xref: /linux/block/bio.c (revision ca64d84e93762f4e587e040a44ad9f6089afc777)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 
26 /*
27  * Test patch to inline a certain number of bi_io_vec's inside the bio
28  * itself, to shrink a bio data allocation from two mempool calls to one
29  */
30 #define BIO_INLINE_VECS		4
31 
32 /*
33  * if you change this list, also change bvec_alloc or things will
34  * break badly! cannot be bigger than what you can fit into an
35  * unsigned short
36  */
37 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
38 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
39 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
40 };
41 #undef BV
42 
43 /*
44  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
45  * IO code that does not need private memory pools.
46  */
47 struct bio_set fs_bio_set;
48 EXPORT_SYMBOL(fs_bio_set);
49 
50 /*
51  * Our slab pool management
52  */
53 struct bio_slab {
54 	struct kmem_cache *slab;
55 	unsigned int slab_ref;
56 	unsigned int slab_size;
57 	char name[8];
58 };
59 static DEFINE_MUTEX(bio_slab_lock);
60 static struct bio_slab *bio_slabs;
61 static unsigned int bio_slab_nr, bio_slab_max;
62 
63 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
64 {
65 	unsigned int sz = sizeof(struct bio) + extra_size;
66 	struct kmem_cache *slab = NULL;
67 	struct bio_slab *bslab, *new_bio_slabs;
68 	unsigned int new_bio_slab_max;
69 	unsigned int i, entry = -1;
70 
71 	mutex_lock(&bio_slab_lock);
72 
73 	i = 0;
74 	while (i < bio_slab_nr) {
75 		bslab = &bio_slabs[i];
76 
77 		if (!bslab->slab && entry == -1)
78 			entry = i;
79 		else if (bslab->slab_size == sz) {
80 			slab = bslab->slab;
81 			bslab->slab_ref++;
82 			break;
83 		}
84 		i++;
85 	}
86 
87 	if (slab)
88 		goto out_unlock;
89 
90 	if (bio_slab_nr == bio_slab_max && entry == -1) {
91 		new_bio_slab_max = bio_slab_max << 1;
92 		new_bio_slabs = krealloc(bio_slabs,
93 					 new_bio_slab_max * sizeof(struct bio_slab),
94 					 GFP_KERNEL);
95 		if (!new_bio_slabs)
96 			goto out_unlock;
97 		bio_slab_max = new_bio_slab_max;
98 		bio_slabs = new_bio_slabs;
99 	}
100 	if (entry == -1)
101 		entry = bio_slab_nr++;
102 
103 	bslab = &bio_slabs[entry];
104 
105 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
106 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
107 				 SLAB_HWCACHE_ALIGN, NULL);
108 	if (!slab)
109 		goto out_unlock;
110 
111 	bslab->slab = slab;
112 	bslab->slab_ref = 1;
113 	bslab->slab_size = sz;
114 out_unlock:
115 	mutex_unlock(&bio_slab_lock);
116 	return slab;
117 }
118 
119 static void bio_put_slab(struct bio_set *bs)
120 {
121 	struct bio_slab *bslab = NULL;
122 	unsigned int i;
123 
124 	mutex_lock(&bio_slab_lock);
125 
126 	for (i = 0; i < bio_slab_nr; i++) {
127 		if (bs->bio_slab == bio_slabs[i].slab) {
128 			bslab = &bio_slabs[i];
129 			break;
130 		}
131 	}
132 
133 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 		goto out;
135 
136 	WARN_ON(!bslab->slab_ref);
137 
138 	if (--bslab->slab_ref)
139 		goto out;
140 
141 	kmem_cache_destroy(bslab->slab);
142 	bslab->slab = NULL;
143 
144 out:
145 	mutex_unlock(&bio_slab_lock);
146 }
147 
148 unsigned int bvec_nr_vecs(unsigned short idx)
149 {
150 	return bvec_slabs[--idx].nr_vecs;
151 }
152 
153 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
154 {
155 	if (!idx)
156 		return;
157 	idx--;
158 
159 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
160 
161 	if (idx == BVEC_POOL_MAX) {
162 		mempool_free(bv, pool);
163 	} else {
164 		struct biovec_slab *bvs = bvec_slabs + idx;
165 
166 		kmem_cache_free(bvs->slab, bv);
167 	}
168 }
169 
170 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
171 			   mempool_t *pool)
172 {
173 	struct bio_vec *bvl;
174 
175 	/*
176 	 * see comment near bvec_array define!
177 	 */
178 	switch (nr) {
179 	case 1:
180 		*idx = 0;
181 		break;
182 	case 2 ... 4:
183 		*idx = 1;
184 		break;
185 	case 5 ... 16:
186 		*idx = 2;
187 		break;
188 	case 17 ... 64:
189 		*idx = 3;
190 		break;
191 	case 65 ... 128:
192 		*idx = 4;
193 		break;
194 	case 129 ... BIO_MAX_PAGES:
195 		*idx = 5;
196 		break;
197 	default:
198 		return NULL;
199 	}
200 
201 	/*
202 	 * idx now points to the pool we want to allocate from. only the
203 	 * 1-vec entry pool is mempool backed.
