xref: /linux/block/bio.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <linux/blk-cgroup.h>
32 
33 #include <trace/events/block.h>
34 #include "blk.h"
35 #include "blk-rq-qos.h"
36 
37 /*
38  * Test patch to inline a certain number of bi_io_vec's inside the bio
39  * itself, to shrink a bio data allocation from two mempool calls to one
40  */
41 #define BIO_INLINE_VECS		4
42 
43 /*
44  * if you change this list, also change bvec_alloc or things will
45  * break badly! cannot be bigger than what you can fit into an
46  * unsigned short
47  */
48 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
49 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
50 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
51 };
52 #undef BV
53 
54 /*
55  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56  * IO code that does not need private memory pools.
57  */
58 struct bio_set fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60 
61 /*
62  * Our slab pool management
63  */
64 struct bio_slab {
65 	struct kmem_cache *slab;
66 	unsigned int slab_ref;
67 	unsigned int slab_size;
68 	char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73 
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 	unsigned int sz = sizeof(struct bio) + extra_size;
77 	struct kmem_cache *slab = NULL;
78 	struct bio_slab *bslab, *new_bio_slabs;
79 	unsigned int new_bio_slab_max;
80 	unsigned int i, entry = -1;
81 
82 	mutex_lock(&bio_slab_lock);
83 
84 	i = 0;
85 	while (i < bio_slab_nr) {
86 		bslab = &bio_slabs[i];
87 
88 		if (!bslab->slab && entry == -1)
89 			entry = i;
90 		else if (bslab->slab_size == sz) {
91 			slab = bslab->slab;
92 			bslab->slab_ref++;
93 			break;
94 		}
95 		i++;
96 	}
97 
98 	if (slab)
99 		goto out_unlock;
100 
101 	if (bio_slab_nr == bio_slab_max && entry == -1) {
102 		new_bio_slab_max = bio_slab_max << 1;
103 		new_bio_slabs = krealloc(bio_slabs,
104 					 new_bio_slab_max * sizeof(struct bio_slab),
105 					 GFP_KERNEL);
106 		if (!new_bio_slabs)
107 			goto out_unlock;
108 		bio_slab_max = new_bio_slab_max;
109 		bio_slabs = new_bio_slabs;
110 	}
111 	if (entry == -1)
112 		entry = bio_slab_nr++;
113 
114 	bslab = &bio_slabs[entry];
115 
116 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 				 SLAB_HWCACHE_ALIGN, NULL);
119 	if (!slab)
120 		goto out_unlock;
121 
122 	bslab->slab = slab;
123 	bslab->slab_ref = 1;
124 	bslab->slab_size = sz;
125 out_unlock:
126 	mutex_unlock(&bio_slab_lock);
127 	return slab;
128 }
129 
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 	struct bio_slab *bslab = NULL;
133 	unsigned int i;
134 
135 	mutex_lock(&bio_slab_lock);
136 
137 	for (i = 0; i < bio_slab_nr; i++) {
138 		if (bs->bio_slab == bio_slabs[i].slab) {
139 			bslab = &bio_slabs[i];
140 			break;
141 		}
142 	}
143 
144 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 		goto out;
146 
147 	WARN_ON(!bslab->slab_ref);
148 
149 	if (--bslab->slab_ref)
150 		goto out;
151 
152 	kmem_cache_destroy(bslab->slab);
153 	bslab->slab = NULL;
154 
155 out:
156 	mutex_unlock(&bio_slab_lock);
157 }
158 
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 	return bvec_slabs[--idx].nr_vecs;
162 }
163 
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 	if (!idx)
167 		return;
168 	idx--;
169 
170 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
171 
172 	if (idx == BVEC_POOL_MAX) {
173 		mempool_free(bv, pool);
174 	} else {
175 		struct biovec_slab *bvs = bvec_slabs + idx;
176 
177 		kmem_cache_free(bvs->slab, bv);
178 	}
179 }
180 
181 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 			   mempool_t *pool)
183 {
184 	struct bio_vec *bvl;
185 
186 	/*
187 	 * see comment near bvec_array define!
188 	 */
189 	switch (nr) {
190 	case 1:
191 		*idx = 0;
192 		break;
193 	case 2 ... 4:
194 		*idx = 1;
195 		break;
196 	case 5 ... 16:
197 		*idx = 2;
198 		break;
199 	case 17 ... 64:
200 		*idx = 3;
201 		break;
202 	case 65 ... 128:
203 		*idx = 4;
204 		break;
205 	case 129 ... BIO_MAX_PAGES:
206 		*idx = 5;
207 		break;
208 	default:
209 		return NULL;
210 	}
211 
212 	/*
213 	 * idx now points to the pool we want to allocate from. only the
214 	 * 1-vec entry pool is mempool backed.
215 	 */
216 	if (*idx == BVEC_POOL_MAX) {
217 fallback:
218 		bvl = mempool_alloc(pool, gfp_mask);
219 	} else {
220 		struct biovec_slab *bvs = bvec_slabs + *idx;
221 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222 
223 		/*
224 		 * Make this allocation restricted and don't dump info on
225 		 * allocation failures, since we'll fallback to the mempool
226 		 * in case of failure.
227 		 */
228 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229 
230 		/*
231 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
232 		 * is set, retry with the 1-entry mempool
233 		 */
234 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
235 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
236 			*idx = BVEC_POOL_MAX;
237 			goto fallback;
238 		}
239 	}
240 
241 	(*idx)++;
242 	return bvl;
243 }
244 
245 void bio_uninit(struct bio *bio)
246 {
247 	bio_disassociate_task(bio);
248 }
249 EXPORT_SYMBOL(bio_uninit);
250 
251 static void bio_free(struct bio *bio)
252 {
253 	struct bio_set *bs = bio->bi_pool;
254 	void *p;
255 
256 	bio_uninit(bio);
257 
258 	if (bs) {
259 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260 
261 		/*
262 		 * If we have front padding, adjust the bio pointer before freeing
263 		 */
264 		p = bio;
265 		p -= bs->front_pad;
266 
267 		mempool_free(p, &bs->bio_pool);
268 	} else {
269 		/* Bio was allocated by bio_kmalloc() */
270 		kfree(bio);
271 	}
272 }
273 
274 /*
275  * Users of this function have their own bio allocation. Subsequently,
276  * they must remember to pair any call to bio_init() with bio_uninit()
277  * when IO has completed, or when the bio is released.
278  */
279 void bio_init(struct bio *bio, struct bio_vec *table,
280 	      unsigned short max_vecs)
281 {
282 	memset(bio, 0, sizeof(*bio));
283 	atomic_set(&bio->__bi_remaining, 1);
284 	atomic_set(&bio->__bi_cnt, 1);
285 
286 	bio->bi_io_vec = table;
287 	bio->bi_max_vecs = max_vecs;
288 }
289 EXPORT_SYMBOL(bio_init);
290 
291 /**
292  * bio_reset - reinitialize a bio
293  * @bio:	bio to reset
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
301 void bio_reset(struct bio *bio)
302 {
303 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304 
305 	bio_uninit(bio);
306 
307 	memset(bio, 0, BIO_RESET_BYTES);
308 	bio->bi_flags = flags;
309 	atomic_set(&bio->__bi_remaining, 1);
310 }
311 EXPORT_SYMBOL(bio_reset);
312 
313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 	struct bio *parent = bio->bi_private;
316 
317 	if (!parent->bi_status)
318 		parent->bi_status = bio->bi_status;
319 	bio_put(bio);
320 	return parent;
321 }
322 
323 static void bio_chain_endio(struct bio *bio)
324 {
325 	bio_endio(__bio_chain_endio(bio));
326 }
327 
328 /**
329  * bio_chain - chain bio completions
330  * @bio: the target bio
331  * @parent: the @bio's parent bio
332  *
333  * The caller won't have a bi_end_io called when @bio completes - instead,
334  * @parent's bi_end_io won't be called until both @parent and @bio have
335  * completed; the chained bio will also be freed when it completes.
