xref: /linux/block/bio.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26 
27 #define ALLOC_CACHE_THRESHOLD	16
28 #define ALLOC_CACHE_MAX		256
29 
30 struct bio_alloc_cache {
31 	struct bio		*free_list;
32 	struct bio		*free_list_irq;
33 	unsigned int		nr;
34 	unsigned int		nr_irq;
35 };
36 
37 static struct biovec_slab {
38 	int nr_vecs;
39 	char *name;
40 	struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 	{ .nr_vecs = 16, .name = "biovec-16" },
43 	{ .nr_vecs = 64, .name = "biovec-64" },
44 	{ .nr_vecs = 128, .name = "biovec-128" },
45 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47 
48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 	switch (nr_vecs) {
51 	/* smaller bios use inline vecs */
52 	case 5 ... 16:
53 		return &bvec_slabs[0];
54 	case 17 ... 64:
55 		return &bvec_slabs[1];
56 	case 65 ... 128:
57 		return &bvec_slabs[2];
58 	case 129 ... BIO_MAX_VECS:
59 		return &bvec_slabs[3];
60 	default:
61 		BUG();
62 		return NULL;
63 	}
64 }
65 
66 /*
67  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68  * IO code that does not need private memory pools.
69  */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72 
73 /*
74  * Our slab pool management
75  */
76 struct bio_slab {
77 	struct kmem_cache *slab;
78 	unsigned int slab_ref;
79 	unsigned int slab_size;
80 	char name[8];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84 
85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88 
89 	if (!bslab)
90 		return NULL;
91 
92 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 	bslab->slab = kmem_cache_create(bslab->name, size,
94 			ARCH_KMALLOC_MINALIGN,
95 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 	if (!bslab->slab)
97 		goto fail_alloc_slab;
98 
99 	bslab->slab_ref = 1;
100 	bslab->slab_size = size;
101 
102 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 		return bslab;
104 
105 	kmem_cache_destroy(bslab->slab);
106 
107 fail_alloc_slab:
108 	kfree(bslab);
109 	return NULL;
110 }
111 
112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116 
117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 	unsigned int size = bs_bio_slab_size(bs);
120 	struct bio_slab *bslab;
121 
122 	mutex_lock(&bio_slab_lock);
123 	bslab = xa_load(&bio_slabs, size);
124 	if (bslab)
125 		bslab->slab_ref++;
126 	else
127 		bslab = create_bio_slab(size);
128 	mutex_unlock(&bio_slab_lock);
129 
130 	if (bslab)
131 		return bslab->slab;
132 	return NULL;
133 }
134 
135 static void bio_put_slab(struct bio_set *bs)
136 {
137 	struct bio_slab *bslab = NULL;
138 	unsigned int slab_size = bs_bio_slab_size(bs);
139 
140 	mutex_lock(&bio_slab_lock);
141 
142 	bslab = xa_load(&bio_slabs, slab_size);
143 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 		goto out;
145 
146 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147 
148 	WARN_ON(!bslab->slab_ref);
149 
150 	if (--bslab->slab_ref)
151 		goto out;
152 
153 	xa_erase(&bio_slabs, slab_size);
154 
155 	kmem_cache_destroy(bslab->slab);
156 	kfree(bslab);
157 
158 out:
159 	mutex_unlock(&bio_slab_lock);
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 	BUG_ON(nr_vecs > BIO_MAX_VECS);
165 
166 	if (nr_vecs == BIO_MAX_VECS)
167 		mempool_free(bv, pool);
168 	else if (nr_vecs > BIO_INLINE_VECS)
169 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171 
172 /*
173  * Make the first allocation restricted and don't dump info on allocation
174  * failures, since we'll fall back to the mempool in case of failure.
175  */
176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181 
182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 		gfp_t gfp_mask)
184 {
185 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186 
187 	if (WARN_ON_ONCE(!bvs))
188 		return NULL;
189 
190 	/*
191 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 	 * We also rely on this in the bvec_free path.
193 	 */
194 	*nr_vecs = bvs->nr_vecs;
195 
196 	/*
197 	 * Try a slab allocation first for all smaller allocations.  If that
198 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 	 */
201 	if (*nr_vecs < BIO_MAX_VECS) {
202 		struct bio_vec *bvl;
203 
204 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 			return bvl;
207 		*nr_vecs = BIO_MAX_VECS;
208 	}
209 
210 	return mempool_alloc(pool, gfp_mask);
211 }
212 
213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 	if (bio->bi_blkg) {
217 		blkg_put(bio->bi_blkg);
218 		bio->bi_blkg = NULL;
219 	}
220 #endif
221 	if (bio_integrity(bio))
222 		bio_integrity_free(bio);
223 
224 	bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227 
228 static void bio_free(struct bio *bio)
229 {
230 	struct bio_set *bs = bio->bi_pool;
231 	void *p = bio;
232 
233 	WARN_ON_ONCE(!bs);
234 
235 	bio_uninit(bio);
236 	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 	mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239 
240 /*
241  * Users of this function have their own bio allocation. Subsequently,
242  * they must remember to pair any call to bio_init() with bio_uninit()
243  * when IO has completed, or when the bio is released.
244  */
245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 	      unsigned short max_vecs, blk_opf_t opf)
247 {
248 	bio->bi_next = NULL;
249 	bio->bi_bdev = bdev;
250 	bio->bi_opf = opf;
251 	bio->bi_flags = 0;
252 	bio->bi_ioprio = 0;
253 	bio->bi_write_hint = 0;
254 	bio->bi_status = 0;
255 	bio->bi_iter.bi_sector = 0;
256 	bio->bi_iter.bi_size = 0;
257 	bio->bi_iter.bi_idx = 0;
258 	bio->bi_iter.bi_bvec_done = 0;
259 	bio->bi_end_io = NULL;
260 	bio->bi_private = NULL;
261 #ifdef CONFIG_BLK_CGROUP
262 	bio->bi_blkg = NULL;
263 	bio->bi_issue.value = 0;
264 	if (bdev)
265 		bio_associate_blkg(bio);
266 #ifdef CONFIG_BLK_CGROUP_IOCOST
267 	bio->bi_iocost_cost = 0;
268 #endif
269 #endif
270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
271 	bio->bi_crypt_context = NULL;
272 #endif
273 #ifdef CONFIG_BLK_DEV_INTEGRITY
274 	bio->bi_integrity = NULL;
275 #endif
276 	bio->bi_vcnt = 0;
277 
278 	atomic_set(&bio->__bi_remaining, 1);
279 	atomic_set(&bio->__bi_cnt, 1);
280 	bio->bi_cookie = BLK_QC_T_NONE;
281 
282 	bio->bi_max_vecs = max_vecs;
283 	bio->bi_io_vec = table;
284 	bio->bi_pool = NULL;
285 }
286 EXPORT_SYMBOL(bio_init);
287 
288 /**
289  * bio_reset - reinitialize a bio
290  * @bio:	bio to reset
291  * @bdev:	block device to use the bio for
292  * @opf:	operation and flags for bio
293  *
294  * Description:
295  *   After calling bio_reset(), @bio will be in the same state as a freshly
296  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
297  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
298  *   comment in struct bio.