204 	 */
205 	if (*idx == BVEC_POOL_MAX) {
206 fallback:
207 		bvl = mempool_alloc(pool, gfp_mask);
208 	} else {
209 		struct biovec_slab *bvs = bvec_slabs + *idx;
210 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
211 
212 		/*
213 		 * Make this allocation restricted and don't dump info on
214 		 * allocation failures, since we'll fallback to the mempool
215 		 * in case of failure.
216 		 */
217 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218 
219 		/*
220 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
221 		 * is set, retry with the 1-entry mempool
222 		 */
223 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
225 			*idx = BVEC_POOL_MAX;
226 			goto fallback;
227 		}
228 	}
229 
230 	(*idx)++;
231 	return bvl;
232 }
233 
234 void bio_uninit(struct bio *bio)
235 {
236 	bio_disassociate_blkg(bio);
237 
238 	if (bio_integrity(bio))
239 		bio_integrity_free(bio);
240 }
241 EXPORT_SYMBOL(bio_uninit);
242 
243 static void bio_free(struct bio *bio)
244 {
245 	struct bio_set *bs = bio->bi_pool;
246 	void *p;
247 
248 	bio_uninit(bio);
249 
250 	if (bs) {
251 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
252 
253 		/*
254 		 * If we have front padding, adjust the bio pointer before freeing
255 		 */
256 		p = bio;
257 		p -= bs->front_pad;
258 
259 		mempool_free(p, &bs->bio_pool);
260 	} else {
261 		/* Bio was allocated by bio_kmalloc() */
262 		kfree(bio);
263 	}
264 }
265 
266 /*
267  * Users of this function have their own bio allocation. Subsequently,
268  * they must remember to pair any call to bio_init() with bio_uninit()
269  * when IO has completed, or when the bio is released.
270  */
271 void bio_init(struct bio *bio, struct bio_vec *table,
272 	      unsigned short max_vecs)
273 {
274 	memset(bio, 0, sizeof(*bio));
275 	atomic_set(&bio->__bi_remaining, 1);
276 	atomic_set(&bio->__bi_cnt, 1);
277 
278 	bio->bi_io_vec = table;
279 	bio->bi_max_vecs = max_vecs;
280 }
281 EXPORT_SYMBOL(bio_init);
282 
283 /**
284  * bio_reset - reinitialize a bio
285  * @bio:	bio to reset
286  *
287  * Description:
288  *   After calling bio_reset(), @bio will be in the same state as a freshly
289  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
290  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
291  *   comment in struct bio.
292  */
293 void bio_reset(struct bio *bio)
294 {
295 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
296 
297 	bio_uninit(bio);
298 
299 	memset(bio, 0, BIO_RESET_BYTES);
300 	bio->bi_flags = flags;
301 	atomic_set(&bio->__bi_remaining, 1);
302 }
303 EXPORT_SYMBOL(bio_reset);
304 
305 static struct bio *__bio_chain_endio(struct bio *bio)
306 {
307 	struct bio *parent = bio->bi_private;
308 
309 	if (!parent->bi_status)
310 		parent->bi_status = bio->bi_status;
311 	bio_put(bio);
312 	return parent;
313 }
314 
315 static void bio_chain_endio(struct bio *bio)
316 {
317 	bio_endio(__bio_chain_endio(bio));
318 }
319 
320 /**
321  * bio_chain - chain bio completions
322  * @bio: the target bio
323  * @parent: the @bio's parent bio
324  *
325  * The caller won't have a bi_end_io called when @bio completes - instead,
326  * @parent's bi_end_io won't be called until both @parent and @bio have
327  * completed; the chained bio will also be freed when it completes.
328  *
329  * The caller must not set bi_private or bi_end_io in @bio.
330  */
331 void bio_chain(struct bio *bio, struct bio *parent)
332 {
333 	BUG_ON(bio->bi_private || bio->bi_end_io);
334 
335 	bio->bi_private = parent;
336 	bio->bi_end_io	= bio_chain_endio;
337 	bio_inc_remaining(parent);
338 }
339 EXPORT_SYMBOL(bio_chain);
340 
341 static void bio_alloc_rescue(struct work_struct *work)
342 {
343 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
344 	struct bio *bio;
345 
346 	while (1) {
347 		spin_lock(&bs->rescue_lock);
348 		bio = bio_list_pop(&bs->rescue_list);
349 		spin_unlock(&bs->rescue_lock);
350 
351 		if (!bio)
352 			break;
353 
354 		generic_make_request(bio);
355 	}
356 }
357 
358 static void punt_bios_to_rescuer(struct bio_set *bs)
359 {
360 	struct bio_list punt, nopunt;
361 	struct bio *bio;
362 
363 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
364 		return;
365 	/*
366 	 * In order to guarantee forward progress we must punt only bios that
367 	 * were allocated from this bio_set; otherwise, if there was a bio on
368 	 * there for a stacking driver higher up in the stack, processing it
369 	 * could require allocating bios from this bio_set, and doing that from
370 	 * our own rescuer would be bad.
