1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 #include "blk.h" 34 35 /* 36 * Test patch to inline a certain number of bi_io_vec's inside the bio 37 * itself, to shrink a bio data allocation from two mempool calls to one 38 */ 39 #define BIO_INLINE_VECS 4 40 41 /* 42 * if you change this list, also change bvec_alloc or things will 43 * break badly! cannot be bigger than what you can fit into an 44 * unsigned short 45 */ 46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 49 }; 50 #undef BV 51 52 /* 53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 54 * IO code that does not need private memory pools. 55 */ 56 struct bio_set *fs_bio_set; 57 EXPORT_SYMBOL(fs_bio_set); 58 59 /* 60 * Our slab pool management 61 */ 62 struct bio_slab { 63 struct kmem_cache *slab; 64 unsigned int slab_ref; 65 unsigned int slab_size; 66 char name[8]; 67 }; 68 static DEFINE_MUTEX(bio_slab_lock); 69 static struct bio_slab *bio_slabs; 70 static unsigned int bio_slab_nr, bio_slab_max; 71 72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 73 { 74 unsigned int sz = sizeof(struct bio) + extra_size; 75 struct kmem_cache *slab = NULL; 76 struct bio_slab *bslab, *new_bio_slabs; 77 unsigned int new_bio_slab_max; 78 unsigned int i, entry = -1; 79 80 mutex_lock(&bio_slab_lock); 81 82 i = 0; 83 while (i < bio_slab_nr) { 84 bslab = &bio_slabs[i]; 85 86 if (!bslab->slab && entry == -1) 87 entry = i; 88 else if (bslab->slab_size == sz) { 89 slab = bslab->slab; 90 bslab->slab_ref++; 91 break; 92 } 93 i++; 94 } 95 96 if (slab) 97 goto out_unlock; 98 99 if (bio_slab_nr == bio_slab_max && entry == -1) { 100 new_bio_slab_max = bio_slab_max << 1; 101 new_bio_slabs = krealloc(bio_slabs, 102 new_bio_slab_max * sizeof(struct bio_slab), 103 GFP_KERNEL); 104 if (!new_bio_slabs) 105 goto out_unlock; 106 bio_slab_max = new_bio_slab_max; 107 bio_slabs = new_bio_slabs; 108 } 109 if (entry == -1) 110 entry = bio_slab_nr++; 111 112 bslab = &bio_slabs[entry]; 113 114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 116 SLAB_HWCACHE_ALIGN, NULL); 117 if (!slab) 118 goto out_unlock; 119 120 bslab->slab = slab; 121 bslab->slab_ref = 1; 122 bslab->slab_size = sz; 123 out_unlock: 124 mutex_unlock(&bio_slab_lock); 125 return slab; 126 } 127 128 static void bio_put_slab(struct bio_set *bs) 129 { 130 struct bio_slab *bslab = NULL; 131 unsigned int i; 132 133 mutex_lock(&bio_slab_lock); 134 135 for (i = 0; i < bio_slab_nr; i++) { 136 if (bs->bio_slab == bio_slabs[i].slab) { 137 bslab = &bio_slabs[i]; 138 break; 139 } 140 } 141 142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 143 goto out; 144 145 WARN_ON(!bslab->slab_ref); 146 147 if (--bslab->slab_ref) 148 goto out; 149 150 kmem_cache_destroy(bslab->slab); 151 bslab->slab = NULL; 152 153 out: 154 mutex_unlock(&bio_slab_lock); 155 } 156 157 unsigned int bvec_nr_vecs(unsigned short idx) 158 { 159 return bvec_slabs[idx].nr_vecs; 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 163 { 164 if (!idx) 165 return; 166 idx--; 167 168 BIO_BUG_ON(idx >= BVEC_POOL_NR); 169 170 if (idx == BVEC_POOL_MAX) { 171 mempool_free(bv, pool); 172 } else { 173 struct biovec_slab *bvs = bvec_slabs + idx; 174 175 kmem_cache_free(bvs->slab, bv); 176 } 177 } 178 179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 180 mempool_t *pool) 181 { 182 struct bio_vec *bvl; 183 184 /* 185 * see comment near bvec_array define! 186 */ 187 switch (nr) { 188 case 1: 189 *idx = 0; 190 break; 191 case 2 ... 4: 192 *idx = 1; 193 break; 194 case 5 ... 16: 195 *idx = 2; 196 break; 197 case 17 ... 64: 198 *idx = 3; 199 break; 200 case 65 ... 128: 201 *idx = 4; 202 break; 203 case 129 ... BIO_MAX_PAGES: 204 *idx = 5; 205 break; 206 default: 207 return NULL; 208 } 209 210 /* 211 * idx now points to the pool we want to allocate from. only the 212 * 1-vec entry pool is mempool backed. 213 */ 214 if (*idx == BVEC_POOL_MAX) { 215 fallback: 216 bvl = mempool_alloc(pool, gfp_mask); 217 } else { 218 struct biovec_slab *bvs = bvec_slabs + *idx; 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 220 221 /* 222 * Make this allocation restricted and don't dump info on 223 * allocation failures, since we'll fallback to the mempool 224 * in case of failure. 225 */ 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 227 228 /* 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 230 * is set, retry with the 1-entry mempool 231 */ 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 234 *idx = BVEC_POOL_MAX; 235 goto fallback; 236 } 237 } 238 239 (*idx)++; 240 return bvl; 241 } 242 243 static void __bio_free(struct bio *bio) 244 { 245 bio_disassociate_task(bio); 246 247 if (bio_integrity(bio)) 248 bio_integrity_free(bio); 249 } 250 251 static void bio_free(struct bio *bio) 252 { 253 struct bio_set *bs = bio->bi_pool; 254 void *p; 255 256 __bio_free(bio); 257 258 if (bs) { 259 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 260 261 /* 262 * If we have front padding, adjust the bio pointer before freeing 263 */ 264 p = bio; 265 p -= bs->front_pad; 266 267 mempool_free(p, bs->bio_pool); 268 } else { 269 /* Bio was allocated by bio_kmalloc() */ 270 kfree(bio); 271 } 272 } 273 274 void bio_init(struct bio *bio, struct bio_vec *table, 275 unsigned short max_vecs) 276 { 277 memset(bio, 0, sizeof(*bio)); 278 atomic_set(&bio->__bi_remaining, 1); 279 atomic_set(&bio->__bi_cnt, 1); 280 281 bio->bi_io_vec = table; 282 bio->bi_max_vecs = max_vecs; 283 } 284 EXPORT_SYMBOL(bio_init); 285 286 /** 287 * bio_reset - reinitialize a bio 288 * @bio: bio to reset 289 * 290 * Description: 291 * After calling bio_reset(), @bio will be in the same state as a freshly 292 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 293 * preserved are the ones that are initialized by bio_alloc_bioset(). See 294 * comment in struct bio. 295 */ 296 void bio_reset(struct bio *bio) 297 { 298 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 299 300 __bio_free(bio); 301 302 memset(bio, 0, BIO_RESET_BYTES); 303 bio->bi_flags = flags; 304 atomic_set(&bio->__bi_remaining, 1); 305 } 306 EXPORT_SYMBOL(bio_reset); 307 308 static struct bio *__bio_chain_endio(struct bio *bio) 309 { 310 struct bio *parent = bio->bi_private; 311 312 if (!parent->bi_error) 313 parent->bi_error = bio->bi_error; 314 bio_put(bio); 315 return parent; 316 } 317 318 static void bio_chain_endio(struct bio *bio) 319 { 320 bio_endio(__bio_chain_endio(bio)); 321 } 322 323 /** 324 * bio_chain - chain bio completions 325 * @bio: the target bio 326 * @parent: the @bio's parent bio 327 * 328 * The caller won't have a bi_end_io called when @bio completes - instead, 329 * @parent's bi_end_io won't be called until both @parent and @bio have 330 * completed; the chained bio will also be freed when it completes. 