299  */
300 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
301 {
302 	bio_uninit(bio);
303 	memset(bio, 0, BIO_RESET_BYTES);
304 	atomic_set(&bio->__bi_remaining, 1);
305 	bio->bi_bdev = bdev;
306 	if (bio->bi_bdev)
307 		bio_associate_blkg(bio);
308 	bio->bi_opf = opf;
309 }
310 EXPORT_SYMBOL(bio_reset);
311 
312 static struct bio *__bio_chain_endio(struct bio *bio)
313 {
314 	struct bio *parent = bio->bi_private;
315 
316 	if (bio->bi_status && !parent->bi_status)
317 		parent->bi_status = bio->bi_status;
318 	bio_put(bio);
319 	return parent;
320 }
321 
322 static void bio_chain_endio(struct bio *bio)
323 {
324 	bio_endio(__bio_chain_endio(bio));
325 }
326 
327 /**
328  * bio_chain - chain bio completions
329  * @bio: the target bio
330  * @parent: the parent bio of @bio
331  *
332  * The caller won't have a bi_end_io called when @bio completes - instead,
333  * @parent's bi_end_io won't be called until both @parent and @bio have
334  * completed; the chained bio will also be freed when it completes.
335  *
336  * The caller must not set bi_private or bi_end_io in @bio.
337  */
338 void bio_chain(struct bio *bio, struct bio *parent)
339 {
340 	BUG_ON(bio->bi_private || bio->bi_end_io);
341 
342 	bio->bi_private = parent;
343 	bio->bi_end_io	= bio_chain_endio;
344 	bio_inc_remaining(parent);
345 }
346 EXPORT_SYMBOL(bio_chain);
347 
348 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
349 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
350 {
351 	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
352 
353 	if (bio) {
354 		bio_chain(bio, new);
355 		submit_bio(bio);
356 	}
357 
358 	return new;
359 }
360 EXPORT_SYMBOL_GPL(blk_next_bio);
361 
362 static void bio_alloc_rescue(struct work_struct *work)
363 {
364 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
365 	struct bio *bio;
366 
367 	while (1) {
368 		spin_lock(&bs->rescue_lock);
369 		bio = bio_list_pop(&bs->rescue_list);
370 		spin_unlock(&bs->rescue_lock);
371 
372 		if (!bio)
373 			break;
374 
375 		submit_bio_noacct(bio);
376 	}
377 }
378 
379 static void punt_bios_to_rescuer(struct bio_set *bs)
380 {
381 	struct bio_list punt, nopunt;
382 	struct bio *bio;
383 
384 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
385 		return;
386 	/*
387 	 * In order to guarantee forward progress we must punt only bios that
388 	 * were allocated from this bio_set; otherwise, if there was a bio on
389 	 * there for a stacking driver higher up in the stack, processing it
390 	 * could require allocating bios from this bio_set, and doing that from
391 	 * our own rescuer would be bad.
392 	 *
393 	 * Since bio lists are singly linked, pop them all instead of trying to
394 	 * remove from the middle of the list:
395 	 */
396 
397 	bio_list_init(&punt);
398 	bio_list_init(&nopunt);
399 
400 	while ((bio = bio_list_pop(&current->bio_list[0])))
401 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
402 	current->bio_list[0] = nopunt;
403 
404 	bio_list_init(&nopunt);
405 	while ((bio = bio_list_pop(&current->bio_list[1])))
406 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
407 	current->bio_list[1] = nopunt;
408 
409 	spin_lock(&bs->rescue_lock);
410 	bio_list_merge(&bs->rescue_list, &punt);
411 	spin_unlock(&bs->rescue_lock);
412 
413 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
414 }
415 
416 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
417 {
418 	unsigned long flags;
419 
420 	/* cache->free_list must be empty */
421 	if (WARN_ON_ONCE(cache->free_list))
422 		return;
423 
424 	local_irq_save(flags);
425 	cache->free_list = cache->free_list_irq;
426 	cache->free_list_irq = NULL;
427 	cache->nr += cache->nr_irq;
428 	cache->nr_irq = 0;
429 	local_irq_restore(flags);
430 }
431 
432 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
433 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
434 		struct bio_set *bs)
435 {
436 	struct bio_alloc_cache *cache;
437 	struct bio *bio;
438 
439 	cache = per_cpu_ptr(bs->cache, get_cpu());
440 	if (!cache->free_list) {
441 		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
442 			bio_alloc_irq_cache_splice(cache);
443 		if (!cache->free_list) {
444 			put_cpu();
445 			return NULL;
446 		}
447 	}
448 	bio = cache->free_list;
449 	cache->free_list = bio->bi_next;
450 	cache->nr--;
451 	put_cpu();
452 
453 	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
454 	bio->bi_pool = bs;
455 	return bio;
456 }
457 
458 /**
459  * bio_alloc_bioset - allocate a bio for I/O
460  * @bdev:	block device to allocate the bio for (can be %NULL)
461  * @nr_vecs:	number of bvecs to pre-allocate
462  * @opf:	operation and flags for bio
463  * @gfp_mask:   the GFP_* mask given to the slab allocator
464  * @bs:		the bio_set to allocate from.
465  *
466  * Allocate a bio from the mempools in @bs.
467  *
468  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
469  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
470  * callers must never allocate more than 1 bio at a time from the general pool.
471  * Callers that need to allocate more than 1 bio must always submit the
472  * previously allocated bio for IO before attempting to allocate a new one.
473  * Failure to do so can cause deadlocks under memory pressure.
474  *
475  * Note that when running under submit_bio_noacct() (i.e. any block driver),
476  * bios are not submitted until after you return - see the code in
477  * submit_bio_noacct() that converts recursion into iteration, to prevent
478  * stack overflows.
479  *
480  * This would normally mean allocating multiple bios under submit_bio_noacct()
481  * would be susceptible to deadlocks, but we have
482  * deadlock avoidance code that resubmits any blocked bios from a rescuer
483  * thread.
484  *
485  * However, we do not guarantee forward progress for allocations from other
486  * mempools. Doing multiple allocations from the same mempool under
487  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
488  * for per bio allocations.
489  *
490  * Returns: Pointer to new bio on success, NULL on failure.