371 	 *
372 	 * Since bio lists are singly linked, pop them all instead of trying to
373 	 * remove from the middle of the list:
374 	 */
375 
376 	bio_list_init(&punt);
377 	bio_list_init(&nopunt);
378 
379 	while ((bio = bio_list_pop(&current->bio_list[0])))
380 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 	current->bio_list[0] = nopunt;
382 
383 	bio_list_init(&nopunt);
384 	while ((bio = bio_list_pop(&current->bio_list[1])))
385 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
386 	current->bio_list[1] = nopunt;
387 
388 	spin_lock(&bs->rescue_lock);
389 	bio_list_merge(&bs->rescue_list, &punt);
390 	spin_unlock(&bs->rescue_lock);
391 
392 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
393 }
394 
395 /**
396  * bio_alloc_bioset - allocate a bio for I/O
397  * @gfp_mask:   the GFP_* mask given to the slab allocator
398  * @nr_iovecs:	number of iovecs to pre-allocate
399  * @bs:		the bio_set to allocate from.
400  *
401  * Description:
402  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
403  *   backed by the @bs's mempool.
404  *
405  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
406  *   always be able to allocate a bio. This is due to the mempool guarantees.
407  *   To make this work, callers must never allocate more than 1 bio at a time
408  *   from this pool. Callers that need to allocate more than 1 bio must always
409  *   submit the previously allocated bio for IO before attempting to allocate
410  *   a new one. Failure to do so can cause deadlocks under memory pressure.
411  *
412  *   Note that when running under generic_make_request() (i.e. any block
413  *   driver), bios are not submitted until after you return - see the code in
414  *   generic_make_request() that converts recursion into iteration, to prevent
415  *   stack overflows.
416  *
417  *   This would normally mean allocating multiple bios under
418  *   generic_make_request() would be susceptible to deadlocks, but we have
419  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
420  *   thread.
421  *
422  *   However, we do not guarantee forward progress for allocations from other
423  *   mempools. Doing multiple allocations from the same mempool under
424  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
425  *   for per bio allocations.
426  *
427  *   RETURNS:
428  *   Pointer to new bio on success, NULL on failure.
429  */
430 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
431 			     struct bio_set *bs)
432 {
433 	gfp_t saved_gfp = gfp_mask;
434 	unsigned front_pad;
435 	unsigned inline_vecs;
436 	struct bio_vec *bvl = NULL;
437 	struct bio *bio;
438 	void *p;
439 
440 	if (!bs) {
441 		if (nr_iovecs > UIO_MAXIOV)
442 			return NULL;
443 
444 		p = kmalloc(sizeof(struct bio) +
445 			    nr_iovecs * sizeof(struct bio_vec),
446 			    gfp_mask);
447 		front_pad = 0;
448 		inline_vecs = nr_iovecs;
449 	} else {
450 		/* should not use nobvec bioset for nr_iovecs > 0 */
451 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
452 				 nr_iovecs > 0))
453 			return NULL;
454 		/*
455 		 * generic_make_request() converts recursion to iteration; this
456 		 * means if we're running beneath it, any bios we allocate and
457 		 * submit will not be submitted (and thus freed) until after we
458 		 * return.
459 		 *
460 		 * This exposes us to a potential deadlock if we allocate
461 		 * multiple bios from the same bio_set() while running
462 		 * underneath generic_make_request(). If we were to allocate
463 		 * multiple bios (say a stacking block driver that was splitting
464 		 * bios), we would deadlock if we exhausted the mempool's
465 		 * reserve.
466 		 *
467 		 * We solve this, and guarantee forward progress, with a rescuer
468 		 * workqueue per bio_set. If we go to allocate and there are
469 		 * bios on current->bio_list, we first try the allocation
470 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
471 		 * bios we would be blocking to the rescuer workqueue before
472 		 * we retry with the original gfp_flags.
473 		 */
474 
475 		if (current->bio_list &&
476 		    (!bio_list_empty(&current->bio_list[0]) ||
477 		     !bio_list_empty(&current->bio_list[1])) &&
478 		    bs->rescue_workqueue)
479 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
480 
481 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 		if (!p && gfp_mask != saved_gfp) {
483 			punt_bios_to_rescuer(bs);
484 			gfp_mask = saved_gfp;
485 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
486 		}
487 
488 		front_pad = bs->front_pad;
489 		inline_vecs = BIO_INLINE_VECS;
490 	}
491 
492 	if (unlikely(!p))
493 		return NULL;
494 
495 	bio = p + front_pad;
496 	bio_init(bio, NULL, 0);
497 
498 	if (nr_iovecs > inline_vecs) {
499 		unsigned long idx = 0;
500 
501 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
502 		if (!bvl && gfp_mask != saved_gfp) {
503 			punt_bios_to_rescuer(bs);
504 			gfp_mask = saved_gfp;
505 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
506 		}
507 
508 		if (unlikely(!bvl))
509 			goto err_free;
510 
511 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
512 	} else if (nr_iovecs) {
513 		bvl = bio->bi_inline_vecs;
514 	}
515 
516 	bio->bi_pool = bs;
517 	bio->bi_max_vecs = nr_iovecs;
518 	bio->bi_io_vec = bvl;
519 	return bio;
520 
521 err_free:
522 	mempool_free(p, &bs->bio_pool);
523 	return NULL;
524 }
525 EXPORT_SYMBOL(bio_alloc_bioset);
526 
527 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
528 {
529 	unsigned long flags;
530 	struct bio_vec bv;
531 	struct bvec_iter iter;
532 
533 	__bio_for_each_segment(bv, bio, iter, start) {
534 		char *data = bvec_kmap_irq(&bv, &flags);
535 		memset(data, 0, bv.bv_len);
536 		flush_dcache_page(bv.bv_page);
537 		bvec_kunmap_irq(data, &flags);
538 	}
539 }
540 EXPORT_SYMBOL(zero_fill_bio_iter);
541 
542 /**
543  * bio_truncate - truncate the bio to small size of @new_size
544  * @bio:	the bio to be truncated
545  * @new_size:	new size for truncating the bio
546  *
547  * Description:
548  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
549  *   REQ_OP_READ, zero the truncated part. This function should only
550  *   be used for handling corner cases, such as bio eod.
