1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 #include <linux/highmem.h> 20 21 #include <trace/events/block.h> 22 #include "blk.h" 23 #include "blk-rq-qos.h" 24 25 /* 26 * Test patch to inline a certain number of bi_io_vec's inside the bio 27 * itself, to shrink a bio data allocation from two mempool calls to one 28 */ 29 #define BIO_INLINE_VECS 4 30 31 /* 32 * if you change this list, also change bvec_alloc or things will 33 * break badly! cannot be bigger than what you can fit into an 34 * unsigned short 35 */ 36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 39 }; 40 #undef BV 41 42 /* 43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 44 * IO code that does not need private memory pools. 45 */ 46 struct bio_set fs_bio_set; 47 EXPORT_SYMBOL(fs_bio_set); 48 49 /* 50 * Our slab pool management 51 */ 52 struct bio_slab { 53 struct kmem_cache *slab; 54 unsigned int slab_ref; 55 unsigned int slab_size; 56 char name[8]; 57 }; 58 static DEFINE_MUTEX(bio_slab_lock); 59 static struct bio_slab *bio_slabs; 60 static unsigned int bio_slab_nr, bio_slab_max; 61 62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 63 { 64 unsigned int sz = sizeof(struct bio) + extra_size; 65 struct kmem_cache *slab = NULL; 66 struct bio_slab *bslab, *new_bio_slabs; 67 unsigned int new_bio_slab_max; 68 unsigned int i, entry = -1; 69 70 mutex_lock(&bio_slab_lock); 71 72 i = 0; 73 while (i < bio_slab_nr) { 74 bslab = &bio_slabs[i]; 75 76 if (!bslab->slab && entry == -1) 77 entry = i; 78 else if (bslab->slab_size == sz) { 79 slab = bslab->slab; 80 bslab->slab_ref++; 81 break; 82 } 83 i++; 84 } 85 86 if (slab) 87 goto out_unlock; 88 89 if (bio_slab_nr == bio_slab_max && entry == -1) { 90 new_bio_slab_max = bio_slab_max << 1; 91 new_bio_slabs = krealloc(bio_slabs, 92 new_bio_slab_max * sizeof(struct bio_slab), 93 GFP_KERNEL); 94 if (!new_bio_slabs) 95 goto out_unlock; 96 bio_slab_max = new_bio_slab_max; 97 bio_slabs = new_bio_slabs; 98 } 99 if (entry == -1) 100 entry = bio_slab_nr++; 101 102 bslab = &bio_slabs[entry]; 103 104 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 105 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 106 SLAB_HWCACHE_ALIGN, NULL); 107 if (!slab) 108 goto out_unlock; 109 110 bslab->slab = slab; 111 bslab->slab_ref = 1; 112 bslab->slab_size = sz; 113 out_unlock: 114 mutex_unlock(&bio_slab_lock); 115 return slab; 116 } 117 118 static void bio_put_slab(struct bio_set *bs) 119 { 120 struct bio_slab *bslab = NULL; 121 unsigned int i; 122 123 mutex_lock(&bio_slab_lock); 124 125 for (i = 0; i < bio_slab_nr; i++) { 126 if (bs->bio_slab == bio_slabs[i].slab) { 127 bslab = &bio_slabs[i]; 128 break; 129 } 130 } 131 132 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 133 goto out; 134 135 WARN_ON(!bslab->slab_ref); 136 137 if (--bslab->slab_ref) 138 goto out; 139 140 kmem_cache_destroy(bslab->slab); 141 bslab->slab = NULL; 142 143 out: 144 mutex_unlock(&bio_slab_lock); 145 } 146 147 unsigned int bvec_nr_vecs(unsigned short idx) 148 { 149 return bvec_slabs[--idx].nr_vecs; 150 } 151 152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 153 { 154 if (!idx) 155 return; 156 idx--; 157 158 BIO_BUG_ON(idx >= BVEC_POOL_NR); 159 160 if (idx == BVEC_POOL_MAX) { 161 mempool_free(bv, pool); 162 } else { 163 struct biovec_slab *bvs = bvec_slabs + idx; 164 165 kmem_cache_free(bvs->slab, bv); 166 } 167 } 168 169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 170 mempool_t *pool) 171 { 172 struct bio_vec *bvl; 173 174 /* 175 * see comment near bvec_array define! 176 */ 177 switch (nr) { 178 case 1: 179 *idx = 0; 180 break; 181 case 2 ... 4: 182 *idx = 1; 183 break; 184 case 5 ... 16: 185 *idx = 2; 186 break; 187 case 17 ... 64: 188 *idx = 3; 189 break; 190 case 65 ... 128: 191 *idx = 4; 192 break; 193 case 129 ... BIO_MAX_PAGES: 194 *idx = 5; 195 break; 196 default: 197 return NULL; 198 } 199 200 /* 201 * idx now points to the pool we want to allocate from. only the 202 * 1-vec entry pool is mempool backed. 203 */ 204 if (*idx == BVEC_POOL_MAX) { 205 fallback: 206 bvl = mempool_alloc(pool, gfp_mask); 207 } else { 208 struct biovec_slab *bvs = bvec_slabs + *idx; 209 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 210 211 /* 212 * Make this allocation restricted and don't dump info on 213 * allocation failures, since we'll fallback to the mempool 214 * in case of failure. 215 */ 216 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 217 218 /* 219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 220 * is set, retry with the 1-entry mempool 221 */ 222 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 223 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 224 *idx = BVEC_POOL_MAX; 225 goto fallback; 226 } 227 } 228 229 (*idx)++; 230 return bvl; 231 } 232 233 void bio_uninit(struct bio *bio) 234 { 235 bio_disassociate_blkg(bio); 236 237 if (bio_integrity(bio)) 238 bio_integrity_free(bio); 239 } 240 EXPORT_SYMBOL(bio_uninit); 241 242 static void bio_free(struct bio *bio) 243 { 244 struct bio_set *bs = bio->bi_pool; 245 void *p; 246 247 bio_uninit(bio); 248 249 if (bs) { 250 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 251 252 /* 253 * If we have front padding, adjust the bio pointer before freeing 254 */ 255 p = bio; 256 p -= bs->front_pad; 257 258 mempool_free(p, &bs->bio_pool); 259 } else { 260 /* Bio was allocated by bio_kmalloc() */ 261 kfree(bio); 262 } 263 } 264 265 /* 266 * Users of this function have their own bio allocation. Subsequently, 267 * they must remember to pair any call to bio_init() with bio_uninit() 268 * when IO has completed, or when the bio is released. 269 */ 270 void bio_init(struct bio *bio, struct bio_vec *table, 271 unsigned short max_vecs) 272 { 273 memset(bio, 0, sizeof(*bio)); 274 atomic_set(&bio->__bi_remaining, 1); 275 atomic_set(&bio->__bi_cnt, 1); 276 277 bio->bi_io_vec = table; 278 bio->bi_max_vecs = max_vecs; 279 } 280 EXPORT_SYMBOL(bio_init); 281 282 /** 283 * bio_reset - reinitialize a bio 284 * @bio: bio to reset 285 * 286 * Description: 287 * After calling bio_reset(), @bio will be in the same state as a freshly 288 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 289 * preserved are the ones that are initialized by bio_alloc_bioset(). See 290 * comment in struct bio. 291 */ 292 void bio_reset(struct bio *bio) 293 { 294 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 295 296 bio_uninit(bio); 297 298 memset(bio, 0, BIO_RESET_BYTES); 299 bio->bi_flags = flags; 300 atomic_set(&bio->__bi_remaining, 1); 301 } 302 EXPORT_SYMBOL(bio_reset); 303 304 static struct bio *__bio_chain_endio(struct bio *bio) 305 { 306 struct bio *parent = bio->bi_private; 307 308 if (!parent->bi_status) 309 parent->bi_status = bio->bi_status; 310 bio_put(bio); 311 return parent; 312 } 313 314 static void bio_chain_endio(struct bio *bio) 315 { 316 bio_endio(__bio_chain_endio(bio)); 317 } 318 319 /** 320 * bio_chain - chain bio completions 321 * @bio: the target bio 322 * @parent: the @bio's parent bio 323 * 324 * The caller won't have a bi_end_io called when @bio completes - instead, 325 * @parent's bi_end_io won't be called until both @parent and @bio have 326 * completed; the chained bio will also be freed when it completes. 