331 * 332 * The caller must not set bi_private or bi_end_io in @bio. 333 */ 334 void bio_chain(struct bio *bio, struct bio *parent) 335 { 336 BUG_ON(bio->bi_private || bio->bi_end_io); 337 338 bio->bi_private = parent; 339 bio->bi_end_io = bio_chain_endio; 340 bio_inc_remaining(parent); 341 } 342 EXPORT_SYMBOL(bio_chain); 343 344 static void bio_alloc_rescue(struct work_struct *work) 345 { 346 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 347 struct bio *bio; 348 349 while (1) { 350 spin_lock(&bs->rescue_lock); 351 bio = bio_list_pop(&bs->rescue_list); 352 spin_unlock(&bs->rescue_lock); 353 354 if (!bio) 355 break; 356 357 generic_make_request(bio); 358 } 359 } 360 361 static void punt_bios_to_rescuer(struct bio_set *bs) 362 { 363 struct bio_list punt, nopunt; 364 struct bio *bio; 365 366 /* 367 * In order to guarantee forward progress we must punt only bios that 368 * were allocated from this bio_set; otherwise, if there was a bio on 369 * there for a stacking driver higher up in the stack, processing it 370 * could require allocating bios from this bio_set, and doing that from 371 * our own rescuer would be bad. 372 * 373 * Since bio lists are singly linked, pop them all instead of trying to 374 * remove from the middle of the list: 375 */ 376 377 bio_list_init(&punt); 378 bio_list_init(&nopunt); 379 380 while ((bio = bio_list_pop(¤t->bio_list[0]))) 381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 382 current->bio_list[0] = nopunt; 383 384 bio_list_init(&nopunt); 385 while ((bio = bio_list_pop(¤t->bio_list[1]))) 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 387 current->bio_list[1] = nopunt; 388 389 spin_lock(&bs->rescue_lock); 390 bio_list_merge(&bs->rescue_list, &punt); 391 spin_unlock(&bs->rescue_lock); 392 393 queue_work(bs->rescue_workqueue, &bs->rescue_work); 394 } 395 396 /** 397 * bio_alloc_bioset - allocate a bio for I/O 398 * @gfp_mask: the GFP_ mask given to the slab allocator 399 * @nr_iovecs: number of iovecs to pre-allocate 400 * @bs: the bio_set to allocate from. 401 * 402 * Description: 403 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 404 * backed by the @bs's mempool. 405 * 406 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 407 * always be able to allocate a bio. This is due to the mempool guarantees. 408 * To make this work, callers must never allocate more than 1 bio at a time 409 * from this pool. Callers that need to allocate more than 1 bio must always 410 * submit the previously allocated bio for IO before attempting to allocate 411 * a new one. Failure to do so can cause deadlocks under memory pressure. 412 * 413 * Note that when running under generic_make_request() (i.e. any block 414 * driver), bios are not submitted until after you return - see the code in 415 * generic_make_request() that converts recursion into iteration, to prevent 416 * stack overflows. 417 * 418 * This would normally mean allocating multiple bios under 419 * generic_make_request() would be susceptible to deadlocks, but we have 420 * deadlock avoidance code that resubmits any blocked bios from a rescuer 421 * thread. 422 * 423 * However, we do not guarantee forward progress for allocations from other 424 * mempools. Doing multiple allocations from the same mempool under 425 * generic_make_request() should be avoided - instead, use bio_set's front_pad 426 * for per bio allocations. 427 * 428 * RETURNS: 429 * Pointer to new bio on success, NULL on failure. 430 */ 431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 432 struct bio_set *bs) 433 { 434 gfp_t saved_gfp = gfp_mask; 435 unsigned front_pad; 436 unsigned inline_vecs; 437 struct bio_vec *bvl = NULL; 438 struct bio *bio; 439 void *p; 440 441 if (!bs) { 442 if (nr_iovecs > UIO_MAXIOV) 443 return NULL; 444 445 p = kmalloc(sizeof(struct bio) + 446 nr_iovecs * sizeof(struct bio_vec), 447 gfp_mask); 448 front_pad = 0; 449 inline_vecs = nr_iovecs; 450 } else { 451 /* should not use nobvec bioset for nr_iovecs > 0 */ 452 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 453 return NULL; 454 /* 455 * generic_make_request() converts recursion to iteration; this 456 * means if we're running beneath it, any bios we allocate and 457 * submit will not be submitted (and thus freed) until after we 458 * return. 459 * 460 * This exposes us to a potential deadlock if we allocate 461 * multiple bios from the same bio_set() while running 462 * underneath generic_make_request(). If we were to allocate 463 * multiple bios (say a stacking block driver that was splitting 464 * bios), we would deadlock if we exhausted the mempool's 465 * reserve. 466 * 467 * We solve this, and guarantee forward progress, with a rescuer 468 * workqueue per bio_set. If we go to allocate and there are 469 * bios on current->bio_list, we first try the allocation 470 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 471 * bios we would be blocking to the rescuer workqueue before 472 * we retry with the original gfp_flags. 473 */ 474 475 if (current->bio_list && 476 (!bio_list_empty(¤t->bio_list[0]) || 477 !bio_list_empty(¤t->bio_list[1]))) 478 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 479 480 p = mempool_alloc(bs->bio_pool, gfp_mask); 481 if (!p && gfp_mask != saved_gfp) { 482 punt_bios_to_rescuer(bs); 483 gfp_mask = saved_gfp; 484 p = mempool_alloc(bs->bio_pool, gfp_mask); 485 } 486 487 front_pad = bs->front_pad; 488 inline_vecs = BIO_INLINE_VECS; 489 } 490 491 if (unlikely(!p)) 492 return NULL; 493 494 bio = p + front_pad; 495 bio_init(bio, NULL, 0); 496 497 if (nr_iovecs > inline_vecs) { 498 unsigned long idx = 0; 499 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 501 if (!bvl && gfp_mask != saved_gfp) { 502 punt_bios_to_rescuer(bs); 503 gfp_mask = saved_gfp; 504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 505 } 506 507 if (unlikely(!bvl)) 508 goto err_free; 509 510 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 511 } else if (nr_iovecs) { 512 bvl = bio->bi_inline_vecs; 513 } 514 515 bio->bi_pool = bs; 516 bio->bi_max_vecs = nr_iovecs; 517 bio->bi_io_vec = bvl; 518 return bio; 519 520 err_free: 521 mempool_free(p, bs->bio_pool); 522 return NULL; 523 } 524 EXPORT_SYMBOL(bio_alloc_bioset); 525 526 void zero_fill_bio(struct bio *bio) 527 { 528 unsigned long flags; 529 struct bio_vec bv; 530 struct bvec_iter iter; 531 532 bio_for_each_segment(bv, bio, iter) { 533 char *data = bvec_kmap_irq(&bv, &flags); 534 memset(data, 0, bv.bv_len); 535 flush_dcache_page(bv.bv_page); 536 bvec_kunmap_irq(data, &flags); 537 } 538 } 539 EXPORT_SYMBOL(zero_fill_bio); 540 541 /** 542 * bio_put - release a reference to a bio 543 * @bio: bio to release reference to 544 * 545 * Description: 546 * Put a reference to a &struct bio, either one you have gotten with 547 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 548 **/ 549 void bio_put(struct bio *bio) 550 { 551 if (!bio_flagged(bio, BIO_REFFED)) 552 bio_free(bio); 553 else { 554 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 555 556 /* 557 * last put frees it 558 */ 559 if (atomic_dec_and_test(&bio->__bi_cnt)) 560 bio_free(bio); 561 } 562 } 563 EXPORT_SYMBOL(bio_put); 564 565 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 566 { 567 