491  */
492 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
493 			     blk_opf_t opf, gfp_t gfp_mask,
494 			     struct bio_set *bs)
495 {
496 	gfp_t saved_gfp = gfp_mask;
497 	struct bio *bio;
498 	void *p;
499 
500 	/* should not use nobvec bioset for nr_vecs > 0 */
501 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
502 		return NULL;
503 
504 	if (opf & REQ_ALLOC_CACHE) {
505 		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
506 			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
507 						     gfp_mask, bs);
508 			if (bio)
509 				return bio;
510 			/*
511 			 * No cached bio available, bio returned below marked with
512 			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
513 			 */
514 		} else {
515 			opf &= ~REQ_ALLOC_CACHE;
516 		}
517 	}
518 
519 	/*
520 	 * submit_bio_noacct() converts recursion to iteration; this means if
521 	 * we're running beneath it, any bios we allocate and submit will not be
522 	 * submitted (and thus freed) until after we return.
523 	 *
524 	 * This exposes us to a potential deadlock if we allocate multiple bios
525 	 * from the same bio_set() while running underneath submit_bio_noacct().
526 	 * If we were to allocate multiple bios (say a stacking block driver
527 	 * that was splitting bios), we would deadlock if we exhausted the
528 	 * mempool's reserve.
529 	 *
530 	 * We solve this, and guarantee forward progress, with a rescuer
531 	 * workqueue per bio_set. If we go to allocate and there are bios on
532 	 * current->bio_list, we first try the allocation without
533 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
534 	 * blocking to the rescuer workqueue before we retry with the original
535 	 * gfp_flags.
536 	 */
537 	if (current->bio_list &&
538 	    (!bio_list_empty(&current->bio_list[0]) ||
539 	     !bio_list_empty(&current->bio_list[1])) &&
540 	    bs->rescue_workqueue)
541 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
542 
543 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
544 	if (!p && gfp_mask != saved_gfp) {
545 		punt_bios_to_rescuer(bs);
546 		gfp_mask = saved_gfp;
547 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
548 	}
549 	if (unlikely(!p))
550 		return NULL;
551 	if (!mempool_is_saturated(&bs->bio_pool))
552 		opf &= ~REQ_ALLOC_CACHE;
553 
554 	bio = p + bs->front_pad;
555 	if (nr_vecs > BIO_INLINE_VECS) {
556 		struct bio_vec *bvl = NULL;
557 
558 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
559 		if (!bvl && gfp_mask != saved_gfp) {
560 			punt_bios_to_rescuer(bs);
561 			gfp_mask = saved_gfp;
562 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
563 		}
564 		if (unlikely(!bvl))
565 			goto err_free;
566 
567 		bio_init(bio, bdev, bvl, nr_vecs, opf);
568 	} else if (nr_vecs) {
569 		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
570 	} else {
571 		bio_init(bio, bdev, NULL, 0, opf);
572 	}
573 
574 	bio->bi_pool = bs;
575 	return bio;
576 
577 err_free:
578 	mempool_free(p, &bs->bio_pool);
579 	return NULL;
580 }
581 EXPORT_SYMBOL(bio_alloc_bioset);
582 
583 /**
584  * bio_kmalloc - kmalloc a bio
585  * @nr_vecs:	number of bio_vecs to allocate
586  * @gfp_mask:   the GFP_* mask given to the slab allocator
587  *
588  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
589  * using bio_init() before use.  To free a bio returned from this function use
590  * kfree() after calling bio_uninit().  A bio returned from this function can
591  * be reused by calling bio_uninit() before calling bio_init() again.
592  *
593  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
594  * function are not backed by a mempool can fail.  Do not use this function
595  * for allocations in the file system I/O path.
596  *
597  * Returns: Pointer to new bio on success, NULL on failure.
598  */
599 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
600 {
601 	struct bio *bio;
602 
603 	if (nr_vecs > UIO_MAXIOV)
604 		return NULL;
605 	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
606 }
607 EXPORT_SYMBOL(bio_kmalloc);
608 
609 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
610 {
611 	struct bio_vec bv;
612 	struct bvec_iter iter;
613 
614 	__bio_for_each_segment(bv, bio, iter, start)
615 		memzero_bvec(&bv);
616 }
617 EXPORT_SYMBOL(zero_fill_bio_iter);
618 
619 /**
620  * bio_truncate - truncate the bio to small size of @new_size
621  * @bio:	the bio to be truncated
622  * @new_size:	new size for truncating the bio
623  *
624  * Description:
625  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
626  *   REQ_OP_READ, zero the truncated part. This function should only
627  *   be used for handling corner cases, such as bio eod.
628  */
629 static void bio_truncate(struct bio *bio, unsigned new_size)
630 {
631 	struct bio_vec bv;
632 	struct bvec_iter iter;
633 	unsigned int done = 0;
634 	bool truncated = false;
635 
636 	if (new_size >= bio->bi_iter.bi_size)
637 		return;
638 
639 	if (bio_op(bio) != REQ_OP_READ)
640 		goto exit;
641 
642 	bio_for_each_segment(bv, bio, iter) {
643 		if (done + bv.bv_len > new_size) {
644 			unsigned offset;
645 
646 			if (!truncated)
647 				offset = new_size - done;
648 			else
649 				offset = 0;
650 			zero_user(bv.bv_page, bv.bv_offset + offset,
651 				  bv.bv_len - offset);
652 			truncated = true;
653 		}
654 		done += bv.bv_len;
655 	}
656 
657  exit:
658 	/*
659 	 * Don't touch bvec table here and make it really immutable, since
660 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
661 	 * in its .end_bio() callback.
662 	 *
663 	 * It is enough to truncate bio by updating .bi_size since we can make
664 	 * correct bvec with the updated .bi_size for drivers.
665 	 */
666 	bio->bi_iter.bi_size = new_size;
667 }
668 
669 /**
670  * guard_bio_eod - truncate a BIO to fit the block device
671  * @bio:	bio to truncate
672  *
673  * This allows us to do IO even on the odd last sectors of a device, even if the
674  * block size is some multiple of the physical sector size.
675  *
676  * We'll just truncate the bio to the size of the device, and clear the end of
677  * the buffer head manually.  Truly out-of-range accesses will turn into actual
678  * I/O errors, this only handles the "we need to be able to do I/O at the final
679  * sector" case.
680  */
681 void guard_bio_eod(struct bio *bio)
682 {
683 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
684 
685 	if (!maxsector)
686 		return;
687 
688 	/*
689 	 * If the *whole* IO is past the end of the device,
690 	 * let it through, and the IO layer will turn it into
691 	 * an EIO.
