1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/genhd.h> 27 #include <linux/delay.h> 28 #include <linux/atomic.h> 29 #include <linux/ctype.h> 30 #include <linux/blk-cgroup.h> 31 #include <linux/tracehook.h> 32 #include <linux/psi.h> 33 #include "blk.h" 34 35 #define MAX_KEY_LEN 100 36 37 /* 38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 40 * policy [un]register operations including cgroup file additions / 41 * removals. Putting cgroup file registration outside blkcg_pol_mutex 42 * allows grabbing it from cgroup callbacks. 43 */ 44 static DEFINE_MUTEX(blkcg_pol_register_mutex); 45 static DEFINE_MUTEX(blkcg_pol_mutex); 46 47 struct blkcg blkcg_root; 48 EXPORT_SYMBOL_GPL(blkcg_root); 49 50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 51 EXPORT_SYMBOL_GPL(blkcg_root_css); 52 53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 54 55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 56 57 bool blkcg_debug_stats = false; 58 static struct workqueue_struct *blkcg_punt_bio_wq; 59 60 static bool blkcg_policy_enabled(struct request_queue *q, 61 const struct blkcg_policy *pol) 62 { 63 return pol && test_bit(pol->plid, q->blkcg_pols); 64 } 65 66 /** 67 * blkg_free - free a blkg 68 * @blkg: blkg to free 69 * 70 * Free @blkg which may be partially allocated. 71 */ 72 static void blkg_free(struct blkcg_gq *blkg) 73 { 74 int i; 75 76 if (!blkg) 77 return; 78 79 for (i = 0; i < BLKCG_MAX_POLS; i++) 80 if (blkg->pd[i]) 81 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 82 83 free_percpu(blkg->iostat_cpu); 84 percpu_ref_exit(&blkg->refcnt); 85 kfree(blkg); 86 } 87 88 static void __blkg_release(struct rcu_head *rcu) 89 { 90 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 91 92 WARN_ON(!bio_list_empty(&blkg->async_bios)); 93 94 /* release the blkcg and parent blkg refs this blkg has been holding */ 95 css_put(&blkg->blkcg->css); 96 if (blkg->parent) 97 blkg_put(blkg->parent); 98 blkg_free(blkg); 99 } 100 101 /* 102 * A group is RCU protected, but having an rcu lock does not mean that one 103 * can access all the fields of blkg and assume these are valid. For 104 * example, don't try to follow throtl_data and request queue links. 105 * 106 * Having a reference to blkg under an rcu allows accesses to only values 107 * local to groups like group stats and group rate limits. 108 */ 109 static void blkg_release(struct percpu_ref *ref) 110 { 111 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 112 113 call_rcu(&blkg->rcu_head, __blkg_release); 114 } 115 116 static void blkg_async_bio_workfn(struct work_struct *work) 117 { 118 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 119 async_bio_work); 120 struct bio_list bios = BIO_EMPTY_LIST; 121 struct bio *bio; 122 123 /* as long as there are pending bios, @blkg can't go away */ 124 spin_lock_bh(&blkg->async_bio_lock); 125 bio_list_merge(&bios, &blkg->async_bios); 126 bio_list_init(&blkg->async_bios); 127 spin_unlock_bh(&blkg->async_bio_lock); 128 129 while ((bio = bio_list_pop(&bios))) 130 submit_bio(bio); 131 } 132 133 /** 134 * blkg_alloc - allocate a blkg 135 * @blkcg: block cgroup the new blkg is associated with 136 * @q: request_queue the new blkg is associated with 137 * @gfp_mask: allocation mask to use 138 * 139 * Allocate a new blkg assocating @blkcg and @q. 140 */ 141 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, 142 gfp_t gfp_mask) 143 { 144 struct blkcg_gq *blkg; 145 int i, cpu; 146 147 /* alloc and init base part */ 148 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); 149 if (!blkg) 150 return NULL; 151 152 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 153 goto err_free; 154 155 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 156 if (!blkg->iostat_cpu) 157 goto err_free; 158 159 blkg->q = q; 160 INIT_LIST_HEAD(&blkg->q_node); 161 spin_lock_init(&blkg->async_bio_lock); 162 bio_list_init(&blkg->async_bios); 163 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 164 blkg->blkcg = blkcg; 165 166 u64_stats_init(&blkg->iostat.sync); 167 for_each_possible_cpu(cpu) 168 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 169 170 for (i = 0; i < BLKCG_MAX_POLS; i++) { 171 struct blkcg_policy *pol = blkcg_policy[i]; 172 struct blkg_policy_data *pd; 173 174 if (!blkcg_policy_enabled(q, pol)) 175 continue; 176 177 /* alloc per-policy data and attach it to blkg */ 178 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); 179 if (!pd) 180 goto err_free; 181 182 blkg->pd[i] = pd; 183 pd->blkg = blkg; 184 pd->plid = i; 185 } 186 187 return blkg; 188 189 err_free: 190 blkg_free(blkg); 191 return NULL; 192 } 193 194 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, 195 struct request_queue *q, bool update_hint) 196 { 197 struct blkcg_gq *blkg; 198 199 /* 200 * Hint didn't match. Look up from the radix tree. Note that the 201 * hint can only be updated under queue_lock as otherwise @blkg 202 * could have already been removed from blkg_tree. The caller is 203 * responsible for grabbing queue_lock if @update_hint. 204 */ 205 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); 206 if (blkg && blkg->q == q) { 207 if (update_hint) { 208 lockdep_assert_held(&q->queue_lock); 209 rcu_assign_pointer(blkcg->blkg_hint, blkg); 210 } 211 return blkg; 212 } 213 214 return NULL; 215 } 216 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); 217 218 /* 219 * If @new_blkg is %NULL, this function tries to allocate a new one as 220 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 221 */ 222 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, 223 struct request_queue *q, 224 struct blkcg_gq *new_blkg) 225 { 226 struct blkcg_gq *blkg; 227 int i, ret; 228 229 WARN_ON_ONCE(!rcu_read_lock_held()); 230 lockdep_assert_held(&q->queue_lock); 231 232 /* request_queue is dying, do not create/recreate a blkg */ 233 if (blk_queue_dying(q)) { 234 ret = -ENODEV; 235 goto err_free_blkg; 236 } 237 238 /* blkg holds a reference to blkcg */ 239 if (!css_tryget_online(&blkcg->css)) { 240 ret = -ENODEV; 241 goto err_free_blkg; 242 } 243 244 /* allocate */ 245 if (!new_blkg) { 246 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); 247 if (unlikely(!new_blkg)) { 248 ret = -ENOMEM; 249 goto err_put_css; 250 } 251 } 252 blkg = new_blkg; 253 254 /* link parent */ 255 if (blkcg_parent(blkcg)) { 256 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); 257 if (WARN_ON_ONCE(!blkg->parent)) { 258 ret = -ENODEV; 259 goto err_put_css; 260 } 261 blkg_get(blkg->parent); 262 } 263 264 /* invoke per-policy init */ 265 for (i = 0; i < BLKCG_MAX_POLS; i++) { 266 struct blkcg_policy *pol = blkcg_policy[i]; 267 268 if (blkg->pd[i] && pol->pd_init_fn) 269 pol->pd_init_fn(blkg->pd[i]); 270 } 271 272 /* insert */ 273 spin_lock(&blkcg->lock); 274 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); 275 if (likely(!ret)) { 276 