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 568 blk_recount_segments(q, bio); 569 570 return bio->bi_phys_segments; 571 } 572 EXPORT_SYMBOL(bio_phys_segments); 573 574 /** 575 * __bio_clone_fast - clone a bio that shares the original bio's biovec 576 * @bio: destination bio 577 * @bio_src: bio to clone 578 * 579 * Clone a &bio. Caller will own the returned bio, but not 580 * the actual data it points to. Reference count of returned 581 * bio will be one. 582 * 583 * Caller must ensure that @bio_src is not freed before @bio. 584 */ 585 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 586 { 587 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 588 589 /* 590 * most users will be overriding ->bi_bdev with a new target, 591 * so we don't set nor calculate new physical/hw segment counts here 592 */ 593 bio->bi_bdev = bio_src->bi_bdev; 594 bio_set_flag(bio, BIO_CLONED); 595 bio->bi_opf = bio_src->bi_opf; 596 bio->bi_iter = bio_src->bi_iter; 597 bio->bi_io_vec = bio_src->bi_io_vec; 598 599 bio_clone_blkcg_association(bio, bio_src); 600 } 601 EXPORT_SYMBOL(__bio_clone_fast); 602 603 /** 604 * bio_clone_fast - clone a bio that shares the original bio's biovec 605 * @bio: bio to clone 606 * @gfp_mask: allocation priority 607 * @bs: bio_set to allocate from 608 * 609 * Like __bio_clone_fast, only also allocates the returned bio 610 */ 611 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 612 { 613 struct bio *b; 614 615 b = bio_alloc_bioset(gfp_mask, 0, bs); 616 if (!b) 617 return NULL; 618 619 __bio_clone_fast(b, bio); 620 621 if (bio_integrity(bio)) { 622 int ret; 623 624 ret = bio_integrity_clone(b, bio, gfp_mask); 625 626 if (ret < 0) { 627 bio_put(b); 628 return NULL; 629 } 630 } 631 632 return b; 633 } 634 EXPORT_SYMBOL(bio_clone_fast); 635 636 /** 637 * bio_clone_bioset - clone a bio 638 * @bio_src: bio to clone 639 * @gfp_mask: allocation priority 640 * @bs: bio_set to allocate from 641 * 642 * Clone bio. Caller will own the returned bio, but not the actual data it 643 * points to. Reference count of returned bio will be one. 644 */ 645 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 646 struct bio_set *bs) 647 { 648 struct bvec_iter iter; 649 struct bio_vec bv; 650 struct bio *bio; 651 652 /* 653 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 654 * bio_src->bi_io_vec to bio->bi_io_vec. 655 * 656 * We can't do that anymore, because: 657 * 658 * - The point of cloning the biovec is to produce a bio with a biovec 659 * the caller can modify: bi_idx and bi_bvec_done should be 0. 660 * 661 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 662 * we tried to clone the whole thing bio_alloc_bioset() would fail. 663 * But the clone should succeed as long as the number of biovecs we 664 * actually need to allocate is fewer than BIO_MAX_PAGES. 665 * 666 * - Lastly, bi_vcnt should not be looked at or relied upon by code 667 * that does not own the bio - reason being drivers don't use it for 668 * iterating over the biovec anymore, so expecting it to be kept up 669 * to date (i.e. for clones that share the parent biovec) is just 670 * asking for trouble and would force extra work on 671 * __bio_clone_fast() anyways. 672 */ 673 674 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 675 if (!bio) 676 return NULL; 677 bio->bi_bdev = bio_src->bi_bdev; 678 bio->bi_opf = bio_src->bi_opf; 679 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 680 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 681 682 switch (bio_op(bio)) { 683 case REQ_OP_DISCARD: 684 case REQ_OP_SECURE_ERASE: 685 case REQ_OP_WRITE_ZEROES: 686 break; 687 case REQ_OP_WRITE_SAME: 688 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 689 break; 690 default: 691 bio_for_each_segment(bv, bio_src, iter) 692 bio->bi_io_vec[bio->bi_vcnt++] = bv; 693 break; 694 } 695 696 if (bio_integrity(bio_src)) { 697 int ret; 698 699 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 700 if (ret < 0) { 701 bio_put(bio); 702 return NULL; 703 } 704 } 705 706 bio_clone_blkcg_association(bio, bio_src); 707 708 return bio; 709 } 710 EXPORT_SYMBOL(bio_clone_bioset); 711 712 /** 713 * bio_add_pc_page - attempt to add page to bio 714 * @q: the target queue 715 * @bio: destination bio 716 * @page: page to add 717 * @len: vec entry length 718 * @offset: vec entry offset 719 * 720 * Attempt to add a page to the bio_vec maplist. This can fail for a 721 * number of reasons, such as the bio being full or target block device 722 * limitations. The target block device must allow bio's up to PAGE_SIZE, 723 * so it is always possible to add a single page to an empty bio. 724 * 725 * This should only be used by REQ_PC bios. 726 */ 727 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 728 *page, unsigned int len, unsigned int offset) 729 { 730 int retried_segments = 0; 731 struct bio_vec *bvec; 732 733 /* 734 * cloned bio must not modify vec list 735 */ 736 if (unlikely(bio_flagged(bio, BIO_CLONED))) 737 return 0; 738 739 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 740 return 0; 741 742 /* 743 * For filesystems with a blocksize smaller than the pagesize 744 * we will often be called with the same page as last time and 745 * a consecutive offset. Optimize this special case. 746 */ 747 if (bio->bi_vcnt > 0) { 748 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 749 750 if (page == prev->bv_page && 751 offset == prev->bv_offset + prev->bv_len) { 752 prev->bv_len += len; 753 bio->bi_iter.bi_size += len; 754 goto done; 755 } 756 757 /* 758 * If the queue doesn't support SG gaps and adding this 759 * offset would create a gap, disallow it. 760 */ 761 if (bvec_gap_to_prev(q, prev, offset)) 762 return 0; 763 } 764 765 if (bio->bi_vcnt >= bio->bi_max_vecs) 766 return 0; 767 768 /* 769 * setup the new entry, we might clear it again later if we 770 * cannot add the page 771 */ 772 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 773 bvec->bv_page = page; 774 bvec->bv_len = len; 775 bvec->bv_offset = offset; 776 bio->bi_vcnt++; 777 bio->bi_phys_segments++; 778 bio->bi_iter.bi_size += len; 779 780 /* 781 * Perform a recount if the number of segments is greater 782 * than queue_max_segments(q). 