692 	 */
693 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
694 		return;
695 
696 	maxsector -= bio->bi_iter.bi_sector;
697 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
698 		return;
699 
700 	bio_truncate(bio, maxsector << 9);
701 }
702 
703 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
704 				   unsigned int nr)
705 {
706 	unsigned int i = 0;
707 	struct bio *bio;
708 
709 	while ((bio = cache->free_list) != NULL) {
710 		cache->free_list = bio->bi_next;
711 		cache->nr--;
712 		bio_free(bio);
713 		if (++i == nr)
714 			break;
715 	}
716 	return i;
717 }
718 
719 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
720 				  unsigned int nr)
721 {
722 	nr -= __bio_alloc_cache_prune(cache, nr);
723 	if (!READ_ONCE(cache->free_list)) {
724 		bio_alloc_irq_cache_splice(cache);
725 		__bio_alloc_cache_prune(cache, nr);
726 	}
727 }
728 
729 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
730 {
731 	struct bio_set *bs;
732 
733 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
734 	if (bs->cache) {
735 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
736 
737 		bio_alloc_cache_prune(cache, -1U);
738 	}
739 	return 0;
740 }
741 
742 static void bio_alloc_cache_destroy(struct bio_set *bs)
743 {
744 	int cpu;
745 
746 	if (!bs->cache)
747 		return;
748 
749 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
750 	for_each_possible_cpu(cpu) {
751 		struct bio_alloc_cache *cache;
752 
753 		cache = per_cpu_ptr(bs->cache, cpu);
754 		bio_alloc_cache_prune(cache, -1U);
755 	}
756 	free_percpu(bs->cache);
757 	bs->cache = NULL;
758 }
759 
760 static inline void bio_put_percpu_cache(struct bio *bio)
761 {
762 	struct bio_alloc_cache *cache;
763 
764 	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
765 	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
766 		goto out_free;
767 
768 	if (in_task()) {
769 		bio_uninit(bio);
770 		bio->bi_next = cache->free_list;
771 		/* Not necessary but helps not to iopoll already freed bios */
772 		bio->bi_bdev = NULL;
773 		cache->free_list = bio;
774 		cache->nr++;
775 	} else if (in_hardirq()) {
776 		lockdep_assert_irqs_disabled();
777 
778 		bio_uninit(bio);
779 		bio->bi_next = cache->free_list_irq;
780 		cache->free_list_irq = bio;
781 		cache->nr_irq++;
782 	} else {
783 		goto out_free;
784 	}
785 	put_cpu();
786 	return;
787 out_free:
788 	put_cpu();
789 	bio_free(bio);
790 }
791 
792 /**
793  * bio_put - release a reference to a bio
794  * @bio:   bio to release reference to
795  *
796  * Description:
797  *   Put a reference to a &struct bio, either one you have gotten with
798  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
799  **/
800 void bio_put(struct bio *bio)
801 {
802 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
803 		BUG_ON(!atomic_read(&bio->__bi_cnt));
804 		if (!atomic_dec_and_test(&bio->__bi_cnt))
805 			return;
806 	}
807 	if (bio->bi_opf & REQ_ALLOC_CACHE)
808 		bio_put_percpu_cache(bio);
809 	else
810 		bio_free(bio);
811 }
812 EXPORT_SYMBOL(bio_put);
813 
814 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
815 {
816 	bio_set_flag(bio, BIO_CLONED);
817 	bio->bi_ioprio = bio_src->bi_ioprio;
818 	bio->bi_write_hint = bio_src->bi_write_hint;
819 	bio->bi_iter = bio_src->bi_iter;
820 
821 	if (bio->bi_bdev) {
822 		if (bio->bi_bdev == bio_src->bi_bdev &&
823 		    bio_flagged(bio_src, BIO_REMAPPED))
824 			bio_set_flag(bio, BIO_REMAPPED);
825 		bio_clone_blkg_association(bio, bio_src);
826 	}
827 
828 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
829 		return -ENOMEM;
830 	if (bio_integrity(bio_src) &&
831 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
832 		return -ENOMEM;
833 	return 0;
834 }
835 
836 /**
837  * bio_alloc_clone - clone a bio that shares the original bio's biovec
838  * @bdev: block_device to clone onto
839  * @bio_src: bio to clone from
840  * @gfp: allocation priority
841  * @bs: bio_set to allocate from
842  *
843  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
844  * bio, but not the actual data it points to.
845  *
846  * The caller must ensure that the return bio is not freed before @bio_src.
847  */
848 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
849 		gfp_t gfp, struct bio_set *bs)
850 {
851 	struct bio *bio;
852 
853 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
854 	if (!bio)
855 		return NULL;
856 
857 	if (__bio_clone(bio, bio_src, gfp) < 0) {
858 		bio_put(bio);
859 		return NULL;
860 	}
861 	bio->bi_io_vec = bio_src->bi_io_vec;
862 
863 	return bio;
864 }
865 EXPORT_SYMBOL(bio_alloc_clone);
866 
867 /**
868  * bio_init_clone - clone a bio that shares the original bio's biovec
869  * @bdev: block_device to clone onto
870  * @bio: bio to clone into
871  * @bio_src: bio to clone from
872  * @gfp: allocation priority
873  *
874  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
875  * The caller owns the returned bio, but not the actual data it points to.
876  *
877  * The caller must ensure that @bio_src is not freed before @bio.
878  */
879 int bio_init_clone(struct block_device *bdev, struct bio *bio,
880 		struct bio *bio_src, gfp_t gfp)
881 {
882 	int ret;
883 
884 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
885 	ret = __bio_clone(bio, bio_src, gfp);
886 	if (ret)
887 		bio_uninit(bio);
888 	return ret;
889 }
890 EXPORT_SYMBOL(bio_init_clone);
891 
892 /**
893  * bio_full - check if the bio is full
894  * @bio:	bio to check
895  * @len:	length of one segment to be added
896  *
897  * Return true if @bio is full and one segment with @len bytes can't be
898  * added to the bio, otherwise return false
899  */
900 static inline bool bio_full(struct bio *bio, unsigned len)
901 {
902 	if (bio->bi_vcnt >= bio->bi_max_vecs)
903 		return true;
904 	if (bio->bi_iter.bi_size > UINT_MAX - len)
905 		return true;
906 	return false;
907 }
908 
909 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
910 		unsigned int len, unsigned int off, bool *same_page)
911 {
912 	size_t bv_end = bv->bv_offset + bv->bv_len;
913 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
914 	phys_addr_t page_addr = page_to_phys(page);
915 
916 	if (vec_end_addr + 1 != page_addr + off)
917 		return false;
918 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
919 		return false;
920 	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
921 		return false;
922 
923 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
924 	if (!*same_page) {
925 		if (IS_ENABLED(CONFIG_KMSAN))
926 			return false;
927 		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
928 			return false;
929 	}
930 
931 	bv->bv_len += len;
932 	return true;
933 }
934 
935 /*
936  * Try to merge a page into a segment, while obeying the hardware segment
937  * size limit.  This is not for normal read/write bios, but for passthrough
938  * or Zone Append operations that we can't split.
