xref: /linux/block/bio.c (revision e6f2a617ac53bc0753b885ffb94379ff48b2e2df)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 
21 #include <trace/events/block.h>
22 #include "blk.h"
23 #include "blk-rq-qos.h"
24 
25 /*
26  * Test patch to inline a certain number of bi_io_vec's inside the bio
27  * itself, to shrink a bio data allocation from two mempool calls to one
28  */
29 #define BIO_INLINE_VECS		4
30 
31 /*
32  * if you change this list, also change bvec_alloc or things will
33  * break badly! cannot be bigger than what you can fit into an
34  * unsigned short
35  */
36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
38 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
39 };
40 #undef BV
41 
42 /*
43  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44  * IO code that does not need private memory pools.
45  */
46 struct bio_set fs_bio_set;
47 EXPORT_SYMBOL(fs_bio_set);
48 
49 /*
50  * Our slab pool management
51  */
52 struct bio_slab {
53 	struct kmem_cache *slab;
54 	unsigned int slab_ref;
55 	unsigned int slab_size;
56 	char name[8];
57 };
58 static DEFINE_MUTEX(bio_slab_lock);
59 static struct bio_slab *bio_slabs;
60 static unsigned int bio_slab_nr, bio_slab_max;
61 
62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63 {
64 	unsigned int sz = sizeof(struct bio) + extra_size;
65 	struct kmem_cache *slab = NULL;
66 	struct bio_slab *bslab, *new_bio_slabs;
67 	unsigned int new_bio_slab_max;
68 	unsigned int i, entry = -1;
69 
70 	mutex_lock(&bio_slab_lock);
71 
72 	i = 0;
73 	while (i < bio_slab_nr) {
74 		bslab = &bio_slabs[i];
75 
76 		if (!bslab->slab && entry == -1)
77 			entry = i;
78 		else if (bslab->slab_size == sz) {
79 			slab = bslab->slab;
80 			bslab->slab_ref++;
81 			break;
82 		}
83 		i++;
84 	}
85 
86 	if (slab)
87 		goto out_unlock;
88 
89 	if (bio_slab_nr == bio_slab_max && entry == -1) {
90 		new_bio_slab_max = bio_slab_max << 1;
91 		new_bio_slabs = krealloc(bio_slabs,
92 					 new_bio_slab_max * sizeof(struct bio_slab),
93 					 GFP_KERNEL);
94 		if (!new_bio_slabs)
95 			goto out_unlock;
96 		bio_slab_max = new_bio_slab_max;
97 		bio_slabs = new_bio_slabs;
98 	}
99 	if (entry == -1)
100 		entry = bio_slab_nr++;
101 
102 	bslab = &bio_slabs[entry];
103 
104 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
105 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 				 SLAB_HWCACHE_ALIGN, NULL);
107 	if (!slab)
108 		goto out_unlock;
109 
110 	bslab->slab = slab;
111 	bslab->slab_ref = 1;
112 	bslab->slab_size = sz;
113 out_unlock:
114 	mutex_unlock(&bio_slab_lock);
115 	return slab;
116 }
117 
118 static void bio_put_slab(struct bio_set *bs)
119 {
120 	struct bio_slab *bslab = NULL;
121 	unsigned int i;
122 
123 	mutex_lock(&bio_slab_lock);
124 
125 	for (i = 0; i < bio_slab_nr; i++) {
126 		if (bs->bio_slab == bio_slabs[i].slab) {
127 			bslab = &bio_slabs[i];
128 			break;
129 		}
130 	}
131 
132 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 		goto out;
134 
135 	WARN_ON(!bslab->slab_ref);
136 
137 	if (--bslab->slab_ref)
138 		goto out;
139 
140 	kmem_cache_destroy(bslab->slab);
141 	bslab->slab = NULL;
142 
143 out:
144 	mutex_unlock(&bio_slab_lock);
145 }
146 
147 unsigned int bvec_nr_vecs(unsigned short idx)
148 {
149 	return bvec_slabs[--idx].nr_vecs;
150 }
151 
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
153 {
154 	if (!idx)
155 		return;
156 	idx--;
157 
158 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
159 
160 	if (idx == BVEC_POOL_MAX) {
161 		mempool_free(bv, pool);
162 	} else {
163 		struct biovec_slab *bvs = bvec_slabs + idx;
164 
165 		kmem_cache_free(bvs->slab, bv);
166 	}
167 }
168 
169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 			   mempool_t *pool)
171 {
172 	struct bio_vec *bvl;
173 
174 	/*
175 	 * see comment near bvec_array define!
176 	 */
177 	switch (nr) {
178 	case 1:
179 		*idx = 0;
180 		break;
181 	case 2 ... 4:
182 		*idx = 1;
183 		break;
184 	case 5 ... 16:
185 		*idx = 2;
186 		break;
187 	case 17 ... 64:
188 		*idx = 3;
189 		break;
190 	case 65 ... 128:
191 		*idx = 4;
192 		break;
193 	case 129 ... BIO_MAX_PAGES:
194 		*idx = 5;
195 		break;
196 	default:
197 		return NULL;
198 	}
199 
200 	/*
201 	 * idx now points to the pool we want to allocate from. only the
202 	 * 1-vec entry pool is mempool backed.
203 	 */
204 	if (*idx == BVEC_POOL_MAX) {
205 fallback:
206 		bvl = mempool_alloc(pool, gfp_mask);
207 	} else {
208 		struct biovec_slab *bvs = bvec_slabs + *idx;
209 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
210 
211 		/*
212 		 * Make this allocation restricted and don't dump info on
213 		 * allocation failures, since we'll fallback to the mempool
214 		 * in case of failure.
215 		 */
216 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
217 
218 		/*
219 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 		 * is set, retry with the 1-entry mempool
221 		 */
222 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
223 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
224 			*idx = BVEC_POOL_MAX;
225 			goto fallback;
226 		}
227 	}
228 
229 	(*idx)++;
230 	return bvl;
231 }
232 
233 void bio_uninit(struct bio *bio)
234 {
235 	bio_disassociate_blkg(bio);
236 
237 	if (bio_integrity(bio))
238 		bio_integrity_free(bio);
239 }
240 EXPORT_SYMBOL(bio_uninit);
241 
242 static void bio_free(struct bio *bio)
243 {
244 	struct bio_set *bs = bio->bi_pool;
245 	void *p;
246 
247 	bio_uninit(bio);
248 
249 	if (bs) {
250 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
251 
252 		/*
253 		 * If we have front padding, adjust the bio pointer before freeing
254 		 */
255 		p = bio;
256 		p -= bs->front_pad;
257 
258 		mempool_free(p, &bs->bio_pool);
259 	} else {
260 		/* Bio was allocated by bio_kmalloc() */
261 		kfree(bio);
262 	}
263 }
264 
265 /*
266  * Users of this function have their own bio allocation. Subsequently,
267  * they must remember to pair any call to bio_init() with bio_uninit()
268  * when IO has completed, or when the bio is released.
269  */
270 void bio_init(struct bio *bio, struct bio_vec *table,
271 	      unsigned short max_vecs)
272 {
273 	memset(bio, 0, sizeof(*bio));
274 	atomic_set(&bio->__bi_remaining, 1);
275 	atomic_set(&bio->__bi_cnt, 1);
276 
277 	bio->bi_io_vec = table;
278 	bio->bi_max_vecs = max_vecs;
279 }
280 EXPORT_SYMBOL(bio_init);
281 
282 /**
283  * bio_reset - reinitialize a bio
284  * @bio:	bio to reset
285  *
286  * Description:
287  *   After calling bio_reset(), @bio will be in the same state as a freshly
288  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
289  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
290  *   comment in struct bio.
291  */
292 void bio_reset(struct bio *bio)
293 {
294 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
295 
296 	bio_uninit(bio);
297 
298 	memset(bio, 0, BIO_RESET_BYTES);
299 	bio->bi_flags = flags;
300 	atomic_set(&bio->__bi_remaining, 1);
301 }
302 EXPORT_SYMBOL(bio_reset);
303 
304 static struct bio *__bio_chain_endio(struct bio *bio)
305 {
306 	struct bio *parent = bio->bi_private;
307 
308 	if (!parent->bi_status)
309 		parent->bi_status = bio->bi_status;
310 	bio_put(bio);
311 	return parent;
312 }
313 
314 static void bio_chain_endio(struct bio *bio)
315 {
316 	bio_endio(__bio_chain_endio(bio));
317 }
318 
319 /**
320  * bio_chain - chain bio completions
321  * @bio: the target bio
322  * @parent: the @bio's parent bio
323  *
324  * The caller won't have a bi_end_io called when @bio completes - instead,
325  * @parent's bi_end_io won't be called until both @parent and @bio have
326  * completed; the chained bio will also be freed when it completes.