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 277 list_add(&blkg->q_node, &q->blkg_list); 278 279 for (i = 0; i < BLKCG_MAX_POLS; i++) { 280 struct blkcg_policy *pol = blkcg_policy[i]; 281 282 if (blkg->pd[i] && pol->pd_online_fn) 283 pol->pd_online_fn(blkg->pd[i]); 284 } 285 } 286 blkg->online = true; 287 spin_unlock(&blkcg->lock); 288 289 if (!ret) 290 return blkg; 291 292 /* @blkg failed fully initialized, use the usual release path */ 293 blkg_put(blkg); 294 return ERR_PTR(ret); 295 296 err_put_css: 297 css_put(&blkcg->css); 298 err_free_blkg: 299 blkg_free(new_blkg); 300 return ERR_PTR(ret); 301 } 302 303 /** 304 * blkg_lookup_create - lookup blkg, try to create one if not there 305 * @blkcg: blkcg of interest 306 * @q: request_queue of interest 307 * 308 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to 309 * create one. blkg creation is performed recursively from blkcg_root such 310 * that all non-root blkg's have access to the parent blkg. This function 311 * should be called under RCU read lock and takes @q->queue_lock. 312 * 313 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 314 * down from root. 315 */ 316 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 317 struct request_queue *q) 318 { 319 struct blkcg_gq *blkg; 320 unsigned long flags; 321 322 WARN_ON_ONCE(!rcu_read_lock_held()); 323 324 blkg = blkg_lookup(blkcg, q); 325 if (blkg) 326 return blkg; 327 328 spin_lock_irqsave(&q->queue_lock, flags); 329 blkg = __blkg_lookup(blkcg, q, true); 330 if (blkg) 331 goto found; 332 333 /* 334 * Create blkgs walking down from blkcg_root to @blkcg, so that all 335 * non-root blkgs have access to their parents. Returns the closest 336 * blkg to the intended blkg should blkg_create() fail. 337 */ 338 while (true) { 339 struct blkcg *pos = blkcg; 340 struct blkcg *parent = blkcg_parent(blkcg); 341 struct blkcg_gq *ret_blkg = q->root_blkg; 342 343 while (parent) { 344 blkg = __blkg_lookup(parent, q, false); 345 if (blkg) { 346 /* remember closest blkg */ 347 ret_blkg = blkg; 348 break; 349 } 350 pos = parent; 351 parent = blkcg_parent(parent); 352 } 353 354 blkg = blkg_create(pos, q, NULL); 355 if (IS_ERR(blkg)) { 356 blkg = ret_blkg; 357 break; 358 } 359 if (pos == blkcg) 360 break; 361 } 362 363 found: 364 spin_unlock_irqrestore(&q->queue_lock, flags); 365 return blkg; 366 } 367 368 static void blkg_destroy(struct blkcg_gq *blkg) 369 { 370 struct blkcg *blkcg = blkg->blkcg; 371 int i; 372 373 lockdep_assert_held(&blkg->q->queue_lock); 374 lockdep_assert_held(&blkcg->lock); 375 376 /* Something wrong if we are trying to remove same group twice */ 377 WARN_ON_ONCE(list_empty(&blkg->q_node)); 378 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 379 380 for (i = 0; i < BLKCG_MAX_POLS; i++) { 381 struct blkcg_policy *pol = blkcg_policy[i]; 382 383 if (blkg->pd[i] && pol->pd_offline_fn) 384 pol->pd_offline_fn(blkg->pd[i]); 385 } 386 387 blkg->online = false; 388 389 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 390 list_del_init(&blkg->q_node); 391 hlist_del_init_rcu(&blkg->blkcg_node); 392 393 /* 394 * Both setting lookup hint to and clearing it from @blkg are done 395 * under queue_lock. If it's not pointing to @blkg now, it never 396 * will. Hint assignment itself can race safely. 397 */ 398 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 399 rcu_assign_pointer(blkcg->blkg_hint, NULL); 400 401 /* 402 * Put the reference taken at the time of creation so that when all 403 * queues are gone, group can be destroyed. 404 */ 405 percpu_ref_kill(&blkg->refcnt); 406 } 407 408 /** 409 * blkg_destroy_all - destroy all blkgs associated with a request_queue 410 * @q: request_queue of interest 411 * 412 * Destroy all blkgs associated with @q. 413 */ 414 static void blkg_destroy_all(struct request_queue *q) 415 { 416 struct blkcg_gq *blkg, *n; 417 418 spin_lock_irq(&q->queue_lock); 419 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 420 struct blkcg *blkcg = blkg->blkcg; 421 422 spin_lock(&blkcg->lock); 423 blkg_destroy(blkg); 424 spin_unlock(&blkcg->lock); 425 } 426 427 q->root_blkg = NULL; 428 spin_unlock_irq(&q->queue_lock); 429 } 430 431 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 432 struct cftype *cftype, u64 val) 433 { 434 struct blkcg *blkcg = css_to_blkcg(css); 435 struct blkcg_gq *blkg; 436 int i, cpu; 437 438 mutex_lock(&blkcg_pol_mutex); 439 spin_lock_irq(&blkcg->lock); 440 441 /* 442 * Note that stat reset is racy - it doesn't synchronize against 443 * stat updates. This is a debug feature which shouldn't exist 444 * anyway. If you get hit by a race, retry. 445 */ 446 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 447 for_each_possible_cpu(cpu) { 448 struct blkg_iostat_set *bis = 449 per_cpu_ptr(blkg->iostat_cpu, cpu); 450 memset(bis, 0, sizeof(*bis)); 451 } 452 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 453 454 for (i = 0; i < BLKCG_MAX_POLS; i++) { 455 struct blkcg_policy *pol = blkcg_policy[i]; 456 457 if (blkg->pd[i] && pol->pd_reset_stats_fn) 458 pol->pd_reset_stats_fn(blkg->pd[i]); 459 } 460 } 461 462 spin_unlock_irq(&blkcg->lock); 463 mutex_unlock(&blkcg_pol_mutex); 464 return 0; 465 } 466 467 const char *blkg_dev_name(struct blkcg_gq *blkg) 468 { 469 /* some drivers (floppy) instantiate a queue w/o disk registered */ 470 if (blkg->q->backing_dev_info->dev) 471 return bdi_dev_name(blkg->q->backing_dev_info); 472 return NULL; 473 } 474 475 /** 476 * blkcg_print_blkgs - helper for printing per-blkg data 477 * @sf: seq_file to print to 478 * @blkcg: blkcg of interest 479 * @prfill: fill function to print out a blkg 480 * @pol: policy in question 481 * @data: data to be passed to @prfill 482 * @show_total: to print out sum of prfill return values or not 483 * 484 * This function invokes @prfill on each blkg of @blkcg if pd for the 485 * policy specified by @pol exists. @prfill is invoked with @sf, the 486 * policy data and @data and the matching queue lock held. If @show_total 487 * is %true, the sum of the return values from @prfill is printed with 488 * "Total" label at the end. 489 * 490 * This is to be used to construct print functions for 491 * cftype->read_seq_string method. 