939  */
940 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
941 		struct page *page, unsigned len, unsigned offset,
942 		bool *same_page)
943 {
944 	unsigned long mask = queue_segment_boundary(q);
945 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
946 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
947 
948 	if ((addr1 | mask) != (addr2 | mask))
949 		return false;
950 	if (len > queue_max_segment_size(q) - bv->bv_len)
951 		return false;
952 	return bvec_try_merge_page(bv, page, len, offset, same_page);
953 }
954 
955 /**
956  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
957  * @q: the target queue
958  * @bio: destination bio
959  * @page: page to add
960  * @len: vec entry length
961  * @offset: vec entry offset
962  * @max_sectors: maximum number of sectors that can be added
963  * @same_page: return if the segment has been merged inside the same page
964  *
965  * Add a page to a bio while respecting the hardware max_sectors, max_segment
966  * and gap limitations.
967  */
968 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
969 		struct page *page, unsigned int len, unsigned int offset,
970 		unsigned int max_sectors, bool *same_page)
971 {
972 	unsigned int max_size = max_sectors << SECTOR_SHIFT;
973 
974 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
975 		return 0;
976 
977 	len = min3(len, max_size, queue_max_segment_size(q));
978 	if (len > max_size - bio->bi_iter.bi_size)
979 		return 0;
980 
981 	if (bio->bi_vcnt > 0) {
982 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
983 
984 		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
985 				same_page)) {
986 			bio->bi_iter.bi_size += len;
987 			return len;
988 		}
989 
990 		if (bio->bi_vcnt >=
991 		    min(bio->bi_max_vecs, queue_max_segments(q)))
992 			return 0;
993 
994 		/*
995 		 * If the queue doesn't support SG gaps and adding this segment
996 		 * would create a gap, disallow it.
997 		 */
998 		if (bvec_gap_to_prev(&q->limits, bv, offset))
999 			return 0;
1000 	}
1001 
1002 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
1003 	bio->bi_vcnt++;
1004 	bio->bi_iter.bi_size += len;
1005 	return len;
1006 }
1007 
1008 /**
1009  * bio_add_pc_page	- attempt to add page to passthrough bio
1010  * @q: the target queue
1011  * @bio: destination bio
1012  * @page: page to add
1013  * @len: vec entry length
1014  * @offset: vec entry offset
1015  *
1016  * Attempt to add a page to the bio_vec maplist. This can fail for a
1017  * number of reasons, such as the bio being full or target block device
1018  * limitations. The target block device must allow bio's up to PAGE_SIZE,
1019  * so it is always possible to add a single page to an empty bio.
1020  *
1021  * This should only be used by passthrough bios.
1022  */
1023 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1024 		struct page *page, unsigned int len, unsigned int offset)
1025 {
1026 	bool same_page = false;
1027 	return bio_add_hw_page(q, bio, page, len, offset,
1028 			queue_max_hw_sectors(q), &same_page);
1029 }
1030 EXPORT_SYMBOL(bio_add_pc_page);
1031 
1032 /**
1033  * bio_add_zone_append_page - attempt to add page to zone-append bio
1034  * @bio: destination bio
1035  * @page: page to add
1036  * @len: vec entry length
1037  * @offset: vec entry offset
1038  *
1039  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1040  * for a zone-append request. This can fail for a number of reasons, such as the
1041  * bio being full or the target block device is not a zoned block device or
1042  * other limitations of the target block device. The target block device must
1043  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1044  * to an empty bio.
1045  *
1046  * Returns: number of bytes added to the bio, or 0 in case of a failure.
1047  */
1048 int bio_add_zone_append_page(struct bio *bio, struct page *page,
1049 			     unsigned int len, unsigned int offset)
1050 {
1051 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1052 	bool same_page = false;
1053 
1054 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1055 		return 0;
1056 
1057 	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1058 		return 0;
1059 
1060 	return bio_add_hw_page(q, bio, page, len, offset,
1061 			       queue_max_zone_append_sectors(q), &same_page);
1062 }
1063 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1064 
1065 /**
1066  * __bio_add_page - add page(s) to a bio in a new segment
1067  * @bio: destination bio
1068  * @page: start page to add
1069  * @len: length of the data to add, may cross pages
1070  * @off: offset of the data relative to @page, may cross pages
1071  *
1072  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1073  * that @bio has space for another bvec.
1074  */
1075 void __bio_add_page(struct bio *bio, struct page *page,
1076 		unsigned int len, unsigned int off)
1077 {
1078 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1079 	WARN_ON_ONCE(bio_full(bio, len));
1080 
1081 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
1082 	bio->bi_iter.bi_size += len;
1083 	bio->bi_vcnt++;
1084 }
1085 EXPORT_SYMBOL_GPL(__bio_add_page);
1086 
1087 /**
1088  *	bio_add_page	-	attempt to add page(s) to bio
1089  *	@bio: destination bio
1090  *	@page: start page to add
1091  *	@len: vec entry length, may cross pages
1092  *	@offset: vec entry offset relative to @page, may cross pages
1093  *
1094  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1095  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1096  */
1097 int bio_add_page(struct bio *bio, struct page *page,
1098 		 unsigned int len, unsigned int offset)
1099 {
1100 	bool same_page = false;
1101 
1102 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1103 		return 0;
1104 	if (bio->bi_iter.bi_size > UINT_MAX - len)
1105 		return 0;
1106 
1107 	if (bio->bi_vcnt > 0 &&
1108 	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1109 				page, len, offset, &same_page)) {
1110 		bio->bi_iter.bi_size += len;
1111 		return len;
1112 	}
1113 
1114 	if (bio->bi_vcnt >= bio->bi_max_vecs)
1115 		return 0;
1116 	__bio_add_page(bio, page, len, offset);
1117 	return len;
1118 }
1119 EXPORT_SYMBOL(bio_add_page);
1120 
1121 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1122 			  size_t off)
1123 {
1124 	WARN_ON_ONCE(len > UINT_MAX);
1125 	WARN_ON_ONCE(off > UINT_MAX);
1126 	__bio_add_page(bio, &folio->page, len, off);
1127 }
1128 
1129 /**
1130  * bio_add_folio - Attempt to add part of a folio to a bio.
1131  * @bio: BIO to add to.
1132  * @folio: Folio to add.
1133  * @len: How many bytes from the folio to add.
1134  * @off: First byte in this folio to add.
1135  *
1136  * Filesystems that use folios can call this function instead of calling
1137  * bio_add_page() for each page in the folio.  If @off is bigger than
1138  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1139  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1140  *
1141  * Return: Whether the addition was successful.