327  *
328  * The caller must not set bi_private or bi_end_io in @bio.
329  */
330 void bio_chain(struct bio *bio, struct bio *parent)
331 {
332 	BUG_ON(bio->bi_private || bio->bi_end_io);
333 
334 	bio->bi_private = parent;
335 	bio->bi_end_io	= bio_chain_endio;
336 	bio_inc_remaining(parent);
337 }
338 EXPORT_SYMBOL(bio_chain);
339 
340 static void bio_alloc_rescue(struct work_struct *work)
341 {
342 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 	struct bio *bio;
344 
345 	while (1) {
346 		spin_lock(&bs->rescue_lock);
347 		bio = bio_list_pop(&bs->rescue_list);
348 		spin_unlock(&bs->rescue_lock);
349 
350 		if (!bio)
351 			break;
352 
353 		generic_make_request(bio);
354 	}
355 }
356 
357 static void punt_bios_to_rescuer(struct bio_set *bs)
358 {
359 	struct bio_list punt, nopunt;
360 	struct bio *bio;
361 
362 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
363 		return;
364 	/*
365 	 * In order to guarantee forward progress we must punt only bios that
366 	 * were allocated from this bio_set; otherwise, if there was a bio on
367 	 * there for a stacking driver higher up in the stack, processing it
368 	 * could require allocating bios from this bio_set, and doing that from
369 	 * our own rescuer would be bad.
370 	 *
371 	 * Since bio lists are singly linked, pop them all instead of trying to
372 	 * remove from the middle of the list:
373 	 */
374 
375 	bio_list_init(&punt);
376 	bio_list_init(&nopunt);
377 
378 	while ((bio = bio_list_pop(&current->bio_list[0])))
379 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
380 	current->bio_list[0] = nopunt;
381 
382 	bio_list_init(&nopunt);
383 	while ((bio = bio_list_pop(&current->bio_list[1])))
384 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 	current->bio_list[1] = nopunt;
386 
387 	spin_lock(&bs->rescue_lock);
388 	bio_list_merge(&bs->rescue_list, &punt);
389 	spin_unlock(&bs->rescue_lock);
390 
391 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
392 }
393 
394 /**
395  * bio_alloc_bioset - allocate a bio for I/O
396  * @gfp_mask:   the GFP_* mask given to the slab allocator
397  * @nr_iovecs:	number of iovecs to pre-allocate
398  * @bs:		the bio_set to allocate from.
399  *
400  * Description:
401  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402  *   backed by the @bs's mempool.
403  *
404  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405  *   always be able to allocate a bio. This is due to the mempool guarantees.
406  *   To make this work, callers must never allocate more than 1 bio at a time
407  *   from this pool. Callers that need to allocate more than 1 bio must always
408  *   submit the previously allocated bio for IO before attempting to allocate
409  *   a new one. Failure to do so can cause deadlocks under memory pressure.
410  *
411  *   Note that when running under generic_make_request() (i.e. any block
412  *   driver), bios are not submitted until after you return - see the code in
413  *   generic_make_request() that converts recursion into iteration, to prevent
414  *   stack overflows.
415  *
416  *   This would normally mean allocating multiple bios under
417  *   generic_make_request() would be susceptible to deadlocks, but we have
418  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
419  *   thread.
420  *
421  *   However, we do not guarantee forward progress for allocations from other
422  *   mempools. Doing multiple allocations from the same mempool under
423  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
424  *   for per bio allocations.
425  *
426  *   RETURNS:
427  *   Pointer to new bio on success, NULL on failure.
428  */
429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
430 			     struct bio_set *bs)
431 {
432 	gfp_t saved_gfp = gfp_mask;
433 	unsigned front_pad;
434 	unsigned inline_vecs;
435 	struct bio_vec *bvl = NULL;
436 	struct bio *bio;
437 	void *p;
438 
439 	if (!bs) {
440 		if (nr_iovecs > UIO_MAXIOV)
441 			return NULL;
442 
443 		p = kmalloc(sizeof(struct bio) +
444 			    nr_iovecs * sizeof(struct bio_vec),
445 			    gfp_mask);
446 		front_pad = 0;
447 		inline_vecs = nr_iovecs;
448 	} else {
449 		/* should not use nobvec bioset for nr_iovecs > 0 */
450 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
451 				 nr_iovecs > 0))
452 			return NULL;
453 		/*
454 		 * generic_make_request() converts recursion to iteration; this
455 		 * means if we're running beneath it, any bios we allocate and
456 		 * submit will not be submitted (and thus freed) until after we
457 		 * return.
458 		 *
459 		 * This exposes us to a potential deadlock if we allocate
460 		 * multiple bios from the same bio_set() while running
461 		 * underneath generic_make_request(). If we were to allocate
462 		 * multiple bios (say a stacking block driver that was splitting
463 		 * bios), we would deadlock if we exhausted the mempool's
464 		 * reserve.
465 		 *
466 		 * We solve this, and guarantee forward progress, with a rescuer
467 		 * workqueue per bio_set. If we go to allocate and there are
468 		 * bios on current->bio_list, we first try the allocation
469 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
470 		 * bios we would be blocking to the rescuer workqueue before
471 		 * we retry with the original gfp_flags.
472 		 */
473 
474 		if (current->bio_list &&
475 		    (!bio_list_empty(&current->bio_list[0]) ||
476 		     !bio_list_empty(&current->bio_list[1])) &&
477 		    bs->rescue_workqueue)
478 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
479 
480 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 		if (!p && gfp_mask != saved_gfp) {
482 			punt_bios_to_rescuer(bs);
483 			gfp_mask = saved_gfp;
484 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
485 		}
486 
487 		front_pad = bs->front_pad;
488 		inline_vecs = BIO_INLINE_VECS;
489 	}
490 
491 	if (unlikely(!p))
492 		return NULL;
493 
494 	bio = p + front_pad;
495 	bio_init(bio, NULL, 0);
496 
497 	if (nr_iovecs > inline_vecs) {
498 		unsigned long idx = 0;
499 
500 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 		if (!bvl && gfp_mask != saved_gfp) {
502 			punt_bios_to_rescuer(bs);
503 			gfp_mask = saved_gfp;
504 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
505 		}
506 
507 		if (unlikely(!bvl))
508 			goto err_free;
509 
510 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
511 	} else if (nr_iovecs) {
512 		bvl = bio->bi_inline_vecs;
513 	}
514 
515 	bio->bi_pool = bs;
516 	bio->bi_max_vecs = nr_iovecs;
517 	bio->bi_io_vec = bvl;
518 	return bio;
519 
520 err_free:
521 	mempool_free(p, &bs->bio_pool);
522 	return NULL;
523 }
524 EXPORT_SYMBOL(bio_alloc_bioset);
525 
526 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
527 {
528 	unsigned long flags;
529 	struct bio_vec bv;
530 	struct bvec_iter iter;
531 
532 	__bio_for_each_segment(bv, bio, iter, start) {
533 		char *data = bvec_kmap_irq(&bv, &flags);
534 		memset(data, 0, bv.bv_len);
535 		flush_dcache_page(bv.bv_page);
536 		bvec_kunmap_irq(data, &flags);
537 	}
538 }
539 EXPORT_SYMBOL(zero_fill_bio_iter);
540 
541 /**
542  * bio_put - release a reference to a bio
543  * @bio:   bio to release reference to
544  *
545  * Description:
546  *   Put a reference to a &struct bio, either one you have gotten with
547  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
548  **/
549 void bio_put(struct bio *bio)
550 {
551 	if (!bio_flagged(bio, BIO_REFFED))
552 		bio_free(bio);
553 	else {
554 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
555 
556 		/*
557 		 * last put frees it
558 		 */
559 		if (atomic_dec_and_test(&bio->__bi_cnt))
560 			bio_free(bio);
561 	}
562 }
563 EXPORT_SYMBOL(bio_put);
564 
565 /**
566  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
567  * 	@bio: destination bio
568  * 	@bio_src: bio to clone
569  *
570  *	Clone a &bio. Caller will own the returned bio, but not
571  *	the actual data it points to. Reference count of returned
572  * 	bio will be one.