492 */ 493 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 494 u64 (*prfill)(struct seq_file *, 495 struct blkg_policy_data *, int), 496 const struct blkcg_policy *pol, int data, 497 bool show_total) 498 { 499 struct blkcg_gq *blkg; 500 u64 total = 0; 501 502 rcu_read_lock(); 503 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 504 spin_lock_irq(&blkg->q->queue_lock); 505 if (blkcg_policy_enabled(blkg->q, pol)) 506 total += prfill(sf, blkg->pd[pol->plid], data); 507 spin_unlock_irq(&blkg->q->queue_lock); 508 } 509 rcu_read_unlock(); 510 511 if (show_total) 512 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 513 } 514 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 515 516 /** 517 * __blkg_prfill_u64 - prfill helper for a single u64 value 518 * @sf: seq_file to print to 519 * @pd: policy private data of interest 520 * @v: value to print 521 * 522 * Print @v to @sf for the device assocaited with @pd. 523 */ 524 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 525 { 526 const char *dname = blkg_dev_name(pd->blkg); 527 528 if (!dname) 529 return 0; 530 531 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 532 return v; 533 } 534 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 535 536 /* Performs queue bypass and policy enabled checks then looks up blkg. */ 537 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, 538 const struct blkcg_policy *pol, 539 struct request_queue *q) 540 { 541 WARN_ON_ONCE(!rcu_read_lock_held()); 542 lockdep_assert_held(&q->queue_lock); 543 544 if (!blkcg_policy_enabled(q, pol)) 545 return ERR_PTR(-EOPNOTSUPP); 546 return __blkg_lookup(blkcg, q, true /* update_hint */); 547 } 548 549 /** 550 * blkg_conf_prep - parse and prepare for per-blkg config update 551 * @inputp: input string pointer 552 * 553 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 554 * from @input and get and return the matching gendisk. *@inputp is 555 * updated to point past the device node prefix. Returns an ERR_PTR() 556 * value on error. 557 * 558 * Use this function iff blkg_conf_prep() can't be used for some reason. 559 */ 560 struct gendisk *blkcg_conf_get_disk(char **inputp) 561 { 562 char *input = *inputp; 563 unsigned int major, minor; 564 struct gendisk *disk; 565 int key_len, part; 566 567 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 568 return ERR_PTR(-EINVAL); 569 570 input += key_len; 571 if (!isspace(*input)) 572 return ERR_PTR(-EINVAL); 573 input = skip_spaces(input); 574 575 disk = get_gendisk(MKDEV(major, minor), &part); 576 if (!disk) 577 return ERR_PTR(-ENODEV); 578 if (part) { 579 put_disk_and_module(disk); 580 return ERR_PTR(-ENODEV); 581 } 582 583 *inputp = input; 584 return disk; 585 } 586 587 /** 588 * blkg_conf_prep - parse and prepare for per-blkg config update 589 * @blkcg: target block cgroup 590 * @pol: target policy 591 * @input: input string 592 * @ctx: blkg_conf_ctx to be filled 593 * 594 * Parse per-blkg config update from @input and initialize @ctx with the 595 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 596 * part of @input following MAJ:MIN. This function returns with RCU read 597 * lock and queue lock held and must be paired with blkg_conf_finish(). 598 */ 599 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 600 char *input, struct blkg_conf_ctx *ctx) 601 __acquires(rcu) __acquires(&disk->queue->queue_lock) 602 { 603 struct gendisk *disk; 604 struct request_queue *q; 605 struct blkcg_gq *blkg; 606 int ret; 607 608 disk = blkcg_conf_get_disk(&input); 609 if (IS_ERR(disk)) 610 return PTR_ERR(disk); 611 612 q = disk->queue; 613 614 rcu_read_lock(); 615 spin_lock_irq(&q->queue_lock); 616 617 blkg = blkg_lookup_check(blkcg, pol, q); 618 if (IS_ERR(blkg)) { 619 ret = PTR_ERR(blkg); 620 goto fail_unlock; 621 } 622 623 if (blkg) 624 goto success; 625 626 /* 627 * Create blkgs walking down from blkcg_root to @blkcg, so that all 628 * non-root blkgs have access to their parents. 629 */ 630 while (true) { 631 struct blkcg *pos = blkcg; 632 struct blkcg *parent; 633 struct blkcg_gq *new_blkg; 634 635 parent = blkcg_parent(blkcg); 636 while (parent && !__blkg_lookup(parent, q, false)) { 637 pos = parent; 638 parent = blkcg_parent(parent); 639 } 640 641 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 642 spin_unlock_irq(&q->queue_lock); 643 rcu_read_unlock(); 644 645 new_blkg = blkg_alloc(pos, q, GFP_KERNEL); 646 if (unlikely(!new_blkg)) { 647 ret = -ENOMEM; 648 goto fail; 649 } 650 651 rcu_read_lock(); 652 spin_lock_irq(&q->queue_lock); 653 654 blkg = blkg_lookup_check(pos, pol, q); 655 if (IS_ERR(blkg)) { 656 ret = PTR_ERR(blkg); 657 goto fail_unlock; 658 } 659 660 if (blkg) { 661 blkg_free(new_blkg); 662 } else { 663 blkg = blkg_create(pos, q, new_blkg); 664 if (IS_ERR(blkg)) { 665 ret = PTR_ERR(blkg); 666 goto fail_unlock; 667 } 668 } 669 670 if (pos == blkcg) 671 goto success; 672 } 673 success: 674 ctx->disk = disk; 675 ctx->blkg = blkg; 676 ctx->body = input; 677 return 0; 678 679 fail_unlock: 680 spin_unlock_irq(&q->queue_lock); 681 rcu_read_unlock(); 682 fail: 683 put_disk_and_module(disk); 684 /* 685 * If queue was bypassing, we should retry. Do so after a 686 * short msleep(). It isn't strictly necessary but queue 687 * can be bypassing for some time and it's always nice to 688 * avoid busy looping. 689 */ 690 if (ret == -EBUSY) { 691 msleep(10); 692 ret = restart_syscall(); 693 } 694 return ret; 695 } 696 EXPORT_SYMBOL_GPL(blkg_conf_prep); 697 698 /** 699 * blkg_conf_finish - finish up per-blkg config update 700 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 701 * 702 * Finish up after per-blkg config update. This function must be paired 703 * with blkg_conf_prep(). 704 */ 705 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 706 __releases(&ctx->disk->queue->queue_lock) __releases(rcu) 707 { 708 spin_unlock_irq(&ctx->disk->queue->queue_lock); 709 rcu_read_unlock(); 710 put_disk_and_module(ctx->disk); 711 } 712 EXPORT_SYMBOL_GPL(blkg_conf_finish); 713 714 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 715 { 716 int i; 717 718 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 719 dst->bytes[i] = src->bytes[i]; 720 dst->ios[i] = src->ios[i]; 721 } 722 } 723 724 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 725 { 726 int i; 727 728 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 729 dst->bytes[i] += src->bytes[i]; 730 dst->ios[i] += src->ios[i]; 731 } 732 } 733 734 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 735 { 736 int i; 737 738 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 739 dst->bytes[i] -= src->bytes[i]; 740 dst->ios[i] -= src->ios[i]; 741 } 742 } 743 744 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 745 { 746 struct blkcg *blkcg = css_to_blkcg(css); 747 struct blkcg_gq *blkg; 748 749 rcu_read_lock(); 750 751 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 752 struct blkcg_gq *parent = blkg->parent; 753 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 754 struct blkg_iostat cur, delta; 755 unsigned int seq; 756 757 /* fetch the current per-cpu values */ 758 do { 759 seq = u64_stats_fetch_begin(&bisc->sync); 760 blkg_iostat_set(&cur, &bisc->cur); 761 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 762 763 /* propagate percpu delta to global */ 764 u64_stats_update_begin(&blkg->iostat.sync); 765 blkg_iostat_set(&delta, &cur); 766 blkg_iostat_sub(&delta, &bisc->last); 767 blkg_iostat_add(&blkg->iostat.cur, &delta); 768 blkg_iostat_add(&bisc->last, &delta); 769 u64_stats_update_end(&blkg->iostat.sync); 770 771 /* propagate global delta to parent */ 772 if (parent) { 773 u64_stats_update_begin(&parent->iostat.sync); 774 blkg_iostat_set(&delta, &blkg->iostat.cur); 775 blkg_iostat_sub(&delta, &blkg->iostat.last); 776 blkg_iostat_add(&parent->iostat.cur, &delta); 777 blkg_iostat_add(&blkg->iostat.last, &delta); 778 u64_stats_update_end(&parent->iostat.sync); 779 } 780 } 781 782 rcu_read_unlock(); 783 } 784 785 /* 786 * The rstat algorithms intentionally don't handle the root cgroup to avoid 787 * incurring overhead when no cgroups are defined. For that reason, 788 * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the 789 * iostat in the root cgroup's blkcg_gq. 790 * 791 * However, we would like to re-use the printing code between the root and 792 * non-root cgroups to the extent possible. For that reason, we simulate 793 * flushing the root cgroup's stats by explicitly filling in the iostat 794 * with disk level statistics. 