336  *
337  * The caller must not set bi_private or bi_end_io in @bio.
338  */
339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 	BUG_ON(bio->bi_private || bio->bi_end_io);
342 
343 	bio->bi_private = parent;
344 	bio->bi_end_io	= bio_chain_endio;
345 	bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348 
349 static void bio_alloc_rescue(struct work_struct *work)
350 {
351 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 	struct bio *bio;
353 
354 	while (1) {
355 		spin_lock(&bs->rescue_lock);
356 		bio = bio_list_pop(&bs->rescue_list);
357 		spin_unlock(&bs->rescue_lock);
358 
359 		if (!bio)
360 			break;
361 
362 		generic_make_request(bio);
363 	}
364 }
365 
366 static void punt_bios_to_rescuer(struct bio_set *bs)
367 {
368 	struct bio_list punt, nopunt;
369 	struct bio *bio;
370 
371 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 		return;
373 	/*
374 	 * In order to guarantee forward progress we must punt only bios that
375 	 * were allocated from this bio_set; otherwise, if there was a bio on
376 	 * there for a stacking driver higher up in the stack, processing it
377 	 * could require allocating bios from this bio_set, and doing that from
378 	 * our own rescuer would be bad.
379 	 *
380 	 * Since bio lists are singly linked, pop them all instead of trying to
381 	 * remove from the middle of the list:
382 	 */
383 
384 	bio_list_init(&punt);
385 	bio_list_init(&nopunt);
386 
387 	while ((bio = bio_list_pop(&current->bio_list[0])))
388 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 	current->bio_list[0] = nopunt;
390 
391 	bio_list_init(&nopunt);
392 	while ((bio = bio_list_pop(&current->bio_list[1])))
393 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 	current->bio_list[1] = nopunt;
395 
396 	spin_lock(&bs->rescue_lock);
397 	bio_list_merge(&bs->rescue_list, &punt);
398 	spin_unlock(&bs->rescue_lock);
399 
400 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
401 }
402 
403 /**
404  * bio_alloc_bioset - allocate a bio for I/O
405  * @gfp_mask:   the GFP_* mask given to the slab allocator
406  * @nr_iovecs:	number of iovecs to pre-allocate
407  * @bs:		the bio_set to allocate from.
408  *
409  * Description:
410  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411  *   backed by the @bs's mempool.
412  *
413  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414  *   always be able to allocate a bio. This is due to the mempool guarantees.
415  *   To make this work, callers must never allocate more than 1 bio at a time
416  *   from this pool. Callers that need to allocate more than 1 bio must always
417  *   submit the previously allocated bio for IO before attempting to allocate
418  *   a new one. Failure to do so can cause deadlocks under memory pressure.
419  *
420  *   Note that when running under generic_make_request() (i.e. any block
421  *   driver), bios are not submitted until after you return - see the code in
422  *   generic_make_request() that converts recursion into iteration, to prevent
423  *   stack overflows.
424  *
425  *   This would normally mean allocating multiple bios under
426  *   generic_make_request() would be susceptible to deadlocks, but we have
427  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
428  *   thread.
429  *
430  *   However, we do not guarantee forward progress for allocations from other
431  *   mempools. Doing multiple allocations from the same mempool under
432  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
433  *   for per bio allocations.
434  *
435  *   RETURNS:
436  *   Pointer to new bio on success, NULL on failure.
437  */
438 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 			     struct bio_set *bs)
440 {
441 	gfp_t saved_gfp = gfp_mask;
442 	unsigned front_pad;
443 	unsigned inline_vecs;
444 	struct bio_vec *bvl = NULL;
445 	struct bio *bio;
446 	void *p;
447 
448 	if (!bs) {
449 		if (nr_iovecs > UIO_MAXIOV)
450 			return NULL;
451 
452 		p = kmalloc(sizeof(struct bio) +
453 			    nr_iovecs * sizeof(struct bio_vec),
454 			    gfp_mask);
455 		front_pad = 0;
456 		inline_vecs = nr_iovecs;
457 	} else {
458 		/* should not use nobvec bioset for nr_iovecs > 0 */
459 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 				 nr_iovecs > 0))
461 			return NULL;
462 		/*
463 		 * generic_make_request() converts recursion to iteration; this
464 		 * means if we're running beneath it, any bios we allocate and
465 		 * submit will not be submitted (and thus freed) until after we
466 		 * return.
467 		 *
468 		 * This exposes us to a potential deadlock if we allocate
469 		 * multiple bios from the same bio_set() while running
470 		 * underneath generic_make_request(). If we were to allocate
471 		 * multiple bios (say a stacking block driver that was splitting
472 		 * bios), we would deadlock if we exhausted the mempool's
473 		 * reserve.
474 		 *
475 		 * We solve this, and guarantee forward progress, with a rescuer
476 		 * workqueue per bio_set. If we go to allocate and there are
477 		 * bios on current->bio_list, we first try the allocation
478 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 		 * bios we would be blocking to the rescuer workqueue before
480 		 * we retry with the original gfp_flags.
481 		 */
482 
483 		if (current->bio_list &&
484 		    (!bio_list_empty(&current->bio_list[0]) ||
485 		     !bio_list_empty(&current->bio_list[1])) &&
486 		    bs->rescue_workqueue)
487 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
488 
489 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
490 		if (!p && gfp_mask != saved_gfp) {
491 			punt_bios_to_rescuer(bs);
492 			gfp_mask = saved_gfp;
493 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
494 		}
495 
496 		front_pad = bs->front_pad;
497 		inline_vecs = BIO_INLINE_VECS;
498 	}
499 
500 	if (unlikely(!p))
501 		return NULL;
502 
503 	bio = p + front_pad;
504 	bio_init(bio, NULL, 0);
505 
506 	if (nr_iovecs > inline_vecs) {
507 		unsigned long idx = 0;
508 
509 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
510 		if (!bvl && gfp_mask != saved_gfp) {
511 			punt_bios_to_rescuer(bs);
512 			gfp_mask = saved_gfp;
513 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
514 		}
515 
516 		if (unlikely(!bvl))
517 			goto err_free;
518 
519 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520 	} else if (nr_iovecs) {
521 		bvl = bio->bi_inline_vecs;
522 	}
523 
524 	bio->bi_pool = bs;
525 	bio->bi_max_vecs = nr_iovecs;
526 	bio->bi_io_vec = bvl;
527 	return bio;
528 
529 err_free:
530 	mempool_free(p, &bs->bio_pool);
531 	return NULL;
532 }
533 EXPORT_SYMBOL(bio_alloc_bioset);
534 
535 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
536 {
537 	unsigned long flags;
538 	struct bio_vec bv;
539 	struct bvec_iter iter;
540 
541 	__bio_for_each_segment(bv, bio, iter, start) {
542 		char *data = bvec_kmap_irq(&bv, &flags);
543 		memset(data, 0, bv.bv_len);
544 		flush_dcache_page(bv.bv_page);
545 		bvec_kunmap_irq(data, &flags);
546 	}
547 }
548 EXPORT_SYMBOL(zero_fill_bio_iter);
549 
550 /**
551  * bio_put - release a reference to a bio
552  * @bio:   bio to release reference to
553  *
554  * Description:
555  *   Put a reference to a &struct bio, either one you have gotten with
556  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
557  **/
558 void bio_put(struct bio *bio)
559 {
560 	if (!bio_flagged(bio, BIO_REFFED))
561 		bio_free(bio);
562 	else {
563 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564 
565 		/*
566 		 * last put frees it
567 		 */
568 		if (atomic_dec_and_test(&bio->__bi_cnt))
569 			bio_free(bio);
570 	}
571 }
572 EXPORT_SYMBOL(bio_put);
573 
574 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
575 {
576 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 		blk_recount_segments(q, bio);
578 
579 	return bio->bi_phys_segments;
580 }
581 EXPORT_SYMBOL(bio_phys_segments);
582 
583 /**
584  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
585  * 	@bio: destination bio
586  * 	@bio_src: bio to clone
587  *
588  *	Clone a &bio. Caller will own the returned bio, but not
589  *	the actual data it points to. Reference count of returned
590  * 	bio will be one.