573  *
574  * 	Caller must ensure that @bio_src is not freed before @bio.
575  */
576 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
577 {
578 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
579 
580 	/*
581 	 * most users will be overriding ->bi_disk with a new target,
582 	 * so we don't set nor calculate new physical/hw segment counts here
583 	 */
584 	bio->bi_disk = bio_src->bi_disk;
585 	bio->bi_partno = bio_src->bi_partno;
586 	bio_set_flag(bio, BIO_CLONED);
587 	if (bio_flagged(bio_src, BIO_THROTTLED))
588 		bio_set_flag(bio, BIO_THROTTLED);
589 	bio->bi_opf = bio_src->bi_opf;
590 	bio->bi_ioprio = bio_src->bi_ioprio;
591 	bio->bi_write_hint = bio_src->bi_write_hint;
592 	bio->bi_iter = bio_src->bi_iter;
593 	bio->bi_io_vec = bio_src->bi_io_vec;
594 
595 	bio_clone_blkg_association(bio, bio_src);
596 	blkcg_bio_issue_init(bio);
597 }
598 EXPORT_SYMBOL(__bio_clone_fast);
599 
600 /**
601  *	bio_clone_fast - clone a bio that shares the original bio's biovec
602  *	@bio: bio to clone
603  *	@gfp_mask: allocation priority
604  *	@bs: bio_set to allocate from
605  *
606  * 	Like __bio_clone_fast, only also allocates the returned bio
607  */
608 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
609 {
610 	struct bio *b;
611 
612 	b = bio_alloc_bioset(gfp_mask, 0, bs);
613 	if (!b)
614 		return NULL;
615 
616 	__bio_clone_fast(b, bio);
617 
618 	if (bio_integrity(bio)) {
619 		int ret;
620 
621 		ret = bio_integrity_clone(b, bio, gfp_mask);
622 
623 		if (ret < 0) {
624 			bio_put(b);
625 			return NULL;
626 		}
627 	}
628 
629 	return b;
630 }
631 EXPORT_SYMBOL(bio_clone_fast);
632 
633 static inline bool page_is_mergeable(const struct bio_vec *bv,
634 		struct page *page, unsigned int len, unsigned int off,
635 		bool *same_page)
636 {
637 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
638 		bv->bv_offset + bv->bv_len - 1;
639 	phys_addr_t page_addr = page_to_phys(page);
640 
641 	if (vec_end_addr + 1 != page_addr + off)
642 		return false;
643 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
644 		return false;
645 
646 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
647 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
648 		return false;
649 	return true;
650 }
651 
652 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
653 		struct page *page, unsigned len, unsigned offset,
654 		bool *same_page)
655 {
656 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
657 	unsigned long mask = queue_segment_boundary(q);
658 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
659 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
660 
661 	if ((addr1 | mask) != (addr2 | mask))
662 		return false;
663 	if (bv->bv_len + len > queue_max_segment_size(q))
664 		return false;
665 	return __bio_try_merge_page(bio, page, len, offset, same_page);
666 }
667 
668 /**
669  *	__bio_add_pc_page	- attempt to add page to passthrough bio
670  *	@q: the target queue
671  *	@bio: destination bio
672  *	@page: page to add
673  *	@len: vec entry length
674  *	@offset: vec entry offset
675  *	@same_page: return if the merge happen inside the same page
676  *
677  *	Attempt to add a page to the bio_vec maplist. This can fail for a
678  *	number of reasons, such as the bio being full or target block device
679  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
680  *	so it is always possible to add a single page to an empty bio.
681  *
682  *	This should only be used by passthrough bios.
683  */
684 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
685 		struct page *page, unsigned int len, unsigned int offset,
686 		bool *same_page)
687 {
688 	struct bio_vec *bvec;
689 
690 	/*
691 	 * cloned bio must not modify vec list
692 	 */
693 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
694 		return 0;
695 
696 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
697 		return 0;
698 
699 	if (bio->bi_vcnt > 0) {
700 		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
701 			return len;
702 
703 		/*
704 		 * If the queue doesn't support SG gaps and adding this segment
705 		 * would create a gap, disallow it.
706 		 */
707 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
708 		if (bvec_gap_to_prev(q, bvec, offset))
709 			return 0;
710 	}
711 
712 	if (bio_full(bio, len))
713 		return 0;
714 
715 	if (bio->bi_vcnt >= queue_max_segments(q))
716 		return 0;
717 
718 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
719 	bvec->bv_page = page;
720 	bvec->bv_len = len;
721 	bvec->bv_offset = offset;
722 	bio->bi_vcnt++;
723 	bio->bi_iter.bi_size += len;
724 	return len;
725 }
726 
727 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
728 		struct page *page, unsigned int len, unsigned int offset)
729 {
730 	bool same_page = false;
731 	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
732 }
733 EXPORT_SYMBOL(bio_add_pc_page);
734 
735 /**
736  * __bio_try_merge_page - try appending data to an existing bvec.
737  * @bio: destination bio
738  * @page: start page to add
739  * @len: length of the data to add
740  * @off: offset of the data relative to @page
741  * @same_page: return if the segment has been merged inside the same page
742  *
743  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
744  * a useful optimisation for file systems with a block size smaller than the
745  * page size.
746  *
747  * Warn if (@len, @off) crosses pages in case that @same_page is true.
748  *
749  * Return %true on success or %false on failure.
750  */
751 bool __bio_try_merge_page(struct bio *bio, struct page *page,
752 		unsigned int len, unsigned int off, bool *same_page)
753 {
754 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
755 		return false;
756 
757 	if (bio->bi_vcnt > 0 && !bio_full(bio, len)) {
758 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
759 
760 		if (page_is_mergeable(bv, page, len, off, same_page)) {
761 			bv->bv_len += len;
762 			bio->bi_iter.bi_size += len;
763 			return true;
764 		}
765 	}
766 	return false;
767 }
768 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
769 
770 /**
771  * __bio_add_page - add page(s) to a bio in a new segment
772  * @bio: destination bio
773  * @page: start page to add
774  * @len: length of the data to add, may cross pages
775  * @off: offset of the data relative to @page, may cross pages
776  *
777  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
778  * that @bio has space for another bvec.
779  */
780 void __bio_add_page(struct bio *bio, struct page *page,
781 		unsigned int len, unsigned int off)
782 {
783 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
784 
785 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
786 	WARN_ON_ONCE(bio_full(bio, len));
787 
788 	bv->bv_page = page;
789 	bv->bv_offset = off;
790 	bv->bv_len = len;
791 
792 	bio->bi_iter.bi_size += len;
793 	bio->bi_vcnt++;
794 
795 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
796 		bio_set_flag(bio, BIO_WORKINGSET);
797 }
798 EXPORT_SYMBOL_GPL(__bio_add_page);
799 
800 /**
801  *	bio_add_page	-	attempt to add page(s) to bio
802  *	@bio: destination bio
803  *	@page: start page to add
804  *	@len: vec entry length, may cross pages
805  *	@offset: vec entry offset relative to @page, may cross pages
806  *
807  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
808  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
809  */
810 int bio_add_page(struct bio *bio, struct page *page,
811 		 unsigned int len, unsigned int offset)
812 {
813 	bool same_page = false;
814 
815 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
816 		if (bio_full(bio, len))
817 			return 0;
818 		__bio_add_page(bio, page, len, offset);
819 	}
820 	return len;
821 }
822 EXPORT_SYMBOL(bio_add_page);
823 
824 void bio_release_pages(struct bio *bio, bool mark_dirty)
825 {
826 	struct bvec_iter_all iter_all;
827 	struct bio_vec *bvec;
828 
829 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
830 		return;
831 
832 	bio_for_each_segment_all(bvec, bio, iter_all) {
833 		if (mark_dirty && !PageCompound(bvec->bv_page))
834 			set_page_dirty_lock(bvec->bv_page);
835 		put_page(bvec->bv_page);
836 	}
837 }
838 
839 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
840 {
841 	const struct bio_vec *bv = iter->bvec;
842 	unsigned int len;
843 	size_t size;
844 
845 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
846 		return -EINVAL;
847 
848 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
849 	size = bio_add_page(bio, bv->bv_page, len,
850 				bv->bv_offset + iter->iov_offset);
851 	if (unlikely(size != len))
852 		return -EINVAL;
853 	iov_iter_advance(iter, size);
854 	return 0;
855 }
856 
857 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
858 
859 /**
860  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
861  * @bio: bio to add pages to
862  * @iter: iov iterator describing the region to be mapped
863  *
864  * Pins pages from *iter and appends them to @bio's bvec array. The
865  * pages will have to be released using put_page() when done.