783 */ 784 785 while (bio->bi_phys_segments > queue_max_segments(q)) { 786 787 if (retried_segments) 788 goto failed; 789 790 retried_segments = 1; 791 blk_recount_segments(q, bio); 792 } 793 794 /* If we may be able to merge these biovecs, force a recount */ 795 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 796 bio_clear_flag(bio, BIO_SEG_VALID); 797 798 done: 799 return len; 800 801 failed: 802 bvec->bv_page = NULL; 803 bvec->bv_len = 0; 804 bvec->bv_offset = 0; 805 bio->bi_vcnt--; 806 bio->bi_iter.bi_size -= len; 807 blk_recount_segments(q, bio); 808 return 0; 809 } 810 EXPORT_SYMBOL(bio_add_pc_page); 811 812 /** 813 * bio_add_page - attempt to add page to bio 814 * @bio: destination bio 815 * @page: page to add 816 * @len: vec entry length 817 * @offset: vec entry offset 818 * 819 * Attempt to add a page to the bio_vec maplist. This will only fail 820 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 821 */ 822 int bio_add_page(struct bio *bio, struct page *page, 823 unsigned int len, unsigned int offset) 824 { 825 struct bio_vec *bv; 826 827 /* 828 * cloned bio must not modify vec list 829 */ 830 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 831 return 0; 832 833 /* 834 * For filesystems with a blocksize smaller than the pagesize 835 * we will often be called with the same page as last time and 836 * a consecutive offset. Optimize this special case. 837 */ 838 if (bio->bi_vcnt > 0) { 839 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 840 841 if (page == bv->bv_page && 842 offset == bv->bv_offset + bv->bv_len) { 843 bv->bv_len += len; 844 goto done; 845 } 846 } 847 848 if (bio->bi_vcnt >= bio->bi_max_vecs) 849 return 0; 850 851 bv = &bio->bi_io_vec[bio->bi_vcnt]; 852 bv->bv_page = page; 853 bv->bv_len = len; 854 bv->bv_offset = offset; 855 856 bio->bi_vcnt++; 857 done: 858 bio->bi_iter.bi_size += len; 859 return len; 860 } 861 EXPORT_SYMBOL(bio_add_page); 862 863 /** 864 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 865 * @bio: bio to add pages to 866 * @iter: iov iterator describing the region to be mapped 867 * 868 * Pins as many pages from *iter and appends them to @bio's bvec array. The 869 * pages will have to be released using put_page() when done. 870 */ 871 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 872 { 873 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 874 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 875 struct page **pages = (struct page **)bv; 876 size_t offset, diff; 877 ssize_t size; 878 879 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 880 if (unlikely(size <= 0)) 881 return size ? size : -EFAULT; 882 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; 883 884 /* 885 * Deep magic below: We need to walk the pinned pages backwards 886 * because we are abusing the space allocated for the bio_vecs 887 * for the page array. Because the bio_vecs are larger than the 888 * page pointers by definition this will always work. But it also 889 * means we can't use bio_add_page, so any changes to it's semantics 890 * need to be reflected here as well. 891 */ 892 bio->bi_iter.bi_size += size; 893 bio->bi_vcnt += nr_pages; 894 895 diff = (nr_pages * PAGE_SIZE - offset) - size; 896 while (nr_pages--) { 897 bv[nr_pages].bv_page = pages[nr_pages]; 898 bv[nr_pages].bv_len = PAGE_SIZE; 899 bv[nr_pages].bv_offset = 0; 900 } 901 902 bv[0].bv_offset += offset; 903 bv[0].bv_len -= offset; 904 if (diff) 905 bv[bio->bi_vcnt - 1].bv_len -= diff; 906 907 iov_iter_advance(iter, size); 908 return 0; 909 } 910 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 911 912 struct submit_bio_ret { 913 struct completion event; 914 int error; 915 }; 916 917 static void submit_bio_wait_endio(struct bio *bio) 918 { 919 struct submit_bio_ret *ret = bio->bi_private; 920 921 ret->error = bio->bi_error; 922 complete(&ret->event); 923 } 924 925 /** 926 * submit_bio_wait - submit a bio, and wait until it completes 927 * @bio: The &struct bio which describes the I/O 928 * 929 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 930 * bio_endio() on failure. 931 */ 932 int submit_bio_wait(struct bio *bio) 933 { 934 struct submit_bio_ret ret; 935 936 init_completion(&ret.event); 937 bio->bi_private = &ret; 938 bio->bi_end_io = submit_bio_wait_endio; 939 bio->bi_opf |= REQ_SYNC; 940 submit_bio(bio); 941 wait_for_completion_io(&ret.event); 942 943 return ret.error; 944 } 945 EXPORT_SYMBOL(submit_bio_wait); 946 947 /** 948 * bio_advance - increment/complete a bio by some number of bytes 949 * @bio: bio to advance 950 * @bytes: number of bytes to complete 951 * 952 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 953 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 954 * be updated on the last bvec as well. 955 * 956 * @bio will then represent the remaining, uncompleted portion of the io. 957 */ 958 void bio_advance(struct bio *bio, unsigned bytes) 959 { 960 if (bio_integrity(bio)) 961 bio_integrity_advance(bio, bytes); 962 963 bio_advance_iter(bio, &bio->bi_iter, bytes); 964 } 965 EXPORT_SYMBOL(bio_advance); 966 967 /** 968 * bio_alloc_pages - allocates a single page for each bvec in a bio 969 * @bio: bio to allocate pages for 970 * @gfp_mask: flags for allocation 971 * 972 * Allocates pages up to @bio->bi_vcnt. 973 * 974 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 975 * freed. 976 */ 977 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 978 { 979 int i; 980 struct bio_vec *bv; 981 982 bio_for_each_segment_all(bv, bio, i) { 983 bv->bv_page = alloc_page(gfp_mask); 984 if (!bv->bv_page) { 985 while (--bv >= bio->bi_io_vec) 986 __free_page(bv->bv_page); 987 return -ENOMEM; 988 } 989 } 990 991 return 0; 992 } 993 EXPORT_SYMBOL(bio_alloc_pages); 994 995 /** 996 * bio_copy_data - copy contents of data buffers from one chain of bios to 997 * another 998 * @src: source bio list 999 * @dst: destination bio list 1000 * 1001 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 1002 * @src and @dst as linked lists of bios. 1003 * 1004 * Stops when it reaches the end of either @src or @dst - that is, copies 1005 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1006 */ 1007 void bio_copy_data(struct bio *dst, struct bio *src) 1008 { 1009 struct bvec_iter src_iter, dst_iter; 1010 struct bio_vec src_bv, dst_bv; 1011 void *src_p, *dst_p; 1012 unsigned bytes; 1013 1014 src_iter = src->bi_iter; 1015 dst_iter = dst->bi_iter; 1016 1017 while (1) { 1018 if (!src_iter.bi_size) { 1019 src = src->bi_next; 1020 if (!src) 1021 break; 1022 1023 src_iter = src->bi_iter; 1024 } 1025 1026 if (!dst_iter.bi_size) { 1027 dst = dst->bi_next; 1028 if (!dst) 1029 break; 1030 1031 dst_iter = dst->bi_iter; 1032 } 1033 1034 src_bv = bio_iter_iovec(src, src_iter); 1035 dst_bv = bio_iter_iovec(dst, dst_iter); 1036 1037 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1038 1039 src_p = kmap_atomic(src_bv.bv_page); 1040 dst_p = kmap_atomic(dst_bv.bv_page); 1041 1042 memcpy(dst_p + dst_bv.bv_offset, 1043 src_p + src_bv.bv_offset, 1044 bytes); 1045 1046 kunmap_atomic(dst_p); 1047 kunmap_atomic(src_p); 1048 1049 bio_advance_iter(src, &src_iter, bytes); 1050 bio_advance_iter(dst, &dst_iter, bytes); 1051 } 1052 } 1053 EXPORT_SYMBOL(bio_copy_data); 1054 1055 struct bio_map_data { 1056 int is_our_pages; 1057 struct iov_iter iter; 1058 struct iovec iov[]; 1059 }; 1060 1061 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1062 gfp_t gfp_mask) 1063 { 1064 if (iov_count > UIO_MAXIOV) 1065 return NULL; 1066 1067 return kmalloc(sizeof(struct bio_map_data) + 1068 sizeof(struct iovec) * iov_count, gfp_mask); 1069 } 1070 1071 /** 1072 * bio_copy_from_iter - copy all pages from iov_iter to bio 1073 * @bio: The &struct bio which describes the I/O as destination 1074 * @iter: iov_iter as source 1075 * 1076 * Copy all pages from iov_iter to bio. 1077 * Returns 0 on success, or error on failure. 