795 */ 796 static void blkcg_fill_root_iostats(void) 797 { 798 struct class_dev_iter iter; 799 struct device *dev; 800 801 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 802 while ((dev = class_dev_iter_next(&iter))) { 803 struct gendisk *disk = dev_to_disk(dev); 804 struct hd_struct *part = disk_get_part(disk, 0); 805 struct blkcg_gq *blkg = blk_queue_root_blkg(disk->queue); 806 struct blkg_iostat tmp; 807 int cpu; 808 809 memset(&tmp, 0, sizeof(tmp)); 810 for_each_possible_cpu(cpu) { 811 struct disk_stats *cpu_dkstats; 812 813 cpu_dkstats = per_cpu_ptr(part->dkstats, cpu); 814 tmp.ios[BLKG_IOSTAT_READ] += 815 cpu_dkstats->ios[STAT_READ]; 816 tmp.ios[BLKG_IOSTAT_WRITE] += 817 cpu_dkstats->ios[STAT_WRITE]; 818 tmp.ios[BLKG_IOSTAT_DISCARD] += 819 cpu_dkstats->ios[STAT_DISCARD]; 820 // convert sectors to bytes 821 tmp.bytes[BLKG_IOSTAT_READ] += 822 cpu_dkstats->sectors[STAT_READ] << 9; 823 tmp.bytes[BLKG_IOSTAT_WRITE] += 824 cpu_dkstats->sectors[STAT_WRITE] << 9; 825 tmp.bytes[BLKG_IOSTAT_DISCARD] += 826 cpu_dkstats->sectors[STAT_DISCARD] << 9; 827 828 u64_stats_update_begin(&blkg->iostat.sync); 829 blkg_iostat_set(&blkg->iostat.cur, &tmp); 830 u64_stats_update_end(&blkg->iostat.sync); 831 } 832 } 833 } 834 835 static int blkcg_print_stat(struct seq_file *sf, void *v) 836 { 837 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 838 struct blkcg_gq *blkg; 839 840 if (!seq_css(sf)->parent) 841 blkcg_fill_root_iostats(); 842 else 843 cgroup_rstat_flush(blkcg->css.cgroup); 844 845 rcu_read_lock(); 846 847 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 848 struct blkg_iostat_set *bis = &blkg->iostat; 849 const char *dname; 850 char *buf; 851 u64 rbytes, wbytes, rios, wios, dbytes, dios; 852 size_t size = seq_get_buf(sf, &buf), off = 0; 853 int i; 854 bool has_stats = false; 855 unsigned seq; 856 857 spin_lock_irq(&blkg->q->queue_lock); 858 859 if (!blkg->online) 860 goto skip; 861 862 dname = blkg_dev_name(blkg); 863 if (!dname) 864 goto skip; 865 866 /* 867 * Hooray string manipulation, count is the size written NOT 868 * INCLUDING THE \0, so size is now count+1 less than what we 869 * had before, but we want to start writing the next bit from 870 * the \0 so we only add count to buf. 871 */ 872 off += scnprintf(buf+off, size-off, "%s ", dname); 873 874 do { 875 seq = u64_stats_fetch_begin(&bis->sync); 876 877 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 878 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 879 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 880 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 881 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 882 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 883 } while (u64_stats_fetch_retry(&bis->sync, seq)); 884 885 if (rbytes || wbytes || rios || wios) { 886 has_stats = true; 887 off += scnprintf(buf+off, size-off, 888 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 889 rbytes, wbytes, rios, wios, 890 dbytes, dios); 891 } 892 893 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 894 has_stats = true; 895 off += scnprintf(buf+off, size-off, 896 " use_delay=%d delay_nsec=%llu", 897 atomic_read(&blkg->use_delay), 898 (unsigned long long)atomic64_read(&blkg->delay_nsec)); 899 } 900 901 for (i = 0; i < BLKCG_MAX_POLS; i++) { 902 struct blkcg_policy *pol = blkcg_policy[i]; 903 size_t written; 904 905 if (!blkg->pd[i] || !pol->pd_stat_fn) 906 continue; 907 908 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off); 909 if (written) 910 has_stats = true; 911 off += written; 912 } 913 914 if (has_stats) { 915 if (off < size - 1) { 916 off += scnprintf(buf+off, size-off, "\n"); 917 seq_commit(sf, off); 918 } else { 919 seq_commit(sf, -1); 920 } 921 } 922 skip: 923 spin_unlock_irq(&blkg->q->queue_lock); 924 } 925 926 rcu_read_unlock(); 927 return 0; 928 } 929 930 static struct cftype blkcg_files[] = { 931 { 932 .name = "stat", 933 .seq_show = blkcg_print_stat, 934 }, 935 { } /* terminate */ 936 }; 937 938 static struct cftype blkcg_legacy_files[] = { 939 { 940 .name = "reset_stats", 941 .write_u64 = blkcg_reset_stats, 942 }, 943 { } /* terminate */ 944 }; 945 946 /* 947 * blkcg destruction is a three-stage process. 948 * 949 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 950 * which offlines writeback. Here we tie the next stage of blkg destruction 951 * to the completion of writeback associated with the blkcg. This lets us 952 * avoid punting potentially large amounts of outstanding writeback to root 953 * while maintaining any ongoing policies. The next stage is triggered when 954 * the nr_cgwbs count goes to zero. 955 * 956 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 957 * and handles the destruction of blkgs. Here the css reference held by 958 * the blkg is put back eventually allowing blkcg_css_free() to be called. 959 * This work may occur in cgwb_release_workfn() on the cgwb_release 960 * workqueue. Any submitted ios that fail to get the blkg ref will be 961 * punted to the root_blkg. 962 * 963 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 964 * This finally frees the blkcg. 965 */ 966 967 /** 968 * blkcg_css_offline - cgroup css_offline callback 969 * @css: css of interest 970 * 971 * This function is called when @css is about to go away. Here the cgwbs are 972 * offlined first and only once writeback associated with the blkcg has 973 * finished do we start step 2 (see above). 974 */ 975 static void blkcg_css_offline(struct cgroup_subsys_state *css) 976 { 977 struct blkcg *blkcg = css_to_blkcg(css); 978 979 /* this prevents anyone from attaching or migrating to this blkcg */ 980 wb_blkcg_offline(blkcg); 981 982 /* put the base online pin allowing step 2 to be triggered */ 983 blkcg_unpin_online(blkcg); 984 } 985 986 /** 987 * blkcg_destroy_blkgs - responsible for shooting down blkgs 988 * @blkcg: blkcg of interest 989 * 990 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 991 * is nested inside q lock, this function performs reverse double lock dancing. 