1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio-integrity.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/blk-crypto.h> 20 #include <linux/xarray.h> 21 22 #include <trace/events/block.h> 23 #include "blk.h" 24 #include "blk-rq-qos.h" 25 #include "blk-cgroup.h" 26 27 #define ALLOC_CACHE_THRESHOLD 16 28 #define ALLOC_CACHE_MAX 256 29 30 struct bio_alloc_cache { 31 struct bio *free_list; 32 struct bio *free_list_irq; 33 unsigned int nr; 34 unsigned int nr_irq; 35 }; 36 37 static struct biovec_slab { 38 int nr_vecs; 39 char *name; 40 struct kmem_cache *slab; 41 } bvec_slabs[] __read_mostly = { 42 { .nr_vecs = 16, .name = "biovec-16" }, 43 { .nr_vecs = 64, .name = "biovec-64" }, 44 { .nr_vecs = 128, .name = "biovec-128" }, 45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 46 }; 47 48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 49 { 50 switch (nr_vecs) { 51 /* smaller bios use inline vecs */ 52 case 5 ... 16: 53 return &bvec_slabs[0]; 54 case 17 ... 64: 55 return &bvec_slabs[1]; 56 case 65 ... 128: 57 return &bvec_slabs[2]; 58 case 129 ... BIO_MAX_VECS: 59 return &bvec_slabs[3]; 60 default: 61 BUG(); 62 return NULL; 63 } 64 } 65 66 /* 67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 68 * IO code that does not need private memory pools. 69 */ 70 struct bio_set fs_bio_set; 71 EXPORT_SYMBOL(fs_bio_set); 72 73 /* 74 * Our slab pool management 75 */ 76 struct bio_slab { 77 struct kmem_cache *slab; 78 unsigned int slab_ref; 79 unsigned int slab_size; 80 char name[12]; 81 }; 82 static DEFINE_MUTEX(bio_slab_lock); 83 static DEFINE_XARRAY(bio_slabs); 84 85 static struct bio_slab *create_bio_slab(unsigned int size) 86 { 87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 88 89 if (!bslab) 90 return NULL; 91 92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 93 bslab->slab = kmem_cache_create(bslab->name, size, 94 ARCH_KMALLOC_MINALIGN, 95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 96 if (!bslab->slab) 97 goto fail_alloc_slab; 98 99 bslab->slab_ref = 1; 100 bslab->slab_size = size; 101 102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 103 return bslab; 104 105 kmem_cache_destroy(bslab->slab); 106 107 fail_alloc_slab: 108 kfree(bslab); 109 return NULL; 110 } 111 112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 113 { 114 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 115 } 116 117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 118 { 119 unsigned int size = bs_bio_slab_size(bs); 120 struct bio_slab *bslab; 121 122 mutex_lock(&bio_slab_lock); 123 bslab = xa_load(&bio_slabs, size); 124 if (bslab) 125 bslab->slab_ref++; 126 else 127 bslab = create_bio_slab(size); 128 mutex_unlock(&bio_slab_lock); 129 130 if (bslab) 131 return bslab->slab; 132 return NULL; 133 } 134 135 static void bio_put_slab(struct bio_set *bs) 136 { 137 struct bio_slab *bslab = NULL; 138 unsigned int slab_size = bs_bio_slab_size(bs); 139 140 mutex_lock(&bio_slab_lock); 141 142 bslab = xa_load(&bio_slabs, slab_size); 143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 144 goto out; 145 146 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 147 148 WARN_ON(!bslab->slab_ref); 149 150 if (--bslab->slab_ref) 151 goto out; 152 153 xa_erase(&bio_slabs, slab_size); 154 155 kmem_cache_destroy(bslab->slab); 156 kfree(bslab); 157 158 out: 159 mutex_unlock(&bio_slab_lock); 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 163 { 164 BUG_ON(nr_vecs > BIO_MAX_VECS); 165 166 if (nr_vecs == BIO_MAX_VECS) 167 mempool_free(bv, pool); 168 else if (nr_vecs > BIO_INLINE_VECS) 169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 170 } 171 172 /* 173 * Make the first allocation restricted and don't dump info on allocation 174 * failures, since we'll fall back to the mempool in case of failure. 175 */ 176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 177 { 178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 180 } 181 182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 183 gfp_t gfp_mask) 184 { 185 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 186 187 if (WARN_ON_ONCE(!bvs)) 188 return NULL; 189 190 /* 191 * Upgrade the nr_vecs request to take full advantage of the allocation. 192 * We also rely on this in the bvec_free path. 193 */ 194 *nr_vecs = bvs->nr_vecs; 195 196 /* 197 * Try a slab allocation first for all smaller allocations. If that 198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 199 * The mempool is sized to handle up to BIO_MAX_VECS entries. 200 */ 201 if (*nr_vecs < BIO_MAX_VECS) { 202 struct bio_vec *bvl; 203 204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 206 return bvl; 207 *nr_vecs = BIO_MAX_VECS; 208 } 209 210 return mempool_alloc(pool, gfp_mask); 211 } 212 213 void bio_uninit(struct bio *bio) 214 { 215 #ifdef CONFIG_BLK_CGROUP 216 if (bio->bi_blkg) { 217 blkg_put(bio->bi_blkg); 218 bio->bi_blkg = NULL; 219 } 220 #endif 221 if (bio_integrity(bio)) 222 bio_integrity_free(bio); 223 224 bio_crypt_free_ctx(bio); 225 } 226 EXPORT_SYMBOL(bio_uninit); 227 228 static void bio_free(struct bio *bio) 229 { 230 struct bio_set *bs = bio->bi_pool; 231 void *p = bio; 232 233 WARN_ON_ONCE(!bs); 234 235 bio_uninit(bio); 236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 237 mempool_free(p - bs->front_pad, &bs->bio_pool); 238 } 239 240 /* 241 * Users of this function have their own bio allocation. Subsequently, 242 * they must remember to pair any call to bio_init() with bio_uninit() 243 * when IO has completed, or when the bio is released. 244 */ 245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 246 unsigned short max_vecs, blk_opf_t opf) 247 { 248 bio->bi_next = NULL; 249 bio->bi_bdev = bdev; 250 bio->bi_opf = opf; 251 bio->bi_flags = 0; 252 bio->bi_ioprio = 0; 253 bio->bi_write_hint = 0; 254 bio->bi_write_stream = 0; 255 bio->bi_status = 0; 256 bio->bi_iter.bi_sector = 0; 257 bio->bi_iter.bi_size = 0; 258 bio->bi_iter.bi_idx = 0; 259 bio->bi_iter.bi_bvec_done = 0; 260 bio->bi_end_io = NULL; 261 bio->bi_private = NULL; 262 #ifdef CONFIG_BLK_CGROUP 263 bio->bi_blkg = NULL; 264 bio->bi_issue.value = 0; 265 if (bdev) 266 bio_associate_blkg(bio); 267 #ifdef CONFIG_BLK_CGROUP_IOCOST 268 bio->bi_iocost_cost = 0; 269 #endif 270 #endif 271 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 272 bio->bi_crypt_context = NULL; 273 #endif 274 #ifdef CONFIG_BLK_DEV_INTEGRITY 275 bio->bi_integrity = NULL; 276 #endif 277 bio->bi_vcnt = 0; 278 279 atomic_set(&bio->__bi_remaining, 1); 280 atomic_set(&bio->__bi_cnt, 1); 281 bio->bi_cookie = BLK_QC_T_NONE; 282 283 bio->bi_max_vecs = max_vecs; 284 bio->bi_io_vec = table; 285 bio->bi_pool = NULL; 286 } 287 EXPORT_SYMBOL(bio_init); 288 289 /** 290 * bio_reset - reinitialize a bio 291 * @bio: bio to reset 292 * @bdev: block device to use the bio for 293 * @opf: operation