1078 */ 1079 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1080 { 1081 int i; 1082 struct bio_vec *bvec; 1083 1084 bio_for_each_segment_all(bvec, bio, i) { 1085 ssize_t ret; 1086 1087 ret = copy_page_from_iter(bvec->bv_page, 1088 bvec->bv_offset, 1089 bvec->bv_len, 1090 &iter); 1091 1092 if (!iov_iter_count(&iter)) 1093 break; 1094 1095 if (ret < bvec->bv_len) 1096 return -EFAULT; 1097 } 1098 1099 return 0; 1100 } 1101 1102 /** 1103 * bio_copy_to_iter - copy all pages from bio to iov_iter 1104 * @bio: The &struct bio which describes the I/O as source 1105 * @iter: iov_iter as destination 1106 * 1107 * Copy all pages from bio to iov_iter. 1108 * Returns 0 on success, or error on failure. 1109 */ 1110 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1111 { 1112 int i; 1113 struct bio_vec *bvec; 1114 1115 bio_for_each_segment_all(bvec, bio, i) { 1116 ssize_t ret; 1117 1118 ret = copy_page_to_iter(bvec->bv_page, 1119 bvec->bv_offset, 1120 bvec->bv_len, 1121 &iter); 1122 1123 if (!iov_iter_count(&iter)) 1124 break; 1125 1126 if (ret < bvec->bv_len) 1127 return -EFAULT; 1128 } 1129 1130 return 0; 1131 } 1132 1133 void bio_free_pages(struct bio *bio) 1134 { 1135 struct bio_vec *bvec; 1136 int i; 1137 1138 bio_for_each_segment_all(bvec, bio, i) 1139 __free_page(bvec->bv_page); 1140 } 1141 EXPORT_SYMBOL(bio_free_pages); 1142 1143 /** 1144 * bio_uncopy_user - finish previously mapped bio 1145 * @bio: bio being terminated 1146 * 1147 * Free pages allocated from bio_copy_user_iov() and write back data 1148 * to user space in case of a read. 1149 */ 1150 int bio_uncopy_user(struct bio *bio) 1151 { 1152 struct bio_map_data *bmd = bio->bi_private; 1153 int ret = 0; 1154 1155 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1156 /* 1157 * if we're in a workqueue, the request is orphaned, so 1158 * don't copy into a random user address space, just free 1159 * and return -EINTR so user space doesn't expect any data. 1160 */ 1161 if (!current->mm) 1162 ret = -EINTR; 1163 else if (bio_data_dir(bio) == READ) 1164 ret = bio_copy_to_iter(bio, bmd->iter); 1165 if (bmd->is_our_pages) 1166 bio_free_pages(bio); 1167 } 1168 kfree(bmd); 1169 bio_put(bio); 1170 return ret; 1171 } 1172 1173 /** 1174 * bio_copy_user_iov - copy user data to bio 1175 * @q: destination block queue 1176 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1177 * @iter: iovec iterator 1178 * @gfp_mask: memory allocation flags 1179 * 1180 * Prepares and returns a bio for indirect user io, bouncing data 1181 * to/from kernel pages as necessary. Must be paired with 1182 * call bio_uncopy_user() on io completion. 1183 */ 1184 struct bio *bio_copy_user_iov(struct request_queue *q, 1185 struct rq_map_data *map_data, 1186 const struct iov_iter *iter, 1187 gfp_t gfp_mask) 1188 { 1189 struct bio_map_data *bmd; 1190 struct page *page; 1191 struct bio *bio; 1192 int i, ret; 1193 int nr_pages = 0; 1194 unsigned int len = iter->count; 1195 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1196 1197 for (i = 0; i < iter->nr_segs; i++) { 1198 unsigned long uaddr; 1199 unsigned long end; 1200 unsigned long start; 1201 1202 uaddr = (unsigned long) iter->iov[i].iov_base; 1203 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1204 >> PAGE_SHIFT; 1205 start = uaddr >> PAGE_SHIFT; 1206 1207 /* 1208 * Overflow, abort 1209 */ 1210 if (end < start) 1211 return ERR_PTR(-EINVAL); 1212 1213 nr_pages += end - start; 1214 } 1215 1216 if (offset) 1217 nr_pages++; 1218 1219 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1220 if (!bmd) 1221 return ERR_PTR(-ENOMEM); 1222 1223 /* 1224 * We need to do a deep copy of the iov_iter including the iovecs. 1225 * The caller provided iov might point to an on-stack or otherwise 1226 * shortlived one. 1227 */ 1228 bmd->is_our_pages = map_data ? 0 : 1; 1229 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1230 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1231 iter->nr_segs, iter->count); 1232 1233 ret = -ENOMEM; 1234 bio = bio_kmalloc(gfp_mask, nr_pages); 1235 if (!bio) 1236 goto out_bmd; 1237 1238 ret = 0; 1239 1240 if (map_data) { 1241 nr_pages = 1 << map_data->page_order; 1242 i = map_data->offset / PAGE_SIZE; 1243 } 1244 while (len) { 1245 unsigned int bytes = PAGE_SIZE; 1246 1247 bytes -= offset; 1248 1249 if (bytes > len) 1250 bytes = len; 1251 1252 if (map_data) { 1253 if (i == map_data->nr_entries * nr_pages) { 1254 ret = -ENOMEM; 1255 break; 1256 } 1257 1258 page = map_data->pages[i / nr_pages]; 1259 page += (i % nr_pages); 1260 1261 i++; 1262 } else { 1263 page = alloc_page(q->bounce_gfp | gfp_mask); 1264 if (!page) { 1265 ret = -ENOMEM; 1266 break; 1267 } 1268 } 1269 1270 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1271 break; 1272 1273 len -= bytes; 1274 offset = 0; 1275 } 1276 1277 if (ret) 1278 goto cleanup; 1279 1280 /* 1281 * success 1282 */ 1283 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1284 (map_data && map_data->from_user)) { 1285 ret = bio_copy_from_iter(bio, *iter); 1286 if (ret) 1287 goto cleanup; 1288 } 1289 1290 bio->bi_private = bmd; 1291 return bio; 1292 cleanup: 1293 if (!map_data) 1294 bio_free_pages(bio); 1295 bio_put(bio); 1296 out_bmd: 1297 kfree(bmd); 1298 return ERR_PTR(ret); 1299 } 1300 1301 /** 1302 * bio_map_user_iov - map user iovec into bio 1303 * @q: the struct request_queue for the bio 1304 * @iter: iovec iterator 1305 * @gfp_mask: memory allocation flags 1306 * 1307 * Map the user space address into a bio suitable for io to a block 1308 * device. Returns an error pointer in case of error. 1309 */ 1310 struct bio *bio_map_user_iov(struct request_queue *q, 1311 const struct iov_iter *iter, 1312 gfp_t gfp_mask) 1313 { 1314 int j; 1315 int nr_pages = 0; 1316 struct page **pages; 1317 struct bio *bio; 1318 int cur_page = 0; 1319 int ret, offset; 1320 struct iov_iter i; 1321 struct iovec iov; 1322 1323 iov_for_each(iov, i, *iter) { 1324 unsigned long uaddr = (unsigned long) iov.iov_base; 1325 unsigned long len = iov.iov_len; 1326 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1327 unsigned long start = uaddr >> PAGE_SHIFT; 1328 1329 /* 1330 * Overflow, abort 1331 */ 1332 if (end < start) 1333 return ERR_PTR(-EINVAL); 1334 1335 nr_pages += end - start; 1336 /* 1337 * buffer must be aligned to at least logical block size for now 1338 */ 1339 if (uaddr & queue_dma_alignment(q)) 1340 return ERR_PTR(-EINVAL); 1341 } 1342 1343 if (!nr_pages) 1344 return ERR_PTR(-EINVAL); 1345 1346 bio = bio_kmalloc(gfp_mask, nr_pages); 1347 if (!bio) 1348 return ERR_PTR(-ENOMEM); 1349 1350 ret = -ENOMEM; 1351 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1352 if (!pages) 1353 goto out; 1354 1355 iov_for_each(iov, i, *iter) { 1356 unsigned long uaddr = (unsigned long) iov.iov_base; 1357 unsigned long len = iov.iov_len; 1358 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1359 unsigned long start = uaddr >> PAGE_SHIFT; 1360 const int local_nr_pages = end - start; 1361 const int page_limit = cur_page + local_nr_pages; 1362 1363 ret = get_user_pages_fast(uaddr, local_nr_pages, 1364 (iter->type & WRITE) != WRITE, 1365 &pages[cur_page]); 1366 if (ret < local_nr_pages) { 1367 ret = -EFAULT; 1368 goto out_unmap; 1369 } 1370 1371 offset = offset_in_page(uaddr); 1372 for (j = cur_page; j < page_limit; j++) { 1373 unsigned int bytes = PAGE_SIZE - offset; 1374 1375 if (len <= 0) 1376 break; 1377 1378 if (bytes > len) 1379 bytes = len; 1380 1381 /* 1382 * sorry... 