591  *
592  * 	Caller must ensure that @bio_src is not freed before @bio.
593  */
594 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595 {
596 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
597 
598 	/*
599 	 * most users will be overriding ->bi_disk with a new target,
600 	 * so we don't set nor calculate new physical/hw segment counts here
601 	 */
602 	bio->bi_disk = bio_src->bi_disk;
603 	bio->bi_partno = bio_src->bi_partno;
604 	bio_set_flag(bio, BIO_CLONED);
605 	if (bio_flagged(bio_src, BIO_THROTTLED))
606 		bio_set_flag(bio, BIO_THROTTLED);
607 	bio->bi_opf = bio_src->bi_opf;
608 	bio->bi_write_hint = bio_src->bi_write_hint;
609 	bio->bi_iter = bio_src->bi_iter;
610 	bio->bi_io_vec = bio_src->bi_io_vec;
611 
612 	bio_clone_blkcg_association(bio, bio_src);
613 }
614 EXPORT_SYMBOL(__bio_clone_fast);
615 
616 /**
617  *	bio_clone_fast - clone a bio that shares the original bio's biovec
618  *	@bio: bio to clone
619  *	@gfp_mask: allocation priority
620  *	@bs: bio_set to allocate from
621  *
622  * 	Like __bio_clone_fast, only also allocates the returned bio
623  */
624 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
625 {
626 	struct bio *b;
627 
628 	b = bio_alloc_bioset(gfp_mask, 0, bs);
629 	if (!b)
630 		return NULL;
631 
632 	__bio_clone_fast(b, bio);
633 
634 	if (bio_integrity(bio)) {
635 		int ret;
636 
637 		ret = bio_integrity_clone(b, bio, gfp_mask);
638 
639 		if (ret < 0) {
640 			bio_put(b);
641 			return NULL;
642 		}
643 	}
644 
645 	return b;
646 }
647 EXPORT_SYMBOL(bio_clone_fast);
648 
649 /**
650  *	bio_add_pc_page	-	attempt to add page to bio
651  *	@q: the target queue
652  *	@bio: destination bio
653  *	@page: page to add
654  *	@len: vec entry length
655  *	@offset: vec entry offset
656  *
657  *	Attempt to add a page to the bio_vec maplist. This can fail for a
658  *	number of reasons, such as the bio being full or target block device
659  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
660  *	so it is always possible to add a single page to an empty bio.
661  *
662  *	This should only be used by REQ_PC bios.
663  */
664 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
665 		    *page, unsigned int len, unsigned int offset)
666 {
667 	int retried_segments = 0;
668 	struct bio_vec *bvec;
669 
670 	/*
671 	 * cloned bio must not modify vec list
672 	 */
673 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
674 		return 0;
675 
676 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
677 		return 0;
678 
679 	/*
680 	 * For filesystems with a blocksize smaller than the pagesize
681 	 * we will often be called with the same page as last time and
682 	 * a consecutive offset.  Optimize this special case.
683 	 */
684 	if (bio->bi_vcnt > 0) {
685 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
686 
687 		if (page == prev->bv_page &&
688 		    offset == prev->bv_offset + prev->bv_len) {
689 			prev->bv_len += len;
690 			bio->bi_iter.bi_size += len;
691 			goto done;
692 		}
693 
694 		/*
695 		 * If the queue doesn't support SG gaps and adding this
696 		 * offset would create a gap, disallow it.
697 		 */
698 		if (bvec_gap_to_prev(q, prev, offset))
699 			return 0;
700 	}
701 
702 	if (bio_full(bio))
703 		return 0;
704 
705 	/*
706 	 * setup the new entry, we might clear it again later if we
707 	 * cannot add the page
708 	 */
709 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
710 	bvec->bv_page = page;
711 	bvec->bv_len = len;
712 	bvec->bv_offset = offset;
713 	bio->bi_vcnt++;
714 	bio->bi_phys_segments++;
715 	bio->bi_iter.bi_size += len;
716 
717 	/*
718 	 * Perform a recount if the number of segments is greater
719 	 * than queue_max_segments(q).
720 	 */
721 
722 	while (bio->bi_phys_segments > queue_max_segments(q)) {
723 
724 		if (retried_segments)
725 			goto failed;
726 
727 		retried_segments = 1;
728 		blk_recount_segments(q, bio);
729 	}
730 
731 	/* If we may be able to merge these biovecs, force a recount */
732 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
733 		bio_clear_flag(bio, BIO_SEG_VALID);
734 
735  done:
736 	return len;
737 
738  failed:
739 	bvec->bv_page = NULL;
740 	bvec->bv_len = 0;
741 	bvec->bv_offset = 0;
742 	bio->bi_vcnt--;
743 	bio->bi_iter.bi_size -= len;
744 	blk_recount_segments(q, bio);
745 	return 0;
746 }
747 EXPORT_SYMBOL(bio_add_pc_page);
748 
749 /**
750  * __bio_try_merge_page - try appending data to an existing bvec.
751  * @bio: destination bio
752  * @page: page to add
753  * @len: length of the data to add
754  * @off: offset of the data in @page
755  *
756  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
757  * a useful optimisation for file systems with a block size smaller than the
758  * page size.
759  *
760  * Return %true on success or %false on failure.
761  */
762 bool __bio_try_merge_page(struct bio *bio, struct page *page,
763 		unsigned int len, unsigned int off)
764 {
765 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
766 		return false;
767 
768 	if (bio->bi_vcnt > 0) {
769 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
770 
771 		if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
772 			bv->bv_len += len;
773 			bio->bi_iter.bi_size += len;
774 			return true;
775 		}
776 	}
777 	return false;
778 }
779 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
780 
781 /**
782  * __bio_add_page - add page to a bio in a new segment
783  * @bio: destination bio
784  * @page: page to add
785  * @len: length of the data to add
786  * @off: offset of the data in @page
787  *
788  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
789  * that @bio has space for another bvec.
790  */
791 void __bio_add_page(struct bio *bio, struct page *page,
792 		unsigned int len, unsigned int off)
793 {
794 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
795 
796 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
797 	WARN_ON_ONCE(bio_full(bio));
798 
799 	bv->bv_page = page;
800 	bv->bv_offset = off;
801 	bv->bv_len = len;
802 
803 	bio->bi_iter.bi_size += len;
804 	bio->bi_vcnt++;
805 }
806 EXPORT_SYMBOL_GPL(__bio_add_page);
807 
808 /**
809  *	bio_add_page	-	attempt to add page to bio
810  *	@bio: destination bio
811  *	@page: page to add
812  *	@len: vec entry length
813  *	@offset: vec entry offset
814  *
815  *	Attempt to add a page to the bio_vec maplist. This will only fail
816  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
817  */
818 int bio_add_page(struct bio *bio, struct page *page,
819 		 unsigned int len, unsigned int offset)
820 {
821 	if (!__bio_try_merge_page(bio, page, len, offset)) {
822 		if (bio_full(bio))
823 			return 0;
824 		__bio_add_page(bio, page, len, offset);
825 	}
826 	return len;
827 }
828 EXPORT_SYMBOL(bio_add_page);
829 
830 /**
831  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
832  * @bio: bio to add pages to
833  * @iter: iov iterator describing the region to be mapped
834  *
835  * Pins pages from *iter and appends them to @bio's bvec array. The
836  * pages will have to be released using put_page() when done.
837  * For multi-segment *iter, this function only adds pages from the
838  * the next non-empty segment of the iov iterator.