and flags for bio 294 * 295 * Description: 296 * After calling bio_reset(), @bio will be in the same state as a freshly 297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 298 * preserved are the ones that are initialized by bio_alloc_bioset(). See 299 * comment in struct bio. 300 */ 301 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) 302 { 303 bio_uninit(bio); 304 memset(bio, 0, BIO_RESET_BYTES); 305 atomic_set(&bio->__bi_remaining, 1); 306 bio->bi_bdev = bdev; 307 if (bio->bi_bdev) 308 bio_associate_blkg(bio); 309 bio->bi_opf = opf; 310 } 311 EXPORT_SYMBOL(bio_reset); 312 313 static struct bio *__bio_chain_endio(struct bio *bio) 314 { 315 struct bio *parent = bio->bi_private; 316 317 if (bio->bi_status && !parent->bi_status) 318 parent->bi_status = bio->bi_status; 319 bio_put(bio); 320 return parent; 321 } 322 323 static void bio_chain_endio(struct bio *bio) 324 { 325 bio_endio(__bio_chain_endio(bio)); 326 } 327 328 /** 329 * bio_chain - chain bio completions 330 * @bio: the target bio 331 * @parent: the parent bio of @bio 332 * 333 * The caller won't have a bi_end_io called when @bio completes - instead, 334 * @parent's bi_end_io won't be called until both @parent and @bio have 335 * completed; the chained bio will also be freed when it completes. 336 * 337 * The caller must not set bi_private or bi_end_io in @bio. 338 */ 339 void bio_chain(struct bio *bio, struct bio *parent) 340 { 341 BUG_ON(bio->bi_private || bio->bi_end_io); 342 343 bio->bi_private = parent; 344 bio->bi_end_io = bio_chain_endio; 345 bio_inc_remaining(parent); 346 } 347 EXPORT_SYMBOL(bio_chain); 348 349 /** 350 * bio_chain_and_submit - submit a bio after chaining it to another one 351 * @prev: bio to chain and submit 352 * @new: bio to chain to 353 * 354 * If @prev is non-NULL, chain it to @new and submit it. 355 * 356 * Return: @new. 357 */ 358 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new) 359 { 360 if (prev) { 361 bio_chain(prev, new); 362 submit_bio(prev); 363 } 364 return new; 365 } 366 367 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 368 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) 369 { 370 return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp)); 371 } 372 EXPORT_SYMBOL_GPL(blk_next_bio); 373 374 static void bio_alloc_rescue(struct work_struct *work) 375 { 376 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 377 struct bio *bio; 378 379 while (1) { 380 spin_lock(&bs->rescue_lock); 381 bio = bio_list_pop(&bs->rescue_list); 382 spin_unlock(&bs->rescue_lock); 383 384 if (!bio) 385 break; 386 387 submit_bio_noacct(bio); 388 } 389 } 390 391 static void punt_bios_to_rescuer(struct bio_set *bs) 392 { 393 struct bio_list punt, nopunt; 394 struct bio *bio; 395 396 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 397 return; 398 /* 399 * In order to guarantee forward progress we must punt only bios that 400 * were allocated from this bio_set; otherwise, if there was a bio on 401 * there for a stacking driver higher up in the stack, processing it 402 * could require allocating bios from this bio_set, and doing that from 403 * our own rescuer would be bad. 404 * 405 * Since bio lists are singly linked, pop them all instead of trying to 406 * remove from the middle of the list: 407 */ 408 409 bio_list_init(&punt); 410 bio_list_init(&nopunt); 411 412 while ((bio = bio_list_pop(¤t->bio_list[0]))) 413 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 414 current->bio_list[0] = nopunt; 415 416 bio_list_init(&nopunt); 417 while ((bio = bio_list_pop(¤t->bio_list[1]))) 418 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 419 current->bio_list[1] = nopunt; 420 421 spin_lock(&bs->rescue_lock); 422 bio_list_merge(&bs->rescue_list, &punt); 423 spin_unlock(&bs->rescue_lock); 424 425 queue_work(bs->rescue_workqueue, &bs->rescue_work); 426 } 427 428 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache) 429 { 430 unsigned long flags; 431 432 /* cache->free_list must be empty */ 433 if (WARN_ON_ONCE(cache->free_list)) 434 return; 435 436 local_irq_save(flags); 437 cache->free_list = cache->free_list_irq; 438 cache->free_list_irq = NULL; 439 cache->nr += cache->nr_irq; 440 cache->nr_irq = 0; 441 local_irq_restore(flags); 442 } 443 444 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 445 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, 446 struct bio_set *bs) 447 { 448 struct bio_alloc_cache *cache; 449 struct bio *bio; 450 451 cache = per_cpu_ptr(bs->cache, get_cpu()); 452 if (!cache->free_list) { 453 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD) 454 bio_alloc_irq_cache_splice(cache); 455 if (!cache->free_list) { 456 put_cpu(); 457 return NULL; 458 } 459 } 460 bio = cache->free_list; 461 cache->free_list = bio->bi_next; 462 cache->nr--; 463 put_cpu(); 464 465 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); 466 bio->bi_pool = bs; 467 return bio; 468 } 469 470 /** 471 * bio_alloc_bioset - allocate a bio for I/O 472 * @bdev: block device to allocate the bio for (can be %NULL) 473 * @nr_vecs: number of bvecs to pre-allocate 474 * @opf: operation and flags for bio 475 * @gfp_mask: the GFP_* mask given to the slab allocator 476 * @bs: the bio_set to allocate from. 477 * 478 * Allocate a bio from the mempools in @bs. 479 * 480 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 481 * allocate a bio. This is due to the mempool guarantees. To make this work, 482 * callers must never allocate more than 1 bio at a time from the general pool. 483 * Callers that need to allocate more than 1 bio must always submit the 484 * previously allocated bio for IO before attempting to allocate a new one. 485 * Failure to do so can cause deadlocks under memory pressure. 486 * 487 * Note that when running under submit_bio_noacct() (i.e. any block driver), 488 * bios are not submitted until after you return - see the code in 489 * submit_bio_noacct() that converts recursion into iteration, to prevent 490 * stack overflows. 491 * 492 * This would normally mean allocating multiple bios under submit_bio_noacct() 493 * would be susceptible to deadlocks, but we have 494 * deadlock avoidance code that resubmits any blocked bios from a rescuer 495 * thread. 496 * 497 * However, we do not guarantee forward progress for allocations from other 498 * mempools. Doing multiple allocations from the same mempool under 499 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 500 * for per bio allocations. 501 * 502 * Returns: Pointer to new bio on success, NULL on failure. 