551  */
552 void bio_truncate(struct bio *bio, unsigned new_size)
553 {
554 	struct bio_vec bv;
555 	struct bvec_iter iter;
556 	unsigned int done = 0;
557 	bool truncated = false;
558 
559 	if (new_size >= bio->bi_iter.bi_size)
560 		return;
561 
562 	if (bio_op(bio) != REQ_OP_READ)
563 		goto exit;
564 
565 	bio_for_each_segment(bv, bio, iter) {
566 		if (done + bv.bv_len > new_size) {
567 			unsigned offset;
568 
569 			if (!truncated)
570 				offset = new_size - done;
571 			else
572 				offset = 0;
573 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
574 			truncated = true;
575 		}
576 		done += bv.bv_len;
577 	}
578 
579  exit:
580 	/*
581 	 * Don't touch bvec table here and make it really immutable, since
582 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
583 	 * in its .end_bio() callback.
584 	 *
585 	 * It is enough to truncate bio by updating .bi_size since we can make
586 	 * correct bvec with the updated .bi_size for drivers.
587 	 */
588 	bio->bi_iter.bi_size = new_size;
589 }
590 
591 /**
592  * guard_bio_eod - truncate a BIO to fit the block device
593  * @bio:	bio to truncate
594  *
595  * This allows us to do IO even on the odd last sectors of a device, even if the
596  * block size is some multiple of the physical sector size.
597  *
598  * We'll just truncate the bio to the size of the device, and clear the end of
599  * the buffer head manually.  Truly out-of-range accesses will turn into actual
600  * I/O errors, this only handles the "we need to be able to do I/O at the final
601  * sector" case.
602  */
603 void guard_bio_eod(struct bio *bio)
604 {
605 	sector_t maxsector;
606 	struct hd_struct *part;
607 
608 	rcu_read_lock();
609 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
610 	if (part)
611 		maxsector = part_nr_sects_read(part);
612 	else
613 		maxsector = get_capacity(bio->bi_disk);
614 	rcu_read_unlock();
615 
616 	if (!maxsector)
617 		return;
618 
619 	/*
620 	 * If the *whole* IO is past the end of the device,
621 	 * let it through, and the IO layer will turn it into
622 	 * an EIO.
623 	 */
624 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
625 		return;
626 
627 	maxsector -= bio->bi_iter.bi_sector;
628 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
629 		return;
630 
631 	bio_truncate(bio, maxsector << 9);
632 }
633 
634 /**
635  * bio_put - release a reference to a bio
636  * @bio:   bio to release reference to
637  *
638  * Description:
639  *   Put a reference to a &struct bio, either one you have gotten with
640  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
641  **/
642 void bio_put(struct bio *bio)
643 {
644 	if (!bio_flagged(bio, BIO_REFFED))
645 		bio_free(bio);
646 	else {
647 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
648 
649 		/*
650 		 * last put frees it
651 		 */
652 		if (atomic_dec_and_test(&bio->__bi_cnt))
653 			bio_free(bio);
654 	}
655 }
656 EXPORT_SYMBOL(bio_put);
657 
658 /**
659  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
660  * 	@bio: destination bio
661  * 	@bio_src: bio to clone
662  *
663  *	Clone a &bio. Caller will own the returned bio, but not
664  *	the actual data it points to. Reference count of returned
665  * 	bio will be one.
666  *
667  * 	Caller must ensure that @bio_src is not freed before @bio.