866  * For multi-segment *iter, this function only adds pages from the
867  * the next non-empty segment of the iov iterator.
868  */
869 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
870 {
871 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
872 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
873 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
874 	struct page **pages = (struct page **)bv;
875 	bool same_page = false;
876 	ssize_t size, left;
877 	unsigned len, i;
878 	size_t offset;
879 
880 	/*
881 	 * Move page array up in the allocated memory for the bio vecs as far as
882 	 * possible so that we can start filling biovecs from the beginning
883 	 * without overwriting the temporary page array.
884 	*/
885 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
886 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
887 
888 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
889 	if (unlikely(size <= 0))
890 		return size ? size : -EFAULT;
891 
892 	for (left = size, i = 0; left > 0; left -= len, i++) {
893 		struct page *page = pages[i];
894 
895 		len = min_t(size_t, PAGE_SIZE - offset, left);
896 
897 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
898 			if (same_page)
899 				put_page(page);
900 		} else {
901 			if (WARN_ON_ONCE(bio_full(bio, len)))
902                                 return -EINVAL;
903 			__bio_add_page(bio, page, len, offset);
904 		}
905 		offset = 0;
906 	}
907 
908 	iov_iter_advance(iter, size);
909 	return 0;
910 }
911 
912 /**
913  * bio_iov_iter_get_pages - add user or kernel pages to a bio
914  * @bio: bio to add pages to
915  * @iter: iov iterator describing the region to be added
916  *
917  * This takes either an iterator pointing to user memory, or one pointing to
918  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
919  * map them into the kernel. On IO completion, the caller should put those
920  * pages. If we're adding kernel pages, and the caller told us it's safe to
921  * do so, we just have to add the pages to the bio directly. We don't grab an
922  * extra reference to those pages (the user should already have that), and we
923  * don't put the page on IO completion. The caller needs to check if the bio is
924  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
925  * released.
926  *
927  * The function tries, but does not guarantee, to pin as many pages as
928  * fit into the bio, or are requested in *iter, whatever is smaller. If
929  * MM encounters an error pinning the requested pages, it stops. Error
930  * is returned only if 0 pages could be pinned.
931  */
932 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
933 {
934 	const bool is_bvec = iov_iter_is_bvec(iter);
935 	int ret;
936 
937 	if (WARN_ON_ONCE(bio->bi_vcnt))
938 		return -EINVAL;
939 
940 	do {
941 		if (is_bvec)
942 			ret = __bio_iov_bvec_add_pages(bio, iter);
943 		else
944 			ret = __bio_iov_iter_get_pages(bio, iter);
945 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
946 
947 	if (is_bvec)
948 		bio_set_flag(bio, BIO_NO_PAGE_REF);
949 	return bio->bi_vcnt ? 0 : ret;
950 }
951 
952 static void submit_bio_wait_endio(struct bio *bio)
953 {
954 	complete(bio->bi_private);
955 }
956 
957 /**
958  * submit_bio_wait - submit a bio, and wait until it completes
959  * @bio: The &struct bio which describes the I/O
960  *
961  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
962  * bio_endio() on failure.
963  *
964  * WARNING: Unlike to how submit_bio() is usually used, this function does not
965  * result in bio reference to be consumed. The caller must drop the reference
966  * on his own.
967  */
968 int submit_bio_wait(struct bio *bio)
969 {
970 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
971 
972 	bio->bi_private = &done;
973 	bio->bi_end_io = submit_bio_wait_endio;
974 	bio->bi_opf |= REQ_SYNC;
975 	submit_bio(bio);
976 	wait_for_completion_io(&done);
977 
978 	return blk_status_to_errno(bio->bi_status);
979 }
980 EXPORT_SYMBOL(submit_bio_wait);
981 
982 /**
983  * bio_advance - increment/complete a bio by some number of bytes
984  * @bio:	bio to advance
985  * @bytes:	number of bytes to complete
986  *
987  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
988  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
989  * be updated on the last bvec as well.
990  *
991  * @bio will then represent the remaining, uncompleted portion of the io.
992  */
993 void bio_advance(struct bio *bio, unsigned bytes)
994 {
995 	if (bio_integrity(bio))
996 		bio_integrity_advance(bio, bytes);
997 
998 	bio_advance_iter(bio, &bio->bi_iter, bytes);
999 }
1000 EXPORT_SYMBOL(bio_advance);
1001 
1002 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1003 			struct bio *src, struct bvec_iter *src_iter)
1004 {
1005 	struct bio_vec src_bv, dst_bv;
1006 	void *src_p, *dst_p;
1007 	unsigned bytes;
1008 
1009 	while (src_iter->bi_size && dst_iter->bi_size) {
1010 		src_bv = bio_iter_iovec(src, *src_iter);
1011 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1012 
1013 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1014 
1015 		src_p = kmap_atomic(src_bv.bv_page);
1016 		dst_p = kmap_atomic(dst_bv.bv_page);
1017 
1018 		memcpy(dst_p + dst_bv.bv_offset,
1019 		       src_p + src_bv.bv_offset,
1020 		       bytes);
1021 
1022 		kunmap_atomic(dst_p);
1023 		kunmap_atomic(src_p);
1024 
1025 		flush_dcache_page(dst_bv.bv_page);
1026 
1027 		bio_advance_iter(src, src_iter, bytes);
1028 		bio_advance_iter(dst, dst_iter, bytes);
1029 	}
1030 }
1031 EXPORT_SYMBOL(bio_copy_data_iter);
1032 
1033 /**
1034  * bio_copy_data - copy contents of data buffers from one bio to another
1035  * @src: source bio
1036  * @dst: destination bio
1037  *
1038  * Stops when it reaches the end of either @src or @dst - that is, copies
1039  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1040  */
1041 void bio_copy_data(struct bio *dst, struct bio *src)
1042 {
1043 	struct bvec_iter src_iter = src->bi_iter;
1044 	struct bvec_iter dst_iter = dst->bi_iter;
1045 
1046 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1047 }
1048 EXPORT_SYMBOL(bio_copy_data);
1049 
1050 /**
1051  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1052  * another
1053  * @src: source bio list
1054  * @dst: destination bio list
1055  *
1056  * Stops when it reaches the end of either the @src list or @dst list - that is,
1057  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1058  * bios).
1059  */
1060 void bio_list_copy_data(struct bio *dst, struct bio *src)
1061 {
1062 	struct bvec_iter src_iter = src->bi_iter;
1063 	struct bvec_iter dst_iter = dst->bi_iter;
1064 
1065 	while (1) {
1066 		if (!src_iter.bi_size) {
1067 			src = src->bi_next;
1068 			if (!src)
1069 				break;
1070 
1071 			src_iter = src->bi_iter;
1072 		}
1073 
1074 		if (!dst_iter.bi_size) {
1075 			dst = dst->bi_next;
1076 			if (!dst)
1077 				break;
1078 
1079 			dst_iter = dst->bi_iter;
1080 		}
1081 
1082 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1083 	}
1084 }
1085 EXPORT_SYMBOL(bio_list_copy_data);
1086 
1087 struct bio_map_data {
1088 	int is_our_pages;
1089 	struct iov_iter iter;
1090 	struct iovec iov[];
1091 };
1092 
1093 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1094 					       gfp_t gfp_mask)
1095 {
1096 	struct bio_map_data *bmd;
1097 	if (data->nr_segs > UIO_MAXIOV)
1098 		return NULL;
1099 
1100 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1101 	if (!bmd)
1102 		return NULL;
1103 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1104 	bmd->iter = *data;
1105 	bmd->iter.iov = bmd->iov;
1106 	return bmd;
1107 }
1108 
1109 /**
1110  * bio_copy_from_iter - copy all pages from iov_iter to bio
1111  * @bio: The &struct bio which describes the I/O as destination
1112  * @iter: iov_iter as source
1113  *
1114  * Copy all pages from iov_iter to bio.