503 */ 504 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 505 blk_opf_t opf, gfp_t gfp_mask, 506 struct bio_set *bs) 507 { 508 gfp_t saved_gfp = gfp_mask; 509 struct bio *bio; 510 void *p; 511 512 /* should not use nobvec bioset for nr_vecs > 0 */ 513 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 514 return NULL; 515 516 if (opf & REQ_ALLOC_CACHE) { 517 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 518 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 519 gfp_mask, bs); 520 if (bio) 521 return bio; 522 /* 523 * No cached bio available, bio returned below marked with 524 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. 525 */ 526 } else { 527 opf &= ~REQ_ALLOC_CACHE; 528 } 529 } 530 531 /* 532 * submit_bio_noacct() converts recursion to iteration; this means if 533 * we're running beneath it, any bios we allocate and submit will not be 534 * submitted (and thus freed) until after we return. 535 * 536 * This exposes us to a potential deadlock if we allocate multiple bios 537 * from the same bio_set() while running underneath submit_bio_noacct(). 538 * If we were to allocate multiple bios (say a stacking block driver 539 * that was splitting bios), we would deadlock if we exhausted the 540 * mempool's reserve. 541 * 542 * We solve this, and guarantee forward progress, with a rescuer 543 * workqueue per bio_set. If we go to allocate and there are bios on 544 * current->bio_list, we first try the allocation without 545 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 546 * blocking to the rescuer workqueue before we retry with the original 547 * gfp_flags. 548 */ 549 if (current->bio_list && 550 (!bio_list_empty(¤t->bio_list[0]) || 551 !bio_list_empty(¤t->bio_list[1])) && 552 bs->rescue_workqueue) 553 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 554 555 p = mempool_alloc(&bs->bio_pool, gfp_mask); 556 if (!p && gfp_mask != saved_gfp) { 557 punt_bios_to_rescuer(bs); 558 gfp_mask = saved_gfp; 559 p = mempool_alloc(&bs->bio_pool, gfp_mask); 560 } 561 if (unlikely(!p)) 562 return NULL; 563 if (!mempool_is_saturated(&bs->bio_pool)) 564 opf &= ~REQ_ALLOC_CACHE; 565 566 bio = p + bs->front_pad; 567 if (nr_vecs > BIO_INLINE_VECS) { 568 struct bio_vec *bvl = NULL; 569 570 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 571 if (!bvl && gfp_mask != saved_gfp) { 572 punt_bios_to_rescuer(bs); 573 gfp_mask = saved_gfp; 574 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 575 } 576 if (unlikely(!bvl)) 577 goto err_free; 578 579 bio_init(bio, bdev, bvl, nr_vecs, opf); 580 } else if (nr_vecs) { 581 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 582 } else { 583 bio_init(bio, bdev, NULL, 0, opf); 584 } 585 586 bio->bi_pool = bs; 587 return bio; 588 589 err_free: 590 mempool_free(p, &bs->bio_pool); 591 return NULL; 592 } 593 EXPORT_SYMBOL(bio_alloc_bioset); 594 595 /** 596 * bio_kmalloc - kmalloc a bio 597 * @nr_vecs: number of bio_vecs to allocate 598 * @gfp_mask: the GFP_* mask given to the slab allocator 599 * 600 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 601 * using bio_init() before use. To free a bio returned from this function use 602 * kfree() after calling bio_uninit(). A bio returned from this function can 603 * be reused by calling bio_uninit() before calling bio_init() again. 604 * 605 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 606 * function are not backed by a mempool can fail. Do not use this function 607 * for allocations in the file system I/O path. 608 * 609 * Returns: Pointer to new bio on success, NULL on failure. 610 */ 611 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 612 { 613 struct bio *bio; 614 615 if (nr_vecs > BIO_MAX_INLINE_VECS) 616 return NULL; 617 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); 618 } 619 EXPORT_SYMBOL(bio_kmalloc); 620 621 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 622 { 623 struct bio_vec bv; 624 struct bvec_iter iter; 625 626 __bio_for_each_segment(bv, bio, iter, start) 627 memzero_bvec(&bv); 628 } 629 EXPORT_SYMBOL(zero_fill_bio_iter); 630 631 /** 632 * bio_truncate - truncate the bio to small size of @new_size 633 * @bio: the bio to be truncated 634 * @new_size: new size for truncating the bio 635 * 636 * Description: 637 * Truncate the bio to new size of @new_size. If bio_op(bio) is 638 * REQ_OP_READ, zero the truncated part. This function should only 639 * be used for handling corner cases, such as bio eod. 640 */ 641 static void bio_truncate(struct bio *bio, unsigned new_size) 642 { 643 struct bio_vec bv; 644 struct bvec_iter iter; 645 unsigned int done = 0; 646 bool truncated = false; 647 648 if (new_size >= bio->bi_iter.bi_size) 649 return; 650 651 if (bio_op(bio) != REQ_OP_READ) 652 goto exit; 653 654 bio_for_each_segment(bv, bio, iter) { 655 if (done + bv.bv_len > new_size) { 656 unsigned offset; 657 658 if (!truncated) 659 offset = new_size - done; 660 else 661 offset = 0; 662 zero_user(bv.bv_page, bv.bv_offset + offset, 663 bv.bv_len - offset); 664 truncated = true; 665 } 666 done += bv.bv_len; 667 } 668 669 exit: 670 /* 671 * Don't touch bvec table here and make it really immutable, since 672 * fs bio user has to retrieve all pages via bio_for_each_segment_all 673 * in its .end_bio() callback. 674 * 675 * It is enough to truncate bio by updating .bi_size since we can make 676 * correct bvec with the updated .bi_size for drivers. 677 */ 678 bio->bi_iter.bi_size = new_size; 679 } 680 681 /** 682 * guard_bio_eod - truncate a BIO to fit the block device 683 * @bio: bio to truncate 684 * 685 * This allows us to do IO even on the odd last sectors of a device, even if the 686 * block size is some multiple of the physical sector size. 687 * 688 * We'll just truncate the bio to the size of the device, and clear the end of 689 * the buffer head manually. Truly out-of-range accesses will turn into actual 690 * I/O errors, this only handles the "we need to be able to do I/O at the final 691 * sector" case. 692 */ 693 void guard_bio_eod(struct bio *bio) 694 { 695 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 696 697 if (!maxsector) 698 return; 699 700 /* 701 * If the *whole* IO is past the end of the device, 702 * let it through, and the IO layer will turn it into 703 * an EIO. 704 */ 705 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 706 return; 707 708 maxsector -= bio->bi_iter.bi_sector; 709 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 710 return; 711 712 bio_truncate(bio, maxsector << 9); 713 } 714 715 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache, 716 unsigned int nr) 717 { 718 unsigned int i = 0; 719 struct bio *bio; 720 721 while ((bio = cache->free_list) != NULL) { 722 cache->free_list = bio->bi_next; 723 cache->nr--; 724 bio_free(bio); 725 if (++i == nr) 726 break; 727 } 728 return i; 729 } 730 731 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 732 unsigned int nr) 733 { 734 nr -= __bio_alloc_cache_prune(cache, nr); 735 if (!READ_ONCE(cache->free_list)) { 736 bio_alloc_irq_cache_splice(cache); 737 __bio_alloc_cache_prune(cache, nr); 738 } 739 } 740 741 