1383 */ 1384 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1385 bytes) 1386 break; 1387 1388 len -= bytes; 1389 offset = 0; 1390 } 1391 1392 cur_page = j; 1393 /* 1394 * release the pages we didn't map into the bio, if any 1395 */ 1396 while (j < page_limit) 1397 put_page(pages[j++]); 1398 } 1399 1400 kfree(pages); 1401 1402 bio_set_flag(bio, BIO_USER_MAPPED); 1403 1404 /* 1405 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1406 * it would normally disappear when its bi_end_io is run. 1407 * however, we need it for the unmap, so grab an extra 1408 * reference to it 1409 */ 1410 bio_get(bio); 1411 return bio; 1412 1413 out_unmap: 1414 for (j = 0; j < nr_pages; j++) { 1415 if (!pages[j]) 1416 break; 1417 put_page(pages[j]); 1418 } 1419 out: 1420 kfree(pages); 1421 bio_put(bio); 1422 return ERR_PTR(ret); 1423 } 1424 1425 static void __bio_unmap_user(struct bio *bio) 1426 { 1427 struct bio_vec *bvec; 1428 int i; 1429 1430 /* 1431 * make sure we dirty pages we wrote to 1432 */ 1433 bio_for_each_segment_all(bvec, bio, i) { 1434 if (bio_data_dir(bio) == READ) 1435 set_page_dirty_lock(bvec->bv_page); 1436 1437 put_page(bvec->bv_page); 1438 } 1439 1440 bio_put(bio); 1441 } 1442 1443 /** 1444 * bio_unmap_user - unmap a bio 1445 * @bio: the bio being unmapped 1446 * 1447 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1448 * process context. 1449 * 1450 * bio_unmap_user() may sleep. 1451 */ 1452 void bio_unmap_user(struct bio *bio) 1453 { 1454 __bio_unmap_user(bio); 1455 bio_put(bio); 1456 } 1457 1458 static void bio_map_kern_endio(struct bio *bio) 1459 { 1460 bio_put(bio); 1461 } 1462 1463 /** 1464 * bio_map_kern - map kernel address into bio 1465 * @q: the struct request_queue for the bio 1466 * @data: pointer to buffer to map 1467 * @len: length in bytes 1468 * @gfp_mask: allocation flags for bio allocation 1469 * 1470 * Map the kernel address into a bio suitable for io to a block 1471 * device. Returns an error pointer in case of error. 1472 */ 1473 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1474 gfp_t gfp_mask) 1475 { 1476 unsigned long kaddr = (unsigned long)data; 1477 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1478 unsigned long start = kaddr >> PAGE_SHIFT; 1479 const int nr_pages = end - start; 1480 int offset, i; 1481 struct bio *bio; 1482 1483 bio = bio_kmalloc(gfp_mask, nr_pages); 1484 if (!bio) 1485 return ERR_PTR(-ENOMEM); 1486 1487 offset = offset_in_page(kaddr); 1488 for (i = 0; i < nr_pages; i++) { 1489 unsigned int bytes = PAGE_SIZE - offset; 1490 1491 if (len <= 0) 1492 break; 1493 1494 if (bytes > len) 1495 bytes = len; 1496 1497 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1498 offset) < bytes) { 1499 /* we don't support partial mappings */ 1500 bio_put(bio); 1501 return ERR_PTR(-EINVAL); 1502 } 1503 1504 data += bytes; 1505 len -= bytes; 1506 offset = 0; 1507 } 1508 1509 bio->bi_end_io = bio_map_kern_endio; 1510 return bio; 1511 } 1512 EXPORT_SYMBOL(bio_map_kern); 1513 1514 static void bio_copy_kern_endio(struct bio *bio) 1515 { 1516 bio_free_pages(bio); 1517 bio_put(bio); 1518 } 1519 1520 static void bio_copy_kern_endio_read(struct bio *bio) 1521 { 1522 char *p = bio->bi_private; 1523 struct bio_vec *bvec; 1524 int i; 1525 1526 bio_for_each_segment_all(bvec, bio, i) { 1527 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1528 p += bvec->bv_len; 1529 } 1530 1531 bio_copy_kern_endio(bio); 1532 } 1533 1534 /** 1535 * bio_copy_kern - copy kernel address into bio 1536 * @q: the struct request_queue for the bio 1537 * @data: pointer to buffer to copy 1538 * @len: length in bytes 1539 * @gfp_mask: allocation flags for bio and page allocation 1540 * @reading: data direction is READ 1541 * 1542 * copy the kernel address into a bio suitable for io to a block 1543 * device. Returns an error pointer in case of error. 1544 */ 1545 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1546 gfp_t gfp_mask, int reading) 1547 { 1548 unsigned long kaddr = (unsigned long)data; 1549 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1550 unsigned long start = kaddr >> PAGE_SHIFT; 1551 struct bio *bio; 1552 void *p = data; 1553 int nr_pages = 0; 1554 1555 /* 1556 * Overflow, abort 1557 */ 1558 if (end < start) 1559 return ERR_PTR(-EINVAL); 1560 1561 nr_pages = end - start; 1562 bio = bio_kmalloc(gfp_mask, nr_pages); 1563 if (!bio) 1564 return ERR_PTR(-ENOMEM); 1565 1566 while (len) { 1567 struct page *page; 1568 unsigned int bytes = PAGE_SIZE; 1569 1570 if (bytes > len) 1571 bytes = len; 1572 1573 page = alloc_page(q->bounce_gfp | gfp_mask); 1574 if (!page) 1575 goto cleanup; 1576 1577 if (!reading) 1578 memcpy(page_address(page), p, bytes); 1579 1580 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1581 break; 1582 1583 len -= bytes; 1584 p += bytes; 1585 } 1586 1587 if (reading) { 1588 bio->bi_end_io = bio_copy_kern_endio_read; 1589 bio->bi_private = data; 1590 } else { 1591 bio->bi_end_io = bio_copy_kern_endio; 1592 } 1593 1594 return bio; 1595 1596 cleanup: 1597 bio_free_pages(bio); 1598 bio_put(bio); 1599 return ERR_PTR(-ENOMEM); 1600 } 1601 1602 /* 1603 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1604 * for performing direct-IO in BIOs. 1605 * 1606 * The problem is that we cannot run set_page_dirty() from interrupt context 1607 * because the required locks are not interrupt-safe. So what we can do is to 1608 * mark the pages dirty _before_ performing IO. And in interrupt context, 1609 * check that the pages are still dirty. If so, fine. If not, redirty them 1610 * in process context. 1611 * 1612 * We special-case compound pages here: normally this means reads into hugetlb 1613 * pages. The logic in here doesn't really work right for compound pages 1614 * because the VM does not uniformly chase down the head page in all cases. 1615 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1616 * handle them at all. So we skip compound pages here at an early stage. 1617 * 1618 * Note that this code is very hard to test under normal circumstances because 1619 * direct-io pins the pages with get_user_pages(). This makes 1620 * is_page_cache_freeable return false, and the VM will not clean the pages. 1621 * But other code (eg, flusher threads) could clean the pages if they are mapped 1622 * pagecache. 1623 * 1624 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1625 * deferred bio dirtying paths. 