327 * 328 * The caller must not set bi_private or bi_end_io in @bio. 329 */ 330 void bio_chain(struct bio *bio, struct bio *parent) 331 { 332 BUG_ON(bio->bi_private || bio->bi_end_io); 333 334 bio->bi_private = parent; 335 bio->bi_end_io = bio_chain_endio; 336 bio_inc_remaining(parent); 337 } 338 EXPORT_SYMBOL(bio_chain); 339 340 static void bio_alloc_rescue(struct work_struct *work) 341 { 342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 343 struct bio *bio; 344 345 while (1) { 346 spin_lock(&bs->rescue_lock); 347 bio = bio_list_pop(&bs->rescue_list); 348 spin_unlock(&bs->rescue_lock); 349 350 if (!bio) 351 break; 352 353 generic_make_request(bio); 354 } 355 } 356 357 static void punt_bios_to_rescuer(struct bio_set *bs) 358 { 359 struct bio_list punt, nopunt; 360 struct bio *bio; 361 362 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 363 return; 364 /* 365 * In order to guarantee forward progress we must punt only bios that 366 * were allocated from this bio_set; otherwise, if there was a bio on 367 * there for a stacking driver higher up in the stack, processing it 368 * could require allocating bios from this bio_set, and doing that from 369 * our own rescuer would be bad. 370 * 371 * Since bio lists are singly linked, pop them all instead of trying to 372 * remove from the middle of the list: 373 */ 374 375 bio_list_init(&punt); 376 bio_list_init(&nopunt); 377 378 while ((bio = bio_list_pop(¤t->bio_list[0]))) 379 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 380 current->bio_list[0] = nopunt; 381 382 bio_list_init(&nopunt); 383 while ((bio = bio_list_pop(¤t->bio_list[1]))) 384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 385 current->bio_list[1] = nopunt; 386 387 spin_lock(&bs->rescue_lock); 388 bio_list_merge(&bs->rescue_list, &punt); 389 spin_unlock(&bs->rescue_lock); 390 391 queue_work(bs->rescue_workqueue, &bs->rescue_work); 392 } 393 394 /** 395 * bio_alloc_bioset - allocate a bio for I/O 396 * @gfp_mask: the GFP_* mask given to the slab allocator 397 * @nr_iovecs: number of iovecs to pre-allocate 398 * @bs: the bio_set to allocate from. 399 * 400 * Description: 401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 402 * backed by the @bs's mempool. 403 * 404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 405 * always be able to allocate a bio. This is due to the mempool guarantees. 406 * To make this work, callers must never allocate more than 1 bio at a time 407 * from this pool. Callers that need to allocate more than 1 bio must always 408 * submit the previously allocated bio for IO before attempting to allocate 409 * a new one. Failure to do so can cause deadlocks under memory pressure. 410 * 411 * Note that when running under generic_make_request() (i.e. any block 412 * driver), bios are not submitted until after you return - see the code in 413 * generic_make_request() that converts recursion into iteration, to prevent 414 * stack overflows. 415 * 416 * This would normally mean allocating multiple bios under 417 * generic_make_request() would be susceptible to deadlocks, but we have 418 * deadlock avoidance code that resubmits any blocked bios from a rescuer 419 * thread. 420 * 421 * However, we do not guarantee forward progress for allocations from other 422 * mempools. Doing multiple allocations from the same mempool under 423 * generic_make_request() should be avoided - instead, use bio_set's front_pad 424 * for per bio allocations. 425 * 426 * RETURNS: 427 * Pointer to new bio on success, NULL on failure. 428 */ 429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 430 struct bio_set *bs) 431 { 432 gfp_t saved_gfp = gfp_mask; 433 unsigned front_pad; 434 unsigned inline_vecs; 435 struct bio_vec *bvl = NULL; 436 struct bio *bio; 437 void *p; 438 439 if (!bs) { 440 if (nr_iovecs > UIO_MAXIOV) 441 return NULL; 442 443 p = kmalloc(sizeof(struct bio) + 444 nr_iovecs * sizeof(struct bio_vec), 445 gfp_mask); 446 front_pad = 0; 447 inline_vecs = nr_iovecs; 448 } else { 449 /* should not use nobvec bioset for nr_iovecs > 0 */ 450 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && 451 nr_iovecs > 0)) 452 return NULL; 453 /* 454 * generic_make_request() converts recursion to iteration; this 455 * means if we're running beneath it, any bios we allocate and 456 * submit will not be submitted (and thus freed) until after we 457 * return. 458 * 459 * This exposes us to a potential deadlock if we allocate 460 * multiple bios from the same bio_set() while running 461 * underneath generic_make_request(). If we were to allocate 462 * multiple bios (say a stacking block driver that was splitting 463 * bios), we would deadlock if we exhausted the mempool's 464 * reserve. 465 * 466 * We solve this, and guarantee forward progress, with a rescuer 467 * workqueue per bio_set. If we go to allocate and there are 468 * bios on current->bio_list, we first try the allocation 469 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 470 * bios we would be blocking to the rescuer workqueue before 471 * we retry with the original gfp_flags. 472 */ 473 474 if (current->bio_list && 475 (!bio_list_empty(¤t->bio_list[0]) || 476 !bio_list_empty(¤t->bio_list[1])) && 477 bs->rescue_workqueue) 478 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 479 480 p = mempool_alloc(&bs->bio_pool, gfp_mask); 481 if (!p && gfp_mask != saved_gfp) { 482 punt_bios_to_rescuer(bs); 483 gfp_mask = saved_gfp; 484 p = mempool_alloc(&bs->bio_pool, gfp_mask); 485 } 486 487 front_pad = bs->front_pad; 488 inline_vecs = BIO_INLINE_VECS; 489 } 490 491 if (unlikely(!p)) 492 return NULL; 493 494 bio = p + front_pad; 495 bio_init(bio, NULL, 0); 496 497 if (nr_iovecs > inline_vecs) { 498 unsigned long idx = 0; 499 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 501 if (!bvl && gfp_mask != saved_gfp) { 502 punt_bios_to_rescuer(bs); 503 gfp_mask = saved_gfp; 504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 505 } 506 507 if (unlikely(!bvl)) 508 goto err_free; 509 510 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 511 } else if (nr_iovecs) { 512 bvl = bio->bi_inline_vecs; 513 } 514 515 bio->bi_pool = bs; 516 bio->bi_max_vecs = nr_iovecs; 517 bio->bi_io_vec = bvl; 518 return bio; 519 520 err_free: 521 mempool_free(p, &bs->bio_pool); 522 return NULL; 523 } 524 EXPORT_SYMBOL(bio_alloc_bioset); 525 526 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 527 { 528 unsigned long flags; 529 struct bio_vec bv; 530 struct bvec_iter iter; 531 532 __bio_for_each_segment(bv, bio, iter, start) { 533 char *data = bvec_kmap_irq(&bv, &flags); 534 memset(data, 0, bv.bv_len); 535 flush_dcache_page(bv.bv_page); 536 bvec_kunmap_irq(data, &flags); 537 } 538 } 539 EXPORT_SYMBOL(zero_fill_bio_iter); 540 541 /** 542 * bio_put - release a reference to a bio 543 * @bio: bio to release reference to 544 * 545 * Description: 546 * Put a reference to a &struct bio, either one you have gotten with 547 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 548 **/ 549 void bio_put(struct bio *bio) 550 { 551 if (!bio_flagged(bio, BIO_REFFED)) 552 bio_free(bio); 553 else { 554 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 555 556 /* 557 * last put frees it 558 */ 559 if (atomic_dec_and_test(&bio->__bi_cnt)) 560 bio_free(bio); 561 } 562 } 563 EXPORT_SYMBOL(bio_put); 564 565 /** 566 * __bio_clone_fast - clone a bio that shares the original bio's biovec 567 * @bio: destination bio 568 * @bio_src: bio to clone 569 * 570 * Clone a &bio. Caller will own the returned bio, but not 571 * the actual data it points to. Reference count of returned 572 * bio will be one. 573 * 574 * Caller must ensure that @bio_src is not freed before @bio. 575 */ 576 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 577 { 578 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 579 580 /* 581 * most users will be overriding ->bi_disk with a new target, 582 * so we don't set nor calculate new physical/hw segment counts here 583 */ 584 bio->bi_disk = bio_src->bi_disk; 585 bio->bi_partno = bio_src->bi_partno; 586 bio_set_flag(bio, BIO_CLONED); 587 if (bio_flagged(bio_src, BIO_THROTTLED)) 588 bio_set_flag(bio, BIO_THROTTLED); 589 bio->bi_opf = bio_src->bi_opf; 590 bio->bi_ioprio = bio_src->bi_ioprio; 591 bio->bi_write_hint = bio_src->bi_write_hint; 592 bio->bi_iter = bio_src->bi_iter; 593 bio->bi_io_vec = bio_src->bi_io_vec; 594 595 bio_clone_blkg_association(bio, bio_src); 596 blkcg_bio_issue_init(bio); 597 } 598 EXPORT_SYMBOL(__bio_clone_fast); 599 600 /** 601 * bio_clone_fast - clone a bio that shares the original bio's biovec 602 * @bio: bio to clone 603 * @gfp_mask: allocation priority 604 * @bs: bio_set to allocate from 605 * 606 * Like __bio_clone_fast, only also allocates the returned bio 607 */ 608 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 609 { 610 struct bio *b; 611 612 b = bio_alloc_bioset(gfp_mask, 0, bs); 613 if (!b) 614 return NULL; 615 616 __bio_clone_fast(b, bio); 617 618 if (bio_integrity(bio)) { 619 int ret; 620 621 ret = bio_integrity_clone(b, bio, gfp_mask); 622 623 if (ret < 0) { 624 bio_put(b); 625 return NULL; 626 } 627 } 628 629 return b; 630 } 631 EXPORT_SYMBOL(bio_clone_fast); 632 633 static inline bool page_is_mergeable(const struct bio_vec *bv, 634 struct page *page, unsigned int len, unsigned int off, 635 bool *same_page) 636 { 637 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + 638 bv->bv_offset + bv->bv_len - 1; 639 phys_addr_t page_addr = page_to_phys(page); 640 641 if (vec_end_addr + 1 != page_addr + off) 642 return false; 643 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 644 return false; 645 646 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 647 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page) 648 return false; 649 return true; 650 } 651 652 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio, 653 struct page *page, unsigned len, unsigned offset, 654 bool *same_page) 655 { 656 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 657 unsigned long mask = queue_segment_boundary(q); 658 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 659 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 660 661 if ((addr1 | mask) != (addr2 | mask)) 662 return false; 663 if (bv->bv_len + len > queue_max_segment_size(q)) 664 return false; 665 return __bio_try_merge_page(bio, page, len, offset, same_page); 666 } 667 668 /** 669 * __bio_add_pc_page - attempt to add page to passthrough bio 670 * @q: the target queue 671 * @bio: destination bio 672 * @page: page to add 673 * @len: vec entry length 674 * @offset: vec entry offset 675 * @same_page: return if the merge happen inside the same page 676 * 677 * Attempt to add a page to the bio_vec maplist. This can fail for a 678 * number of reasons, such as the bio being full or target block device 679 * limitations. The target block device must allow bio's up to PAGE_SIZE, 680 * so it is always possible to add a single page to an empty bio. 681 * 682 * This should only be used by passthrough bios. 683 */ 684 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio, 685 struct page *page, unsigned int len, unsigned int offset, 686 bool *same_page) 687 { 688 struct bio_vec *bvec; 689 690 /* 691 * cloned bio must not modify vec list 692 */ 693 if (unlikely(bio_flagged(bio, BIO_CLONED))) 694 return 0; 695 696 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 697 return 0; 698 699 if (bio->bi_vcnt > 0) { 700 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page)) 701 return len; 702 703 /* 704 * If the queue doesn't support SG gaps and adding this segment 705 * would create a gap, disallow it. 706 */ 707 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 708 if (bvec_gap_to_prev(q, bvec, offset)) 709 return 0; 710 } 711 712 if (bio_full(bio, len)) 713 return 0; 714 715 if (bio->bi_vcnt >= queue_max_segments(q)) 716 return 0; 717 718 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 719 bvec->bv_page = page; 720 bvec->bv_len = len; 721 bvec->bv_offset = offset; 722 bio->bi_vcnt++; 723 bio->bi_iter.bi_size += len; 724 return len; 725 } 726 727 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 728 struct page *page, unsigned int len, unsigned int offset) 729 { 730 bool same_page = false; 731 return __bio_add_pc_page(q, bio, page, len, offset, &same_page); 732 } 733 EXPORT_SYMBOL(bio_add_pc_page); 734 735 /** 736 * __bio_try_merge_page - try appending data to an existing bvec. 737 * @bio: destination bio 738 * @page: start page to add 739 * @len: length of the data to add 740 * @off: offset of the data relative to @page 741 * @same_page: return if the segment has been merged inside the same page 742 * 743 * Try to add the data at @page + @off to the last bvec of @bio. This is a 744 * a useful optimisation for file systems with a block size smaller than the 745 * page size. 746 * 747 * Warn if (@len, @off) crosses pages in case that @same_page is true. 748 * 749 * Return %true on success or %false on failure. 750 */ 751 bool __bio_try_merge_page(struct bio *bio, struct page *page, 752 unsigned int len, unsigned int off, bool *same_page) 753 { 754 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 755 return false; 756 757 if (bio->bi_vcnt > 0) { 758 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 759 760 if (page_is_mergeable(bv, page, len, off, same_page)) { 761 if (bio->bi_iter.bi_size > UINT_MAX - len) 762 return false; 763 bv->bv_len += len; 764 bio->bi_iter.bi_size += len; 765 return true; 766 } 767 } 768 return false; 769 } 770 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 771 772 /** 773 * __bio_add_page - add page(s) to a bio in a new segment 774 * @bio: destination bio 775 * @page: start page to add 776 * @len: length of the data to add, may cross pages 777 * @off: offset of the data relative to @page, may cross pages 778 * 779 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 780 * that @bio has space for another bvec. 781 */ 782 void __bio_add_page(struct bio *bio, struct page *page, 783 unsigned int len, unsigned int off) 784 { 785 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 786 787 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 788 WARN_ON_ONCE(bio_full(bio, len)); 789 790 bv->bv_page = page; 791 bv->bv_offset = off; 792 bv->bv_len = len; 793 794 bio->bi_iter.bi_size += len; 795 bio->bi_vcnt++; 796 797 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) 798 bio_set_flag(bio, BIO_WORKINGSET); 799 } 800 EXPORT_SYMBOL_GPL(__bio_add_page); 801 802 /** 803 * bio_add_page - attempt to add page(s) to bio 804 * @bio: destination bio 805 * @page: start page to add 806 * @len: vec entry length, may cross pages 807 * @offset: vec entry offset relative to @page, may cross pages 808 * 809 * Attempt to add page(s) to the bio_vec maplist. This will only fail 810 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 811 */ 812 int bio_add_page(struct bio *bio, struct page *page, 813 unsigned int len, unsigned int offset) 814 { 815 bool same_page = false; 816 817 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 818 if (bio_full(bio, len)) 819 return 0; 820 __bio_add_page(bio, page, len, offset); 821 } 822 return len; 823 } 824 EXPORT_SYMBOL(bio_add_page); 825 826 void bio_release_pages(struct bio *bio, bool mark_dirty) 827 { 828 struct bvec_iter_all iter_all; 829 struct bio_vec *bvec; 830 831 if (bio_flagged(bio, BIO_NO_PAGE_REF)) 832 return; 833 