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 742 { 743 struct bio_set *bs; 744 745 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 746 if (bs->cache) { 747 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 748 749 bio_alloc_cache_prune(cache, -1U); 750 } 751 return 0; 752 } 753 754 static void bio_alloc_cache_destroy(struct bio_set *bs) 755 { 756 int cpu; 757 758 if (!bs->cache) 759 return; 760 761 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 762 for_each_possible_cpu(cpu) { 763 struct bio_alloc_cache *cache; 764 765 cache = per_cpu_ptr(bs->cache, cpu); 766 bio_alloc_cache_prune(cache, -1U); 767 } 768 free_percpu(bs->cache); 769 bs->cache = NULL; 770 } 771 772 static inline void bio_put_percpu_cache(struct bio *bio) 773 { 774 struct bio_alloc_cache *cache; 775 776 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 777 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) 778 goto out_free; 779 780 if (in_task()) { 781 bio_uninit(bio); 782 bio->bi_next = cache->free_list; 783 /* Not necessary but helps not to iopoll already freed bios */ 784 bio->bi_bdev = NULL; 785 cache->free_list = bio; 786 cache->nr++; 787 } else if (in_hardirq()) { 788 lockdep_assert_irqs_disabled(); 789 790 bio_uninit(bio); 791 bio->bi_next = cache->free_list_irq; 792 cache->free_list_irq = bio; 793 cache->nr_irq++; 794 } else { 795 goto out_free; 796 } 797 put_cpu(); 798 return; 799 out_free: 800 put_cpu(); 801 bio_free(bio); 802 } 803 804 /** 805 * bio_put - release a reference to a bio 806 * @bio: bio to release reference to 807 * 808 * Description: 809 * Put a reference to a &struct bio, either one you have gotten with 810 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 811 **/ 812 void bio_put(struct bio *bio) 813 { 814 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 815 BUG_ON(!atomic_read(&bio->__bi_cnt)); 816 if (!atomic_dec_and_test(&bio->__bi_cnt)) 817 return; 818 } 819 if (bio->bi_opf & REQ_ALLOC_CACHE) 820 bio_put_percpu_cache(bio); 821 else 822 bio_free(bio); 823 } 824 EXPORT_SYMBOL(bio_put); 825 826 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 827 { 828 bio_set_flag(bio, BIO_CLONED); 829 bio->bi_ioprio = bio_src->bi_ioprio; 830 bio->bi_write_hint = bio_src->bi_write_hint; 831 bio->bi_write_stream = bio_src->bi_write_stream; 832 bio->bi_iter = bio_src->bi_iter; 833 834 if (bio->bi_bdev) { 835 if (bio->bi_bdev == bio_src->bi_bdev && 836 bio_flagged(bio_src, BIO_REMAPPED)) 837 bio_set_flag(bio, BIO_REMAPPED); 838 bio_clone_blkg_association(bio, bio_src); 839 } 840 841 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 842 return -ENOMEM; 843 if (bio_integrity(bio_src) && 844 bio_integrity_clone(bio, bio_src, gfp) < 0) 845 return -ENOMEM; 846 return 0; 847 } 848 849 /** 850 * bio_alloc_clone - clone a bio that shares the original bio's biovec 851 * @bdev: block_device to clone onto 852 * @bio_src: bio to clone from 853 * @gfp: allocation priority 854 * @bs: bio_set to allocate from 855 * 856 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 857 * bio, but not the actual data it points to. 858 * 859 * The caller must ensure that the return bio is not freed before @bio_src. 860 */ 861 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 862 gfp_t gfp, struct bio_set *bs) 863 { 864 struct bio *bio; 865 866 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 867 if (!bio) 868 return NULL; 869 870 if (__bio_clone(bio, bio_src, gfp) < 0) { 871 bio_put(bio); 872 return NULL; 873 } 874 bio->bi_io_vec = bio_src->bi_io_vec; 875 876 return bio; 877 } 878 EXPORT_SYMBOL(bio_alloc_clone); 879 880 /** 881 * bio_init_clone - clone a bio that shares the original bio's biovec 882 * @bdev: block_device to clone onto 883 * @bio: bio to clone into 884 * @bio_src: bio to clone from 885 * @gfp: allocation priority 886 * 887 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 888 * The caller owns the returned bio, but not the actual data it points to. 889 * 890 * The caller must ensure that @bio_src is not freed before @bio. 891 */ 892 int bio_init_clone(struct block_device *bdev, struct bio *bio, 893 struct bio *bio_src, gfp_t gfp) 894 { 895 int ret; 896 897 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 898 ret = __bio_clone(bio, bio_src, gfp); 899 if (ret) 900 bio_uninit(bio); 901 return ret; 902 } 903 EXPORT_SYMBOL(bio_init_clone); 904 905 /** 906 * bio_full - check if the bio is full 907 * @bio: bio to check 908 * @len: length of one segment to be added 909 * 910 * Return true if @bio is full and one segment with @len bytes can't be 911 * added to the bio, otherwise return false 912 */ 913 static inline bool bio_full(struct bio *bio, unsigned len) 914 { 915 if (bio->bi_vcnt >= bio->bi_max_vecs) 916 return true; 917 if (bio->bi_iter.bi_size > UINT_MAX - len) 918 return true; 919 return false; 920 } 921 922 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page, 923 unsigned int len, unsigned int off) 924 { 925 size_t bv_end = bv->bv_offset + bv->bv_len; 926 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 927 phys_addr_t page_addr = page_to_phys(page); 928 929 if (vec_end_addr + 1 != page_addr + off) 930 return false; 931 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 932 return false; 933 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page)) 934 return false; 935 936 if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) { 937 if (IS_ENABLED(CONFIG_KMSAN)) 938 return false; 939 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE) 940 return false; 941 } 942 943 bv->bv_len += len; 944 return true; 945 } 946 947 /* 948 * Try to merge a page into a segment, while obeying the hardware segment 949 * size limit. 950 * 951 * This is kept around for the integrity metadata, which is still tries 952 * to build the initial bio to the hardware limit and doesn't have proper 953 * helpers to split. Hopefully this will go away soon. 954 */ 955 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 956 struct page *page, unsigned len, unsigned offset) 957 { 958 unsigned long mask = queue_segment_boundary(q); 959 phys_addr_t addr1 = bvec_phys(bv); 960 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 961 962 if ((addr1 | mask) != (addr2 | mask)) 963 return false; 964 if (len > queue_max_segment_size(q) - bv->bv_len) 965 return false; 966 return bvec_try_merge_page(bv, page, len, offset); 967 } 968 969 /** 970 * __bio_add_page - add page(s) to a bio in a new segment 971 * @bio: destination bio 972 * @page: start page to add 973 * @len: length of the data to add, may cross pages 974 * @off: offset of the data relative to @page, may cross pages 975 * 976 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 977 * that @bio has space for another bvec. 978 */ 979 void __bio_add_page(struct bio *bio, struct page *page, 980 unsigned int len, unsigned int off) 981 { 982 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 983 WARN_ON_ONCE(bio_full(bio, len)); 984 985 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off); 986 bio->bi_iter.bi_size += len; 987 bio->bi_vcnt++; 988 } 989 EXPORT_SYMBOL_GPL(__bio_add_page); 990 991 /** 992 * bio_add_virt_nofail - add data in the direct kernel mapping to a bio 993 * @bio: destination bio 994 * @vaddr: data to add 995 * @len: length of the data to add, may cross pages 996 * 997 * Add the data at @vaddr to @bio. The caller must have ensure a segment 998 * is available for the added data. No merging into an existing segment 999 * will be performed. 