1626 */ 1627 1628 /* 1629 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1630 */ 1631 void bio_set_pages_dirty(struct bio *bio) 1632 { 1633 struct bio_vec *bvec; 1634 int i; 1635 1636 bio_for_each_segment_all(bvec, bio, i) { 1637 struct page *page = bvec->bv_page; 1638 1639 if (page && !PageCompound(page)) 1640 set_page_dirty_lock(page); 1641 } 1642 } 1643 1644 static void bio_release_pages(struct bio *bio) 1645 { 1646 struct bio_vec *bvec; 1647 int i; 1648 1649 bio_for_each_segment_all(bvec, bio, i) { 1650 struct page *page = bvec->bv_page; 1651 1652 if (page) 1653 put_page(page); 1654 } 1655 } 1656 1657 /* 1658 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1659 * If they are, then fine. If, however, some pages are clean then they must 1660 * have been written out during the direct-IO read. So we take another ref on 1661 * the BIO and the offending pages and re-dirty the pages in process context. 1662 * 1663 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1664 * here on. It will run one put_page() against each page and will run one 1665 * bio_put() against the BIO. 1666 */ 1667 1668 static void bio_dirty_fn(struct work_struct *work); 1669 1670 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1671 static DEFINE_SPINLOCK(bio_dirty_lock); 1672 static struct bio *bio_dirty_list; 1673 1674 /* 1675 * This runs in process context 1676 */ 1677 static void bio_dirty_fn(struct work_struct *work) 1678 { 1679 unsigned long flags; 1680 struct bio *bio; 1681 1682 spin_lock_irqsave(&bio_dirty_lock, flags); 1683 bio = bio_dirty_list; 1684 bio_dirty_list = NULL; 1685 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1686 1687 while (bio) { 1688 struct bio *next = bio->bi_private; 1689 1690 bio_set_pages_dirty(bio); 1691 bio_release_pages(bio); 1692 bio_put(bio); 1693 bio = next; 1694 } 1695 } 1696 1697 void bio_check_pages_dirty(struct bio *bio) 1698 { 1699 struct bio_vec *bvec; 1700 int nr_clean_pages = 0; 1701 int i; 1702 1703 bio_for_each_segment_all(bvec, bio, i) { 1704 struct page *page = bvec->bv_page; 1705 1706 if (PageDirty(page) || PageCompound(page)) { 1707 put_page(page); 1708 bvec->bv_page = NULL; 1709 } else { 1710 nr_clean_pages++; 1711 } 1712 } 1713 1714 if (nr_clean_pages) { 1715 unsigned long flags; 1716 1717 spin_lock_irqsave(&bio_dirty_lock, flags); 1718 bio->bi_private = bio_dirty_list; 1719 bio_dirty_list = bio; 1720 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1721 schedule_work(&bio_dirty_work); 1722 } else { 1723 bio_put(bio); 1724 } 1725 } 1726 1727 void generic_start_io_acct(int rw, unsigned long sectors, 1728 struct hd_struct *part) 1729 { 1730 int cpu = part_stat_lock(); 1731 1732 part_round_stats(cpu, part); 1733 part_stat_inc(cpu, part, ios[rw]); 1734 part_stat_add(cpu, part, sectors[rw], sectors); 1735 part_inc_in_flight(part, rw); 1736 1737 part_stat_unlock(); 1738 } 1739 EXPORT_SYMBOL(generic_start_io_acct); 1740 1741 void generic_end_io_acct(int rw, struct hd_struct *part, 1742 unsigned long start_time) 1743 { 1744 unsigned long duration = jiffies - start_time; 1745 int cpu = part_stat_lock(); 1746 1747 part_stat_add(cpu, part, ticks[rw], duration); 1748 part_round_stats(cpu, part); 1749 part_dec_in_flight(part, rw); 1750 1751 part_stat_unlock(); 1752 } 1753 EXPORT_SYMBOL(generic_end_io_acct); 1754 1755 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1756 void bio_flush_dcache_pages(struct bio *bi) 1757 { 1758 struct bio_vec bvec; 1759 struct bvec_iter iter; 1760 1761 bio_for_each_segment(bvec, bi, iter) 1762 flush_dcache_page(bvec.bv_page); 1763 } 1764 EXPORT_SYMBOL(bio_flush_dcache_pages); 1765 #endif 1766 1767 static inline bool bio_remaining_done(struct bio *bio) 1768 { 1769 /* 1770 * If we're not chaining, then ->__bi_remaining is always 1 and 1771 * we always end io on the first invocation. 1772 */ 1773 if (!bio_flagged(bio, BIO_CHAIN)) 1774 return true; 1775 1776 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1777 1778 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1779 bio_clear_flag(bio, BIO_CHAIN); 1780 return true; 1781 } 1782 1783 return false; 1784 } 1785 1786 /** 1787 * bio_endio - end I/O on a bio 1788 * @bio: bio 1789 * 1790 * Description: 1791 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1792 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1793 * bio unless they own it and thus know that it has an end_io function. 1794 * 1795 * bio_endio() can be called several times on a bio that has been chained 1796 * using bio_chain(). The ->bi_end_io() function will only be called the 1797 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1798 * generated if BIO_TRACE_COMPLETION is set. 1799 **/ 1800 void bio_endio(struct bio *bio) 1801 { 1802 again: 1803 if (!bio_remaining_done(bio)) 1804 return; 1805 1806 /* 1807 * Need to have a real endio function for chained bios, otherwise 1808 * various corner cases will break (like stacking block devices that 1809 * save/restore bi_end_io) - however, we want to avoid unbounded 1810 * recursion and blowing the stack. Tail call optimization would 1811 * handle this, but compiling with frame pointers also disables 1812 * gcc's sibling call optimization. 1813 */ 1814 if (bio->bi_end_io == bio_chain_endio) { 1815 bio = __bio_chain_endio(bio); 1816 goto again; 1817 } 1818 1819 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1820 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), 1821 bio, bio->bi_error); 1822 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1823 } 1824 1825 blk_throtl_bio_endio(bio); 1826 if (bio->bi_end_io) 1827 bio->bi_end_io(bio); 1828 } 1829 EXPORT_SYMBOL(bio_endio); 1830 1831 /** 1832 * bio_split - split a bio 1833 * @bio: bio to split 1834 * @sectors: number of sectors to split from the front of @bio 1835 * @gfp: gfp mask 1836 * @bs: bio set to allocate from 1837 * 1838 * Allocates and returns a new bio which represents @sectors from the start of 1839 * @bio, and updates @bio to represent the remaining sectors. 1840 * 1841 * Unless this is a discard request the newly allocated bio will point 1842 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1843 * @bio is not freed before the split. 