834 bio_for_each_segment_all(bvec, bio, iter_all) { 835 if (mark_dirty && !PageCompound(bvec->bv_page)) 836 set_page_dirty_lock(bvec->bv_page); 837 put_page(bvec->bv_page); 838 } 839 } 840 841 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) 842 { 843 const struct bio_vec *bv = iter->bvec; 844 unsigned int len; 845 size_t size; 846 847 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) 848 return -EINVAL; 849 850 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); 851 size = bio_add_page(bio, bv->bv_page, len, 852 bv->bv_offset + iter->iov_offset); 853 if (unlikely(size != len)) 854 return -EINVAL; 855 iov_iter_advance(iter, size); 856 return 0; 857 } 858 859 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 860 861 /** 862 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 863 * @bio: bio to add pages to 864 * @iter: iov iterator describing the region to be mapped 865 * 866 * Pins pages from *iter and appends them to @bio's bvec array. The 867 * pages will have to be released using put_page() when done. 868 * For multi-segment *iter, this function only adds pages from the 869 * the next non-empty segment of the iov iterator. 870 */ 871 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 872 { 873 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 874 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 875 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 876 struct page **pages = (struct page **)bv; 877 bool same_page = false; 878 ssize_t size, left; 879 unsigned len, i; 880 size_t offset; 881 882 /* 883 * Move page array up in the allocated memory for the bio vecs as far as 884 * possible so that we can start filling biovecs from the beginning 885 * without overwriting the temporary page array. 886 */ 887 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 888 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 889 890 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 891 if (unlikely(size <= 0)) 892 return size ? size : -EFAULT; 893 894 for (left = size, i = 0; left > 0; left -= len, i++) { 895 struct page *page = pages[i]; 896 897 len = min_t(size_t, PAGE_SIZE - offset, left); 898 899 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 900 if (same_page) 901 put_page(page); 902 } else { 903 if (WARN_ON_ONCE(bio_full(bio, len))) 904 return -EINVAL; 905 __bio_add_page(bio, page, len, offset); 906 } 907 offset = 0; 908 } 909 910 iov_iter_advance(iter, size); 911 return 0; 912 } 913 914 /** 915 * bio_iov_iter_get_pages - add user or kernel pages to a bio 916 * @bio: bio to add pages to 917 * @iter: iov iterator describing the region to be added 918 * 919 * This takes either an iterator pointing to user memory, or one pointing to 920 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 921 * map them into the kernel. On IO completion, the caller should put those 922 * pages. If we're adding kernel pages, and the caller told us it's safe to 923 * do so, we just have to add the pages to the bio directly. We don't grab an 924 * extra reference to those pages (the user should already have that), and we 925 * don't put the page on IO completion. The caller needs to check if the bio is 926 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be 927 * released. 928 * 929 * The function tries, but does not guarantee, to pin as many pages as 930 * fit into the bio, or are requested in *iter, whatever is smaller. If 931 * MM encounters an error pinning the requested pages, it stops. Error 932 * is returned only if 0 pages could be pinned. 933 */ 934 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 935 { 936 const bool is_bvec = iov_iter_is_bvec(iter); 937 int ret; 938 939 if (WARN_ON_ONCE(bio->bi_vcnt)) 940 return -EINVAL; 941 942 do { 943 if (is_bvec) 944 ret = __bio_iov_bvec_add_pages(bio, iter); 945 else 946 ret = __bio_iov_iter_get_pages(bio, iter); 947 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 948 949 if (is_bvec) 950 bio_set_flag(bio, BIO_NO_PAGE_REF); 951 return bio->bi_vcnt ? 0 : ret; 952 } 953 954 static void submit_bio_wait_endio(struct bio *bio) 955 { 956 complete(bio->bi_private); 957 } 958 959 /** 960 * submit_bio_wait - submit a bio, and wait until it completes 961 * @bio: The &struct bio which describes the I/O 962 * 963 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 964 * bio_endio() on failure. 965 * 966 * WARNING: Unlike to how submit_bio() is usually used, this function does not 967 * result in bio reference to be consumed. The caller must drop the reference 968 * on his own. 969 */ 970 int submit_bio_wait(struct bio *bio) 971 { 972 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 973 974 bio->bi_private = &done; 975 bio->bi_end_io = submit_bio_wait_endio; 976 bio->bi_opf |= REQ_SYNC; 977 submit_bio(bio); 978 wait_for_completion_io(&done); 979 980 return blk_status_to_errno(bio->bi_status); 981 } 982 EXPORT_SYMBOL(submit_bio_wait); 983 984 /** 985 * bio_advance - increment/complete a bio by some number of bytes 986 * @bio: bio to advance 987 * @bytes: number of bytes to complete 988 * 989 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 990 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 991 * be updated on the last bvec as well. 992 * 993 * @bio will then represent the remaining, uncompleted portion of the io. 994 */ 995 void bio_advance(struct bio *bio, unsigned bytes) 996 { 997 if (bio_integrity(bio)) 998 bio_integrity_advance(bio, bytes); 999 1000 bio_advance_iter(bio, &bio->bi_iter, bytes); 1001 } 1002 EXPORT_SYMBOL(bio_advance); 1003 1004 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1005 struct bio *src, struct bvec_iter *src_iter) 1006 { 1007 struct bio_vec src_bv, dst_bv; 1008 void *src_p, *dst_p; 1009 unsigned bytes; 1010 1011 while (src_iter->bi_size && dst_iter->bi_size) { 1012 src_bv = bio_iter_iovec(src, *src_iter); 1013 dst_bv = bio_iter_iovec(dst, *dst_iter); 1014 1015 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1016 1017 src_p = kmap_atomic(src_bv.bv_page); 1018 dst_p = kmap_atomic(dst_bv.bv_page); 1019 1020 memcpy(dst_p + dst_bv.bv_offset, 1021 src_p + src_bv.bv_offset, 1022 bytes); 1023 1024 kunmap_atomic(dst_p); 1025 kunmap_atomic(src_p); 1026 1027 flush_dcache_page(dst_bv.bv_page); 1028 1029 bio_advance_iter(src, src_iter, bytes); 1030 bio_advance_iter(dst, dst_iter, bytes); 1031 } 1032 } 1033 EXPORT_SYMBOL(bio_copy_data_iter); 1034 1035 /** 1036 * bio_copy_data - copy contents of data buffers from one bio to another 1037 * @src: source bio 1038 * @dst: destination bio 1039 * 1040 * Stops when it reaches the end of either @src or @dst - that is, copies 1041 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1042 */ 1043 void bio_copy_data(struct bio *dst, struct bio *src) 1044 { 1045 struct bvec_iter src_iter = src->bi_iter; 1046 struct bvec_iter dst_iter = dst->bi_iter; 1047 1048 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1049 } 1050 EXPORT_SYMBOL(bio_copy_data); 1051 1052 /** 1053 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1054 * another 1055 * @src: source bio list 1056 * @dst: destination bio list 1057 * 1058 * Stops when it reaches the end of either the @src list or @dst list - that is, 1059 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1060 * bios). 