1115  * Returns 0 on success, or error on failure.
1116  */
1117 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1118 {
1119 	struct bio_vec *bvec;
1120 	struct bvec_iter_all iter_all;
1121 
1122 	bio_for_each_segment_all(bvec, bio, iter_all) {
1123 		ssize_t ret;
1124 
1125 		ret = copy_page_from_iter(bvec->bv_page,
1126 					  bvec->bv_offset,
1127 					  bvec->bv_len,
1128 					  iter);
1129 
1130 		if (!iov_iter_count(iter))
1131 			break;
1132 
1133 		if (ret < bvec->bv_len)
1134 			return -EFAULT;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 /**
1141  * bio_copy_to_iter - copy all pages from bio to iov_iter
1142  * @bio: The &struct bio which describes the I/O as source
1143  * @iter: iov_iter as destination
1144  *
1145  * Copy all pages from bio to iov_iter.
1146  * Returns 0 on success, or error on failure.
1147  */
1148 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1149 {
1150 	struct bio_vec *bvec;
1151 	struct bvec_iter_all iter_all;
1152 
1153 	bio_for_each_segment_all(bvec, bio, iter_all) {
1154 		ssize_t ret;
1155 
1156 		ret = copy_page_to_iter(bvec->bv_page,
1157 					bvec->bv_offset,
1158 					bvec->bv_len,
1159 					&iter);
1160 
1161 		if (!iov_iter_count(&iter))
1162 			break;
1163 
1164 		if (ret < bvec->bv_len)
1165 			return -EFAULT;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 void bio_free_pages(struct bio *bio)
1172 {
1173 	struct bio_vec *bvec;
1174 	struct bvec_iter_all iter_all;
1175 
1176 	bio_for_each_segment_all(bvec, bio, iter_all)
1177 		__free_page(bvec->bv_page);
1178 }
1179 EXPORT_SYMBOL(bio_free_pages);
1180 
1181 /**
1182  *	bio_uncopy_user	-	finish previously mapped bio
1183  *	@bio: bio being terminated
1184  *
1185  *	Free pages allocated from bio_copy_user_iov() and write back data
1186  *	to user space in case of a read.
1187  */
1188 int bio_uncopy_user(struct bio *bio)
1189 {
1190 	struct bio_map_data *bmd = bio->bi_private;
1191 	int ret = 0;
1192 
1193 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1194 		/*
1195 		 * if we're in a workqueue, the request is orphaned, so
1196 		 * don't copy into a random user address space, just free
1197 		 * and return -EINTR so user space doesn't expect any data.
1198 		 */
1199 		if (!current->mm)
1200 			ret = -EINTR;
1201 		else if (bio_data_dir(bio) == READ)
1202 			ret = bio_copy_to_iter(bio, bmd->iter);
1203 		if (bmd->is_our_pages)
1204 			bio_free_pages(bio);
1205 	}
1206 	kfree(bmd);
1207 	bio_put(bio);
1208 	return ret;
1209 }
1210 
1211 /**
1212  *	bio_copy_user_iov	-	copy user data to bio
1213  *	@q:		destination block queue
1214  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1215  *	@iter:		iovec iterator
1216  *	@gfp_mask:	memory allocation flags
1217  *
1218  *	Prepares and returns a bio for indirect user io, bouncing data
1219  *	to/from kernel pages as necessary. Must be paired with
1220  *	call bio_uncopy_user() on io completion.
1221  */
1222 struct bio *bio_copy_user_iov(struct request_queue *q,
1223 			      struct rq_map_data *map_data,
1224 			      struct iov_iter *iter,
1225 			      gfp_t gfp_mask)
1226 {
1227 	struct bio_map_data *bmd;
1228 	struct page *page;
1229 	struct bio *bio;
1230 	int i = 0, ret;
1231 	int nr_pages;
1232 	unsigned int len = iter->count;
1233 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1234 
1235 	bmd = bio_alloc_map_data(iter, gfp_mask);
1236 	if (!bmd)
1237 		return ERR_PTR(-ENOMEM);
1238 
1239 	/*
1240 	 * We need to do a deep copy of the iov_iter including the iovecs.
1241 	 * The caller provided iov might point to an on-stack or otherwise
1242 	 * shortlived one.
1243 	 */
1244 	bmd->is_our_pages = map_data ? 0 : 1;
1245 
1246 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1247 	if (nr_pages > BIO_MAX_PAGES)
1248 		nr_pages = BIO_MAX_PAGES;
1249 
1250 	ret = -ENOMEM;
1251 	bio = bio_kmalloc(gfp_mask, nr_pages);
1252 	if (!bio)
1253 		goto out_bmd;
1254 
1255 	ret = 0;
1256 
1257 	if (map_data) {
1258 		nr_pages = 1 << map_data->page_order;
1259 		i = map_data->offset / PAGE_SIZE;
1260 	}
1261 	while (len) {
1262 		unsigned int bytes = PAGE_SIZE;
1263 
1264 		bytes -= offset;
1265 
1266 		if (bytes > len)
1267 			bytes = len;
1268 
1269 		if (map_data) {
1270 			if (i == map_data->nr_entries * nr_pages) {
1271 				ret = -ENOMEM;
1272 				break;
1273 			}
1274 
1275 			page = map_data->pages[i / nr_pages];
1276 			page += (i % nr_pages);
1277 
1278 			i++;
1279 		} else {
1280 			page = alloc_page(q->bounce_gfp | gfp_mask);
1281 			if (!page) {
1282 				ret = -ENOMEM;
1283 				break;
1284 			}
1285 		}
1286 
1287 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1288 			if (!map_data)
1289 				__free_page(page);
1290 			break;
1291 		}
1292 
1293 		len -= bytes;
1294 		offset = 0;
1295 	}
1296 
1297 	if (ret)
1298 		goto cleanup;
1299 
1300 	if (map_data)
1301 		map_data->offset += bio->bi_iter.bi_size;
1302 
1303 	/*
1304 	 * success
1305 	 */
1306 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1307 	    (map_data && map_data->from_user)) {
1308 		ret = bio_copy_from_iter(bio, iter);
1309 		if (ret)
1310 			goto cleanup;
1311 	} else {
1312 		if (bmd->is_our_pages)
1313 			zero_fill_bio(bio);
1314 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1315 	}
1316 
1317 	bio->bi_private = bmd;
1318 	if (map_data && map_data->null_mapped)
1319 		bio_set_flag(bio, BIO_NULL_MAPPED);
1320 	return bio;
1321 cleanup:
1322 	if (!map_data)
1323 		bio_free_pages(bio);
1324 	bio_put(bio);
1325 out_bmd:
1326 	kfree(bmd);
1327 	return ERR_PTR(ret);
1328 }
1329 
1330 /**
1331  *	bio_map_user_iov - map user iovec into bio
1332  *	@q:		the struct request_queue for the bio
1333  *	@iter:		iovec iterator
1334  *	@gfp_mask:	memory allocation flags
1335  *
1336  *	Map the user space address into a bio suitable for io to a block
1337  *	device. Returns an error pointer in case of error.