1000 */ 1001 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len) 1002 { 1003 __bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr)); 1004 } 1005 EXPORT_SYMBOL_GPL(bio_add_virt_nofail); 1006 1007 /** 1008 * bio_add_page - attempt to add page(s) to bio 1009 * @bio: destination bio 1010 * @page: start page to add 1011 * @len: vec entry length, may cross pages 1012 * @offset: vec entry offset relative to @page, may cross pages 1013 * 1014 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1015 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1016 */ 1017 int bio_add_page(struct bio *bio, struct page *page, 1018 unsigned int len, unsigned int offset) 1019 { 1020 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1021 return 0; 1022 if (bio->bi_iter.bi_size > UINT_MAX - len) 1023 return 0; 1024 1025 if (bio->bi_vcnt > 0 && 1026 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 1027 page, len, offset)) { 1028 bio->bi_iter.bi_size += len; 1029 return len; 1030 } 1031 1032 if (bio->bi_vcnt >= bio->bi_max_vecs) 1033 return 0; 1034 __bio_add_page(bio, page, len, offset); 1035 return len; 1036 } 1037 EXPORT_SYMBOL(bio_add_page); 1038 1039 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 1040 size_t off) 1041 { 1042 unsigned long nr = off / PAGE_SIZE; 1043 1044 WARN_ON_ONCE(len > UINT_MAX); 1045 __bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE); 1046 } 1047 EXPORT_SYMBOL_GPL(bio_add_folio_nofail); 1048 1049 /** 1050 * bio_add_folio - Attempt to add part of a folio to a bio. 1051 * @bio: BIO to add to. 1052 * @folio: Folio to add. 1053 * @len: How many bytes from the folio to add. 1054 * @off: First byte in this folio to add. 1055 * 1056 * Filesystems that use folios can call this function instead of calling 1057 * bio_add_page() for each page in the folio. If @off is bigger than 1058 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1059 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1060 * 1061 * Return: Whether the addition was successful. 1062 */ 1063 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1064 size_t off) 1065 { 1066 unsigned long nr = off / PAGE_SIZE; 1067 1068 if (len > UINT_MAX) 1069 return false; 1070 return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0; 1071 } 1072 EXPORT_SYMBOL(bio_add_folio); 1073 1074 /** 1075 * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio 1076 * @bio: destination bio 1077 * @vaddr: vmalloc address to add 1078 * @len: total length in bytes of the data to add 1079 * 1080 * Add data starting at @vaddr to @bio and return how many bytes were added. 1081 * This may be less than the amount originally asked. Returns 0 if no data 1082 * could be added to @bio. 1083 * 1084 * This helper calls flush_kernel_vmap_range() for the range added. For reads 1085 * the caller still needs to manually call invalidate_kernel_vmap_range() in 1086 * the completion handler. 1087 */ 1088 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len) 1089 { 1090 unsigned int offset = offset_in_page(vaddr); 1091 1092 len = min(len, PAGE_SIZE - offset); 1093 if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len) 1094 return 0; 1095 if (op_is_write(bio_op(bio))) 1096 flush_kernel_vmap_range(vaddr, len); 1097 return len; 1098 } 1099 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk); 1100 1101 /** 1102 * bio_add_vmalloc - add a vmalloc region to a bio 1103 * @bio: destination bio 1104 * @vaddr: vmalloc address to add 1105 * @len: total length in bytes of the data to add 1106 * 1107 * Add data starting at @vaddr to @bio. Return %true on success or %false if 1108 * @bio does not have enough space for the payload. 1109 * 1110 * This helper calls flush_kernel_vmap_range() for the range added. For reads 1111 * the caller still needs to manually call invalidate_kernel_vmap_range() in 1112 * the completion handler. 1113 */ 1114 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len) 1115 { 1116 do { 1117 unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len); 1118 1119 if (!added) 1120 return false; 1121 vaddr += added; 1122 len -= added; 1123 } while (len); 1124 1125 return true; 1126 } 1127 EXPORT_SYMBOL_GPL(bio_add_vmalloc); 1128 1129 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1130 { 1131 struct folio_iter fi; 1132 1133 bio_for_each_folio_all(fi, bio) { 1134 size_t nr_pages; 1135 1136 if (mark_dirty) { 1137 folio_lock(fi.folio); 1138 folio_mark_dirty(fi.folio); 1139 folio_unlock(fi.folio); 1140 } 1141 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE - 1142 fi.offset / PAGE_SIZE + 1; 1143 unpin_user_folio(fi.folio, nr_pages); 1144 } 1145 } 1146 EXPORT_SYMBOL_GPL(__bio_release_pages); 1147 1148 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter) 1149 { 1150 WARN_ON_ONCE(bio->bi_max_vecs); 1151 1152 bio->bi_vcnt = iter->nr_segs; 1153 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1154 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1155 bio->bi_iter.bi_size = iov_iter_count(iter); 1156 bio_set_flag(bio, BIO_CLONED); 1157 } 1158 1159 static unsigned int get_contig_folio_len(unsigned int *num_pages, 1160 struct page **pages, unsigned int i, 1161 struct folio *folio, size_t left, 1162 size_t offset) 1163 { 1164 size_t bytes = left; 1165 size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes); 1166 unsigned int j; 1167 1168 /* 1169 * We might COW a single page in the middle of 1170 * a large folio, so we have to check that all 1171 * pages belong to the same folio. 1172 */ 1173 bytes -= contig_sz; 1174 for (j = i + 1; j < i + *num_pages; j++) { 1175 size_t next = min_t(size_t, PAGE_SIZE, bytes); 1176 1177 if (page_folio(pages[j]) != folio || 1178 pages[j] != pages[j - 1] + 1) { 1179 break; 1180 } 1181 contig_sz += next; 1182 bytes -= next; 1183 } 1184 *num_pages = j - i; 1185 1186 return contig_sz; 1187 } 1188 1189 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1190 1191 /** 1192 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1193 * @bio: bio to add pages to 1194 * @iter: iov iterator describing the region to be mapped 1195 * 1196 * Extracts pages from *iter and appends them to @bio's bvec array. The pages 1197 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag. 1198 * For a multi-segment *iter, this function only adds pages from the next 1199 * non-empty segment of the iov iterator. 