1061 */ 1062 void bio_list_copy_data(struct bio *dst, struct bio *src) 1063 { 1064 struct bvec_iter src_iter = src->bi_iter; 1065 struct bvec_iter dst_iter = dst->bi_iter; 1066 1067 while (1) { 1068 if (!src_iter.bi_size) { 1069 src = src->bi_next; 1070 if (!src) 1071 break; 1072 1073 src_iter = src->bi_iter; 1074 } 1075 1076 if (!dst_iter.bi_size) { 1077 dst = dst->bi_next; 1078 if (!dst) 1079 break; 1080 1081 dst_iter = dst->bi_iter; 1082 } 1083 1084 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1085 } 1086 } 1087 EXPORT_SYMBOL(bio_list_copy_data); 1088 1089 struct bio_map_data { 1090 int is_our_pages; 1091 struct iov_iter iter; 1092 struct iovec iov[]; 1093 }; 1094 1095 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1096 gfp_t gfp_mask) 1097 { 1098 struct bio_map_data *bmd; 1099 if (data->nr_segs > UIO_MAXIOV) 1100 return NULL; 1101 1102 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 1103 if (!bmd) 1104 return NULL; 1105 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1106 bmd->iter = *data; 1107 bmd->iter.iov = bmd->iov; 1108 return bmd; 1109 } 1110 1111 /** 1112 * bio_copy_from_iter - copy all pages from iov_iter to bio 1113 * @bio: The &struct bio which describes the I/O as destination 1114 * @iter: iov_iter as source 1115 * 1116 * Copy all pages from iov_iter to bio. 1117 * Returns 0 on success, or error on failure. 1118 */ 1119 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1120 { 1121 struct bio_vec *bvec; 1122 struct bvec_iter_all iter_all; 1123 1124 bio_for_each_segment_all(bvec, bio, iter_all) { 1125 ssize_t ret; 1126 1127 ret = copy_page_from_iter(bvec->bv_page, 1128 bvec->bv_offset, 1129 bvec->bv_len, 1130 iter); 1131 1132 if (!iov_iter_count(iter)) 1133 break; 1134 1135 if (ret < bvec->bv_len) 1136 return -EFAULT; 1137 } 1138 1139 return 0; 1140 } 1141 1142 /** 1143 * bio_copy_to_iter - copy all pages from bio to iov_iter 1144 * @bio: The &struct bio which describes the I/O as source 1145 * @iter: iov_iter as destination 1146 * 1147 * Copy all pages from bio to iov_iter. 1148 * Returns 0 on success, or error on failure. 1149 */ 1150 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1151 { 1152 struct bio_vec *bvec; 1153 struct bvec_iter_all iter_all; 1154 1155 bio_for_each_segment_all(bvec, bio, iter_all) { 1156 ssize_t ret; 1157 1158 ret = copy_page_to_iter(bvec->bv_page, 1159 bvec->bv_offset, 1160 bvec->bv_len, 1161 &iter); 1162 1163 if (!iov_iter_count(&iter)) 1164 break; 1165 1166 if (ret < bvec->bv_len) 1167 return -EFAULT; 1168 } 1169 1170 return 0; 1171 } 1172 1173 void bio_free_pages(struct bio *bio) 1174 { 1175 struct bio_vec *bvec; 1176 struct bvec_iter_all iter_all; 1177 1178 bio_for_each_segment_all(bvec, bio, iter_all) 1179 __free_page(bvec->bv_page); 1180 } 1181 EXPORT_SYMBOL(bio_free_pages); 1182 1183 /** 1184 * bio_uncopy_user - finish previously mapped bio 1185 * @bio: bio being terminated 1186 * 1187 * Free pages allocated from bio_copy_user_iov() and write back data 1188 * to user space in case of a read. 1189 */ 1190 int bio_uncopy_user(struct bio *bio) 1191 { 1192 struct bio_map_data *bmd = bio->bi_private; 1193 int ret = 0; 1194 1195 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1196 /* 1197 * if we're in a workqueue, the request is orphaned, so 1198 * don't copy into a random user address space, just free 1199 * and return -EINTR so user space doesn't expect any data. 1200 */ 1201 if (!current->mm) 1202 ret = -EINTR; 1203 else if (bio_data_dir(bio) == READ) 1204 ret = bio_copy_to_iter(bio, bmd->iter); 1205 if (bmd->is_our_pages) 1206 bio_free_pages(bio); 1207 } 1208 kfree(bmd); 1209 bio_put(bio); 1210 return ret; 1211 } 1212 1213 /** 1214 * bio_copy_user_iov - copy user data to bio 1215 * @q: destination block queue 1216 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1217 * @iter: iovec iterator 1218 * @gfp_mask: memory allocation flags 1219 * 1220 * Prepares and returns a bio for indirect user io, bouncing data 1221 * to/from kernel pages as necessary. Must be paired with 1222 * call bio_uncopy_user() on io completion. 1223 */ 1224 struct bio *bio_copy_user_iov(struct request_queue *q, 1225 struct rq_map_data *map_data, 1226 struct iov_iter *iter, 1227 gfp_t gfp_mask) 1228 { 1229 struct bio_map_data *bmd; 1230 struct page *page; 1231 struct bio *bio; 1232 int i = 0, ret; 1233 int nr_pages; 1234 unsigned int len = iter->count; 1235 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1236 1237 bmd = bio_alloc_map_data(iter, gfp_mask); 1238 if (!bmd) 1239 return ERR_PTR(-ENOMEM); 1240 1241 /* 1242 * We need to do a deep copy of the iov_iter including the iovecs. 1243 * The caller provided iov might point to an on-stack or otherwise 1244 * shortlived one. 1245 */ 1246 bmd->is_our_pages = map_data ? 0 : 1; 1247 1248 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1249 if (nr_pages > BIO_MAX_PAGES) 1250 nr_pages = BIO_MAX_PAGES; 1251 1252 ret = -ENOMEM; 1253 bio = bio_kmalloc(gfp_mask, nr_pages); 1254 if (!bio) 1255 goto out_bmd; 1256 1257 ret = 0; 1258 1259 if (map_data) { 1260 nr_pages = 1 << map_data->page_order; 1261 i = map_data->offset / PAGE_SIZE; 1262 } 1263 while (len) { 1264 unsigned int bytes = PAGE_SIZE; 1265 1266 bytes -= offset; 1267 1268 if (bytes > len) 1269 bytes = len; 1270 1271 if (map_data) { 1272 if (i == map_data->nr_entries * nr_pages) { 1273 ret = -ENOMEM; 1274 break; 1275 } 1276 1277 page = map_data->pages[i / nr_pages]; 1278 page += (i % nr_pages); 1279 1280 i++; 1281 } else { 1282 page = alloc_page(q->bounce_gfp | gfp_mask); 1283 if (!page) { 1284 ret = -ENOMEM; 1285 break; 1286 } 1287 } 1288 1289 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) { 1290 if (!map_data) 1291 __free_page(page); 1292 break; 1293 } 1294 1295 len -= bytes; 1296 offset = 0; 1297 } 1298 1299 if (ret) 1300 goto cleanup; 1301 1302 if (map_data) 1303 map_data->offset += bio->bi_iter.bi_size; 1304 1305 /* 1306 * success 1307 */ 1308 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) || 1309 (map_data && map_data->from_user)) { 1310 ret = bio_copy_from_iter(bio, iter); 1311 if (ret) 1312 goto cleanup; 1313 } else { 1314 if (bmd->is_our_pages) 1315 zero_fill_bio(bio); 1316 iov_iter_advance(iter, bio->bi_iter.bi_size); 1317 } 1318 1319 bio->bi_private = bmd; 1320 if (map_data && map_data->null_mapped) 1321 bio_set_flag(bio, BIO_NULL_MAPPED); 1322 return bio; 1323 cleanup: 1324 if (!map_data) 1325 bio_free_pages(bio); 1326 bio_put(bio); 1327 out_bmd: 1328 kfree(bmd); 1329 return ERR_PTR(ret); 1330 } 1331 1332 /** 1333 * bio_map_user_iov - map user iovec into bio 1334 * @q: the struct request_queue for the bio 1335 * @iter: iovec iterator 1336 * @gfp_mask: memory allocation flags 1337 * 1338 * Map the user space address into a bio suitable for io to a block 1339 * device. Returns an error pointer in case of error. 1340 */ 1341 struct bio *bio_map_user_iov(struct request_queue *q, 1342 struct iov_iter *iter, 1343 gfp_t gfp_mask) 1344 { 1345 int j; 1346 struct bio *bio; 1347 int ret; 1348 1349 if (!iov_iter_count(iter)) 1350 return ERR_PTR(-EINVAL); 1351 1352 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1353 if (!bio) 1354 return ERR_PTR(-ENOMEM); 1355 1356 while (iov_iter_count(iter)) { 1357 struct page **pages; 1358 ssize_t bytes; 1359 size_t offs, added = 0; 1360 int npages; 1361 1362 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1363 if (unlikely(bytes <= 0)) { 1364 ret = bytes ? bytes : -EFAULT; 1365 goto out_unmap; 1366 } 1367 1368 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1369 1370 if (unlikely(offs & queue_dma_alignment(q))) { 1371 ret = -EINVAL; 1372 j = 0; 1373 } else { 1374 for (j = 0; j < npages; j++) { 1375 struct page *page = pages[j]; 1376 unsigned int n = PAGE_SIZE - offs; 1377 bool same_page = false; 1378 1379 if (n > bytes) 1380 n = bytes; 1381 1382 if (!