992 * Destroying the blkgs releases the reference held on the blkcg's css allowing 993 * blkcg_css_free to eventually be called. 994 * 995 * This is the blkcg counterpart of ioc_release_fn(). 996 */ 997 void blkcg_destroy_blkgs(struct blkcg *blkcg) 998 { 999 spin_lock_irq(&blkcg->lock); 1000 1001 while (!hlist_empty(&blkcg->blkg_list)) { 1002 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1003 struct blkcg_gq, blkcg_node); 1004 struct request_queue *q = blkg->q; 1005 1006 if (spin_trylock(&q->queue_lock)) { 1007 blkg_destroy(blkg); 1008 spin_unlock(&q->queue_lock); 1009 } else { 1010 spin_unlock_irq(&blkcg->lock); 1011 cpu_relax(); 1012 spin_lock_irq(&blkcg->lock); 1013 } 1014 } 1015 1016 spin_unlock_irq(&blkcg->lock); 1017 } 1018 1019 static void blkcg_css_free(struct cgroup_subsys_state *css) 1020 { 1021 struct blkcg *blkcg = css_to_blkcg(css); 1022 int i; 1023 1024 mutex_lock(&blkcg_pol_mutex); 1025 1026 list_del(&blkcg->all_blkcgs_node); 1027 1028 for (i = 0; i < BLKCG_MAX_POLS; i++) 1029 if (blkcg->cpd[i]) 1030 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1031 1032 mutex_unlock(&blkcg_pol_mutex); 1033 1034 kfree(blkcg); 1035 } 1036 1037 static struct cgroup_subsys_state * 1038 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1039 { 1040 struct blkcg *blkcg; 1041 struct cgroup_subsys_state *ret; 1042 int i; 1043 1044 mutex_lock(&blkcg_pol_mutex); 1045 1046 if (!parent_css) { 1047 blkcg = &blkcg_root; 1048 } else { 1049 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1050 if (!blkcg) { 1051 ret = ERR_PTR(-ENOMEM); 1052 goto unlock; 1053 } 1054 } 1055 1056 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1057 struct blkcg_policy *pol = blkcg_policy[i]; 1058 struct blkcg_policy_data *cpd; 1059 1060 /* 1061 * If the policy hasn't been attached yet, wait for it 1062 * to be attached before doing anything else. Otherwise, 1063 * check if the policy requires any specific per-cgroup 1064 * data: if it does, allocate and initialize it. 1065 */ 1066 if (!pol || !pol->cpd_alloc_fn) 1067 continue; 1068 1069 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1070 if (!cpd) { 1071 ret = ERR_PTR(-ENOMEM); 1072 goto free_pd_blkcg; 1073 } 1074 blkcg->cpd[i] = cpd; 1075 cpd->blkcg = blkcg; 1076 cpd->plid = i; 1077 if (pol->cpd_init_fn) 1078 pol->cpd_init_fn(cpd); 1079 } 1080 1081 spin_lock_init(&blkcg->lock); 1082 refcount_set(&blkcg->online_pin, 1); 1083 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1084 INIT_HLIST_HEAD(&blkcg->blkg_list); 1085 #ifdef CONFIG_CGROUP_WRITEBACK 1086 INIT_LIST_HEAD(&blkcg->cgwb_list); 1087 #endif 1088 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1089 1090 mutex_unlock(&blkcg_pol_mutex); 1091 return &blkcg->css; 1092 1093 free_pd_blkcg: 1094 for (i--; i >= 0; i--) 1095 if (blkcg->cpd[i]) 1096 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1097 1098 if (blkcg != &blkcg_root) 1099 kfree(blkcg); 1100 unlock: 1101 mutex_unlock(&blkcg_pol_mutex); 1102 return ret; 1103 } 1104 1105 static int blkcg_css_online(struct cgroup_subsys_state *css) 1106 { 1107 struct blkcg *blkcg = css_to_blkcg(css); 1108 struct blkcg *parent = blkcg_parent(blkcg); 1109 1110 /* 1111 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1112 * don't go offline while cgwbs are still active on them. Pin the 1113 * parent so that offline always happens towards the root. 1114 */ 1115 if (parent) 1116 blkcg_pin_online(parent); 1117 return 0; 1118 } 1119 1120 /** 1121 * blkcg_init_queue - initialize blkcg part of request queue 1122 * @q: request_queue to initialize 1123 * 1124 * Called from blk_alloc_queue(). Responsible for initializing blkcg 1125 * part of new request_queue @q. 1126 * 1127 * RETURNS: 1128 * 0 on success, -errno on failure. 1129 */ 1130 int blkcg_init_queue(struct request_queue *q) 1131 { 1132 struct blkcg_gq *new_blkg, *blkg; 1133 bool preloaded; 1134 int ret; 1135 1136 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); 1137 if (!new_blkg) 1138 return -ENOMEM; 1139 1140 preloaded = !radix_tree_preload(GFP_KERNEL); 1141 1142 /* Make sure the root blkg exists. */ 1143 rcu_read_lock(); 1144 spin_lock_irq(&q->queue_lock); 1145 blkg = blkg_create(&blkcg_root, q, new_blkg); 1146 if (IS_ERR(blkg)) 1147 goto err_unlock; 1148 q->root_blkg = blkg; 1149 spin_unlock_irq(&q->queue_lock); 1150 rcu_read_unlock(); 1151 1152 if (preloaded) 1153 radix_tree_preload_end(); 1154 1155 ret = blk_throtl_init(q); 1156 if (ret) 1157 goto err_destroy_all; 1158 1159 ret = blk_iolatency_init(q); 1160 if (ret) { 1161 blk_throtl_exit(q); 1162 goto err_destroy_all; 1163 } 1164 return 0; 1165 1166 err_destroy_all: 1167 blkg_destroy_all(q); 1168 return ret; 1169 err_unlock: 1170 spin_unlock_irq(&q->queue_lock); 1171 rcu_read_unlock(); 1172 if (preloaded) 1173 radix_tree_preload_end(); 1174 return PTR_ERR(blkg); 1175 } 1176 1177 /** 1178 * blkcg_exit_queue - exit and release blkcg part of request_queue 1179 * @q: request_queue being released 1180 * 1181 * Called from blk_exit_queue(). Responsible for exiting blkcg part. 1182 */ 1183 void blkcg_exit_queue(struct request_queue *q) 1184 { 1185 blkg_destroy_all(q); 1186 blk_throtl_exit(q); 1187 } 1188 1189 /* 1190 * We cannot support shared io contexts, as we have no mean to support 1191 * two tasks with the same ioc in two different groups without major rework 1192 * of the main cic data structures. For now we allow a task to change 1193 * its cgroup only if it's the only owner of its ioc. 1194 */ 1195 static int blkcg_can_attach(struct cgroup_taskset *tset) 1196 { 1197 struct task_struct *task; 1198 struct cgroup_subsys_state *dst_css; 1199 struct io_context *ioc; 1200 int ret = 0; 1201 1202 /* task_lock() is needed to avoid races with exit_io_context() */ 1203 cgroup_taskset_for_each(task, dst_css, tset) { 1204 task_lock(task); 1205 ioc = task->io_context; 1206 if (ioc && atomic_read(&ioc->nr_tasks) > 1) 1207 ret = -EINVAL; 1208 task_unlock(task); 1209 if (ret) 1210 break; 1211 } 1212 return ret; 1213 } 1214 1215 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1216 { 1217 int i; 1218 1219 mutex_lock(&blkcg_pol_mutex); 1220 1221 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1222 struct blkcg_policy *pol = blkcg_policy[i]; 1223 struct blkcg *blkcg; 1224 1225 if (!pol || !pol->cpd_bind_fn) 1226 continue; 1227 1228 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1229 if (blkcg->cpd[pol->plid]) 1230 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1231 } 1232 mutex_unlock(&blkcg_pol_mutex); 1233 } 1234 1235 static void blkcg_exit(struct task_struct *tsk) 1236 { 1237 if (tsk->throttle_queue) 1238 blk_put_queue(tsk->throttle_queue); 1239 tsk->throttle_queue = NULL; 1240 } 1241 1242 struct cgroup_subsys io_cgrp_subsys = { 1243 .css_alloc = blkcg_css_alloc, 1244 .css_online = blkcg_css_online, 1245 .css_offline = blkcg_css_offline, 1246 .css_free = blkcg_css_free, 1247 .can_attach = blkcg_can_attach, 1248 .css_rstat_flush = blkcg_rstat_flush, 1249 .bind = blkcg_bind, 1250 .dfl_cftypes = blkcg_files, 1251 .legacy_cftypes = blkcg_legacy_files, 1252 .legacy_name = "blkio", 1253 .exit = blkcg_exit, 1254 #ifdef CONFIG_MEMCG 1255 /* 1256 * This ensures that, if available, memcg is automatically enabled 1257 * together on the default hierarchy so that the owner cgroup can 1258 * be retrieved from writeback pages. 