1142  */
1143 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1144 		   size_t off)
1145 {
1146 	if (len > UINT_MAX || off > UINT_MAX)
1147 		return false;
1148 	return bio_add_page(bio, &folio->page, len, off) > 0;
1149 }
1150 EXPORT_SYMBOL(bio_add_folio);
1151 
1152 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1153 {
1154 	struct folio_iter fi;
1155 
1156 	bio_for_each_folio_all(fi, bio) {
1157 		struct page *page;
1158 		size_t nr_pages;
1159 
1160 		if (mark_dirty) {
1161 			folio_lock(fi.folio);
1162 			folio_mark_dirty(fi.folio);
1163 			folio_unlock(fi.folio);
1164 		}
1165 		page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
1166 		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1167 			   fi.offset / PAGE_SIZE + 1;
1168 		do {
1169 			bio_release_page(bio, page++);
1170 		} while (--nr_pages != 0);
1171 	}
1172 }
1173 EXPORT_SYMBOL_GPL(__bio_release_pages);
1174 
1175 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1176 {
1177 	size_t size = iov_iter_count(iter);
1178 
1179 	WARN_ON_ONCE(bio->bi_max_vecs);
1180 
1181 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1182 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1183 		size_t max_sectors = queue_max_zone_append_sectors(q);
1184 
1185 		size = min(size, max_sectors << SECTOR_SHIFT);
1186 	}
1187 
1188 	bio->bi_vcnt = iter->nr_segs;
1189 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1190 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1191 	bio->bi_iter.bi_size = size;
1192 	bio_set_flag(bio, BIO_CLONED);
1193 }
1194 
1195 static int bio_iov_add_page(struct bio *bio, struct page *page,
1196 		unsigned int len, unsigned int offset)
1197 {
1198 	bool same_page = false;
1199 
1200 	if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1201 		return -EIO;
1202 
1203 	if (bio->bi_vcnt > 0 &&
1204 	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1205 				page, len, offset, &same_page)) {
1206 		bio->bi_iter.bi_size += len;
1207 		if (same_page)
1208 			bio_release_page(bio, page);
1209 		return 0;
1210 	}
1211 	__bio_add_page(bio, page, len, offset);
1212 	return 0;
1213 }
1214 
1215 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1216 		unsigned int len, unsigned int offset)
1217 {
1218 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1219 	bool same_page = false;
1220 
1221 	if (bio_add_hw_page(q, bio, page, len, offset,
1222 			queue_max_zone_append_sectors(q), &same_page) != len)
1223 		return -EINVAL;
1224 	if (same_page)
1225 		bio_release_page(bio, page);
1226 	return 0;
1227 }
1228 
1229 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1230 
1231 /**
1232  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1233  * @bio: bio to add pages to
1234  * @iter: iov iterator describing the region to be mapped
1235  *
1236  * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1237  * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1238  * For a multi-segment *iter, this function only adds pages from the next
1239  * non-empty segment of the iov iterator.
1240  */
1241 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1242 {
1243 	iov_iter_extraction_t extraction_flags = 0;
1244 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1245 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1246 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1247 	struct page **pages = (struct page **)bv;
1248 	ssize_t size, left;
1249 	unsigned len, i = 0;
1250 	size_t offset;
1251 	int ret = 0;
1252 
1253 	/*
1254 	 * Move page array up in the allocated memory for the bio vecs as far as
1255 	 * possible so that we can start filling biovecs from the beginning
1256 	 * without overwriting the temporary page array.
1257 	 */
1258 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1259 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1260 
1261 	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1262 		extraction_flags |= ITER_ALLOW_P2PDMA;
1263 
1264 	/*
1265 	 * Each segment in the iov is required to be a block size multiple.
1266 	 * However, we may not be able to get the entire segment if it spans
1267 	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1268 	 * result to ensure the bio's total size is correct. The remainder of
1269 	 * the iov data will be picked up in the next bio iteration.
1270 	 */
1271 	size = iov_iter_extract_pages(iter, &pages,
1272 				      UINT_MAX - bio->bi_iter.bi_size,
1273 				      nr_pages, extraction_flags, &offset);
1274 	if (unlikely(size <= 0))
1275 		return size ? size : -EFAULT;
1276 
1277 	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1278 
1279 	if (bio->bi_bdev) {
1280 		size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1281 		iov_iter_revert(iter, trim);
1282 		size -= trim;
1283 	}
1284 
1285 	if (unlikely(!size)) {
1286 		ret = -EFAULT;
1287 		goto out;
1288 	}
1289 
1290 	for (left = size, i = 0; left > 0; left -= len, i++) {
1291 		struct page *page = pages[i];
1292 
1293 		len = min_t(size_t, PAGE_SIZE - offset, left);
1294 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1295 			ret = bio_iov_add_zone_append_page(bio, page, len,
1296 					offset);
1297 			if (ret)
1298 				break;
1299 		} else
1300 			bio_iov_add_page(bio, page, len, offset);
1301 
1302 		offset = 0;
1303 	}
1304 
1305 	iov_iter_revert(iter, left);
1306 out:
1307 	while (i < nr_pages)
1308 		bio_release_page(bio, pages[i++]);
1309 
1310 	return ret;
1311 }
1312 
1313 /**
1314  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1315  * @bio: bio to add pages to
1316  * @iter: iov iterator describing the region to be added
1317  *
1318  * This takes either an iterator pointing to user memory, or one pointing to
1319  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1320  * map them into the kernel. On IO completion, the caller should put those
1321  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1322  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1323  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1324  * completed by a call to ->ki_complete() or returns with an error other than
1325  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1326  * on IO completion. If it isn't, then pages should be released.
1327  *
1328  * The function tries, but does not guarantee, to pin as many pages as
1329  * fit into the bio, or are requested in @iter, whatever is smaller. If
1330  * MM encounters an error pinning the requested pages, it stops. Error
1331  * is returned only if 0 pages could be pinned.
1332  */
1333 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1334 {
1335 	int ret = 0;
1336 
1337 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1338 		return -EIO;
1339 
1340 	if (iov_iter_is_bvec(iter)) {
1341 		bio_iov_bvec_set(bio, iter);
1342 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1343 		return 0;
1344 	}
1345 
1346 	if (iov_iter_extract_will_pin(iter))
1347 		bio_set_flag(bio, BIO_PAGE_PINNED);
1348 	do {
1349 		ret = __bio_iov_iter_get_pages(bio, iter);
1350 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1351 
1352 	return bio->bi_vcnt ? 0 : ret;
1353 }
1354 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1355 
1356 static void submit_bio_wait_endio(struct bio *bio)
1357 {
1358 	complete(bio->bi_private);
1359 }
1360 
1361 /**
1362  * submit_bio_wait - submit a bio, and wait until it completes
1363  * @bio: The &struct bio which describes the I/O
1364  *
1365  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1366  * bio_endio() on failure.
1367  *
1368  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1369  * result in bio reference to be consumed. The caller must drop the reference
1370  * on his own.