839  */
840 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
841 {
842 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
843 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
844 	struct page **pages = (struct page **)bv;
845 	size_t offset;
846 	ssize_t size;
847 
848 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
849 	if (unlikely(size <= 0))
850 		return size ? size : -EFAULT;
851 	idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
852 
853 	/*
854 	 * Deep magic below:  We need to walk the pinned pages backwards
855 	 * because we are abusing the space allocated for the bio_vecs
856 	 * for the page array.  Because the bio_vecs are larger than the
857 	 * page pointers by definition this will always work.  But it also
858 	 * means we can't use bio_add_page, so any changes to it's semantics
859 	 * need to be reflected here as well.
860 	 */
861 	bio->bi_iter.bi_size += size;
862 	bio->bi_vcnt += nr_pages;
863 
864 	while (idx--) {
865 		bv[idx].bv_page = pages[idx];
866 		bv[idx].bv_len = PAGE_SIZE;
867 		bv[idx].bv_offset = 0;
868 	}
869 
870 	bv[0].bv_offset += offset;
871 	bv[0].bv_len -= offset;
872 	bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
873 
874 	iov_iter_advance(iter, size);
875 	return 0;
876 }
877 
878 /**
879  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
880  * @bio: bio to add pages to
881  * @iter: iov iterator describing the region to be mapped
882  *
883  * Pins pages from *iter and appends them to @bio's bvec array. The
884  * pages will have to be released using put_page() when done.
885  * The function tries, but does not guarantee, to pin as many pages as
886  * fit into the bio, or are requested in *iter, whatever is smaller.
887  * If MM encounters an error pinning the requested pages, it stops.
888  * Error is returned only if 0 pages could be pinned.
889  */
890 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
891 {
892 	unsigned short orig_vcnt = bio->bi_vcnt;
893 
894 	do {
895 		int ret = __bio_iov_iter_get_pages(bio, iter);
896 
897 		if (unlikely(ret))
898 			return bio->bi_vcnt > orig_vcnt ? 0 : ret;
899 
900 	} while (iov_iter_count(iter) && !bio_full(bio));
901 
902 	return 0;
903 }
904 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
905 
906 static void submit_bio_wait_endio(struct bio *bio)
907 {
908 	complete(bio->bi_private);
909 }
910 
911 /**
912  * submit_bio_wait - submit a bio, and wait until it completes
913  * @bio: The &struct bio which describes the I/O
914  *
915  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
916  * bio_endio() on failure.
917  *
918  * WARNING: Unlike to how submit_bio() is usually used, this function does not
919  * result in bio reference to be consumed. The caller must drop the reference
920  * on his own.
921  */
922 int submit_bio_wait(struct bio *bio)
923 {
924 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
925 
926 	bio->bi_private = &done;
927 	bio->bi_end_io = submit_bio_wait_endio;
928 	bio->bi_opf |= REQ_SYNC;
929 	submit_bio(bio);
930 	wait_for_completion_io(&done);
931 
932 	return blk_status_to_errno(bio->bi_status);
933 }
934 EXPORT_SYMBOL(submit_bio_wait);
935 
936 /**
937  * bio_advance - increment/complete a bio by some number of bytes
938  * @bio:	bio to advance
939  * @bytes:	number of bytes to complete
940  *
941  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
942  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
943  * be updated on the last bvec as well.
944  *
945  * @bio will then represent the remaining, uncompleted portion of the io.
946  */
947 void bio_advance(struct bio *bio, unsigned bytes)
948 {
949 	if (bio_integrity(bio))
950 		bio_integrity_advance(bio, bytes);
951 
952 	bio_advance_iter(bio, &bio->bi_iter, bytes);
953 }
954 EXPORT_SYMBOL(bio_advance);
955 
956 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
957 			struct bio *src, struct bvec_iter *src_iter)
958 {
959 	struct bio_vec src_bv, dst_bv;
960 	void *src_p, *dst_p;
961 	unsigned bytes;
962 
963 	while (src_iter->bi_size && dst_iter->bi_size) {
964 		src_bv = bio_iter_iovec(src, *src_iter);
965 		dst_bv = bio_iter_iovec(dst, *dst_iter);
966 
967 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
968 
969 		src_p = kmap_atomic(src_bv.bv_page);
970 		dst_p = kmap_atomic(dst_bv.bv_page);
971 
972 		memcpy(dst_p + dst_bv.bv_offset,
973 		       src_p + src_bv.bv_offset,
974 		       bytes);
975 
976 		kunmap_atomic(dst_p);
977 		kunmap_atomic(src_p);
978 
979 		flush_dcache_page(dst_bv.bv_page);
980 
981 		bio_advance_iter(src, src_iter, bytes);
982 		bio_advance_iter(dst, dst_iter, bytes);
983 	}
984 }
985 EXPORT_SYMBOL(bio_copy_data_iter);
986 
987 /**
988  * bio_copy_data - copy contents of data buffers from one bio to another
989  * @src: source bio
990  * @dst: destination bio
991  *
992  * Stops when it reaches the end of either @src or @dst - that is, copies
993  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
994  */
995 void bio_copy_data(struct bio *dst, struct bio *src)
996 {
997 	struct bvec_iter src_iter = src->bi_iter;
998 	struct bvec_iter dst_iter = dst->bi_iter;
999 
1000 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1001 }
1002 EXPORT_SYMBOL(bio_copy_data);
1003 
1004 /**
1005  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1006  * another
1007  * @src: source bio list
1008  * @dst: destination bio list
1009  *
1010  * Stops when it reaches the end of either the @src list or @dst list - that is,
1011  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1012  * bios).
1013  */
1014 void bio_list_copy_data(struct bio *dst, struct bio *src)
1015 {
1016 	struct bvec_iter src_iter = src->bi_iter;
1017 	struct bvec_iter dst_iter = dst->bi_iter;
1018 
1019 	while (1) {
1020 		if (!src_iter.bi_size) {
1021 			src = src->bi_next;
1022 			if (!src)
1023 				break;
1024 
1025 			src_iter = src->bi_iter;
1026 		}
1027 
1028 		if (!dst_iter.bi_size) {
1029 			dst = dst->bi_next;
1030 			if (!dst)
1031 				break;
1032 
1033 			dst_iter = dst->bi_iter;
1034 		}
1035 
1036 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1037 	}
1038 }
1039 EXPORT_SYMBOL(bio_list_copy_data);
1040 
1041 struct bio_map_data {
1042 	int is_our_pages;
1043 	struct iov_iter iter;
1044 	struct iovec iov[];
1045 };
1046 
1047 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1048 					       gfp_t gfp_mask)
1049 {
1050 	struct bio_map_data *bmd;
1051 	if (data->nr_segs > UIO_MAXIOV)
1052 		return NULL;
1053 
1054 	bmd = kmalloc(sizeof(struct bio_map_data) +
1055 		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1056 	if (!bmd)
1057 		return NULL;
1058 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1059 	bmd->iter = *data;
1060 	bmd->iter.iov = bmd->iov;
1061 	return bmd;
1062 }
1063 
1064 /**
1065  * bio_copy_from_iter - copy all pages from iov_iter to bio
1066  * @bio: The &struct bio which describes the I/O as destination
1067  * @iter: iov_iter as source
1068  *
1069  * Copy all pages from iov_iter to bio.
1070  * Returns 0 on success, or error on failure.
1071  */
1072 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1073 {
1074 	int i;
1075 	struct bio_vec *bvec;
1076 
1077 	bio_for_each_segment_all(bvec, bio, i) {
1078 		ssize_t ret;
1079 
1080 		ret = copy_page_from_iter(bvec->bv_page,
1081 					  bvec->bv_offset,
1082 					  bvec->bv_len,
1083 					  iter);
1084 
1085 		if (!iov_iter_count(iter))
1086 			break;
1087 
1088 		if (ret < bvec->bv_len)
1089 			return -EFAULT;
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 /**
1096  * bio_copy_to_iter - copy all pages from bio to iov_iter
1097  * @bio: The &struct bio which describes the I/O as source
1098  * @iter: iov_iter as destination
1099  *
1100  * Copy all pages from bio to iov_iter.