1259 */ 1260 .depends_on = 1 << memory_cgrp_id, 1261 #endif 1262 }; 1263 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1264 1265 /** 1266 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1267 * @q: request_queue of interest 1268 * @pol: blkcg policy to activate 1269 * 1270 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1271 * bypass mode to populate its blkgs with policy_data for @pol. 1272 * 1273 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1274 * from IO path. Update of each blkg is protected by both queue and blkcg 1275 * locks so that holding either lock and testing blkcg_policy_enabled() is 1276 * always enough for dereferencing policy data. 1277 * 1278 * The caller is responsible for synchronizing [de]activations and policy 1279 * [un]registerations. Returns 0 on success, -errno on failure. 1280 */ 1281 int blkcg_activate_policy(struct request_queue *q, 1282 const struct blkcg_policy *pol) 1283 { 1284 struct blkg_policy_data *pd_prealloc = NULL; 1285 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1286 int ret; 1287 1288 if (blkcg_policy_enabled(q, pol)) 1289 return 0; 1290 1291 if (queue_is_mq(q)) 1292 blk_mq_freeze_queue(q); 1293 retry: 1294 spin_lock_irq(&q->queue_lock); 1295 1296 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1297 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1298 struct blkg_policy_data *pd; 1299 1300 if (blkg->pd[pol->plid]) 1301 continue; 1302 1303 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1304 if (blkg == pinned_blkg) { 1305 pd = pd_prealloc; 1306 pd_prealloc = NULL; 1307 } else { 1308 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1309 blkg->blkcg); 1310 } 1311 1312 if (!pd) { 1313 /* 1314 * GFP_NOWAIT failed. Free the existing one and 1315 * prealloc for @blkg w/ GFP_KERNEL. 1316 */ 1317 if (pinned_blkg) 1318 blkg_put(pinned_blkg); 1319 blkg_get(blkg); 1320 pinned_blkg = blkg; 1321 1322 spin_unlock_irq(&q->queue_lock); 1323 1324 if (pd_prealloc) 1325 pol->pd_free_fn(pd_prealloc); 1326 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1327 blkg->blkcg); 1328 if (pd_prealloc) 1329 goto retry; 1330 else 1331 goto enomem; 1332 } 1333 1334 blkg->pd[pol->plid] = pd; 1335 pd->blkg = blkg; 1336 pd->plid = pol->plid; 1337 } 1338 1339 /* all allocated, init in the same order */ 1340 if (pol->pd_init_fn) 1341 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1342 pol->pd_init_fn(blkg->pd[pol->plid]); 1343 1344 __set_bit(pol->plid, q->blkcg_pols); 1345 ret = 0; 1346 1347 spin_unlock_irq(&q->queue_lock); 1348 out: 1349 if (queue_is_mq(q)) 1350 blk_mq_unfreeze_queue(q); 1351 if (pinned_blkg) 1352 blkg_put(pinned_blkg); 1353 if (pd_prealloc) 1354 pol->pd_free_fn(pd_prealloc); 1355 return ret; 1356 1357 enomem: 1358 /* alloc failed, nothing's initialized yet, free everything */ 1359 spin_lock_irq(&q->queue_lock); 1360 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1361 if (blkg->pd[pol->plid]) { 1362 pol->pd_free_fn(blkg->pd[pol->plid]); 1363 blkg->pd[pol->plid] = NULL; 1364 } 1365 } 1366 spin_unlock_irq(&q->queue_lock); 1367 ret = -ENOMEM; 1368 goto out; 1369 } 1370 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1371 1372 /** 1373 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1374 * @q: request_queue of interest 1375 * @pol: blkcg policy to deactivate 1376 * 1377 * Deactivate @pol on @q. Follows the same synchronization rules as 1378 * blkcg_activate_policy(). 1379 */ 1380 void blkcg_deactivate_policy(struct request_queue *q, 1381 const struct blkcg_policy *pol) 1382 { 1383 struct blkcg_gq *blkg; 1384 1385 if (!blkcg_policy_enabled(q, pol)) 1386 return; 1387 1388 if (queue_is_mq(q)) 1389 blk_mq_freeze_queue(q); 1390 1391 spin_lock_irq(&q->queue_lock); 1392 1393 __clear_bit(pol->plid, q->blkcg_pols); 1394 1395 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1396 if (blkg->pd[pol->plid]) { 1397 if (pol->pd_offline_fn) 1398 pol->pd_offline_fn(blkg->pd[pol->plid]); 1399 pol->pd_free_fn(blkg->pd[pol->plid]); 1400 blkg->pd[pol->plid] = NULL; 1401 } 1402 } 1403 1404 spin_unlock_irq(&q->queue_lock); 1405 1406 if (queue_is_mq(q)) 1407 blk_mq_unfreeze_queue(q); 1408 } 1409 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1410 1411 /** 1412 * blkcg_policy_register - register a blkcg policy 1413 * @pol: blkcg policy to register 1414 * 1415 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1416 * successful registration. Returns 0 on success and -errno on failure. 1417 */ 1418 int blkcg_policy_register(struct blkcg_policy *pol) 1419 { 1420 struct blkcg *blkcg; 1421 int i, ret; 1422 1423 mutex_lock(&blkcg_pol_register_mutex); 1424 mutex_lock(&blkcg_pol_mutex); 1425 1426 /* find an empty slot */ 1427 ret = -ENOSPC; 1428 for (i = 0; i < BLKCG_MAX_POLS; i++) 1429 if (!blkcg_policy[i]) 1430 break; 1431 if (i >= BLKCG_MAX_POLS) { 1432 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1433 goto err_unlock; 1434 } 1435 1436 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1437 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1438 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1439 goto err_unlock; 1440 1441 /* register @pol */ 1442 pol->plid = i; 1443 blkcg_policy[pol->plid] = pol; 1444 1445 /* allocate and install cpd's */ 1446 if (pol->cpd_alloc_fn) { 1447 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1448 struct blkcg_policy_data *cpd; 1449 1450 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1451 if (!cpd) 1452 goto err_free_cpds; 1453 1454 blkcg->cpd[pol->plid] = cpd; 1455 cpd->blkcg = blkcg; 1456 cpd->plid = pol->plid; 1457 if (pol->cpd_init_fn) 1458 pol->cpd_init_fn(cpd); 1459 } 1460 } 1461 1462 mutex_unlock(&blkcg_pol_mutex); 1463 1464 /* everything is in place, add intf files for the new policy */ 1465 if (pol->dfl_cftypes) 1466 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1467 pol->dfl_cftypes)); 1468 if (pol->legacy_cftypes) 1469 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1470 pol->legacy_cftypes)); 1471 mutex_unlock(&blkcg_pol_register_mutex); 1472 return 0; 1473 1474 err_free_cpds: 1475 if (pol->cpd_free_fn) { 1476 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1477 if (blkcg->cpd[pol->plid]) { 1478 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1479 blkcg->cpd[pol->plid] = NULL; 1480 } 1481 } 1482 } 1483 blkcg_policy[pol->plid] = NULL; 1484 err_unlock: 1485 mutex_unlock(&blkcg_pol_mutex); 1486 mutex_unlock(&blkcg_pol_register_mutex); 1487 return ret; 1488 } 1489 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1490 1491 /** 1492 * blkcg_policy_unregister - unregister a blkcg policy 1493 * @pol: blkcg policy to unregister 1494 * 1495 * Undo blkcg_policy_register(@pol). Might sleep. 