668  */
669 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
670 {
671 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
672 
673 	/*
674 	 * most users will be overriding ->bi_disk with a new target,
675 	 * so we don't set nor calculate new physical/hw segment counts here
676 	 */
677 	bio->bi_disk = bio_src->bi_disk;
678 	bio->bi_partno = bio_src->bi_partno;
679 	bio_set_flag(bio, BIO_CLONED);
680 	if (bio_flagged(bio_src, BIO_THROTTLED))
681 		bio_set_flag(bio, BIO_THROTTLED);
682 	bio->bi_opf = bio_src->bi_opf;
683 	bio->bi_ioprio = bio_src->bi_ioprio;
684 	bio->bi_write_hint = bio_src->bi_write_hint;
685 	bio->bi_iter = bio_src->bi_iter;
686 	bio->bi_io_vec = bio_src->bi_io_vec;
687 
688 	bio_clone_blkg_association(bio, bio_src);
689 	blkcg_bio_issue_init(bio);
690 }
691 EXPORT_SYMBOL(__bio_clone_fast);
692 
693 /**
694  *	bio_clone_fast - clone a bio that shares the original bio's biovec
695  *	@bio: bio to clone
696  *	@gfp_mask: allocation priority
697  *	@bs: bio_set to allocate from
698  *
699  * 	Like __bio_clone_fast, only also allocates the returned bio
700  */
701 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
702 {
703 	struct bio *b;
704 
705 	b = bio_alloc_bioset(gfp_mask, 0, bs);
706 	if (!b)
707 		return NULL;
708 
709 	__bio_clone_fast(b, bio);
710 
711 	if (bio_integrity(bio)) {
712 		int ret;
713 
714 		ret = bio_integrity_clone(b, bio, gfp_mask);
715 
716 		if (ret < 0) {
717 			bio_put(b);
718 			return NULL;
719 		}
720 	}
721 
722 	return b;
723 }
724 EXPORT_SYMBOL(bio_clone_fast);
725 
726 const char *bio_devname(struct bio *bio, char *buf)
727 {
728 	return disk_name(bio->bi_disk, bio->bi_partno, buf);
729 }
730 EXPORT_SYMBOL(bio_devname);
731 
732 static inline bool page_is_mergeable(const struct bio_vec *bv,
733 		struct page *page, unsigned int len, unsigned int off,
734 		bool *same_page)
735 {
736 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
737 		bv->bv_offset + bv->bv_len - 1;
738 	phys_addr_t page_addr = page_to_phys(page);
739 
740 	if (vec_end_addr + 1 != page_addr + off)
741 		return false;
742 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
743 		return false;
744 
745 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
746 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
747 		return false;
748 	return true;
749 }
750 
751 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
752 		struct page *page, unsigned len, unsigned offset,
753 		bool *same_page)
754 {
755 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
756 	unsigned long mask = queue_segment_boundary(q);
757 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
758 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
759 
760 	if ((addr1 | mask) != (addr2 | mask))
761 		return false;
762 	if (bv->bv_len + len > queue_max_segment_size(q))
763 		return false;
764 	return __bio_try_merge_page(bio, page, len, offset, same_page);
765 }
766 
767 /**
768  *	__bio_add_pc_page	- attempt to add page to passthrough bio
769  *	@q: the target queue
770  *	@bio: destination bio
771  *	@page: page to add
772  *	@len: vec entry length
773  *	@offset: vec entry offset
774  *	@same_page: return if the merge happen inside the same page
775  *
776  *	Attempt to add a page to the bio_vec maplist. This can fail for a
777  *	number of reasons, such as the bio being full or target block device
778  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
779  *	so it is always possible to add a single page to an empty bio.
780  *
781  *	This should only be used by passthrough bios.
782  */
783 int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
784 		struct page *page, unsigned int len, unsigned int offset,
785 		bool *same_page)
786 {
787 	struct bio_vec *bvec;
788 
789 	/*
790 	 * cloned bio must not modify vec list
791 	 */
792 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
793 		return 0;
794 
795 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
796 		return 0;
797 
798 	if (bio->bi_vcnt > 0) {
799 		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
800 			return len;
801 
802 		/*
803 		 * If the queue doesn't support SG gaps and adding this segment
804 		 * would create a gap, disallow it.
805 		 */
806 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
807 		if (bvec_gap_to_prev(q, bvec, offset))
808 			return 0;
809 	}
810 
811 	if (bio_full(bio, len))
812 		return 0;
813 
814 	if (bio->bi_vcnt >= queue_max_segments(q))
815 		return 0;
816 
817 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
818 	bvec->bv_page = page;
819 	bvec->bv_len = len;
820 	bvec->bv_offset = offset;
821 	bio->bi_vcnt++;
822 	bio->bi_iter.bi_size += len;
823 	return len;
824 }
825 
826 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
827 		struct page *page, unsigned int len, unsigned int offset)
828 {
829 	bool same_page = false;
830 	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
831 }
832 EXPORT_SYMBOL(bio_add_pc_page);
833 
834 /**
835  * __bio_try_merge_page - try appending data to an existing bvec.
836  * @bio: destination bio
837  * @page: start page to add
838  * @len: length of the data to add
839  * @off: offset of the data relative to @page
840  * @same_page: return if the segment has been merged inside the same page
841  *
842  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
843  * a useful optimisation for file systems with a block size smaller than the
844  * page size.
845  *
846  * Warn if (@len, @off) crosses pages in case that @same_page is true.
847  *
848  * Return %true on success or %false on failure.
849  */
850 bool __bio_try_merge_page(struct bio *bio, struct page *page,
851 		unsigned int len, unsigned int off, bool *same_page)
852 {
853 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
854 		return false;
855 
856 	if (bio->bi_vcnt > 0) {
857 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
858 
859 		if (page_is_mergeable(bv, page, len, off, same_page)) {
860 			if (bio->bi_iter.bi_size > UINT_MAX - len)
861 				return false;
862 			bv->bv_len += len;
863 			bio->bi_iter.bi_size += len;
864 			return true;
865 		}
866 	}
867 	return false;
868 }
869 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
870 
871 /**
872  * __bio_add_page - add page(s) to a bio in a new segment
873  * @bio: destination bio
874  * @page: start page to add
875  * @len: length of the data to add, may cross pages
876  * @off: offset of the data relative to @page, may cross pages
877  *
878  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
879  * that @bio has space for another bvec.