1101  * Returns 0 on success, or error on failure.
1102  */
1103 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1104 {
1105 	int i;
1106 	struct bio_vec *bvec;
1107 
1108 	bio_for_each_segment_all(bvec, bio, i) {
1109 		ssize_t ret;
1110 
1111 		ret = copy_page_to_iter(bvec->bv_page,
1112 					bvec->bv_offset,
1113 					bvec->bv_len,
1114 					&iter);
1115 
1116 		if (!iov_iter_count(&iter))
1117 			break;
1118 
1119 		if (ret < bvec->bv_len)
1120 			return -EFAULT;
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 void bio_free_pages(struct bio *bio)
1127 {
1128 	struct bio_vec *bvec;
1129 	int i;
1130 
1131 	bio_for_each_segment_all(bvec, bio, i)
1132 		__free_page(bvec->bv_page);
1133 }
1134 EXPORT_SYMBOL(bio_free_pages);
1135 
1136 /**
1137  *	bio_uncopy_user	-	finish previously mapped bio
1138  *	@bio: bio being terminated
1139  *
1140  *	Free pages allocated from bio_copy_user_iov() and write back data
1141  *	to user space in case of a read.
1142  */
1143 int bio_uncopy_user(struct bio *bio)
1144 {
1145 	struct bio_map_data *bmd = bio->bi_private;
1146 	int ret = 0;
1147 
1148 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1149 		/*
1150 		 * if we're in a workqueue, the request is orphaned, so
1151 		 * don't copy into a random user address space, just free
1152 		 * and return -EINTR so user space doesn't expect any data.
1153 		 */
1154 		if (!current->mm)
1155 			ret = -EINTR;
1156 		else if (bio_data_dir(bio) == READ)
1157 			ret = bio_copy_to_iter(bio, bmd->iter);
1158 		if (bmd->is_our_pages)
1159 			bio_free_pages(bio);
1160 	}
1161 	kfree(bmd);
1162 	bio_put(bio);
1163 	return ret;
1164 }
1165 
1166 /**
1167  *	bio_copy_user_iov	-	copy user data to bio
1168  *	@q:		destination block queue
1169  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1170  *	@iter:		iovec iterator
1171  *	@gfp_mask:	memory allocation flags
1172  *
1173  *	Prepares and returns a bio for indirect user io, bouncing data
1174  *	to/from kernel pages as necessary. Must be paired with
1175  *	call bio_uncopy_user() on io completion.
1176  */
1177 struct bio *bio_copy_user_iov(struct request_queue *q,
1178 			      struct rq_map_data *map_data,
1179 			      struct iov_iter *iter,
1180 			      gfp_t gfp_mask)
1181 {
1182 	struct bio_map_data *bmd;
1183 	struct page *page;
1184 	struct bio *bio;
1185 	int i = 0, ret;
1186 	int nr_pages;
1187 	unsigned int len = iter->count;
1188 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1189 
1190 	bmd = bio_alloc_map_data(iter, gfp_mask);
1191 	if (!bmd)
1192 		return ERR_PTR(-ENOMEM);
1193 
1194 	/*
1195 	 * We need to do a deep copy of the iov_iter including the iovecs.
1196 	 * The caller provided iov might point to an on-stack or otherwise
1197 	 * shortlived one.
1198 	 */
1199 	bmd->is_our_pages = map_data ? 0 : 1;
1200 
1201 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1202 	if (nr_pages > BIO_MAX_PAGES)
1203 		nr_pages = BIO_MAX_PAGES;
1204 
1205 	ret = -ENOMEM;
1206 	bio = bio_kmalloc(gfp_mask, nr_pages);
1207 	if (!bio)
1208 		goto out_bmd;
1209 
1210 	ret = 0;
1211 
1212 	if (map_data) {
1213 		nr_pages = 1 << map_data->page_order;
1214 		i = map_data->offset / PAGE_SIZE;
1215 	}
1216 	while (len) {
1217 		unsigned int bytes = PAGE_SIZE;
1218 
1219 		bytes -= offset;
1220 
1221 		if (bytes > len)
1222 			bytes = len;
1223 
1224 		if (map_data) {
1225 			if (i == map_data->nr_entries * nr_pages) {
1226 				ret = -ENOMEM;
1227 				break;
1228 			}
1229 
1230 			page = map_data->pages[i / nr_pages];
1231 			page += (i % nr_pages);
1232 
1233 			i++;
1234 		} else {
1235 			page = alloc_page(q->bounce_gfp | gfp_mask);
1236 			if (!page) {
1237 				ret = -ENOMEM;
1238 				break;
1239 			}
1240 		}
1241 
1242 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1243 			break;
1244 
1245 		len -= bytes;
1246 		offset = 0;
1247 	}
1248 
1249 	if (ret)
1250 		goto cleanup;
1251 
1252 	if (map_data)
1253 		map_data->offset += bio->bi_iter.bi_size;
1254 
1255 	/*
1256 	 * success
1257 	 */
1258 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1259 	    (map_data && map_data->from_user)) {
1260 		ret = bio_copy_from_iter(bio, iter);
1261 		if (ret)
1262 			goto cleanup;
1263 	} else {
1264 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1265 	}
1266 
1267 	bio->bi_private = bmd;
1268 	if (map_data && map_data->null_mapped)
1269 		bio_set_flag(bio, BIO_NULL_MAPPED);
1270 	return bio;
1271 cleanup:
1272 	if (!map_data)
1273 		bio_free_pages(bio);
1274 	bio_put(bio);
1275 out_bmd:
1276 	kfree(bmd);
1277 	return ERR_PTR(ret);
1278 }
1279 
1280 /**
1281  *	bio_map_user_iov - map user iovec into bio
1282  *	@q:		the struct request_queue for the bio
1283  *	@iter:		iovec iterator
1284  *	@gfp_mask:	memory allocation flags
1285  *
1286  *	Map the user space address into a bio suitable for io to a block
1287  *	device. Returns an error pointer in case of error.
1288  */
1289 struct bio *bio_map_user_iov(struct request_queue *q,
1290 			     struct iov_iter *iter,
1291 			     gfp_t gfp_mask)
1292 {
1293 	int j;
1294 	struct bio *bio;
1295 	int ret;
1296 	struct bio_vec *bvec;
1297 
1298 	if (!iov_iter_count(iter))
1299 		return ERR_PTR(-EINVAL);
1300 
1301 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1302 	if (!bio)
1303 		return ERR_PTR(-ENOMEM);
1304 
1305 	while (iov_iter_count(iter)) {
1306 		struct page **pages;
1307 		ssize_t bytes;
1308 		size_t offs, added = 0;
1309 		int npages;
1310 
1311 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1312 		if (unlikely(bytes <= 0)) {
1313 			ret = bytes ? bytes : -EFAULT;
1314 			goto out_unmap;
1315 		}
1316 
1317 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1318 
1319 		if (unlikely(offs & queue_dma_alignment(q))) {
1320 			ret = -EINVAL;
1321 			j = 0;
1322 		} else {
1323 			for (j = 0; j < npages; j++) {
1324 				struct page *page = pages[j];
1325 				unsigned int n = PAGE_SIZE - offs;
1326 				unsigned short prev_bi_vcnt = bio->bi_vcnt;
1327 
1328 				if (n > bytes)
1329 					n = bytes;
1330 
1331 				if (!bio_add_pc_page(q, bio, page, n, offs))
1332 					break;
1333 
1334 				/*
1335 				 * check if vector was merged with previous
1336 				 * drop page reference if needed
1337 				 */
1338 				if (bio->bi_vcnt == prev_bi_vcnt)
1339 					put_page(page);
1340 
1341 				added += n;
1342 				bytes -= n;
1343 				offs = 0;
1344 			}
1345 			iov_iter_advance(iter, added);
1346 		}
1347 		/*
1348 		 * release the pages we didn't map into the bio, if any
1349 		 */
1350 		while (j < npages)
1351 			put_page(pages[j++]);
1352 		kvfree(pages);
1353 		/* couldn't stuff something into bio? */
1354 		if (bytes)
1355 			break;
1356 	}
1357 
1358 	bio_set_flag(bio, BIO_USER_MAPPED);
1359 
1360 	/*
1361 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1362 	 * it would normally disappear when its bi_end_io is run.