1200 */ 1201 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1202 { 1203 iov_iter_extraction_t extraction_flags = 0; 1204 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1205 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1206 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1207 struct page **pages = (struct page **)bv; 1208 ssize_t size; 1209 unsigned int num_pages, i = 0; 1210 size_t offset, folio_offset, left, len; 1211 int ret = 0; 1212 1213 /* 1214 * Move page array up in the allocated memory for the bio vecs as far as 1215 * possible so that we can start filling biovecs from the beginning 1216 * without overwriting the temporary page array. 1217 */ 1218 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1219 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1220 1221 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue)) 1222 extraction_flags |= ITER_ALLOW_P2PDMA; 1223 1224 /* 1225 * Each segment in the iov is required to be a block size multiple. 1226 * However, we may not be able to get the entire segment if it spans 1227 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the 1228 * result to ensure the bio's total size is correct. The remainder of 1229 * the iov data will be picked up in the next bio iteration. 1230 */ 1231 size = iov_iter_extract_pages(iter, &pages, 1232 UINT_MAX - bio->bi_iter.bi_size, 1233 nr_pages, extraction_flags, &offset); 1234 if (unlikely(size <= 0)) 1235 return size ? size : -EFAULT; 1236 1237 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); 1238 1239 if (bio->bi_bdev) { 1240 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1); 1241 iov_iter_revert(iter, trim); 1242 size -= trim; 1243 } 1244 1245 if (unlikely(!size)) { 1246 ret = -EFAULT; 1247 goto out; 1248 } 1249 1250 for (left = size, i = 0; left > 0; left -= len, i += num_pages) { 1251 struct page *page = pages[i]; 1252 struct folio *folio = page_folio(page); 1253 unsigned int old_vcnt = bio->bi_vcnt; 1254 1255 folio_offset = ((size_t)folio_page_idx(folio, page) << 1256 PAGE_SHIFT) + offset; 1257 1258 len = min(folio_size(folio) - folio_offset, left); 1259 1260 num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1261 1262 if (num_pages > 1) 1263 len = get_contig_folio_len(&num_pages, pages, i, 1264 folio, left, offset); 1265 1266 if (!bio_add_folio(bio, folio, len, folio_offset)) { 1267 WARN_ON_ONCE(1); 1268 ret = -EINVAL; 1269 goto out; 1270 } 1271 1272 if (bio_flagged(bio, BIO_PAGE_PINNED)) { 1273 /* 1274 * We're adding another fragment of a page that already 1275 * was part of the last segment. Undo our pin as the 1276 * page was pinned when an earlier fragment of it was 1277 * added to the bio and __bio_release_pages expects a 1278 * single pin per page. 1279 */ 1280 if (offset && bio->bi_vcnt == old_vcnt) 1281 unpin_user_folio(folio, 1); 1282 } 1283 offset = 0; 1284 } 1285 1286 iov_iter_revert(iter, left); 1287 out: 1288 while (i < nr_pages) 1289 bio_release_page(bio, pages[i++]); 1290 1291 return ret; 1292 } 1293 1294 /** 1295 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1296 * @bio: bio to add pages to 1297 * @iter: iov iterator describing the region to be added 1298 * 1299 * This takes either an iterator pointing to user memory, or one pointing to 1300 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1301 * map them into the kernel. On IO completion, the caller should put those 1302 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1303 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1304 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1305 * completed by a call to ->ki_complete() or returns with an error other than 1306 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1307 * on IO completion. If it isn't, then pages should be released. 1308 * 1309 * The function tries, but does not guarantee, to pin as many pages as 1310 * fit into the bio, or are requested in @iter, whatever is smaller. If 1311 * MM encounters an error pinning the requested pages, it stops. Error 1312 * is returned only if 0 pages could be pinned. 1313 */ 1314 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1315 { 1316 int ret = 0; 1317 1318 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1319 return -EIO; 1320 1321 if (iov_iter_is_bvec(iter)) { 1322 bio_iov_bvec_set(bio, iter); 1323 iov_iter_advance(iter, bio->bi_iter.bi_size); 1324 return 0; 1325 } 1326 1327 if (iov_iter_extract_will_pin(iter)) 1328 bio_set_flag(bio, BIO_PAGE_PINNED); 1329 do { 1330 ret = __bio_iov_iter_get_pages(bio, iter); 1331 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1332 1333 return bio->bi_vcnt ? 0 : ret; 1334 } 1335 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1336 1337 static void submit_bio_wait_endio(struct bio *bio) 1338 { 1339 complete(bio->bi_private); 1340 } 1341 1342 /** 1343 * submit_bio_wait - submit a bio, and wait until it completes 1344 * @bio: The &struct bio which describes the I/O 1345 * 1346 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1347 * bio_endio() on failure. 1348 * 1349 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1350 * result in bio reference to be consumed. The caller must drop the reference 1351 * on his own. 1352 */ 1353 int submit_bio_wait(struct bio *bio) 1354 { 1355 DECLARE_COMPLETION_ONSTACK_MAP(done, 1356 bio->bi_bdev->bd_disk->lockdep_map); 1357 1358 bio->bi_private = &done; 1359 bio->bi_end_io = submit_bio_wait_endio; 1360 bio->bi_opf |= REQ_SYNC; 1361 submit_bio(bio); 1362 blk_wait_io(&done); 1363 1364 return blk_status_to_errno(bio->bi_status); 1365 } 1366 EXPORT_SYMBOL(submit_bio_wait); 1367 1368 /** 1369 * bdev_rw_virt - synchronously read into / write from kernel mapping 1370 * @bdev: block device to access 1371 * @sector: sector to access 1372 * @data: data to read/write 1373 * @len: length in byte to read/write 1374 * @op: operation (e.g. REQ_OP_READ/REQ_OP_WRITE) 1375 * 1376 * Performs synchronous I/O to @bdev for @data/@len. @data must be in 1377 * the kernel direct mapping and not a vmalloc address. 