1371  */
1372 int submit_bio_wait(struct bio *bio)
1373 {
1374 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1375 			bio->bi_bdev->bd_disk->lockdep_map);
1376 
1377 	bio->bi_private = &done;
1378 	bio->bi_end_io = submit_bio_wait_endio;
1379 	bio->bi_opf |= REQ_SYNC;
1380 	submit_bio(bio);
1381 	blk_wait_io(&done);
1382 
1383 	return blk_status_to_errno(bio->bi_status);
1384 }
1385 EXPORT_SYMBOL(submit_bio_wait);
1386 
1387 void __bio_advance(struct bio *bio, unsigned bytes)
1388 {
1389 	if (bio_integrity(bio))
1390 		bio_integrity_advance(bio, bytes);
1391 
1392 	bio_crypt_advance(bio, bytes);
1393 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1394 }
1395 EXPORT_SYMBOL(__bio_advance);
1396 
1397 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1398 			struct bio *src, struct bvec_iter *src_iter)
1399 {
1400 	while (src_iter->bi_size && dst_iter->bi_size) {
1401 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1402 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1403 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1404 		void *src_buf = bvec_kmap_local(&src_bv);
1405 		void *dst_buf = bvec_kmap_local(&dst_bv);
1406 
1407 		memcpy(dst_buf, src_buf, bytes);
1408 
1409 		kunmap_local(dst_buf);
1410 		kunmap_local(src_buf);
1411 
1412 		bio_advance_iter_single(src, src_iter, bytes);
1413 		bio_advance_iter_single(dst, dst_iter, bytes);
1414 	}
1415 }
1416 EXPORT_SYMBOL(bio_copy_data_iter);
1417 
1418 /**
1419  * bio_copy_data - copy contents of data buffers from one bio to another
1420  * @src: source bio
1421  * @dst: destination bio
1422  *
1423  * Stops when it reaches the end of either @src or @dst - that is, copies
1424  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1425  */
1426 void bio_copy_data(struct bio *dst, struct bio *src)
1427 {
1428 	struct bvec_iter src_iter = src->bi_iter;
1429 	struct bvec_iter dst_iter = dst->bi_iter;
1430 
1431 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1432 }
1433 EXPORT_SYMBOL(bio_copy_data);
1434 
1435 void bio_free_pages(struct bio *bio)
1436 {
1437 	struct bio_vec *bvec;
1438 	struct bvec_iter_all iter_all;
1439 
1440 	bio_for_each_segment_all(bvec, bio, iter_all)
1441 		__free_page(bvec->bv_page);
1442 }
1443 EXPORT_SYMBOL(bio_free_pages);
1444 
1445 /*
1446  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1447  * for performing direct-IO in BIOs.
1448  *
1449  * The problem is that we cannot run folio_mark_dirty() from interrupt context
1450  * because the required locks are not interrupt-safe.  So what we can do is to
1451  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1452  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1453  * in process context.
1454  *
1455  * Note that this code is very hard to test under normal circumstances because
1456  * direct-io pins the pages with get_user_pages().  This makes
1457  * is_page_cache_freeable return false, and the VM will not clean the pages.
1458  * But other code (eg, flusher threads) could clean the pages if they are mapped
1459  * pagecache.
1460  *
1461  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1462  * deferred bio dirtying paths.
1463  */
1464 
1465 /*
1466  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1467  */
1468 void bio_set_pages_dirty(struct bio *bio)
1469 {
1470 	struct folio_iter fi;
1471 
1472 	bio_for_each_folio_all(fi, bio) {
1473 		folio_lock(fi.folio);
1474 		folio_mark_dirty(fi.folio);
1475 		folio_unlock(fi.folio);
1476 	}
1477 }
1478 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1479 
1480 /*
1481  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1482  * If they are, then fine.  If, however, some pages are clean then they must
1483  * have been written out during the direct-IO read.  So we take another ref on
1484  * the BIO and re-dirty the pages in process context.
1485  *
1486  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1487  * here on.  It will unpin each page and will run one bio_put() against the
1488  * BIO.
1489  */
1490 
1491 static void bio_dirty_fn(struct work_struct *work);
1492 
1493 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1494 static DEFINE_SPINLOCK(bio_dirty_lock);
1495 static struct bio *bio_dirty_list;
1496 
1497 /*
1498  * This runs in process context
1499  */
1500 static void bio_dirty_fn(struct work_struct *work)
1501 {
1502 	struct bio *bio, *next;
1503 
1504 	spin_lock_irq(&bio_dirty_lock);
1505 	next = bio_dirty_list;
1506 	bio_dirty_list = NULL;
1507 	spin_unlock_irq(&bio_dirty_lock);
1508 
1509 	while ((bio = next) != NULL) {
1510 		next = bio->bi_private;
1511 
1512 		bio_release_pages(bio, true);
1513 		bio_put(bio);
1514 	}
1515 }
1516 
1517 void bio_check_pages_dirty(struct bio *bio)
1518 {
1519 	struct folio_iter fi;
1520 	unsigned long flags;
1521 
1522 	bio_for_each_folio_all(fi, bio) {
1523 		if (!folio_test_dirty(fi.folio))
1524 			goto defer;
1525 	}
1526 
1527 	bio_release_pages(bio, false);
1528 	bio_put(bio);
1529 	return;
1530 defer:
1531 	spin_lock_irqsave(&bio_dirty_lock, flags);
1532 	bio->bi_private = bio_dirty_list;
1533 	bio_dirty_list = bio;
1534 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1535 	schedule_work(&bio_dirty_work);
1536 }
1537 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1538 
1539 static inline bool bio_remaining_done(struct bio *bio)
1540 {
1541 	/*
1542 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1543 	 * we always end io on the first invocation.
1544 	 */
1545 	if (!bio_flagged(bio, BIO_CHAIN))
1546 		return true;
1547 
1548 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1549 
1550 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1551 		bio_clear_flag(bio, BIO_CHAIN);
1552 		return true;
1553 	}
1554 
1555 	return false;
1556 }
1557 
1558 /**
1559  * bio_endio - end I/O on a bio
1560  * @bio:	bio
1561  *
1562  * Description:
1563  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1564  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1565  *   bio unless they own it and thus know that it has an end_io function.
1566  *
1567  *   bio_endio() can be called several times on a bio that has been chained
1568  *   using bio_chain().  The ->bi_end_io() function will only be called the
1569  *   last time.
1570  **/
1571 void bio_endio(struct bio *bio)
1572 {
1573 again:
1574 	if (!bio_remaining_done(bio))
1575 		return;
1576 	if (!bio_integrity_endio(bio))
1577 		return;
1578 
1579 	rq_qos_done_bio(bio);
1580 
1581 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1582 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1583 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1584 	}
1585 
1586 	/*
1587 	 * Need to have a real endio function for chained bios, otherwise
1588 	 * various corner cases will break (like stacking block devices that
1589 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1590 	 * recursion and blowing the stack. Tail call optimization would
1591 	 * handle this, but compiling with frame pointers also disables
1592 	 * gcc's sibling call optimization.