1844 */ 1845 struct bio *bio_split(struct bio *bio, int sectors, 1846 gfp_t gfp, struct bio_set *bs) 1847 { 1848 struct bio *split = NULL; 1849 1850 BUG_ON(sectors <= 0); 1851 BUG_ON(sectors >= bio_sectors(bio)); 1852 1853 split = bio_clone_fast(bio, gfp, bs); 1854 if (!split) 1855 return NULL; 1856 1857 split->bi_iter.bi_size = sectors << 9; 1858 1859 if (bio_integrity(split)) 1860 bio_integrity_trim(split, 0, sectors); 1861 1862 bio_advance(bio, split->bi_iter.bi_size); 1863 1864 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1865 bio_set_flag(bio, BIO_TRACE_COMPLETION); 1866 1867 return split; 1868 } 1869 EXPORT_SYMBOL(bio_split); 1870 1871 /** 1872 * bio_trim - trim a bio 1873 * @bio: bio to trim 1874 * @offset: number of sectors to trim from the front of @bio 1875 * @size: size we want to trim @bio to, in sectors 1876 */ 1877 void bio_trim(struct bio *bio, int offset, int size) 1878 { 1879 /* 'bio' is a cloned bio which we need to trim to match 1880 * the given offset and size. 1881 */ 1882 1883 size <<= 9; 1884 if (offset == 0 && size == bio->bi_iter.bi_size) 1885 return; 1886 1887 bio_clear_flag(bio, BIO_SEG_VALID); 1888 1889 bio_advance(bio, offset << 9); 1890 1891 bio->bi_iter.bi_size = size; 1892 } 1893 EXPORT_SYMBOL_GPL(bio_trim); 1894 1895 /* 1896 * create memory pools for biovec's in a bio_set. 1897 * use the global biovec slabs created for general use. 1898 */ 1899 mempool_t *biovec_create_pool(int pool_entries) 1900 { 1901 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1902 1903 return mempool_create_slab_pool(pool_entries, bp->slab); 1904 } 1905 1906 void bioset_free(struct bio_set *bs) 1907 { 1908 if (bs->rescue_workqueue) 1909 destroy_workqueue(bs->rescue_workqueue); 1910 1911 if (bs->bio_pool) 1912 mempool_destroy(bs->bio_pool); 1913 1914 if (bs->bvec_pool) 1915 mempool_destroy(bs->bvec_pool); 1916 1917 bioset_integrity_free(bs); 1918 bio_put_slab(bs); 1919 1920 kfree(bs); 1921 } 1922 EXPORT_SYMBOL(bioset_free); 1923 1924 static struct bio_set *__bioset_create(unsigned int pool_size, 1925 unsigned int front_pad, 1926 bool create_bvec_pool) 1927 { 1928 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1929 struct bio_set *bs; 1930 1931 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1932 if (!bs) 1933 return NULL; 1934 1935 bs->front_pad = front_pad; 1936 1937 spin_lock_init(&bs->rescue_lock); 1938 bio_list_init(&bs->rescue_list); 1939 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1940 1941 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1942 if (!bs->bio_slab) { 1943 kfree(bs); 1944 return NULL; 1945 } 1946 1947 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1948 if (!bs->bio_pool) 1949 goto bad; 1950 1951 if (create_bvec_pool) { 1952 bs->bvec_pool = biovec_create_pool(pool_size); 1953 if (!bs->bvec_pool) 1954 goto bad; 1955 } 1956 1957 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1958 if (!bs->rescue_workqueue) 1959 goto bad; 1960 1961 return bs; 1962 bad: 1963 bioset_free(bs); 1964 return NULL; 1965 } 1966 1967 /** 1968 * bioset_create - Create a bio_set 1969 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1970 * @front_pad: Number of bytes to allocate in front of the returned bio 1971 * 1972 * Description: 1973 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1974 * to ask for a number of bytes to be allocated in front of the bio. 1975 * Front pad allocation is useful for embedding the bio inside 1976 * another structure, to avoid allocating extra data to go with the bio. 1977 * Note that the bio must be embedded at the END of that structure always, 1978 * or things will break badly. 1979 */ 1980 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1981 { 1982 return __bioset_create(pool_size, front_pad, true); 1983 } 1984 EXPORT_SYMBOL(bioset_create); 1985 1986 /** 1987 * bioset_create_nobvec - Create a bio_set without bio_vec mempool 1988 * @pool_size: Number of bio to cache in the mempool 1989 * @front_pad: Number of bytes to allocate in front of the returned bio 1990 * 1991 * Description: 1992 * Same functionality as bioset_create() except that mempool is not 1993 * created for bio_vecs. Saving some memory for bio_clone_fast() users. 1994 */ 1995 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) 1996 { 1997 return __bioset_create(pool_size, front_pad, false); 1998 } 1999 EXPORT_SYMBOL(bioset_create_nobvec); 2000 2001 #ifdef CONFIG_BLK_CGROUP 2002 2003 /** 2004 * bio_associate_blkcg - associate a bio with the specified blkcg 2005 * @bio: target bio 2006 * @blkcg_css: css of the blkcg to associate 2007 * 2008 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 2009 * treat @bio as if it were issued by a task which belongs to the blkcg. 2010 * 2011 * This function takes an extra reference of @blkcg_css which will be put 2012 * when @bio is released. The caller must own @bio and is responsible for 2013 * synchronizing calls to this function. 2014 */ 2015 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 2016 { 2017 if (unlikely(bio->bi_css)) 2018 return -EBUSY; 2019 css_get(blkcg_css); 2020 bio->bi_css = blkcg_css; 2021 return 0; 2022 } 2023 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 2024 2025 /** 2026 * bio_associate_current - associate a bio with %current 2027 * @bio: target bio 2028 * 2029 * Associate @bio with %current if it hasn't been associated yet. Block 2030 * layer will treat @bio as if it were issued by %current no matter which 2031 * task actually issues it. 2032 * 2033 * This function takes an extra reference of @task's io_context and blkcg 2034 * which will be put when @bio is released. The caller must own @bio, 2035 * ensure %current->io_context exists, and is responsible for synchronizing 2036 * calls to this function. 2037 */ 2038 int bio_associate_current(struct bio *bio) 2039 { 2040 struct io_context *ioc; 2041 2042 if (bio->bi_css) 2043 return -EBUSY; 2044 2045 ioc = current->io_context; 2046 if (!ioc) 2047 return -ENOENT; 2048 2049 get_io_context_active(ioc); 2050 bio->bi_ioc = ioc; 2051 bio->bi_css = task_get_css(current, io_cgrp_id); 2052 return 0; 2053 } 2054 EXPORT_SYMBOL_GPL(bio_associate_current); 2055 2056 /** 2057 * bio_disassociate_task - undo bio_associate_current() 2058 * @bio: target bio 2059 */ 2060 void bio_disassociate_task(struct bio *bio) 2061 { 2062 if (bio->bi_ioc) { 2063 put_io_context(bio->bi_ioc); 2064 bio->bi_ioc = NULL; 2065 } 2066 if (bio->bi_css) { 2067 css_put(bio->bi_css); 2068 bio->bi_css = NULL; 2069 } 2070 } 2071 2072 /** 2073 * bio_clone_blkcg_association - clone blkcg association from src to dst bio 2074 * @dst: destination bio 2075 * @src: source bio 2076 */ 2077 void bio_clone_blkcg_association(struct bio *dst, struct bio *src) 2078 { 2079 if (src->bi_css) 2080 WARN_ON(bio_associate_blkcg(dst, src->bi_css)); 2081 } 2082 2083 #endif /* CONFIG_BLK_CGROUP */ 2084 2085 static void __init biovec_init_slabs(void) 2086 { 2087 int i; 2088 2089 for (i = 0; i < BVEC_POOL_NR; i++) { 2090 int size; 2091 struct biovec_slab *bvs = bvec_slabs + i; 2092 2093 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2094 bvs->slab = NULL; 2095 continue; 2096 } 2097 2098 size = bvs->nr_vecs * sizeof(struct bio_vec); 2099 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2100 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2101 } 2102 } 2103 2104 static int __init init_bio(void) 2105 { 2106 bio_slab_max = 2; 2107 bio_slab_nr = 0; 2108 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2109 if (!bio_slabs) 2110 panic("bio: can't allocate bios\n"); 2111 2112 bio_integrity_init(); 2113 biovec_init_slabs(); 2114 2115 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2116 if (!fs_bio_set) 2117 panic("bio: can't allocate bios\n"); 2118 2119 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2120 panic("bio: can't create integrity pool\n"); 2121 2122 return 0; 2123 } 2124 subsys_initcall(init_bio); 2125