880  */
881 void __bio_add_page(struct bio *bio, struct page *page,
882 		unsigned int len, unsigned int off)
883 {
884 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
885 
886 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
887 	WARN_ON_ONCE(bio_full(bio, len));
888 
889 	bv->bv_page = page;
890 	bv->bv_offset = off;
891 	bv->bv_len = len;
892 
893 	bio->bi_iter.bi_size += len;
894 	bio->bi_vcnt++;
895 
896 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
897 		bio_set_flag(bio, BIO_WORKINGSET);
898 }
899 EXPORT_SYMBOL_GPL(__bio_add_page);
900 
901 /**
902  *	bio_add_page	-	attempt to add page(s) to bio
903  *	@bio: destination bio
904  *	@page: start page to add
905  *	@len: vec entry length, may cross pages
906  *	@offset: vec entry offset relative to @page, may cross pages
907  *
908  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
909  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
910  */
911 int bio_add_page(struct bio *bio, struct page *page,
912 		 unsigned int len, unsigned int offset)
913 {
914 	bool same_page = false;
915 
916 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
917 		if (bio_full(bio, len))
918 			return 0;
919 		__bio_add_page(bio, page, len, offset);
920 	}
921 	return len;
922 }
923 EXPORT_SYMBOL(bio_add_page);
924 
925 void bio_release_pages(struct bio *bio, bool mark_dirty)
926 {
927 	struct bvec_iter_all iter_all;
928 	struct bio_vec *bvec;
929 
930 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
931 		return;
932 
933 	bio_for_each_segment_all(bvec, bio, iter_all) {
934 		if (mark_dirty && !PageCompound(bvec->bv_page))
935 			set_page_dirty_lock(bvec->bv_page);
936 		put_page(bvec->bv_page);
937 	}
938 }
939 
940 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
941 {
942 	const struct bio_vec *bv = iter->bvec;
943 	unsigned int len;
944 	size_t size;
945 
946 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
947 		return -EINVAL;
948 
949 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
950 	size = bio_add_page(bio, bv->bv_page, len,
951 				bv->bv_offset + iter->iov_offset);
952 	if (unlikely(size != len))
953 		return -EINVAL;
954 	iov_iter_advance(iter, size);
955 	return 0;
956 }
957 
958 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
959 
960 /**
961  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
962  * @bio: bio to add pages to
963  * @iter: iov iterator describing the region to be mapped
964  *
965  * Pins pages from *iter and appends them to @bio's bvec array. The
966  * pages will have to be released using put_page() when done.
967  * For multi-segment *iter, this function only adds pages from the
968  * the next non-empty segment of the iov iterator.
969  */
970 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
971 {
972 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
973 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
974 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
975 	struct page **pages = (struct page **)bv;
976 	bool same_page = false;
977 	ssize_t size, left;
978 	unsigned len, i;
979 	size_t offset;
980 
981 	/*
982 	 * Move page array up in the allocated memory for the bio vecs as far as
983 	 * possible so that we can start filling biovecs from the beginning
984 	 * without overwriting the temporary page array.
985 	*/
986 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
987 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
988 
989 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
990 	if (unlikely(size <= 0))
991 		return size ? size : -EFAULT;
992 
993 	for (left = size, i = 0; left > 0; left -= len, i++) {
994 		struct page *page = pages[i];
995 
996 		len = min_t(size_t, PAGE_SIZE - offset, left);
997 
998 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
999 			if (same_page)
1000 				put_page(page);
1001 		} else {
1002 			if (WARN_ON_ONCE(bio_full(bio, len)))
1003                                 return -EINVAL;
1004 			__bio_add_page(bio, page, len, offset);
1005 		}
1006 		offset = 0;
1007 	}
1008 
1009 	iov_iter_advance(iter, size);
1010 	return 0;
1011 }
1012 
1013 /**
1014  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1015  * @bio: bio to add pages to
1016  * @iter: iov iterator describing the region to be added
1017  *
1018  * This takes either an iterator pointing to user memory, or one pointing to
1019  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1020  * map them into the kernel. On IO completion, the caller should put those
1021  * pages. If we're adding kernel pages, and the caller told us it's safe to
1022  * do so, we just have to add the pages to the bio directly. We don't grab an
1023  * extra reference to those pages (the user should already have that), and we
1024  * don't put the page on IO completion. The caller needs to check if the bio is
1025  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1026  * released.
1027  *
1028  * The function tries, but does not guarantee, to pin as many pages as
1029  * fit into the bio, or are requested in *iter, whatever is smaller. If
1030  * MM encounters an error pinning the requested pages, it stops. Error
1031  * is returned only if 0 pages could be pinned.
1032  */
1033 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1034 {
1035 	const bool is_bvec = iov_iter_is_bvec(iter);
1036 	int ret;
1037 
1038 	if (WARN_ON_ONCE(bio->bi_vcnt))
1039 		return -EINVAL;
1040 
1041 	do {
1042 		if (is_bvec)
1043 			ret = __bio_iov_bvec_add_pages(bio, iter);
1044 		else
1045 			ret = __bio_iov_iter_get_pages(bio, iter);
1046 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1047 
1048 	if (is_bvec)
1049 		bio_set_flag(bio, BIO_NO_PAGE_REF);
1050 	return bio->bi_vcnt ? 0 : ret;
1051 }
1052 
1053 static void submit_bio_wait_endio(struct bio *bio)
1054 {
1055 	complete(bio->bi_private);
1056 }
1057 
1058 /**
1059  * submit_bio_wait - submit a bio, and wait until it completes
1060  * @bio: The &struct bio which describes the I/O
1061  *
1062  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1063  * bio_endio() on failure.
