 second for every syscall.
1639 	 */
1640 	delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1641 
1642 	if (use_memdelay)
1643 		psi_memstall_enter(&pflags);
1644 
1645 	exp = ktime_add_ns(now, delay_nsec);
1646 	tok = io_schedule_prepare();
1647 	do {
1648 		__set_current_state(TASK_KILLABLE);
1649 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1650 			break;
1651 	} while (!fatal_signal_pending(current));
1652 	io_schedule_finish(tok);
1653 
1654 	if (use_memdelay)
1655 		psi_memstall_leave(&pflags);
1656 }
1657 
1658 /**
1659  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1660  *
1661  * This is only called if we've been marked with set_notify_resume().  Obviously
1662  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1663  * check to see if current->throttle_queue is set and if not this doesn't do
1664  * anything.  This should only ever be called by the resume code, it's not meant
1665  * to be called by people willy-nilly as it will actually do the work to
1666  * throttle the task if it is setup for throttling.
1667  */
1668 void blkcg_maybe_throttle_current(void)
1669 {
1670 	struct request_queue *q = current->throttle_queue;
1671 	struct cgroup_subsys_state *css;
1672 	struct blkcg *blkcg;
1673 	struct blkcg_gq *blkg;
1674 	bool use_memdelay = current->use_memdelay;
1675 
1676 	if (!q)
1677 		return;
1678 
1679 	current->throttle_queue = NULL;
1680 	current->use_memdelay = false;
1681 
1682 	rcu_read_lock();
1683 	css = kthread_blkcg();
1684 	if (css)
1685 		blkcg = css_to_blkcg(css);
1686 	else
1687 		blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1688 
1689 	if (!blkcg)
1690 		goto out;
1691 	blkg = blkg_lookup(blkcg, q);
1692 	if (!blkg)
1693 		goto out;
1694 	if (!blkg_tryget(blkg))
1695 		goto out;
1696 	rcu_read_unlock();
1697 
1698 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1699 	blkg_put(blkg);
1700 	blk_put_queue(q);
1701 	return;
1702 out:
1703 	rcu_read_unlock();
1704 	blk_put_queue(q);
1705 }
1706 
1707 /**
1708  * blkcg_schedule_throttle - this task needs to check for throttling
1709  * @q: the request queue IO was submitted on
1710  * @use_memdelay: do we charge this to memory delay for PSI
1711  *
1712  * This is called by the IO controller when we know there's delay accumulated
1713  * for the blkg for this task.  We do not pass the blkg because there are places
1714  * we call this that may not have that information, the swapping code for
1715  * instance will only have a request_queue at that point.  This set's the
1716  * notify_resume for the task to check and see if it requires throttling before
1717  * returning to user space.
1718  *
1719  * We will only schedule once per syscall.  You can call this over and over
1720  * again and it will only do the check once upon return to user space, and only
1721  * throttle once.  If the task needs to be throttled again it'll need to be
1722  * re-set at the next time we see the task.
1723  */
1724 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1725 {
1726 	if (unlikely(current->flags & PF_KTHREAD))
1727 		return;
1728 
1729 	if (!blk_get_queue(q))
1730 		return;
1731 
1732 	if (current->throttle_queue)
1733 		blk_put_queue(current->throttle_queue);
1734 	current->throttle_queue = q;
1735 	if (use_memdelay)
1736 		current->use_memdelay = use_memdelay;
1737 	set_notify_resume(current);
1738 }
1739 
1740 /**
1741  * blkcg_add_delay - add delay to this blkg
1742  * @blkg: blkg of interest
1743  * @now: the current time in nanoseconds
1744  * @delta: how many nanoseconds of delay to add
1745  *
1746  * Charge @delta to the blkg's current delay accumulation.  This is used to
1747  * throttle tasks if an IO controller thinks we need more throttling.
1748  */
1749 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1750 {
1751 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1752 		return;
1753 	blkcg_scale_delay(blkg, now);
1754 	atomic64_add(delta, &blkg->delay_nsec);
1755 }
1756 
1757 /**
1758  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1759  * @bio: target bio
1760  * @css: target css
1761  *
1762  * As the failure mode here is to walk up the blkg tree, this ensure that the
1763  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1764  * up taking a reference on or %NULL if no reference was taken.