__bio_add_pc_page(q, bio, page, n, offs, 1383 &same_page)) { 1384 if (same_page) 1385 put_page(page); 1386 break; 1387 } 1388 1389 added += n; 1390 bytes -= n; 1391 offs = 0; 1392 } 1393 iov_iter_advance(iter, added); 1394 } 1395 /* 1396 * release the pages we didn't map into the bio, if any 1397 */ 1398 while (j < npages) 1399 put_page(pages[j++]); 1400 kvfree(pages); 1401 /* couldn't stuff something into bio? */ 1402 if (bytes) 1403 break; 1404 } 1405 1406 bio_set_flag(bio, BIO_USER_MAPPED); 1407 1408 /* 1409 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1410 * it would normally disappear when its bi_end_io is run. 1411 * however, we need it for the unmap, so grab an extra 1412 * reference to it 1413 */ 1414 bio_get(bio); 1415 return bio; 1416 1417 out_unmap: 1418 bio_release_pages(bio, false); 1419 bio_put(bio); 1420 return ERR_PTR(ret); 1421 } 1422 1423 /** 1424 * bio_unmap_user - unmap a bio 1425 * @bio: the bio being unmapped 1426 * 1427 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1428 * process context. 1429 * 1430 * bio_unmap_user() may sleep. 1431 */ 1432 void bio_unmap_user(struct bio *bio) 1433 { 1434 bio_release_pages(bio, bio_data_dir(bio) == READ); 1435 bio_put(bio); 1436 bio_put(bio); 1437 } 1438 1439 static void bio_invalidate_vmalloc_pages(struct bio *bio) 1440 { 1441 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 1442 if (bio->bi_private && !op_is_write(bio_op(bio))) { 1443 unsigned long i, len = 0; 1444 1445 for (i = 0; i < bio->bi_vcnt; i++) 1446 len += bio->bi_io_vec[i].bv_len; 1447 invalidate_kernel_vmap_range(bio->bi_private, len); 1448 } 1449 #endif 1450 } 1451 1452 static void bio_map_kern_endio(struct bio *bio) 1453 { 1454 bio_invalidate_vmalloc_pages(bio); 1455 bio_put(bio); 1456 } 1457 1458 /** 1459 * bio_map_kern - map kernel address into bio 1460 * @q: the struct request_queue for the bio 1461 * @data: pointer to buffer to map 1462 * @len: length in bytes 1463 * @gfp_mask: allocation flags for bio allocation 1464 * 1465 * Map the kernel address into a bio suitable for io to a block 1466 * device. Returns an error pointer in case of error. 1467 */ 1468 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1469 gfp_t gfp_mask) 1470 { 1471 unsigned long kaddr = (unsigned long)data; 1472 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1473 unsigned long start = kaddr >> PAGE_SHIFT; 1474 const int nr_pages = end - start; 1475 bool is_vmalloc = is_vmalloc_addr(data); 1476 struct page *page; 1477 int offset, i; 1478 struct bio *bio; 1479 1480 bio = bio_kmalloc(gfp_mask, nr_pages); 1481 if (!bio) 1482 return ERR_PTR(-ENOMEM); 1483 1484 if (is_vmalloc) { 1485 flush_kernel_vmap_range(data, len); 1486 bio->bi_private = data; 1487 } 1488 1489 offset = offset_in_page(kaddr); 1490 for (i = 0; i < nr_pages; i++) { 1491 unsigned int bytes = PAGE_SIZE - offset; 1492 1493 if (len <= 0) 1494 break; 1495 1496 if (bytes > len) 1497 bytes = len; 1498 1499 if (!is_vmalloc) 1500 page = virt_to_page(data); 1501 else 1502 page = vmalloc_to_page(data); 1503 if (bio_add_pc_page(q, bio, page, bytes, 1504 offset) < bytes) { 1505 /* we don't support partial mappings */ 1506 bio_put(bio); 1507 return ERR_PTR(-EINVAL); 1508 } 1509 1510 data += bytes; 1511 len -= bytes; 1512 offset = 0; 1513 } 1514 1515 bio->bi_end_io = bio_map_kern_endio; 1516 return bio; 1517 } 1518 1519 static void bio_copy_kern_endio(struct bio *bio) 1520 { 1521 bio_free_pages(bio); 1522 bio_put(bio); 1523 } 1524 1525 static void bio_copy_kern_endio_read(struct bio *bio) 1526 { 1527 char *p = bio->bi_private; 1528 struct bio_vec *bvec; 1529 struct bvec_iter_all iter_all; 1530 1531 bio_for_each_segment_all(bvec, bio, iter_all) { 1532 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1533 p += bvec->bv_len; 1534 } 1535 1536 bio_copy_kern_endio(bio); 1537 } 1538 1539 /** 1540 * bio_copy_kern - copy kernel address into bio 1541 * @q: the struct request_queue for the bio 1542 * @data: pointer to buffer to copy 1543 * @len: length in bytes 1544 * @gfp_mask: allocation flags for bio and page allocation 1545 * @reading: data direction is READ 1546 * 1547 * copy the kernel address into a bio suitable for io to a block 1548 * device. Returns an error pointer in case of error. 1549 */ 1550 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1551 gfp_t gfp_mask, int reading) 1552 { 1553 unsigned long kaddr = (unsigned long)data; 1554 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1555 unsigned long start = kaddr >> PAGE_SHIFT; 1556 struct bio *bio; 1557 void *p = data; 1558 int nr_pages = 0; 1559 1560 /* 1561 * Overflow, abort 1562 */ 1563 if (end < start) 1564 return ERR_PTR(-EINVAL); 1565 1566 nr_pages = end - start; 1567 bio = bio_kmalloc(gfp_mask, nr_pages); 1568 if (!bio) 1569 return ERR_PTR(-ENOMEM); 1570 1571 while (len) { 1572 struct page *page; 1573 unsigned int bytes = PAGE_SIZE; 1574 1575 if (bytes > len) 1576 bytes = len; 1577 1578 page = alloc_page(q->bounce_gfp | gfp_mask); 1579 if (!page) 1580 goto cleanup; 1581 1582 if (!reading) 1583 memcpy(page_address(page), p, bytes); 1584 1585 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1586 break; 1587 1588 len -= bytes; 1589 p += bytes; 1590 } 1591 1592 if (reading) { 1593 bio->bi_end_io = bio_copy_kern_endio_read; 1594 bio->bi_private = data; 1595 } else { 1596 bio->bi_end_io = bio_copy_kern_endio; 1597 } 1598 1599 return bio; 1600 1601 cleanup: 1602 bio_free_pages(bio); 1603 bio_put(bio); 1604 return ERR_PTR(-ENOMEM); 1605 } 1606 1607 /* 1608 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1609 * for performing direct-IO in BIOs. 1610 * 1611 * The problem is that we cannot run set_page_dirty() from interrupt context 1612 * because the required locks are not interrupt-safe. So what we can do is to 1613 * mark the pages dirty _before_ performing IO. And in interrupt context, 1614 * check that the pages are still dirty. If so, fine. If not, redirty them 1615 * in process context. 1616 * 1617 * We special-case compound pages here: normally this means reads into hugetlb 1618 * pages. The logic in here doesn't really work right for compound pages 1619 * because the VM does not uniformly chase down the head page in all cases. 1620 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1621 * handle them at all. So we skip compound pages here at an early stage. 1622 * 1623 * Note that this code is very hard to test under normal circumstances because 1624 * direct-io pins the pages with get_user_pages(). This makes 1625 * is_page_cache_freeable return false, and the VM will not clean the pages. 1626 * But other code (eg, flusher threads) could clean the pages if they are mapped 1627 * pagecache. 1628 * 1629 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1630 * deferred bio dirtying paths. 1631 */ 1632 1633 /* 1634 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1635 */ 1636 void bio_set_pages_dirty(struct bio *bio) 1637 { 1638 struct bio_vec *bvec; 1639 struct bvec_iter_all iter_all; 1640 1641 bio_for_each_segment_all(bvec, bio, iter_all) { 1642 if (!PageCompound(bvec->bv_page)) 1643 set_page_dirty_lock(bvec->bv_page); 1644 } 1645 } 1646 1647 /* 1648 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1649 * If they are, then fine. If, however, some pages are clean then they must 1650 * have been written out during the direct-IO read. So we take another ref on 1651 * the BIO and re-dirty the pages in process context. 