1363 	 * however, we need it for the unmap, so grab an extra
1364 	 * reference to it
1365 	 */
1366 	bio_get(bio);
1367 	return bio;
1368 
1369  out_unmap:
1370 	bio_for_each_segment_all(bvec, bio, j) {
1371 		put_page(bvec->bv_page);
1372 	}
1373 	bio_put(bio);
1374 	return ERR_PTR(ret);
1375 }
1376 
1377 static void __bio_unmap_user(struct bio *bio)
1378 {
1379 	struct bio_vec *bvec;
1380 	int i;
1381 
1382 	/*
1383 	 * make sure we dirty pages we wrote to
1384 	 */
1385 	bio_for_each_segment_all(bvec, bio, i) {
1386 		if (bio_data_dir(bio) == READ)
1387 			set_page_dirty_lock(bvec->bv_page);
1388 
1389 		put_page(bvec->bv_page);
1390 	}
1391 
1392 	bio_put(bio);
1393 }
1394 
1395 /**
1396  *	bio_unmap_user	-	unmap a bio
1397  *	@bio:		the bio being unmapped
1398  *
1399  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1400  *	process context.
1401  *
1402  *	bio_unmap_user() may sleep.
1403  */
1404 void bio_unmap_user(struct bio *bio)
1405 {
1406 	__bio_unmap_user(bio);
1407 	bio_put(bio);
1408 }
1409 
1410 static void bio_map_kern_endio(struct bio *bio)
1411 {
1412 	bio_put(bio);
1413 }
1414 
1415 /**
1416  *	bio_map_kern	-	map kernel address into bio
1417  *	@q: the struct request_queue for the bio
1418  *	@data: pointer to buffer to map
1419  *	@len: length in bytes
1420  *	@gfp_mask: allocation flags for bio allocation
1421  *
1422  *	Map the kernel address into a bio suitable for io to a block
1423  *	device. Returns an error pointer in case of error.
1424  */
1425 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1426 			 gfp_t gfp_mask)
1427 {
1428 	unsigned long kaddr = (unsigned long)data;
1429 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1430 	unsigned long start = kaddr >> PAGE_SHIFT;
1431 	const int nr_pages = end - start;
1432 	int offset, i;
1433 	struct bio *bio;
1434 
1435 	bio = bio_kmalloc(gfp_mask, nr_pages);
1436 	if (!bio)
1437 		return ERR_PTR(-ENOMEM);
1438 
1439 	offset = offset_in_page(kaddr);
1440 	for (i = 0; i < nr_pages; i++) {
1441 		unsigned int bytes = PAGE_SIZE - offset;
1442 
1443 		if (len <= 0)
1444 			break;
1445 
1446 		if (bytes > len)
1447 			bytes = len;
1448 
1449 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1450 				    offset) < bytes) {
1451 			/* we don't support partial mappings */
1452 			bio_put(bio);
1453 			return ERR_PTR(-EINVAL);
1454 		}
1455 
1456 		data += bytes;
1457 		len -= bytes;
1458 		offset = 0;
1459 	}
1460 
1461 	bio->bi_end_io = bio_map_kern_endio;
1462 	return bio;
1463 }
1464 EXPORT_SYMBOL(bio_map_kern);
1465 
1466 static void bio_copy_kern_endio(struct bio *bio)
1467 {
1468 	bio_free_pages(bio);
1469 	bio_put(bio);
1470 }
1471 
1472 static void bio_copy_kern_endio_read(struct bio *bio)
1473 {
1474 	char *p = bio->bi_private;
1475 	struct bio_vec *bvec;
1476 	int i;
1477 
1478 	bio_for_each_segment_all(bvec, bio, i) {
1479 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1480 		p += bvec->bv_len;
1481 	}
1482 
1483 	bio_copy_kern_endio(bio);
1484 }
1485 
1486 /**
1487  *	bio_copy_kern	-	copy kernel address into bio
1488  *	@q: the struct request_queue for the bio
1489  *	@data: pointer to buffer to copy
1490  *	@len: length in bytes
1491  *	@gfp_mask: allocation flags for bio and page allocation
1492  *	@reading: data direction is READ
1493  *
1494  *	copy the kernel address into a bio suitable for io to a block
1495  *	device. Returns an error pointer in case of error.
1496  */
1497 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1498 			  gfp_t gfp_mask, int reading)
1499 {
1500 	unsigned long kaddr = (unsigned long)data;
1501 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 	unsigned long start = kaddr >> PAGE_SHIFT;
1503 	struct bio *bio;
1504 	void *p = data;
1505 	int nr_pages = 0;
1506 
1507 	/*
1508 	 * Overflow, abort
1509 	 */
1510 	if (end < start)
1511 		return ERR_PTR(-EINVAL);
1512 
1513 	nr_pages = end - start;
1514 	bio = bio_kmalloc(gfp_mask, nr_pages);
1515 	if (!bio)
1516 		return ERR_PTR(-ENOMEM);
1517 
1518 	while (len) {
1519 		struct page *page;
1520 		unsigned int bytes = PAGE_SIZE;
1521 
1522 		if (bytes > len)
1523 			bytes = len;
1524 
1525 		page = alloc_page(q->bounce_gfp | gfp_mask);
1526 		if (!page)
1527 			goto cleanup;
1528 
1529 		if (!reading)
1530 			memcpy(page_address(page), p, bytes);
1531 
1532 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1533 			break;
1534 
1535 		len -= bytes;
1536 		p += bytes;
1537 	}
1538 
1539 	if (reading) {
1540 		bio->bi_end_io = bio_copy_kern_endio_read;
1541 		bio->bi_private = data;
1542 	} else {
1543 		bio->bi_end_io = bio_copy_kern_endio;
1544 	}
1545 
1546 	return bio;
1547 
1548 cleanup:
1549 	bio_free_pages(bio);
1550 	bio_put(bio);
1551 	return ERR_PTR(-ENOMEM);
1552 }
1553 
1554 /*
1555  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1556  * for performing direct-IO in BIOs.
1557  *
1558  * The problem is that we cannot run set_page_dirty() from interrupt context
1559  * because the required locks are not interrupt-safe.  So what we can do is to
1560  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1561  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1562  * in process context.
1563  *
1564  * We special-case compound pages here: normally this means reads into hugetlb
1565  * pages.  The logic in here doesn't really work right for compound pages
1566  * because the VM does not uniformly chase down the head page in all cases.
1567  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1568  * handle them at all.  So we skip compound pages here at an early stage.
1569  *
1570  * Note that this code is very hard to test under normal circumstances because
1571  * direct-io pins the pages with get_user_pages().  This makes
1572  * is_page_cache_freeable return false, and the VM will not clean the pages.
1573  * But other code (eg, flusher threads) could clean the pages if they are mapped
1574  * pagecache.
1575  *
1576  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1577  * deferred bio dirtying paths.