1064  *
1065  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1066  * result in bio reference to be consumed. The caller must drop the reference
1067  * on his own.
1068  */
1069 int submit_bio_wait(struct bio *bio)
1070 {
1071 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1072 	unsigned long hang_check;
1073 
1074 	bio->bi_private = &done;
1075 	bio->bi_end_io = submit_bio_wait_endio;
1076 	bio->bi_opf |= REQ_SYNC;
1077 	submit_bio(bio);
1078 
1079 	/* Prevent hang_check timer from firing at us during very long I/O */
1080 	hang_check = sysctl_hung_task_timeout_secs;
1081 	if (hang_check)
1082 		while (!wait_for_completion_io_timeout(&done,
1083 					hang_check * (HZ/2)))
1084 			;
1085 	else
1086 		wait_for_completion_io(&done);
1087 
1088 	return blk_status_to_errno(bio->bi_status);
1089 }
1090 EXPORT_SYMBOL(submit_bio_wait);
1091 
1092 /**
1093  * bio_advance - increment/complete a bio by some number of bytes
1094  * @bio:	bio to advance
1095  * @bytes:	number of bytes to complete
1096  *
1097  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1098  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1099  * be updated on the last bvec as well.
1100  *
1101  * @bio will then represent the remaining, uncompleted portion of the io.
1102  */
1103 void bio_advance(struct bio *bio, unsigned bytes)
1104 {
1105 	if (bio_integrity(bio))
1106 		bio_integrity_advance(bio, bytes);
1107 
1108 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1109 }
1110 EXPORT_SYMBOL(bio_advance);
1111 
1112 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1113 			struct bio *src, struct bvec_iter *src_iter)
1114 {
1115 	struct bio_vec src_bv, dst_bv;
1116 	void *src_p, *dst_p;
1117 	unsigned bytes;
1118 
1119 	while (src_iter->bi_size && dst_iter->bi_size) {
1120 		src_bv = bio_iter_iovec(src, *src_iter);
1121 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1122 
1123 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1124 
1125 		src_p = kmap_atomic(src_bv.bv_page);
1126 		dst_p = kmap_atomic(dst_bv.bv_page);
1127 
1128 		memcpy(dst_p + dst_bv.bv_offset,
1129 		       src_p + src_bv.bv_offset,
1130 		       bytes);
1131 
1132 		kunmap_atomic(dst_p);
1133 		kunmap_atomic(src_p);
1134 
1135 		flush_dcache_page(dst_bv.bv_page);
1136 
1137 		bio_advance_iter(src, src_iter, bytes);
1138 		bio_advance_iter(dst, dst_iter, bytes);
1139 	}
1140 }
1141 EXPORT_SYMBOL(bio_copy_data_iter);
1142 
1143 /**
1144  * bio_copy_data - copy contents of data buffers from one bio to another
1145  * @src: source bio
1146  * @dst: destination bio
1147  *
1148  * Stops when it reaches the end of either @src or @dst - that is, copies
1149  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1150  */
1151 void bio_copy_data(struct bio *dst, struct bio *src)
1152 {
1153 	struct bvec_iter src_iter = src->bi_iter;
1154 	struct bvec_iter dst_iter = dst->bi_iter;
1155 
1156 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1157 }
1158 EXPORT_SYMBOL(bio_copy_data);
1159 
1160 /**
1161  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1162  * another
1163  * @src: source bio list
1164  * @dst: destination bio list
1165  *
1166  * Stops when it reaches the end of either the @src list or @dst list - that is,
1167  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1168  * bios).
1169  */
1170 void bio_list_copy_data(struct bio *dst, struct bio *src)
1171 {
1172 	struct bvec_iter src_iter = src->bi_iter;
1173 	struct bvec_iter dst_iter = dst->bi_iter;
1174 
1175 	while (1) {
1176 		if (!src_iter.bi_size) {
1177 			src = src->bi_next;
1178 			if (!src)
1179 				break;
1180 
1181 			src_iter = src->bi_iter;
1182 		}
1183 
1184 		if (!dst_iter.bi_size) {
1185 			dst = dst->bi_next;
1186 			if (!dst)
1187 				break;
1188 
1189 			dst_iter = dst->bi_iter;
1190 		}
1191 
1192 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1193 	}
1194 }
1195 EXPORT_SYMBOL(bio_list_copy_data);
1196 
1197 void bio_free_pages(struct bio *bio)
1198 {
1199 	struct bio_vec *bvec;
1200 	struct bvec_iter_all iter_all;
1201 
1202 	bio_for_each_segment_all(bvec, bio, iter_all)
1203 		__free_page(bvec->bv_page);
1204 }
1205 EXPORT_SYMBOL(bio_free_pages);
1206 
1207 /*
1208  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1209  * for performing direct-IO in BIOs.