1652 * 1653 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1654 * here on. It will run one put_page() against each page and will run one 1655 * bio_put() against the BIO. 1656 */ 1657 1658 static void bio_dirty_fn(struct work_struct *work); 1659 1660 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1661 static DEFINE_SPINLOCK(bio_dirty_lock); 1662 static struct bio *bio_dirty_list; 1663 1664 /* 1665 * This runs in process context 1666 */ 1667 static void bio_dirty_fn(struct work_struct *work) 1668 { 1669 struct bio *bio, *next; 1670 1671 spin_lock_irq(&bio_dirty_lock); 1672 next = bio_dirty_list; 1673 bio_dirty_list = NULL; 1674 spin_unlock_irq(&bio_dirty_lock); 1675 1676 while ((bio = next) != NULL) { 1677 next = bio->bi_private; 1678 1679 bio_release_pages(bio, true); 1680 bio_put(bio); 1681 } 1682 } 1683 1684 void bio_check_pages_dirty(struct bio *bio) 1685 { 1686 struct bio_vec *bvec; 1687 unsigned long flags; 1688 struct bvec_iter_all iter_all; 1689 1690 bio_for_each_segment_all(bvec, bio, iter_all) { 1691 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1692 goto defer; 1693 } 1694 1695 bio_release_pages(bio, false); 1696 bio_put(bio); 1697 return; 1698 defer: 1699 spin_lock_irqsave(&bio_dirty_lock, flags); 1700 bio->bi_private = bio_dirty_list; 1701 bio_dirty_list = bio; 1702 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1703 schedule_work(&bio_dirty_work); 1704 } 1705 1706 void update_io_ticks(struct hd_struct *part, unsigned long now) 1707 { 1708 unsigned long stamp; 1709 again: 1710 stamp = READ_ONCE(part->stamp); 1711 if (unlikely(stamp != now)) { 1712 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) { 1713 __part_stat_add(part, io_ticks, 1); 1714 } 1715 } 1716 if (part->partno) { 1717 part = &part_to_disk(part)->part0; 1718 goto again; 1719 } 1720 } 1721 1722 void generic_start_io_acct(struct request_queue *q, int op, 1723 unsigned long sectors, struct hd_struct *part) 1724 { 1725 const int sgrp = op_stat_group(op); 1726 1727 part_stat_lock(); 1728 1729 update_io_ticks(part, jiffies); 1730 part_stat_inc(part, ios[sgrp]); 1731 part_stat_add(part, sectors[sgrp], sectors); 1732 part_inc_in_flight(q, part, op_is_write(op)); 1733 1734 part_stat_unlock(); 1735 } 1736 EXPORT_SYMBOL(generic_start_io_acct); 1737 1738 void generic_end_io_acct(struct request_queue *q, int req_op, 1739 struct hd_struct *part, unsigned long start_time) 1740 { 1741 unsigned long now = jiffies; 1742 unsigned long duration = now - start_time; 1743 const int sgrp = op_stat_group(req_op); 1744 1745 part_stat_lock(); 1746 1747 update_io_ticks(part, now); 1748 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1749 part_stat_add(part, time_in_queue, duration); 1750 part_dec_in_flight(q, part, op_is_write(req_op)); 1751 1752 part_stat_unlock(); 1753 } 1754 EXPORT_SYMBOL(generic_end_io_acct); 1755 1756 static inline bool bio_remaining_done(struct bio *bio) 1757 { 1758 /* 1759 * If we're not chaining, then ->__bi_remaining is always 1 and 1760 * we always end io on the first invocation. 1761 */ 1762 if (!bio_flagged(bio, BIO_CHAIN)) 1763 return true; 1764 1765 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1766 1767 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1768 bio_clear_flag(bio, BIO_CHAIN); 1769 return true; 1770 } 1771 1772 return false; 1773 } 1774 1775 /** 1776 * bio_endio - end I/O on a bio 1777 * @bio: bio 1778 * 1779 * Description: 1780 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1781 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1782 * bio unless they own it and thus know that it has an end_io function. 1783 * 1784 * bio_endio() can be called several times on a bio that has been chained 1785 * using bio_chain(). The ->bi_end_io() function will only be called the 1786 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1787 * generated if BIO_TRACE_COMPLETION is set. 1788 **/ 1789 void bio_endio(struct bio *bio) 1790 { 1791 again: 1792 if (!bio_remaining_done(bio)) 1793 return; 1794 if (!bio_integrity_endio(bio)) 1795 return; 1796 1797 if (bio->bi_disk) 1798 rq_qos_done_bio(bio->bi_disk->queue, bio); 1799 1800 /* 1801 * Need to have a real endio function for chained bios, otherwise 1802 * various corner cases will break (like stacking block devices that 1803 * save/restore bi_end_io) - however, we want to avoid unbounded 1804 * recursion and blowing the stack. Tail call optimization would 1805 * handle this, but compiling with frame pointers also disables 1806 * gcc's sibling call optimization. 1807 */ 1808 if (bio->bi_end_io == bio_chain_endio) { 1809 bio = __bio_chain_endio(bio); 1810 goto again; 1811 } 1812 1813 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1814 trace_block_bio_complete(bio->bi_disk->queue, bio, 1815 blk_status_to_errno(bio->bi_status)); 1816 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1817 } 1818 1819 blk_throtl_bio_endio(bio); 1820 /* release cgroup info */ 1821 bio_uninit(bio); 1822 if (bio->bi_end_io) 1823 bio->bi_end_io(bio); 1824 } 1825 EXPORT_SYMBOL(bio_endio); 1826 1827 /** 1828 * bio_split - split a bio 1829 * @bio: bio to split 1830 * @sectors: number of sectors to split from the front of @bio 1831 * @gfp: gfp mask 1832 * @bs: bio set to allocate from 1833 * 1834 * Allocates and returns a new bio which represents @sectors from the start of 1835 * @bio, and updates @bio to represent the remaining sectors. 1836 * 1837 * Unless this is a discard request the newly allocated bio will point 1838 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1839 * neither @bio nor @bs are freed before the split bio. 1840 */ 1841 struct bio *bio_split(struct bio *bio, int sectors, 1842 gfp_t gfp, struct bio_set *bs) 1843 { 1844 struct bio *split; 1845 1846 BUG_ON(sectors <= 0); 1847 BUG_ON(sectors >= bio_sectors(bio)); 1848 1849 split = bio_clone_fast(bio, gfp, bs); 1850 if (!split) 1851 return NULL; 1852 1853 split->bi_iter.bi_size = sectors << 9; 1854 1855 if (bio_integrity(split)) 1856 bio_integrity_trim(split); 1857 1858 bio_advance(bio, split->bi_iter.bi_size); 1859 1860 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1861 bio_set_flag(split, BIO_TRACE_COMPLETION); 1862 1863 return split; 1864 } 1865 EXPORT_SYMBOL(bio_split); 1866 1867 /** 1868 * bio_trim - trim a bio 1869 * @bio: bio to trim 1870 * @offset: number of sectors to trim from the front of @bio 1871 * @size: size we want to trim @bio to, in sectors 1872 */ 1873 void bio_trim(struct bio *bio, int offset, int size) 1874 { 1875 /* 'bio' is a cloned bio which we need to trim to match 1876 * the given offset and size. 1877 */ 1878 1879 size <<= 9; 1880 if (offset == 0 && size == bio->bi_iter.bi_size) 1881 return; 1882 1883 bio_advance(bio, offset << 9); 1884 bio->bi_iter.bi_size = size; 1885 1886 if (bio_integrity(bio)) 1887 bio_integrity_trim(bio); 1888 1889 } 1890 EXPORT_SYMBOL_GPL(bio_trim); 1891 1892 /* 1893 * create memory pools for biovec's in a bio_set. 1894 * use the global biovec slabs created for general use. 1895 */ 1896 int biovec_init_pool(mempool_t *pool, int pool_entries) 1897 { 1898 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1899 1900 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1901 } 1902 1903 /* 1904 * bioset_exit - exit a bioset initialized with bioset_init() 1905 * 1906 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1907 * kzalloc()). 