1338  */
1339 struct bio *bio_map_user_iov(struct request_queue *q,
1340 			     struct iov_iter *iter,
1341 			     gfp_t gfp_mask)
1342 {
1343 	int j;
1344 	struct bio *bio;
1345 	int ret;
1346 
1347 	if (!iov_iter_count(iter))
1348 		return ERR_PTR(-EINVAL);
1349 
1350 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1351 	if (!bio)
1352 		return ERR_PTR(-ENOMEM);
1353 
1354 	while (iov_iter_count(iter)) {
1355 		struct page **pages;
1356 		ssize_t bytes;
1357 		size_t offs, added = 0;
1358 		int npages;
1359 
1360 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1361 		if (unlikely(bytes <= 0)) {
1362 			ret = bytes ? bytes : -EFAULT;
1363 			goto out_unmap;
1364 		}
1365 
1366 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1367 
1368 		if (unlikely(offs & queue_dma_alignment(q))) {
1369 			ret = -EINVAL;
1370 			j = 0;
1371 		} else {
1372 			for (j = 0; j < npages; j++) {
1373 				struct page *page = pages[j];
1374 				unsigned int n = PAGE_SIZE - offs;
1375 				bool same_page = false;
1376 
1377 				if (n > bytes)
1378 					n = bytes;
1379 
1380 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1381 						&same_page)) {
1382 					if (same_page)
1383 						put_page(page);
1384 					break;
1385 				}
1386 
1387 				added += n;
1388 				bytes -= n;
1389 				offs = 0;
1390 			}
1391 			iov_iter_advance(iter, added);
1392 		}
1393 		/*
1394 		 * release the pages we didn't map into the bio, if any
1395 		 */
1396 		while (j < npages)
1397 			put_page(pages[j++]);
1398 		kvfree(pages);
1399 		/* couldn't stuff something into bio? */
1400 		if (bytes)
1401 			break;
1402 	}
1403 
1404 	bio_set_flag(bio, BIO_USER_MAPPED);
1405 
1406 	/*
1407 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1408 	 * it would normally disappear when its bi_end_io is run.
1409 	 * however, we need it for the unmap, so grab an extra
1410 	 * reference to it
1411 	 */
1412 	bio_get(bio);
1413 	return bio;
1414 
1415  out_unmap:
1416 	bio_release_pages(bio, false);
1417 	bio_put(bio);
1418 	return ERR_PTR(ret);
1419 }
1420 
1421 /**
1422  *	bio_unmap_user	-	unmap a bio
1423  *	@bio:		the bio being unmapped
1424  *
1425  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1426  *	process context.
1427  *
1428  *	bio_unmap_user() may sleep.
1429  */
1430 void bio_unmap_user(struct bio *bio)
1431 {
1432 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1433 	bio_put(bio);
1434 	bio_put(bio);
1435 }
1436 
1437 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1438 {
1439 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1440 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
1441 		unsigned long i, len = 0;
1442 
1443 		for (i = 0; i < bio->bi_vcnt; i++)
1444 			len += bio->bi_io_vec[i].bv_len;
1445 		invalidate_kernel_vmap_range(bio->bi_private, len);
1446 	}
1447 #endif
1448 }
1449 
1450 static void bio_map_kern_endio(struct bio *bio)
1451 {
1452 	bio_invalidate_vmalloc_pages(bio);
1453 	bio_put(bio);
1454 }
1455 
1456 /**
1457  *	bio_map_kern	-	map kernel address into bio
1458  *	@q: the struct request_queue for the bio
1459  *	@data: pointer to buffer to map
1460  *	@len: length in bytes
1461  *	@gfp_mask: allocation flags for bio allocation
1462  *
1463  *	Map the kernel address into a bio suitable for io to a block
1464  *	device. Returns an error pointer in case of error.
1465  */
1466 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1467 			 gfp_t gfp_mask)
1468 {
1469 	unsigned long kaddr = (unsigned long)data;
1470 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1471 	unsigned long start = kaddr >> PAGE_SHIFT;
1472 	const int nr_pages = end - start;
1473 	bool is_vmalloc = is_vmalloc_addr(data);
1474 	struct page *page;
1475 	int offset, i;
1476 	struct bio *bio;
1477 
1478 	bio = bio_kmalloc(gfp_mask, nr_pages);
1479 	if (!bio)
1480 		return ERR_PTR(-ENOMEM);
1481 
1482 	if (is_vmalloc) {
1483 		flush_kernel_vmap_range(data, len);
1484 		bio->bi_private = data;
1485 	}
1486 
1487 	offset = offset_in_page(kaddr);
1488 	for (i = 0; i < nr_pages; i++) {
1489 		unsigned int bytes = PAGE_SIZE - offset;
1490 
1491 		if (len <= 0)
1492 			break;
1493 
1494 		if (bytes > len)
1495 			bytes = len;
1496 
1497 		if (!is_vmalloc)
1498 			page = virt_to_page(data);
1499 		else
1500 			page = vmalloc_to_page(data);
1501 		if (bio_add_pc_page(q, bio, page, bytes,
1502 				    offset) < bytes) {
1503 			/* we don't support partial mappings */
1504 			bio_put(bio);
1505 			return ERR_PTR(-EINVAL);
1506 		}
1507 
1508 		data += bytes;
1509 		len -= bytes;
1510 		offset = 0;
1511 	}
1512 
1513 	bio->bi_end_io = bio_map_kern_endio;
1514 	return bio;
1515 }
1516 
1517 static void bio_copy_kern_endio(struct bio *bio)
1518 {
1519 	bio_free_pages(bio);
1520 	bio_put(bio);
1521 }
1522 
1523 static void bio_copy_kern_endio_read(struct bio *bio)
1524 {
1525 	char *p = bio->bi_private;
1526 	struct bio_vec *bvec;
1527 	struct bvec_iter_all iter_all;
1528 
1529 	bio_for_each_segment_all(bvec, bio, iter_all) {
1530 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1531 		p += bvec->bv_len;
1532 	}
1533 
1534 	bio_copy_kern_endio(bio);
1535 }
1536 
1537 /**
1538  *	bio_copy_kern	-	copy kernel address into bio
1539  *	@q: the struct request_queue for the bio
1540  *	@data: pointer to buffer to copy
1541  *	@len: length in bytes
1542  *	@gfp_mask: allocation flags for bio and page allocation
1543  *	@reading: data direction is READ
1544  *
1545  *	copy the kernel address into a bio suitable for io to a block
1546  *	device. Returns an error pointer in case of error.
1547  */
1548 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1549 			  gfp_t gfp_mask, int reading)
1550 {
1551 	unsigned long kaddr = (unsigned long)data;
1552 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1553 	unsigned long start = kaddr >> PAGE_SHIFT;
1554 	struct bio *bio;
1555 	void *p = data;
1556 	int nr_pages = 0;
1557 
1558 	/*
1559 	 * Overflow, abort
1560 	 */
1561 	if (end < start)
1562 		return ERR_PTR(-EINVAL);
1563 
1564 	nr_pages = end - start;
1565 	bio = bio_kmalloc(gfp_mask, nr_pages);
1566 	if (!bio)
1567 		return ERR_PTR(-ENOMEM);
1568 
1569 	while (len) {
1570 		struct page *page;
1571 		unsigned int bytes = PAGE_SIZE;
1572 
1573 		if (bytes > len)
1574 			bytes = len;
1575 
1576 		page = alloc_page(q->bounce_gfp | gfp_mask);
1577 		if (!page)
1578 			goto cleanup;
1579 
1580 		if (!reading)
1581 			memcpy(page_address(page), p, bytes);
1582 
1583 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1584 			break;
1585 
1586 		len -= bytes;
1587 		p += bytes;
1588 	}
1589 
1590 	if (reading) {
1591 		bio->bi_end_io = bio_copy_kern_endio_read;
1592 		bio->bi_private = data;
1593 	} else {
1594 		bio->bi_end_io = bio_copy_kern_endio;
1595 	}
1596 
1597 	return bio;
1598 
1599 cleanup:
1600 	bio_free_pages(bio);
1601 	bio_put(bio);
1602 	return ERR_PTR(-ENOMEM);
1603 }
1604 
1605 /*
1606  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1607  * for performing direct-IO in BIOs.
1608  *
1609  * The problem is that we cannot run set_page_dirty() from interrupt context
1610  * because the required locks are not interrupt-safe.  So what we can do is to
1611  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1612  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1613  * in process context.
1614  *
1615  * We special-case compound pages here: normally this means reads into hugetlb
1616  * pages.  The logic in here doesn't really work right for compound pages
1617  * because the VM does not uniformly chase down the head page in all cases.
1618  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1619  * handle them at all.  So we skip compound pages here at an early stage.
1620  *
1621  * Note that this code is very hard to test under normal circumstances because
1622  * direct-io pins the pages with get_user_pages().  This makes
1623  * is_page_cache_freeable return false, and the VM will not clean the pages.
1624  * But other code (eg, flusher threads) could clean the pages if they are mapped
1625  * pagecache.
1626  *
1627  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1628  * deferred bio dirtying paths.