1578  */
1579 
1580 /*
1581  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1582  */
1583 void bio_set_pages_dirty(struct bio *bio)
1584 {
1585 	struct bio_vec *bvec;
1586 	int i;
1587 
1588 	bio_for_each_segment_all(bvec, bio, i) {
1589 		if (!PageCompound(bvec->bv_page))
1590 			set_page_dirty_lock(bvec->bv_page);
1591 	}
1592 }
1593 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1594 
1595 static void bio_release_pages(struct bio *bio)
1596 {
1597 	struct bio_vec *bvec;
1598 	int i;
1599 
1600 	bio_for_each_segment_all(bvec, bio, i)
1601 		put_page(bvec->bv_page);
1602 }
1603 
1604 /*
1605  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1606  * If they are, then fine.  If, however, some pages are clean then they must
1607  * have been written out during the direct-IO read.  So we take another ref on
1608  * the BIO and re-dirty the pages in process context.
1609  *
1610  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1611  * here on.  It will run one put_page() against each page and will run one
1612  * bio_put() against the BIO.
1613  */
1614 
1615 static void bio_dirty_fn(struct work_struct *work);
1616 
1617 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1618 static DEFINE_SPINLOCK(bio_dirty_lock);
1619 static struct bio *bio_dirty_list;
1620 
1621 /*
1622  * This runs in process context
1623  */
1624 static void bio_dirty_fn(struct work_struct *work)
1625 {
1626 	struct bio *bio, *next;
1627 
1628 	spin_lock_irq(&bio_dirty_lock);
1629 	next = bio_dirty_list;
1630 	bio_dirty_list = NULL;
1631 	spin_unlock_irq(&bio_dirty_lock);
1632 
1633 	while ((bio = next) != NULL) {
1634 		next = bio->bi_private;
1635 
1636 		bio_set_pages_dirty(bio);
1637 		bio_release_pages(bio);
1638 		bio_put(bio);
1639 	}
1640 }
1641 
1642 void bio_check_pages_dirty(struct bio *bio)
1643 {
1644 	struct bio_vec *bvec;
1645 	unsigned long flags;
1646 	int i;
1647 
1648 	bio_for_each_segment_all(bvec, bio, i) {
1649 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1650 			goto defer;
1651 	}
1652 
1653 	bio_release_pages(bio);
1654 	bio_put(bio);
1655 	return;
1656 defer:
1657 	spin_lock_irqsave(&bio_dirty_lock, flags);
1658 	bio->bi_private = bio_dirty_list;
1659 	bio_dirty_list = bio;
1660 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1661 	schedule_work(&bio_dirty_work);
1662 }
1663 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1664 
1665 void generic_start_io_acct(struct request_queue *q, int op,
1666 			   unsigned long sectors, struct hd_struct *part)
1667 {
1668 	const int sgrp = op_stat_group(op);
1669 	int cpu = part_stat_lock();
1670 
1671 	part_round_stats(q, cpu, part);
1672 	part_stat_inc(cpu, part, ios[sgrp]);
1673 	part_stat_add(cpu, part, sectors[sgrp], sectors);
1674 	part_inc_in_flight(q, part, op_is_write(op));
1675 
1676 	part_stat_unlock();
1677 }
1678 EXPORT_SYMBOL(generic_start_io_acct);
1679 
1680 void generic_end_io_acct(struct request_queue *q, int req_op,
1681 			 struct hd_struct *part, unsigned long start_time)
1682 {
1683 	unsigned long duration = jiffies - start_time;
1684 	const int sgrp = op_stat_group(req_op);
1685 	int cpu = part_stat_lock();
1686 
1687 	part_stat_add(cpu, part, ticks[sgrp], duration);
1688 	part_round_stats(q, cpu, part);
1689 	part_dec_in_flight(q, part, op_is_write(req_op));
1690 
1691 	part_stat_unlock();
1692 }
1693 EXPORT_SYMBOL(generic_end_io_acct);
1694 
1695 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1696 void bio_flush_dcache_pages(struct bio *bi)
1697 {
1698 	struct bio_vec bvec;
1699 	struct bvec_iter iter;
1700 
1701 	bio_for_each_segment(bvec, bi, iter)
1702 		flush_dcache_page(bvec.bv_page);
1703 }
1704 EXPORT_SYMBOL(bio_flush_dcache_pages);
1705 #endif
1706 
1707 static inline bool bio_remaining_done(struct bio *bio)
1708 {
1709 	/*
1710 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1711 	 * we always end io on the first invocation.
1712 	 */
1713 	if (!bio_flagged(bio, BIO_CHAIN))
1714 		return true;
1715 
1716 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1717 
1718 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1719 		bio_clear_flag(bio, BIO_CHAIN);
1720 		return true;
1721 	}
1722 
1723 	return false;
1724 }
1725 
1726 /**
1727  * bio_endio - end I/O on a bio
1728  * @bio:	bio
1729  *
1730  * Description:
1731  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1732  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1733  *   bio unless they own it and thus know that it has an end_io function.
1734  *
1735  *   bio_endio() can be called several times on a bio that has been chained
1736  *   using bio_chain().  The ->bi_end_io() function will only be called the
1737  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1738  *   generated if BIO_TRACE_COMPLETION is set.
1739  **/
1740 void bio_endio(struct bio *bio)
1741 {
1742 again:
1743 	if (!bio_remaining_done(bio))
1744 		return;
1745 	if (!bio_integrity_endio(bio))
1746 		return;
1747 
1748 	if (bio->bi_disk)
1749 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1750 
1751 	/*
1752 	 * Need to have a real endio function for chained bios, otherwise
1753 	 * various corner cases will break (like stacking block devices that
1754 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1755 	 * recursion and blowing the stack. Tail call optimization would
1756 	 * handle this, but compiling with frame pointers also disables
1757 	 * gcc's sibling call optimization.
1758 	 */
1759 	if (bio->bi_end_io == bio_chain_endio) {
1760 		bio = __bio_chain_endio(bio);
1761 		goto again;
1762 	}
1763 
1764 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1765 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1766 					 blk_status_to_errno(bio->bi_status));
1767 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1768 	}
1769 
1770 	blk_throtl_bio_endio(bio);
1771 	/* release cgroup info */
1772 	bio_uninit(bio);
1773 	if (bio->bi_end_io)
1774 		bio->bi_end_io(bio);
1775 }
1776 EXPORT_SYMBOL(bio_endio);
1777 
1778 /**
1779  * bio_split - split a bio
1780  * @bio:	bio to split
1781  * @sectors:	number of sectors to split from the front of @bio
1782  * @gfp:	gfp mask
1783  * @bs:		bio set to allocate from
1784  *
1785  * Allocates and returns a new bio which represents @sectors from the start of
1786  * @bio, and updates @bio to represent the remaining sectors.
1787  *
1788  * Unless this is a discard request the newly allocated bio will point
1789  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1790  * @bio is not freed before the split.
1791  */
1792 struct bio *bio_split(struct bio *bio, int sectors,
1793 		      gfp_t gfp, struct bio_set *bs)
1794 {
1795 	struct bio *split;
1796 
1797 	BUG_ON(sectors <= 0);
1798 	BUG_ON(sectors >= bio_sectors(bio));
1799 
1800 	split = bio_clone_fast(bio, gfp, bs);
1801 	if (!split)
1802 		return NULL;
1803 
1804 	split->bi_iter.bi_size = sectors << 9;
1805 
1806 	if (bio_integrity(split))
1807 		bio_integrity_trim(split);
1808 
1809 	bio_advance(bio, split->bi_iter.bi_size);
1810 	bio->bi_iter.bi_done = 0;
1811 
1812 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1813 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1814 
1815 	return split;
1816 }
1817 EXPORT_SYMBOL(bio_split);
1818 
1819 /**
1820  * bio_trim - trim a bio
1821  * @bio:	bio to trim
1822  * @offset:	number of sectors to trim from the front of @bio
1823  * @size:	size we want to trim @bio to, in sectors
1824  */
1825 void bio_trim(struct bio *bio, int offset, int size)
1826 {
1827 	/* 'bio' is a cloned bio which we need to trim to match
1828 	 * the given offset and size.