1593 	 */
1594 	if (bio->bi_end_io == bio_chain_endio) {
1595 		bio = __bio_chain_endio(bio);
1596 		goto again;
1597 	}
1598 
1599 	blk_throtl_bio_endio(bio);
1600 	/* release cgroup info */
1601 	bio_uninit(bio);
1602 	if (bio->bi_end_io)
1603 		bio->bi_end_io(bio);
1604 }
1605 EXPORT_SYMBOL(bio_endio);
1606 
1607 /**
1608  * bio_split - split a bio
1609  * @bio:	bio to split
1610  * @sectors:	number of sectors to split from the front of @bio
1611  * @gfp:	gfp mask
1612  * @bs:		bio set to allocate from
1613  *
1614  * Allocates and returns a new bio which represents @sectors from the start of
1615  * @bio, and updates @bio to represent the remaining sectors.
1616  *
1617  * Unless this is a discard request the newly allocated bio will point
1618  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1619  * neither @bio nor @bs are freed before the split bio.
1620  */
1621 struct bio *bio_split(struct bio *bio, int sectors,
1622 		      gfp_t gfp, struct bio_set *bs)
1623 {
1624 	struct bio *split;
1625 
1626 	BUG_ON(sectors <= 0);
1627 	BUG_ON(sectors >= bio_sectors(bio));
1628 
1629 	/* Zone append commands cannot be split */
1630 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1631 		return NULL;
1632 
1633 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1634 	if (!split)
1635 		return NULL;
1636 
1637 	split->bi_iter.bi_size = sectors << 9;
1638 
1639 	if (bio_integrity(split))
1640 		bio_integrity_trim(split);
1641 
1642 	bio_advance(bio, split->bi_iter.bi_size);
1643 
1644 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1645 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1646 
1647 	return split;
1648 }
1649 EXPORT_SYMBOL(bio_split);
1650 
1651 /**
1652  * bio_trim - trim a bio
1653  * @bio:	bio to trim
1654  * @offset:	number of sectors to trim from the front of @bio
1655  * @size:	size we want to trim @bio to, in sectors
1656  *
1657  * This function is typically used for bios that are cloned and submitted
1658  * to the underlying device in parts.
1659  */
1660 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1661 {
1662 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1663 			 offset + size > bio_sectors(bio)))
1664 		return;
1665 
1666 	size <<= 9;
1667 	if (offset == 0 && size == bio->bi_iter.bi_size)
1668 		return;
1669 
1670 	bio_advance(bio, offset << 9);
1671 	bio->bi_iter.bi_size = size;
1672 
1673 	if (bio_integrity(bio))
1674 		bio_integrity_trim(bio);
1675 }
1676 EXPORT_SYMBOL_GPL(bio_trim);
1677 
1678 /*
1679  * create memory pools for biovec's in a bio_set.
1680  * use the global biovec slabs created for general use.
1681  */
1682 int biovec_init_pool(mempool_t *pool, int pool_entries)
1683 {
1684 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1685 
1686 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1687 }
1688 
1689 /*
1690  * bioset_exit - exit a bioset initialized with bioset_init()
1691  *
1692  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1693  * kzalloc()).
1694  */
1695 void bioset_exit(struct bio_set *bs)
1696 {
1697 	bio_alloc_cache_destroy(bs);
1698 	if (bs->rescue_workqueue)
1699 		destroy_workqueue(bs->rescue_workqueue);
1700 	bs->rescue_workqueue = NULL;
1701 
1702 	mempool_exit(&bs->bio_pool);
1703 	mempool_exit(&bs->bvec_pool);
1704 
1705 	bioset_integrity_free(bs);
1706 	if (bs->bio_slab)
1707 		bio_put_slab(bs);
1708 	bs->bio_slab = NULL;
1709 }
1710 EXPORT_SYMBOL(bioset_exit);
1711 
1712 /**
1713  * bioset_init - Initialize a bio_set
1714  * @bs:		pool to initialize
1715  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1716  * @front_pad:	Number of bytes to allocate in front of the returned bio
1717  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1718  *              and %BIOSET_NEED_RESCUER
1719  *
1720  * Description:
1721  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1722  *    to ask for a number of bytes to be allocated in front of the bio.
1723  *    Front pad allocation is useful for embedding the bio inside
1724  *    another structure, to avoid allocating extra data to go with the bio.
1725  *    Note that the bio must be embedded at the END of that structure always,
1726  *    or things will break badly.
1727  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1728  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1729  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1730  *    to dispatch queued requests when the mempool runs out of space.
1731  *
1732  */
1733 int bioset_init(struct bio_set *bs,
1734 		unsigned int pool_size,
1735 		unsigned int front_pad,
1736 		int flags)
1737 {
1738 	bs->front_pad = front_pad;
1739 	if (flags & BIOSET_NEED_BVECS)
1740 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1741 	else
1742 		bs->back_pad = 0;
1743 
1744 	spin_lock_init(&bs->rescue_lock);
1745 	bio_list_init(&bs->rescue_list);
1746 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1747 
1748 	bs->bio_slab = bio_find_or_create_slab(bs);
1749 	if (!bs->bio_slab)
1750 		return -ENOMEM;
1751 
1752 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1753 		goto bad;
1754 
1755 	if ((flags & BIOSET_NEED_BVECS) &&
1756 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1757 		goto bad;
1758 
1759 	if (flags & BIOSET_NEED_RESCUER) {
1760 		bs->rescue_workqueue = alloc_workqueue("bioset",
1761 							WQ_MEM_RECLAIM, 0);
1762 		if (!bs->rescue_workqueue)
1763 			goto bad;
1764 	}
1765 	if (flags & BIOSET_PERCPU_CACHE) {
1766 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1767 		if (!bs->cache)
1768 			goto bad;
1769 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1770 	}
1771 
1772 	return 0;
1773 bad:
1774 	bioset_exit(bs);
1775 	return -ENOMEM;
1776 }
1777 EXPORT_SYMBOL(bioset_init);
1778 
1779 static int __init init_bio(void)
1780 {
1781 	int i;
1782 
1783 	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1784 
1785 	bio_integrity_init();
1786 
1787 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1788 		struct biovec_slab *bvs = bvec_slabs + i;
1789 
1790 		bvs->slab = kmem_cache_create(bvs->name,
1791 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1792 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1793 	}
1794 
1795 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1796 					bio_cpu_dead);
1797 
1798 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1799 			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1800 		panic("bio: can't allocate bios\n");
1801 
1802 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1803 		panic("bio: can't create integrity pool\n");
1804 
1805 	return 0;
1806 }
1807 subsys_initcall(init_bio);
1808