1629  */
1630 
1631 /*
1632  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1633  */
1634 void bio_set_pages_dirty(struct bio *bio)
1635 {
1636 	struct bio_vec *bvec;
1637 	struct bvec_iter_all iter_all;
1638 
1639 	bio_for_each_segment_all(bvec, bio, iter_all) {
1640 		if (!PageCompound(bvec->bv_page))
1641 			set_page_dirty_lock(bvec->bv_page);
1642 	}
1643 }
1644 
1645 /*
1646  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1647  * If they are, then fine.  If, however, some pages are clean then they must
1648  * have been written out during the direct-IO read.  So we take another ref on
1649  * the BIO and re-dirty the pages in process context.
1650  *
1651  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1652  * here on.  It will run one put_page() against each page and will run one
1653  * bio_put() against the BIO.
1654  */
1655 
1656 static void bio_dirty_fn(struct work_struct *work);
1657 
1658 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1659 static DEFINE_SPINLOCK(bio_dirty_lock);
1660 static struct bio *bio_dirty_list;
1661 
1662 /*
1663  * This runs in process context
1664  */
1665 static void bio_dirty_fn(struct work_struct *work)
1666 {
1667 	struct bio *bio, *next;
1668 
1669 	spin_lock_irq(&bio_dirty_lock);
1670 	next = bio_dirty_list;
1671 	bio_dirty_list = NULL;
1672 	spin_unlock_irq(&bio_dirty_lock);
1673 
1674 	while ((bio = next) != NULL) {
1675 		next = bio->bi_private;
1676 
1677 		bio_release_pages(bio, true);
1678 		bio_put(bio);
1679 	}
1680 }
1681 
1682 void bio_check_pages_dirty(struct bio *bio)
1683 {
1684 	struct bio_vec *bvec;
1685 	unsigned long flags;
1686 	struct bvec_iter_all iter_all;
1687 
1688 	bio_for_each_segment_all(bvec, bio, iter_all) {
1689 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1690 			goto defer;
1691 	}
1692 
1693 	bio_release_pages(bio, false);
1694 	bio_put(bio);
1695 	return;
1696 defer:
1697 	spin_lock_irqsave(&bio_dirty_lock, flags);
1698 	bio->bi_private = bio_dirty_list;
1699 	bio_dirty_list = bio;
1700 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1701 	schedule_work(&bio_dirty_work);
1702 }
1703 
1704 void update_io_ticks(struct hd_struct *part, unsigned long now)
1705 {
1706 	unsigned long stamp;
1707 again:
1708 	stamp = READ_ONCE(part->stamp);
1709 	if (unlikely(stamp != now)) {
1710 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1711 			__part_stat_add(part, io_ticks, 1);
1712 		}
1713 	}
1714 	if (part->partno) {
1715 		part = &part_to_disk(part)->part0;
1716 		goto again;
1717 	}
1718 }
1719 
1720 void generic_start_io_acct(struct request_queue *q, int op,
1721 			   unsigned long sectors, struct hd_struct *part)
1722 {
1723 	const int sgrp = op_stat_group(op);
1724 
1725 	part_stat_lock();
1726 
1727 	update_io_ticks(part, jiffies);
1728 	part_stat_inc(part, ios[sgrp]);
1729 	part_stat_add(part, sectors[sgrp], sectors);
1730 	part_inc_in_flight(q, part, op_is_write(op));
1731 
1732 	part_stat_unlock();
1733 }
1734 EXPORT_SYMBOL(generic_start_io_acct);
1735 
1736 void generic_end_io_acct(struct request_queue *q, int req_op,
1737 			 struct hd_struct *part, unsigned long start_time)
1738 {
1739 	unsigned long now = jiffies;
1740 	unsigned long duration = now - start_time;
1741 	const int sgrp = op_stat_group(req_op);
1742 
1743 	part_stat_lock();
1744 
1745 	update_io_ticks(part, now);
1746 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1747 	part_stat_add(part, time_in_queue, duration);
1748 	part_dec_in_flight(q, part, op_is_write(req_op));
1749 
1750 	part_stat_unlock();
1751 }
1752 EXPORT_SYMBOL(generic_end_io_acct);
1753 
1754 static inline bool bio_remaining_done(struct bio *bio)
1755 {
1756 	/*
1757 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1758 	 * we always end io on the first invocation.
1759 	 */
1760 	if (!bio_flagged(bio, BIO_CHAIN))
1761 		return true;
1762 
1763 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1764 
1765 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1766 		bio_clear_flag(bio, BIO_CHAIN);
1767 		return true;
1768 	}
1769 
1770 	return false;
1771 }
1772 
1773 /**
1774  * bio_endio - end I/O on a bio
1775  * @bio:	bio
1776  *
1777  * Description:
1778  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1779  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1780  *   bio unless they own it and thus know that it has an end_io function.
1781  *
1782  *   bio_endio() can be called several times on a bio that has been chained
1783  *   using bio_chain().  The ->bi_end_io() function will only be called the
1784  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1785  *   generated if BIO_TRACE_COMPLETION is set.
1786  **/
1787 void bio_endio(struct bio *bio)
1788 {
1789 again:
1790 	if (!bio_remaining_done(bio))
1791 		return;
1792 	if (!bio_integrity_endio(bio))
1793 		return;
1794 
1795 	if (bio->bi_disk)
1796 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1797 
1798 	/*
1799 	 * Need to have a real endio function for chained bios, otherwise
1800 	 * various corner cases will break (like stacking block devices that
1801 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1802 	 * recursion and blowing the stack. Tail call optimization would
1803 	 * handle this, but compiling with frame pointers also disables
1804 	 * gcc's sibling call optimization.
1805 	 */
1806 	if (bio->bi_end_io == bio_chain_endio) {
1807 		bio = __bio_chain_endio(bio);
1808 		goto again;
1809 	}
1810 
1811 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1812 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1813 					 blk_status_to_errno(bio->bi_status));
1814 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1815 	}
1816 
1817 	blk_throtl_bio_endio(bio);
1818 	/* release cgroup info */
1819 	bio_uninit(bio);
1820 	if (bio->bi_end_io)
1821 		bio->bi_end_io(bio);
1822 }
1823 EXPORT_SYMBOL(bio_endio);
1824 
1825 /**
1826  * bio_split - split a bio
1827  * @bio:	bio to split
1828  * @sectors:	number of sectors to split from the front of @bio
1829  * @gfp:	gfp mask
1830  * @bs:		bio set to allocate from
1831  *
1832  * Allocates and returns a new bio which represents @sectors from the start of
1833  * @bio, and updates @bio to represent the remaining sectors.
1834  *
1835  * Unless this is a discard request the newly allocated bio will point
1836  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1837  * neither @bio nor @bs are freed before the split bio.
1838  */
1839 struct bio *bio_split(struct bio *bio, int sectors,
1840 		      gfp_t gfp, struct bio_set *bs)
1841 {
1842 	struct bio *split;
1843 
1844 	BUG_ON(sectors <= 0);
1845 	BUG_ON(sectors >= bio_sectors(bio));
1846 
1847 	split = bio_clone_fast(bio, gfp, bs);
1848 	if (!split)
1849 		return NULL;
1850 
1851 	split->bi_iter.bi_size = sectors << 9;
1852 
1853 	if (bio_integrity(split))
1854 		bio_integrity_trim(split);
1855 
1856 	bio_advance(bio, split->bi_iter.bi_size);
1857 
1858 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1859 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1860 
1861 	return split;
1862 }
1863 EXPORT_SYMBOL(bio_split);
1864 
1865 /**
1866  * bio_trim - trim a bio
1867  * @bio:	bio to trim
1868  * @offset:	number of sectors to trim from the front of @bio
1869  * @size:	size we want to trim @bio to, in sectors
1870  */
1871 void bio_trim(struct bio *bio, int offset, int size)
1872 {
1873 	/* 'bio' is a cloned bio which we need to trim to match
1874 	 * the given offset and size.
1875 	 */
1876 
1877 	size <<= 9;
1878 	if (offset == 0 && size == bio->bi_iter.bi_size)
1879 		return;
1880 
1881 	bio_advance(bio, offset << 9);
1882 	bio->bi_iter.bi_size = size;
1883 
1884 	if (bio_integrity(bio))
1885 		bio_integrity_trim(bio);
1886 
1887 }
1888 EXPORT_SYMBOL_GPL(bio_trim);
1889 
1890 /*
1891  * create memory pools for biovec's in a bio_set.