1829 	 */
1830 
1831 	size <<= 9;
1832 	if (offset == 0 && size == bio->bi_iter.bi_size)
1833 		return;
1834 
1835 	bio_clear_flag(bio, BIO_SEG_VALID);
1836 
1837 	bio_advance(bio, offset << 9);
1838 
1839 	bio->bi_iter.bi_size = size;
1840 
1841 	if (bio_integrity(bio))
1842 		bio_integrity_trim(bio);
1843 
1844 }
1845 EXPORT_SYMBOL_GPL(bio_trim);
1846 
1847 /*
1848  * create memory pools for biovec's in a bio_set.
1849  * use the global biovec slabs created for general use.
1850  */
1851 int biovec_init_pool(mempool_t *pool, int pool_entries)
1852 {
1853 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1854 
1855 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1856 }
1857 
1858 /*
1859  * bioset_exit - exit a bioset initialized with bioset_init()
1860  *
1861  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1862  * kzalloc()).
1863  */
1864 void bioset_exit(struct bio_set *bs)
1865 {
1866 	if (bs->rescue_workqueue)
1867 		destroy_workqueue(bs->rescue_workqueue);
1868 	bs->rescue_workqueue = NULL;
1869 
1870 	mempool_exit(&bs->bio_pool);
1871 	mempool_exit(&bs->bvec_pool);
1872 
1873 	bioset_integrity_free(bs);
1874 	if (bs->bio_slab)
1875 		bio_put_slab(bs);
1876 	bs->bio_slab = NULL;
1877 }
1878 EXPORT_SYMBOL(bioset_exit);
1879 
1880 /**
1881  * bioset_init - Initialize a bio_set
1882  * @bs:		pool to initialize
1883  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1884  * @front_pad:	Number of bytes to allocate in front of the returned bio
1885  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1886  *              and %BIOSET_NEED_RESCUER
1887  *
1888  * Description:
1889  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1890  *    to ask for a number of bytes to be allocated in front of the bio.
1891  *    Front pad allocation is useful for embedding the bio inside
1892  *    another structure, to avoid allocating extra data to go with the bio.
1893  *    Note that the bio must be embedded at the END of that structure always,
1894  *    or things will break badly.
1895  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1896  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1897  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1898  *    dispatch queued requests when the mempool runs out of space.
1899  *
1900  */
1901 int bioset_init(struct bio_set *bs,
1902 		unsigned int pool_size,
1903 		unsigned int front_pad,
1904 		int flags)
1905 {
1906 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1907 
1908 	bs->front_pad = front_pad;
1909 
1910 	spin_lock_init(&bs->rescue_lock);
1911 	bio_list_init(&bs->rescue_list);
1912 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1913 
1914 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1915 	if (!bs->bio_slab)
1916 		return -ENOMEM;
1917 
1918 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1919 		goto bad;
1920 
1921 	if ((flags & BIOSET_NEED_BVECS) &&
1922 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1923 		goto bad;
1924 
1925 	if (!(flags & BIOSET_NEED_RESCUER))
1926 		return 0;
1927 
1928 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1929 	if (!bs->rescue_workqueue)
1930 		goto bad;
1931 
1932 	return 0;
1933 bad:
1934 	bioset_exit(bs);
1935 	return -ENOMEM;
1936 }
1937 EXPORT_SYMBOL(bioset_init);
1938 
1939 /*
1940  * Initialize and setup a new bio_set, based on the settings from
1941  * another bio_set.
1942  */
1943 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1944 {
1945 	int flags;
1946 
1947 	flags = 0;
1948 	if (src->bvec_pool.min_nr)
1949 		flags |= BIOSET_NEED_BVECS;
1950 	if (src->rescue_workqueue)
1951 		flags |= BIOSET_NEED_RESCUER;
1952 
1953 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1954 }
1955 EXPORT_SYMBOL(bioset_init_from_src);
1956 
1957 #ifdef CONFIG_BLK_CGROUP
1958 
1959 #ifdef CONFIG_MEMCG
1960 /**
1961  * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
1962  * @bio: target bio
1963  * @page: the page to lookup the blkcg from
1964  *
1965  * Associate @bio with the blkcg from @page's owning memcg.  This works like
1966  * every other associate function wrt references.
1967  */
1968 int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
1969 {
1970 	struct cgroup_subsys_state *blkcg_css;
1971 
1972 	if (unlikely(bio->bi_css))
1973 		return -EBUSY;
1974 	if (!page->mem_cgroup)
1975 		return 0;
1976 	blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
1977 				     &io_cgrp_subsys);
1978 	bio->bi_css = blkcg_css;
1979 	return 0;
1980 }
1981 #endif /* CONFIG_MEMCG */
1982 
1983 /**
1984  * bio_associate_blkcg - associate a bio with the specified blkcg
1985  * @bio: target bio
1986  * @blkcg_css: css of the blkcg to associate
1987  *
1988  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1989  * treat @bio as if it were issued by a task which belongs to the blkcg.
1990  *
1991  * This function takes an extra reference of @blkcg_css which will be put
1992  * when @bio is released.  The caller must own @bio and is responsible for
1993  * synchronizing calls to this function.
1994  */
1995 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1996 {
1997 	if (unlikely(bio->bi_css))
1998 		return -EBUSY;
1999 	css_get(blkcg_css);
2000 	bio->bi_css = blkcg_css;
2001 	return 0;
2002 }
2003 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2004 
2005 /**
2006  * bio_associate_blkg - associate a bio with the specified blkg
2007  * @bio: target bio
2008  * @blkg: the blkg to associate
2009  *
2010  * Associate @bio with the blkg specified by @blkg.  This is the queue specific
2011  * blkcg information associated with the @bio, a reference will be taken on the
2012  * @blkg and will be freed when the bio is freed.
2013  */
2014 int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2015 {
2016 	if (unlikely(bio->bi_blkg))
2017 		return -EBUSY;
2018 	blkg_get(blkg);
2019 	bio->bi_blkg = blkg;
2020 	return 0;
2021 }
2022 
2023 /**
2024  * bio_disassociate_task - undo bio_associate_current()
2025  * @bio: target bio
2026  */
2027 void bio_disassociate_task(struct bio *bio)
2028 {
2029 	if (bio->bi_ioc) {
2030 		put_io_context(bio->bi_ioc);
2031 		bio->bi_ioc = NULL;
2032 	}
2033 	if (bio->bi_css) {
2034 		css_put(bio->bi_css);
2035 		bio->bi_css = NULL;
2036 	}
2037 	if (bio->bi_blkg) {
2038 		blkg_put(bio->bi_blkg);
2039 		bio->bi_blkg = NULL;
2040 	}
2041 }
2042 
2043 /**
2044  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2045  * @dst: destination bio
2046  * @src: source bio
2047  */
2048 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2049 {
2050 	if (src->bi_css)
2051 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2052 }
2053 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2054 #endif /* CONFIG_BLK_CGROUP */
2055 
2056 static void __init biovec_init_slabs(void)
2057 {
2058 	int i;
2059 
2060 	for (i = 0; i < BVEC_POOL_NR; i++) {
2061 		int size;
2062 		struct biovec_slab *bvs = bvec_slabs + i;
2063 
2064 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2065 			bvs->slab = NULL;
2066 			continue;
2067 		}
2068 
2069 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2070 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2071                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2072 	}
2073 }
2074 
2075 static int __init init_bio(void)
2076 {
2077 	bio_slab_max = 2;
2078 	bio_slab_nr = 0;
2079 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2080 			    GFP_KERNEL);
2081 	if (!bio_slabs)
2082 		panic("bio: can't allocate bios\n");
2083 
2084 	bio_integrity_init();
2085 	biovec_init_slabs();
2086 
2087 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2088 		panic("bio: can't allocate bios\n");
2089 
2090 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2091 		panic("bio: can't create integrity pool\n");
2092 
2093 	return 0;
2094 }
2095 subsys_initcall(init_bio);
2096