1765  */
1766 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1767 		struct cgroup_subsys_state *css)
1768 {
1769 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1770 
1771 	rcu_read_lock();
1772 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_disk->queue);
1773 	while (blkg) {
1774 		if (blkg_tryget(blkg)) {
1775 			ret_blkg = blkg;
1776 			break;
1777 		}
1778 		blkg = blkg->parent;
1779 	}
1780 	rcu_read_unlock();
1781 
1782 	return ret_blkg;
1783 }
1784 
1785 /**
1786  * bio_associate_blkg_from_css - associate a bio with a specified css
1787  * @bio: target bio
1788  * @css: target css
1789  *
1790  * Associate @bio with the blkg found by combining the css's blkg and the
1791  * request_queue of the @bio.  An association failure is handled by walking up
1792  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1793  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1794  * then the remaining bios will spill to the closest alive blkg.
1795  *
1796  * A reference will be taken on the blkg and will be released when @bio is
1797  * freed.
1798  */
1799 void bio_associate_blkg_from_css(struct bio *bio,
1800 				 struct cgroup_subsys_state *css)
1801 {
1802 	if (bio->bi_blkg)
1803 		blkg_put(bio->bi_blkg);
1804 
1805 	if (css && css->parent) {
1806 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1807 	} else {
1808 		blkg_get(bio->bi_disk->queue->root_blkg);
1809 		bio->bi_blkg = bio->bi_disk->queue->root_blkg;
1810 	}
1811 }
1812 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1813 
1814 /**
1815  * bio_associate_blkg - associate a bio with a blkg
1816  * @bio: target bio
1817  *
1818  * Associate @bio with the blkg found from the bio's css and request_queue.
1819  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1820  * already associated, the css is reused and association redone as the
1821  * request_queue may have changed.
1822  */
1823 void bio_associate_blkg(struct bio *bio)
1824 {
1825 	struct cgroup_subsys_state *css;
1826 
1827 	rcu_read_lock();
1828 
1829 	if (bio->bi_blkg)
1830 		css = &bio_blkcg(bio)->css;
1831 	else
1832 		css = blkcg_css();
1833 
1834 	bio_associate_blkg_from_css(bio, css);
1835 
1836 	rcu_read_unlock();
1837 }
1838 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1839 
1840 /**
1841  * bio_clone_blkg_association - clone blkg association from src to dst bio
1842  * @dst: destination bio
1843  * @src: source bio
1844  */
1845 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1846 {
1847 	if (src->bi_blkg) {
1848 		if (dst->bi_blkg)
1849 			blkg_put(dst->bi_blkg);
1850 		blkg_get(src->bi_blkg);
1851 		dst->bi_blkg = src->bi_blkg;
1852 	}
1853 }
1854 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1855 
1856 static int blk_cgroup_io_type(struct bio *bio)
1857 {
1858 	if (op_is_discard(bio->bi_opf))
1859 		return BLKG_IOSTAT_DISCARD;
1860 	if (op_is_write(bio->bi_opf))
1861 		return BLKG_IOSTAT_WRITE;
1862 	return BLKG_IOSTAT_READ;
1863 }
1864 
1865 void blk_cgroup_bio_start(struct bio *bio)
1866 {
1867 	int rwd = blk_cgroup_io_type(bio), cpu;
1868 	struct blkg_iostat_set *bis;
1869 
1870 	cpu = get_cpu();
1871 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1872 	u64_stats_update_begin(&bis->sync);
1873 
1874 	/*
1875 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1876 	 * bio and we would have already accounted for the size of the bio.
1877 	 */
1878 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1879 		bio_set_flag(bio, BIO_CGROUP_ACCT);
1880 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1881 	}
1882 	bis->cur.ios[rwd]++;
1883 
1884 	u64_stats_update_end(&bis->sync);
1885 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1886 		cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1887 	put_cpu();
1888 }
1889 
1890 static int __init blkcg_init(void)
1891 {
1892 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1893 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
1894 					    WQ_UNBOUND | WQ_SYSFS, 0);
1895 	if (!blkcg_punt_bio_wq)
1896 		return -ENOMEM;
1897 	return 0;
1898 }
1899 subsys_initcall(blkcg_init);
1900 
1901 module_param(blkcg_debug_stats, bool, 0644);
1902 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1903