1496 */ 1497 void blkcg_policy_unregister(struct blkcg_policy *pol) 1498 { 1499 struct blkcg *blkcg; 1500 1501 mutex_lock(&blkcg_pol_register_mutex); 1502 1503 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1504 goto out_unlock; 1505 1506 /* kill the intf files first */ 1507 if (pol->dfl_cftypes) 1508 cgroup_rm_cftypes(pol->dfl_cftypes); 1509 if (pol->legacy_cftypes) 1510 cgroup_rm_cftypes(pol->legacy_cftypes); 1511 1512 /* remove cpds and unregister */ 1513 mutex_lock(&blkcg_pol_mutex); 1514 1515 if (pol->cpd_free_fn) { 1516 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1517 if (blkcg->cpd[pol->plid]) { 1518 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1519 blkcg->cpd[pol->plid] = NULL; 1520 } 1521 } 1522 } 1523 blkcg_policy[pol->plid] = NULL; 1524 1525 mutex_unlock(&blkcg_pol_mutex); 1526 out_unlock: 1527 mutex_unlock(&blkcg_pol_register_mutex); 1528 } 1529 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1530 1531 bool __blkcg_punt_bio_submit(struct bio *bio) 1532 { 1533 struct blkcg_gq *blkg = bio->bi_blkg; 1534 1535 /* consume the flag first */ 1536 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1537 1538 /* never bounce for the root cgroup */ 1539 if (!blkg->parent) 1540 return false; 1541 1542 spin_lock_bh(&blkg->async_bio_lock); 1543 bio_list_add(&blkg->async_bios, bio); 1544 spin_unlock_bh(&blkg->async_bio_lock); 1545 1546 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1547 return true; 1548 } 1549 1550 /* 1551 * Scale the accumulated delay based on how long it has been since we updated 1552 * the delay. We only call this when we are adding delay, in case it's been a 1553 * while since we added delay, and when we are checking to see if we need to 1554 * delay a task, to account for any delays that may have occurred. 1555 */ 1556 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1557 { 1558 u64 old = atomic64_read(&blkg->delay_start); 1559 1560 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1561 if (atomic_read(&blkg->use_delay) < 0) 1562 return; 1563 1564 /* 1565 * We only want to scale down every second. The idea here is that we 1566 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1567 * time window. We only want to throttle tasks for recent delay that 1568 * has occurred, in 1 second time windows since that's the maximum 1569 * things can be throttled. We save the current delay window in 1570 * blkg->last_delay so we know what amount is still left to be charged 1571 * to the blkg from this point onward. blkg->last_use keeps track of 1572 * the use_delay counter. The idea is if we're unthrottling the blkg we 1573 * are ok with whatever is happening now, and we can take away more of 1574 * the accumulated delay as we've already throttled enough that 1575 * everybody is happy with their IO latencies. 1576 */ 1577 if (time_before64(old + NSEC_PER_SEC, now) && 1578 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) { 1579 u64 cur = atomic64_read(&blkg->delay_nsec); 1580 u64 sub = min_t(u64, blkg->last_delay, now - old); 1581 int cur_use = atomic_read(&blkg->use_delay); 1582 1583 /* 1584 * We've been unthrottled, subtract a larger chunk of our 1585 * accumulated delay. 1586 */ 1587 if (cur_use < blkg->last_use) 1588 sub = max_t(u64, sub, blkg->last_delay >> 1); 1589 1590 /* 1591 * This shouldn't happen, but handle it anyway. Our delay_nsec 1592 * should only ever be growing except here where we subtract out 1593 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1594 * rather not end up with negative numbers. 1595 */ 1596 if (unlikely(cur < sub)) { 1597 atomic64_set(&blkg->delay_nsec, 0); 1598 blkg->last_delay = 0; 1599 } else { 1600 atomic64_sub(sub, &blkg->delay_nsec); 1601 blkg->last_delay = cur - sub; 1602 } 1603 blkg->last_use = cur_use; 1604 } 1605 } 1606 1607 /* 1608 * This is called when we want to actually walk up the hierarchy and check to 1609 * see if we need to throttle, and then actually throttle if there is some 1610 * accumulated delay. This should only be called upon return to user space so 1611 * we're not holding some lock that would induce a priority inversion. 1612 */ 1613 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1614 { 1615 unsigned long pflags; 1616 u64 now = ktime_to_ns(ktime_get()); 1617 u64 exp; 1618 u64 delay_nsec = 0; 1619 int tok; 1620 1621 while (blkg->parent) { 1622 if (atomic_read(&blkg->use_delay)) { 1623 blkcg_scale_delay(blkg, now); 1624 delay_nsec = max_t(u64, delay_nsec, 1625 atomic64_read(&blkg->delay_nsec)); 1626 } 1627 blkg = blkg->parent; 1628 } 1629 1630 if (!delay_nsec) 1631 return; 1632 1633 /* 1634 * Let's not sleep for all eternity if we've amassed a huge delay. 1635 * Swapping or metadata IO can accumulate 10's of seconds worth of 1636 * delay, and we want userspace to be able to do _something_ so cap the 1637 * delays at 1 second. If there's 10's of seconds worth of delay then 1638 * the tasks will be delayed for 1 second for every syscall. 1639 */ 1640 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1641 1642 if (use_memdelay) 1643 psi_memstall_enter(&pflags); 1644 1645 exp = ktime_add_ns(now, delay_nsec); 1646 tok = io_schedule_prepare(); 1647 do { 1648 __set_current_state(TASK_KILLABLE); 1649 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1650 break; 1651 } while (!fatal_signal_pending(current)); 1652 io_schedule_finish(tok); 1653 1654 if (use_memdelay) 1655 psi_memstall_leave(&pflags); 1656 } 1657 1658 /** 1659 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1660 * 1661 * This is only called if we've been marked with set_notify_resume(). Obviously 1662 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1663 * check to see if current->throttle_queue is set and if not this doesn't do 1664 * anything. This should only ever be called by the resume code, it's not meant 1665 * to be called by people willy-nilly as it will actually do the work to 1666 * throttle the task if it is setup for throttling. 