1378 */ 1379 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data, 1380 size_t len, enum req_op op) 1381 { 1382 struct bio_vec bv; 1383 struct bio bio; 1384 int error; 1385 1386 if (WARN_ON_ONCE(is_vmalloc_addr(data))) 1387 return -EIO; 1388 1389 bio_init(&bio, bdev, &bv, 1, op); 1390 bio.bi_iter.bi_sector = sector; 1391 bio_add_virt_nofail(&bio, data, len); 1392 error = submit_bio_wait(&bio); 1393 bio_uninit(&bio); 1394 return error; 1395 } 1396 EXPORT_SYMBOL_GPL(bdev_rw_virt); 1397 1398 static void bio_wait_end_io(struct bio *bio) 1399 { 1400 complete(bio->bi_private); 1401 bio_put(bio); 1402 } 1403 1404 /* 1405 * bio_await_chain - ends @bio and waits for every chained bio to complete 1406 */ 1407 void bio_await_chain(struct bio *bio) 1408 { 1409 DECLARE_COMPLETION_ONSTACK_MAP(done, 1410 bio->bi_bdev->bd_disk->lockdep_map); 1411 1412 bio->bi_private = &done; 1413 bio->bi_end_io = bio_wait_end_io; 1414 bio_endio(bio); 1415 blk_wait_io(&done); 1416 } 1417 1418 void __bio_advance(struct bio *bio, unsigned bytes) 1419 { 1420 if (bio_integrity(bio)) 1421 bio_integrity_advance(bio, bytes); 1422 1423 bio_crypt_advance(bio, bytes); 1424 bio_advance_iter(bio, &bio->bi_iter, bytes); 1425 } 1426 EXPORT_SYMBOL(__bio_advance); 1427 1428 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1429 struct bio *src, struct bvec_iter *src_iter) 1430 { 1431 while (src_iter->bi_size && dst_iter->bi_size) { 1432 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1433 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1434 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1435 void *src_buf = bvec_kmap_local(&src_bv); 1436 void *dst_buf = bvec_kmap_local(&dst_bv); 1437 1438 memcpy(dst_buf, src_buf, bytes); 1439 1440 kunmap_local(dst_buf); 1441 kunmap_local(src_buf); 1442 1443 bio_advance_iter_single(src, src_iter, bytes); 1444 bio_advance_iter_single(dst, dst_iter, bytes); 1445 } 1446 } 1447 EXPORT_SYMBOL(bio_copy_data_iter); 1448 1449 /** 1450 * bio_copy_data - copy contents of data buffers from one bio to another 1451 * @src: source bio 1452 * @dst: destination bio 1453 * 1454 * Stops when it reaches the end of either @src or @dst - that is, copies 1455 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1456 */ 1457 void bio_copy_data(struct bio *dst, struct bio *src) 1458 { 1459 struct bvec_iter src_iter = src->bi_iter; 1460 struct bvec_iter dst_iter = dst->bi_iter; 1461 1462 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1463 } 1464 EXPORT_SYMBOL(bio_copy_data); 1465 1466 void bio_free_pages(struct bio *bio) 1467 { 1468 struct bio_vec *bvec; 1469 struct bvec_iter_all iter_all; 1470 1471 bio_for_each_segment_all(bvec, bio, iter_all) 1472 __free_page(bvec->bv_page); 1473 } 1474 EXPORT_SYMBOL(bio_free_pages); 1475 1476 /* 1477 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1478 * for performing direct-IO in BIOs. 1479 * 1480 * The problem is that we cannot run folio_mark_dirty() from interrupt context 1481 * because the required locks are not interrupt-safe. So what we can do is to 1482 * mark the pages dirty _before_ performing IO. And in interrupt context, 1483 * check that the pages are still dirty. If so, fine. If not, redirty them 1484 * in process context. 1485 * 1486 * Note that this code is very hard to test under normal circumstances because 1487 * direct-io pins the pages with get_user_pages(). This makes 1488 * is_page_cache_freeable return false, and the VM will not clean the pages. 1489 * But other code (eg, flusher threads) could clean the pages if they are mapped 1490 * pagecache. 1491 * 1492 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1493 * deferred bio dirtying paths. 1494 */ 1495 1496 /* 1497 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1498 */ 1499 void bio_set_pages_dirty(struct bio *bio) 1500 { 1501 struct folio_iter fi; 1502 1503 bio_for_each_folio_all(fi, bio) { 1504 folio_lock(fi.folio); 1505 folio_mark_dirty(fi.folio); 1506 folio_unlock(fi.folio); 1507 } 1508 } 1509 EXPORT_SYMBOL_GPL(bio_set_pages_dirty); 1510 1511 /* 1512 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1513 * If they are, then fine. If, however, some pages are clean then they must 1514 * have been written out during the direct-IO read. So we take another ref on 1515 * the BIO and re-dirty the pages in process context. 1516 * 1517 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1518 * here on. It will unpin each page and will run one bio_put() against the 1519 * BIO. 1520 */ 1521 1522 static void bio_dirty_fn(struct work_struct *work); 1523 1524 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1525 static DEFINE_SPINLOCK(bio_dirty_lock); 1526 static struct bio *bio_dirty_list; 1527 1528 /* 1529 * This runs in process context 1530 */ 1531 static void bio_dirty_fn(struct work_struct *work) 1532 { 1533 struct bio *bio, *next; 1534 1535 spin_lock_irq(&bio_dirty_lock); 1536 next = bio_dirty_list; 1537 bio_dirty_list = NULL; 1538 spin_unlock_irq(&bio_dirty_lock); 1539 1540 while ((bio = next) != NULL) { 1541 next = bio->bi_private; 1542 1543 bio_release_pages(bio, true); 1544 bio_put(bio); 1545 } 1546 } 1547 1548 void bio_check_pages_dirty(struct bio *bio) 1549 { 1550 struct folio_iter fi; 1551 unsigned long flags; 1552 1553 bio_for_each_folio_all(fi, bio) { 1554 if (!folio_test_dirty(fi.folio)) 1555 goto defer; 1556 } 1557 1558 bio_release_pages(bio, false); 1559 bio_put(bio); 1560 return; 1561 defer: 1562 spin_lock_irqsave(&bio_dirty_lock, flags); 1563 bio->bi_private = bio_dirty_list; 1564 bio_dirty_list = bio; 1565 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1566 schedule_work(&bio_dirty_work); 1567 } 1568 EXPORT_SYMBOL_GPL(bio_check_pages_dirty); 1569 1570 static inline bool bio_remaining_done(struct bio *bio) 1571 { 1572 /* 1573 * If we're not chaining, then ->__bi_remaining is always 1 and 1574 * we always end io on the first invocation. 1575 */ 1576 if (!bio_flagged(bio, BIO_CHAIN)) 1577 return true; 1578 1579 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1580 1581 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1582 bio_clear_flag(bio, BIO_CHAIN); 1583 return true; 1584 } 1585 1586 return false; 1587 } 1588 1589 /** 1590 * bio_endio - end I/O on a bio 1591 * @bio: bio 1592 * 1593 * Description: 1594 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1595 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1596 * bio unless they own it and thus know that it has an end_io function. 1597 * 1598 * bio_endio() can be called several times on a bio that has been chained 1599 * using bio_chain(). The ->bi_end_io() function will only be called the 1600 * last time. 1601 **/ 1602 void bio_endio(struct bio *bio) 1603 { 1604 again: 1605 if (!bio_remaining_done(bio)) 1606 return; 1607 if (!bio_integrity_endio(bio)) 1608 return; 1609 1610 blk_zone_bio_endio(bio); 1611 1612 rq_qos_done_bio(bio); 1613 1614 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1615 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1616 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1617 } 1618 1619 /* 1620 * Need to have a real endio function for chained bios, otherwise 1621 * various corner cases will break (like stacking block devices that 1622 * save/restore bi_end_io) - however, we want to avoid unbounded 1623 * recursion and blowing the stack. Tail call optimization would 1624 * handle this, but compiling with frame pointers also disables 1625 * gcc's sibling call optimization. 