1908 */ 1909 void bioset_exit(struct bio_set *bs) 1910 { 1911 if (bs->rescue_workqueue) 1912 destroy_workqueue(bs->rescue_workqueue); 1913 bs->rescue_workqueue = NULL; 1914 1915 mempool_exit(&bs->bio_pool); 1916 mempool_exit(&bs->bvec_pool); 1917 1918 bioset_integrity_free(bs); 1919 if (bs->bio_slab) 1920 bio_put_slab(bs); 1921 bs->bio_slab = NULL; 1922 } 1923 EXPORT_SYMBOL(bioset_exit); 1924 1925 /** 1926 * bioset_init - Initialize a bio_set 1927 * @bs: pool to initialize 1928 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1929 * @front_pad: Number of bytes to allocate in front of the returned bio 1930 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1931 * and %BIOSET_NEED_RESCUER 1932 * 1933 * Description: 1934 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1935 * to ask for a number of bytes to be allocated in front of the bio. 1936 * Front pad allocation is useful for embedding the bio inside 1937 * another structure, to avoid allocating extra data to go with the bio. 1938 * Note that the bio must be embedded at the END of that structure always, 1939 * or things will break badly. 1940 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1941 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1942 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1943 * dispatch queued requests when the mempool runs out of space. 1944 * 1945 */ 1946 int bioset_init(struct bio_set *bs, 1947 unsigned int pool_size, 1948 unsigned int front_pad, 1949 int flags) 1950 { 1951 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1952 1953 bs->front_pad = front_pad; 1954 1955 spin_lock_init(&bs->rescue_lock); 1956 bio_list_init(&bs->rescue_list); 1957 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1958 1959 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1960 if (!bs->bio_slab) 1961 return -ENOMEM; 1962 1963 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1964 goto bad; 1965 1966 if ((flags & BIOSET_NEED_BVECS) && 1967 biovec_init_pool(&bs->bvec_pool, pool_size)) 1968 goto bad; 1969 1970 if (!(flags & BIOSET_NEED_RESCUER)) 1971 return 0; 1972 1973 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1974 if (!bs->rescue_workqueue) 1975 goto bad; 1976 1977 return 0; 1978 bad: 1979 bioset_exit(bs); 1980 return -ENOMEM; 1981 } 1982 EXPORT_SYMBOL(bioset_init); 1983 1984 /* 1985 * Initialize and setup a new bio_set, based on the settings from 1986 * another bio_set. 1987 */ 1988 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1989 { 1990 int flags; 1991 1992 flags = 0; 1993 if (src->bvec_pool.min_nr) 1994 flags |= BIOSET_NEED_BVECS; 1995 if (src->rescue_workqueue) 1996 flags |= BIOSET_NEED_RESCUER; 1997 1998 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1999 } 2000 EXPORT_SYMBOL(bioset_init_from_src); 2001 2002 #ifdef CONFIG_BLK_CGROUP 2003 2004 /** 2005 * bio_disassociate_blkg - puts back the blkg reference if associated 2006 * @bio: target bio 2007 * 2008 * Helper to disassociate the blkg from @bio if a blkg is associated. 2009 */ 2010 void bio_disassociate_blkg(struct bio *bio) 2011 { 2012 if (bio->bi_blkg) { 2013 blkg_put(bio->bi_blkg); 2014 bio->bi_blkg = NULL; 2015 } 2016 } 2017 EXPORT_SYMBOL_GPL(bio_disassociate_blkg); 2018 2019 /** 2020 * __bio_associate_blkg - associate a bio with the a blkg 2021 * @bio: target bio 2022 * @blkg: the blkg to associate 2023 * 2024 * This tries to associate @bio with the specified @blkg. Association failure 2025 * is handled by walking up the blkg tree. Therefore, the blkg associated can 2026 * be anything between @blkg and the root_blkg. This situation only happens 2027 * when a cgroup is dying and then the remaining bios will spill to the closest 2028 * alive blkg. 2029 * 2030 * A reference will be taken on the @blkg and will be released when @bio is 2031 * freed. 2032 */ 2033 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) 2034 { 2035 bio_disassociate_blkg(bio); 2036 2037 bio->bi_blkg = blkg_tryget_closest(blkg); 2038 } 2039 2040 /** 2041 * bio_associate_blkg_from_css - associate a bio with a specified css 2042 * @bio: target bio 2043 * @css: target css 2044 * 2045 * Associate @bio with the blkg found by combining the css's blkg and the 2046 * request_queue of the @bio. This falls back to the queue's root_blkg if 2047 * the association fails with the css. 2048 */ 2049 void bio_associate_blkg_from_css(struct bio *bio, 2050 struct cgroup_subsys_state *css) 2051 { 2052 struct request_queue *q = bio->bi_disk->queue; 2053 struct blkcg_gq *blkg; 2054 2055 rcu_read_lock(); 2056 2057 if (!css || !css->parent) 2058 blkg = q->root_blkg; 2059 else 2060 blkg = blkg_lookup_create(css_to_blkcg(css), q); 2061 2062 __bio_associate_blkg(bio, blkg); 2063 2064 rcu_read_unlock(); 2065 } 2066 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2067 2068 #ifdef CONFIG_MEMCG 2069 /** 2070 * bio_associate_blkg_from_page - associate a bio with the page's blkg 2071 * @bio: target bio 2072 * @page: the page to lookup the blkcg from 2073 * 2074 * Associate @bio with the blkg from @page's owning memcg and the respective 2075 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's 2076 * root_blkg. 2077 */ 2078 void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 2079 { 2080 struct cgroup_subsys_state *css; 2081 2082 if (!page->mem_cgroup) 2083 return; 2084 2085 rcu_read_lock(); 2086 2087 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); 2088 bio_associate_blkg_from_css(bio, css); 2089 2090 rcu_read_unlock(); 2091 } 2092 #endif /* CONFIG_MEMCG */ 2093 2094 /** 2095 * bio_associate_blkg - associate a bio with a blkg 2096 * @bio: target bio 2097 * 2098 * Associate @bio with the blkg found from the bio's css and request_queue. 2099 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2100 * already associated, the css is reused and association redone as the 2101 * request_queue may have changed. 2102 */ 2103 void bio_associate_blkg(struct bio *bio) 2104 { 2105 struct cgroup_subsys_state *css; 2106 2107 rcu_read_lock(); 2108 2109 if (bio->bi_blkg) 2110 css = &bio_blkcg(bio)->css; 2111 else 2112 css = blkcg_css(); 2113 2114 bio_associate_blkg_from_css(bio, css); 2115 2116 rcu_read_unlock(); 2117 } 2118 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2119 2120 /** 2121 * bio_clone_blkg_association - clone blkg association from src to dst bio 2122 * @dst: destination bio 2123 * @src: source bio 2124 */ 2125 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2126 { 2127 rcu_read_lock(); 2128 2129 if (src->bi_blkg) 2130 __bio_associate_blkg(dst, src->bi_blkg); 2131 2132 rcu_read_unlock(); 2133 } 2134 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2135 #endif /* CONFIG_BLK_CGROUP */ 2136 2137 static void __init biovec_init_slabs(void) 2138 { 2139 int i; 2140 2141 for (i = 0; i < BVEC_POOL_NR; i++) { 2142 int size; 2143 struct biovec_slab *bvs = bvec_slabs + i; 2144 2145 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2146 bvs->slab = NULL; 2147 continue; 2148 } 2149 2150 size = bvs->nr_vecs * sizeof(struct bio_vec); 2151 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2152 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2153 } 2154 } 2155 2156 static int __init init_bio(void) 2157 { 2158 bio_slab_max = 2; 2159 bio_slab_nr = 0; 2160 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), 2161 GFP_KERNEL); 2162 2163 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); 2164 2165 if (!bio_slabs) 2166 panic("bio: can't allocate bios\n"); 2167 2168 bio_integrity_init(); 2169 biovec_init_slabs(); 2170 2171 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 2172 panic("bio: can't allocate bios\n"); 2173 2174 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 2175 panic("bio: can't create integrity pool\n"); 2176 2177 return 0; 2178 } 2179 subsys_initcall(init_bio); 2180