1667 */ 1668 void blkcg_maybe_throttle_current(void) 1669 { 1670 struct request_queue *q = current->throttle_queue; 1671 struct cgroup_subsys_state *css; 1672 struct blkcg *blkcg; 1673 struct blkcg_gq *blkg; 1674 bool use_memdelay = current->use_memdelay; 1675 1676 if (!q) 1677 return; 1678 1679 current->throttle_queue = NULL; 1680 current->use_memdelay = false; 1681 1682 rcu_read_lock(); 1683 css = kthread_blkcg(); 1684 if (css) 1685 blkcg = css_to_blkcg(css); 1686 else 1687 blkcg = css_to_blkcg(task_css(current, io_cgrp_id)); 1688 1689 if (!blkcg) 1690 goto out; 1691 blkg = blkg_lookup(blkcg, q); 1692 if (!blkg) 1693 goto out; 1694 if (!blkg_tryget(blkg)) 1695 goto out; 1696 rcu_read_unlock(); 1697 1698 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1699 blkg_put(blkg); 1700 blk_put_queue(q); 1701 return; 1702 out: 1703 rcu_read_unlock(); 1704 blk_put_queue(q); 1705 } 1706 1707 /** 1708 * blkcg_schedule_throttle - this task needs to check for throttling 1709 * @q: the request queue IO was submitted on 1710 * @use_memdelay: do we charge this to memory delay for PSI 1711 * 1712 * This is called by the IO controller when we know there's delay accumulated 1713 * for the blkg for this task. We do not pass the blkg because there are places 1714 * we call this that may not have that information, the swapping code for 1715 * instance will only have a request_queue at that point. This set's the 1716 * notify_resume for the task to check and see if it requires throttling before 1717 * returning to user space. 1718 * 1719 * We will only schedule once per syscall. You can call this over and over 1720 * again and it will only do the check once upon return to user space, and only 1721 * throttle once. If the task needs to be throttled again it'll need to be 1722 * re-set at the next time we see the task. 1723 */ 1724 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) 1725 { 1726 if (unlikely(current->flags & PF_KTHREAD)) 1727 return; 1728 1729 if (!blk_get_queue(q)) 1730 return; 1731 1732 if (current->throttle_queue) 1733 blk_put_queue(current->throttle_queue); 1734 current->throttle_queue = q; 1735 if (use_memdelay) 1736 current->use_memdelay = use_memdelay; 1737 set_notify_resume(current); 1738 } 1739 1740 /** 1741 * blkcg_add_delay - add delay to this blkg 1742 * @blkg: blkg of interest 1743 * @now: the current time in nanoseconds 1744 * @delta: how many nanoseconds of delay to add 1745 * 1746 * Charge @delta to the blkg's current delay accumulation. This is used to 1747 * throttle tasks if an IO controller thinks we need more throttling. 1748 */ 1749 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1750 { 1751 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1752 return; 1753 blkcg_scale_delay(blkg, now); 1754 atomic64_add(delta, &blkg->delay_nsec); 1755 } 1756 1757 /** 1758 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1759 * @bio: target bio 1760 * @css: target css 1761 * 1762 * As the failure mode here is to walk up the blkg tree, this ensure that the 1763 * blkg->parent pointers are always valid. This returns the blkg that it ended 1764 * up taking a reference on or %NULL if no reference was taken. 1765 */ 1766 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1767 struct cgroup_subsys_state *css) 1768 { 1769 struct blkcg_gq *blkg, *ret_blkg = NULL; 1770 1771 rcu_read_lock(); 1772 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_disk->queue); 1773 while (blkg) { 1774 if (blkg_tryget(blkg)) { 1775 ret_blkg = blkg; 1776 break; 1777 } 1778 blkg = blkg->parent; 1779 } 1780 rcu_read_unlock(); 1781 1782 return ret_blkg; 1783 } 1784 1785 /** 1786 * bio_associate_blkg_from_css - associate a bio with a specified css 1787 * @bio: target bio 1788 * @css: target css 1789 * 1790 * Associate @bio with the blkg found by combining the css's blkg and the 1791 * request_queue of the @bio. An association failure is handled by walking up 1792 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1793 * and q->root_blkg. This situation only happens when a cgroup is dying and 1794 * then the remaining bios will spill to the closest alive blkg. 1795 * 1796 * A reference will be taken on the blkg and will be released when @bio is 1797 * freed. 1798 */ 1799 void bio_associate_blkg_from_css(struct bio *bio, 1800 struct cgroup_subsys_state *css) 1801 { 1802 if (bio->bi_blkg) 1803 blkg_put(bio->bi_blkg); 1804 1805 if (css && css->parent) { 1806 bio->bi_blkg = blkg_tryget_closest(bio, css); 1807 } else { 1808 blkg_get(bio->bi_disk->queue->root_blkg); 1809 bio->bi_blkg = bio->bi_disk->queue->root_blkg; 1810 } 1811 } 1812 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1813 1814 /** 1815 * bio_associate_blkg - associate a bio with a blkg 1816 * @bio: target bio 1817 * 1818 * Associate @bio with the blkg found from the bio's css and request_queue. 1819 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1820 * already associated, the css is reused and association redone as the 1821 * request_queue may have changed. 1822 */ 1823 void bio_associate_blkg(struct bio *bio) 1824 { 1825 struct cgroup_subsys_state *css; 1826 1827 rcu_read_lock(); 1828 1829 if (bio->bi_blkg) 1830 css = &bio_blkcg(bio)->css; 1831 else 1832 css = blkcg_css(); 1833 1834 bio_associate_blkg_from_css(bio, css); 1835 1836 rcu_read_unlock(); 1837 } 1838 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1839 1840 /** 1841 * bio_clone_blkg_association - clone blkg association from src to dst bio 1842 * @dst: destination bio 1843 * @src: source bio 1844 */ 1845 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1846 { 1847 if (src->bi_blkg) { 1848 if (dst->bi_blkg) 1849 blkg_put(dst->bi_blkg); 1850 blkg_get(src->bi_blkg); 1851 dst->bi_blkg = src->bi_blkg; 1852 } 1853 } 1854 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1855 1856 static int blk_cgroup_io_type(struct bio *bio) 1857 { 1858 if (op_is_discard(bio->bi_opf)) 1859 return BLKG_IOSTAT_DISCARD; 1860 if (op_is_write(bio->bi_opf)) 1861 return BLKG_IOSTAT_WRITE; 1862 return BLKG_IOSTAT_READ; 1863 } 1864 1865 void blk_cgroup_bio_start(struct bio *bio) 1866 { 1867 int rwd = blk_cgroup_io_type(bio), cpu; 1868 struct blkg_iostat_set *bis; 1869 1870 cpu = get_cpu(); 1871 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 1872 u64_stats_update_begin(&bis->sync); 1873 1874 /* 1875 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 1876 * bio and we would have already accounted for the size of the bio. 1877 */ 1878 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 1879 bio_set_flag(bio, BIO_CGROUP_ACCT); 1880 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 1881 } 1882 bis->cur.ios[rwd]++; 1883 1884 u64_stats_update_end(&bis->sync); 1885 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 1886 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); 1887 put_cpu(); 1888 } 1889 1890 static int __init blkcg_init(void) 1891 { 1892 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 1893 WQ_MEM_RECLAIM | WQ_FREEZABLE | 1894 WQ_UNBOUND | WQ_SYSFS, 0); 1895 if (!blkcg_punt_bio_wq) 1896 return -ENOMEM; 1897 return 0; 1898 } 1899 subsys_initcall(blkcg_init); 1900 1901 module_param(blkcg_debug_stats, bool, 0644); 1902 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 1903