1626 */ 1627 if (bio->bi_end_io == bio_chain_endio) { 1628 bio = __bio_chain_endio(bio); 1629 goto again; 1630 } 1631 1632 #ifdef CONFIG_BLK_CGROUP 1633 /* 1634 * Release cgroup info. We shouldn't have to do this here, but quite 1635 * a few callers of bio_init fail to call bio_uninit, so we cover up 1636 * for that here at least for now. 1637 */ 1638 if (bio->bi_blkg) { 1639 blkg_put(bio->bi_blkg); 1640 bio->bi_blkg = NULL; 1641 } 1642 #endif 1643 1644 if (bio->bi_end_io) 1645 bio->bi_end_io(bio); 1646 } 1647 EXPORT_SYMBOL(bio_endio); 1648 1649 /** 1650 * bio_split - split a bio 1651 * @bio: bio to split 1652 * @sectors: number of sectors to split from the front of @bio 1653 * @gfp: gfp mask 1654 * @bs: bio set to allocate from 1655 * 1656 * Allocates and returns a new bio which represents @sectors from the start of 1657 * @bio, and updates @bio to represent the remaining sectors. 1658 * 1659 * Unless this is a discard request the newly allocated bio will point 1660 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1661 * neither @bio nor @bs are freed before the split bio. 1662 */ 1663 struct bio *bio_split(struct bio *bio, int sectors, 1664 gfp_t gfp, struct bio_set *bs) 1665 { 1666 struct bio *split; 1667 1668 if (WARN_ON_ONCE(sectors <= 0)) 1669 return ERR_PTR(-EINVAL); 1670 if (WARN_ON_ONCE(sectors >= bio_sectors(bio))) 1671 return ERR_PTR(-EINVAL); 1672 1673 /* Zone append commands cannot be split */ 1674 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1675 return ERR_PTR(-EINVAL); 1676 1677 /* atomic writes cannot be split */ 1678 if (bio->bi_opf & REQ_ATOMIC) 1679 return ERR_PTR(-EINVAL); 1680 1681 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1682 if (!split) 1683 return ERR_PTR(-ENOMEM); 1684 1685 split->bi_iter.bi_size = sectors << 9; 1686 1687 if (bio_integrity(split)) 1688 bio_integrity_trim(split); 1689 1690 bio_advance(bio, split->bi_iter.bi_size); 1691 1692 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1693 bio_set_flag(split, BIO_TRACE_COMPLETION); 1694 1695 return split; 1696 } 1697 EXPORT_SYMBOL(bio_split); 1698 1699 /** 1700 * bio_trim - trim a bio 1701 * @bio: bio to trim 1702 * @offset: number of sectors to trim from the front of @bio 1703 * @size: size we want to trim @bio to, in sectors 1704 * 1705 * This function is typically used for bios that are cloned and submitted 1706 * to the underlying device in parts. 1707 */ 1708 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1709 { 1710 /* We should never trim an atomic write */ 1711 if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size)) 1712 return; 1713 1714 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1715 offset + size > bio_sectors(bio))) 1716 return; 1717 1718 size <<= 9; 1719 if (offset == 0 && size == bio->bi_iter.bi_size) 1720 return; 1721 1722 bio_advance(bio, offset << 9); 1723 bio->bi_iter.bi_size = size; 1724 1725 if (bio_integrity(bio)) 1726 bio_integrity_trim(bio); 1727 } 1728 EXPORT_SYMBOL_GPL(bio_trim); 1729 1730 /* 1731 * create memory pools for biovec's in a bio_set. 1732 * use the global biovec slabs created for general use. 1733 */ 1734 int biovec_init_pool(mempool_t *pool, int pool_entries) 1735 { 1736 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1737 1738 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1739 } 1740 1741 /* 1742 * bioset_exit - exit a bioset initialized with bioset_init() 1743 * 1744 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1745 * kzalloc()). 1746 */ 1747 void bioset_exit(struct bio_set *bs) 1748 { 1749 bio_alloc_cache_destroy(bs); 1750 if (bs->rescue_workqueue) 1751 destroy_workqueue(bs->rescue_workqueue); 1752 bs->rescue_workqueue = NULL; 1753 1754 mempool_exit(&bs->bio_pool); 1755 mempool_exit(&bs->bvec_pool); 1756 1757 if (bs->bio_slab) 1758 bio_put_slab(bs); 1759 bs->bio_slab = NULL; 1760 } 1761 EXPORT_SYMBOL(bioset_exit); 1762 1763 /** 1764 * bioset_init - Initialize a bio_set 1765 * @bs: pool to initialize 1766 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1767 * @front_pad: Number of bytes to allocate in front of the returned bio 1768 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1769 * and %BIOSET_NEED_RESCUER 1770 * 1771 * Description: 1772 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1773 * to ask for a number of bytes to be allocated in front of the bio. 1774 * Front pad allocation is useful for embedding the bio inside 1775 * another structure, to avoid allocating extra data to go with the bio. 1776 * Note that the bio must be embedded at the END of that structure always, 1777 * or things will break badly. 1778 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1779 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1780 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1781 * to dispatch queued requests when the mempool runs out of space. 1782 * 1783 */ 1784 int bioset_init(struct bio_set *bs, 1785 unsigned int pool_size, 1786 unsigned int front_pad, 1787 int flags) 1788 { 1789 bs->front_pad = front_pad; 1790 if (flags & BIOSET_NEED_BVECS) 1791 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1792 else 1793 bs->back_pad = 0; 1794 1795 spin_lock_init(&bs->rescue_lock); 1796 bio_list_init(&bs->rescue_list); 1797 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1798 1799 bs->bio_slab = bio_find_or_create_slab(bs); 1800 if (!bs->bio_slab) 1801 return -ENOMEM; 1802 1803 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1804 goto bad; 1805 1806 if ((flags & BIOSET_NEED_BVECS) && 1807 biovec_init_pool(&bs->bvec_pool, pool_size)) 1808 goto bad; 1809 1810 if (flags & BIOSET_NEED_RESCUER) { 1811 bs->rescue_workqueue = alloc_workqueue("bioset", 1812 WQ_MEM_RECLAIM, 0); 1813 if (!bs->rescue_workqueue) 1814 goto bad; 1815 } 1816 if (flags & BIOSET_PERCPU_CACHE) { 1817 bs->cache = alloc_percpu(struct bio_alloc_cache); 1818 if (!bs->cache) 1819 goto bad; 1820 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1821 } 1822 1823 return 0; 1824 bad: 1825 bioset_exit(bs); 1826 return -ENOMEM; 1827 } 1828 EXPORT_SYMBOL(bioset_init); 1829 1830 static int __init init_bio(void) 1831 { 1832 int i; 1833 1834 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags)); 1835 1836 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1837 struct biovec_slab *bvs = bvec_slabs + i; 1838 1839 bvs->slab = kmem_cache_create(bvs->name, 1840 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1841 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1842 } 1843 1844 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1845 bio_cpu_dead); 1846 1847 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, 1848 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) 1849 panic("bio: can't allocate bios\n"); 1850 1851 return 0; 1852 } 1853 subsys_initcall(init_bio); 1854