1892  * use the global biovec slabs created for general use.
1893  */
1894 int biovec_init_pool(mempool_t *pool, int pool_entries)
1895 {
1896 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1897 
1898 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1899 }
1900 
1901 /*
1902  * bioset_exit - exit a bioset initialized with bioset_init()
1903  *
1904  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1905  * kzalloc()).
1906  */
1907 void bioset_exit(struct bio_set *bs)
1908 {
1909 	if (bs->rescue_workqueue)
1910 		destroy_workqueue(bs->rescue_workqueue);
1911 	bs->rescue_workqueue = NULL;
1912 
1913 	mempool_exit(&bs->bio_pool);
1914 	mempool_exit(&bs->bvec_pool);
1915 
1916 	bioset_integrity_free(bs);
1917 	if (bs->bio_slab)
1918 		bio_put_slab(bs);
1919 	bs->bio_slab = NULL;
1920 }
1921 EXPORT_SYMBOL(bioset_exit);
1922 
1923 /**
1924  * bioset_init - Initialize a bio_set
1925  * @bs:		pool to initialize
1926  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1927  * @front_pad:	Number of bytes to allocate in front of the returned bio
1928  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1929  *              and %BIOSET_NEED_RESCUER
1930  *
1931  * Description:
1932  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1933  *    to ask for a number of bytes to be allocated in front of the bio.
1934  *    Front pad allocation is useful for embedding the bio inside
1935  *    another structure, to avoid allocating extra data to go with the bio.
1936  *    Note that the bio must be embedded at the END of that structure always,
1937  *    or things will break badly.
1938  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1939  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1940  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1941  *    dispatch queued requests when the mempool runs out of space.
1942  *
1943  */
1944 int bioset_init(struct bio_set *bs,
1945 		unsigned int pool_size,
1946 		unsigned int front_pad,
1947 		int flags)
1948 {
1949 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1950 
1951 	bs->front_pad = front_pad;
1952 
1953 	spin_lock_init(&bs->rescue_lock);
1954 	bio_list_init(&bs->rescue_list);
1955 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1956 
1957 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1958 	if (!bs->bio_slab)
1959 		return -ENOMEM;
1960 
1961 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1962 		goto bad;
1963 
1964 	if ((flags & BIOSET_NEED_BVECS) &&
1965 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1966 		goto bad;
1967 
1968 	if (!(flags & BIOSET_NEED_RESCUER))
1969 		return 0;
1970 
1971 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1972 	if (!bs->rescue_workqueue)
1973 		goto bad;
1974 
1975 	return 0;
1976 bad:
1977 	bioset_exit(bs);
1978 	return -ENOMEM;
1979 }
1980 EXPORT_SYMBOL(bioset_init);
1981 
1982 /*
1983  * Initialize and setup a new bio_set, based on the settings from
1984  * another bio_set.
1985  */
1986 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1987 {
1988 	int flags;
1989 
1990 	flags = 0;
1991 	if (src->bvec_pool.min_nr)
1992 		flags |= BIOSET_NEED_BVECS;
1993 	if (src->rescue_workqueue)
1994 		flags |= BIOSET_NEED_RESCUER;
1995 
1996 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1997 }
1998 EXPORT_SYMBOL(bioset_init_from_src);
1999 
2000 #ifdef CONFIG_BLK_CGROUP
2001 
2002 /**
2003  * bio_disassociate_blkg - puts back the blkg reference if associated
2004  * @bio: target bio
2005  *
2006  * Helper to disassociate the blkg from @bio if a blkg is associated.
2007  */
2008 void bio_disassociate_blkg(struct bio *bio)
2009 {
2010 	if (bio->bi_blkg) {
2011 		blkg_put(bio->bi_blkg);
2012 		bio->bi_blkg = NULL;
2013 	}
2014 }
2015 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2016 
2017 /**
2018  * __bio_associate_blkg - associate a bio with the a blkg
2019  * @bio: target bio
2020  * @blkg: the blkg to associate
2021  *
2022  * This tries to associate @bio with the specified @blkg.  Association failure
2023  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2024  * be anything between @blkg and the root_blkg.  This situation only happens
2025  * when a cgroup is dying and then the remaining bios will spill to the closest
2026  * alive blkg.
2027  *
2028  * A reference will be taken on the @blkg and will be released when @bio is
2029  * freed.
2030  */
2031 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2032 {
2033 	bio_disassociate_blkg(bio);
2034 
2035 	bio->bi_blkg = blkg_tryget_closest(blkg);
2036 }
2037 
2038 /**
2039  * bio_associate_blkg_from_css - associate a bio with a specified css
2040  * @bio: target bio
2041  * @css: target css
2042  *
2043  * Associate @bio with the blkg found by combining the css's blkg and the
2044  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2045  * the association fails with the css.
2046  */
2047 void bio_associate_blkg_from_css(struct bio *bio,
2048 				 struct cgroup_subsys_state *css)
2049 {
2050 	struct request_queue *q = bio->bi_disk->queue;
2051 	struct blkcg_gq *blkg;
2052 
2053 	rcu_read_lock();
2054 
2055 	if (!css || !css->parent)
2056 		blkg = q->root_blkg;
2057 	else
2058 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2059 
2060 	__bio_associate_blkg(bio, blkg);
2061 
2062 	rcu_read_unlock();
2063 }
2064 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2065 
2066 #ifdef CONFIG_MEMCG
2067 /**
2068  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2069  * @bio: target bio
2070  * @page: the page to lookup the blkcg from
2071  *
2072  * Associate @bio with the blkg from @page's owning memcg and the respective
2073  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2074  * root_blkg.
2075  */
2076 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2077 {
2078 	struct cgroup_subsys_state *css;
2079 
2080 	if (!page->mem_cgroup)
2081 		return;
2082 
2083 	rcu_read_lock();
2084 
2085 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2086 	bio_associate_blkg_from_css(bio, css);
2087 
2088 	rcu_read_unlock();
2089 }
2090 #endif /* CONFIG_MEMCG */
2091 
2092 /**
2093  * bio_associate_blkg - associate a bio with a blkg
2094  * @bio: target bio
2095  *
2096  * Associate @bio with the blkg found from the bio's css and request_queue.
2097  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2098  * already associated, the css is reused and association redone as the
2099  * request_queue may have changed.
2100  */
2101 void bio_associate_blkg(struct bio *bio)
2102 {
2103 	struct cgroup_subsys_state *css;
2104 
2105 	rcu_read_lock();
2106 
2107 	if (bio->bi_blkg)
2108 		css = &bio_blkcg(bio)->css;
2109 	else
2110 		css = blkcg_css();
2111 
2112 	bio_associate_blkg_from_css(bio, css);
2113 
2114 	rcu_read_unlock();
2115 }
2116 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2117 
2118 /**
2119  * bio_clone_blkg_association - clone blkg association from src to dst bio
2120  * @dst: destination bio
2121  * @src: source bio
2122  */
2123 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2124 {
2125 	rcu_read_lock();
2126 
2127 	if (src->bi_blkg)
2128 		__bio_associate_blkg(dst, src->bi_blkg);
2129 
2130 	rcu_read_unlock();
2131 }
2132 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2133 #endif /* CONFIG_BLK_CGROUP */
2134 
2135 static void __init biovec_init_slabs(void)
2136 {
2137 	int i;
2138 
2139 	for (i = 0; i < BVEC_POOL_NR; i++) {
2140 		int size;
2141 		struct biovec_slab *bvs = bvec_slabs + i;
2142 
2143 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2144 			bvs->slab = NULL;
2145 			continue;
2146 		}
2147 
2148 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2149 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2150                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2151 	}
2152 }
2153 
2154 static int __init init_bio(void)
2155 {
2156 	bio_slab_max = 2;
2157 	bio_slab_nr = 0;
2158 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2159 			    GFP_KERNEL);
2160 
2161 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2162 
2163 	if (!bio_slabs)
2164 		panic("bio: can't allocate bios\n");
2165 
2166 	bio_integrity_init();
2167 	biovec_init_slabs();
2168 
2169 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2170 		panic("bio: can't allocate bios\n");
2171 
2172 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2173 		panic("bio: can't create integrity pool\n");
2174 
2175 	return 0;
2176 }
2177 subsys_initcall(init_bio);
2178