1210  *
1211  * The problem is that we cannot run set_page_dirty() from interrupt context
1212  * because the required locks are not interrupt-safe.  So what we can do is to
1213  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1214  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1215  * in process context.
1216  *
1217  * We special-case compound pages here: normally this means reads into hugetlb
1218  * pages.  The logic in here doesn't really work right for compound pages
1219  * because the VM does not uniformly chase down the head page in all cases.
1220  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1221  * handle them at all.  So we skip compound pages here at an early stage.
1222  *
1223  * Note that this code is very hard to test under normal circumstances because
1224  * direct-io pins the pages with get_user_pages().  This makes
1225  * is_page_cache_freeable return false, and the VM will not clean the pages.
1226  * But other code (eg, flusher threads) could clean the pages if they are mapped
1227  * pagecache.
1228  *
1229  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1230  * deferred bio dirtying paths.
1231  */
1232 
1233 /*
1234  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1235  */
1236 void bio_set_pages_dirty(struct bio *bio)
1237 {
1238 	struct bio_vec *bvec;
1239 	struct bvec_iter_all iter_all;
1240 
1241 	bio_for_each_segment_all(bvec, bio, iter_all) {
1242 		if (!PageCompound(bvec->bv_page))
1243 			set_page_dirty_lock(bvec->bv_page);
1244 	}
1245 }
1246 
1247 /*
1248  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1249  * If they are, then fine.  If, however, some pages are clean then they must
1250  * have been written out during the direct-IO read.  So we take another ref on
1251  * the BIO and re-dirty the pages in process context.
1252  *
1253  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1254  * here on.  It will run one put_page() against each page and will run one
1255  * bio_put() against the BIO.
1256  */
1257 
1258 static void bio_dirty_fn(struct work_struct *work);
1259 
1260 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1261 static DEFINE_SPINLOCK(bio_dirty_lock);
1262 static struct bio *bio_dirty_list;
1263 
1264 /*
1265  * This runs in process context
1266  */
1267 static void bio_dirty_fn(struct work_struct *work)
1268 {
1269 	struct bio *bio, *next;
1270 
1271 	spin_lock_irq(&bio_dirty_lock);
1272 	next = bio_dirty_list;
1273 	bio_dirty_list = NULL;
1274 	spin_unlock_irq(&bio_dirty_lock);
1275 
1276 	while ((bio = next) != NULL) {
1277 		next = bio->bi_private;
1278 
1279 		bio_release_pages(bio, true);
1280 		bio_put(bio);
1281 	}
1282 }
1283 
1284 void bio_check_pages_dirty(struct bio *bio)
1285 {
1286 	struct bio_vec *bvec;
1287 	unsigned long flags;
1288 	struct bvec_iter_all iter_all;
1289 
1290 	bio_for_each_segment_all(bvec, bio, iter_all) {
1291 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1292 			goto defer;
1293 	}
1294 
1295 	bio_release_pages(bio, false);
1296 	bio_put(bio);
1297 	return;
1298 defer:
1299 	spin_lock_irqsave(&bio_dirty_lock, flags);
1300 	bio->bi_private = bio_dirty_list;
1301 	bio_dirty_list = bio;
1302 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1303 	schedule_work(&bio_dirty_work);
1304 }
1305 
1306 void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1307 {
1308 	unsigned long stamp;
1309 again:
1310 	stamp = READ_ONCE(part->stamp);
1311 	if (unlikely(stamp != now)) {
1312 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1313 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1314 		}
1315 	}
1316 	if (part->partno) {
1317 		part = &part_to_disk(part)->part0;
1318 		goto again;
1319 	}
1320 }
1321 
1322 void generic_start_io_acct(struct request_queue *q, int op,
1323 			   unsigned long sectors, struct hd_struct *part)
1324 {
1325 	const int sgrp = op_stat_group(op);
1326 
1327 	part_stat_lock();
1328 
1329 	update_io_ticks(part, jiffies, false);
1330 	part_stat_inc(part, ios[sgrp]);
1331 	part_stat_add(part, sectors[sgrp], sectors);
1332 	part_inc_in_flight(q, part, op_is_write(op));
1333 
1334 	part_stat_unlock();
1335 }
1336 EXPORT_SYMBOL(generic_start_io_acct);
1337 
1338 void generic_end_io_acct(struct request_queue *q, int req_op,
1339 			 struct hd_struct *part, unsigned long start_time)
1340 {
1341 	unsigned long now = jiffies;
1342 	unsigned long duration = now - start_time;
1343 	const int sgrp = op_stat_group(req_op);
1344 
1345 	part_stat_lock();
1346 
1347 	update_io_ticks(part, now, true);
1348 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1349 	part_dec_in_flight(q, part, op_is_write(req_op));
1350 
1351 	part_stat_unlock();
1352 }
1353 EXPORT_SYMBOL(generic_end_io_acct);
1354 
1355 static inline bool bio_remaining_done(struct bio *bio)
1356 {
1357 	/*
1358 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1359 	 * we always end io on the first invocation.
1360 	 */
1361 	if (!bio_flagged(bio, BIO_CHAIN))
1362 		return true;
1363 
1364 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1365 
1366 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1367 		bio_clear_flag(bio, BIO_CHAIN);
1368 		return true;
1369 	}
1370 
1371 	return false;
1372 }
1373 
1374 /**
1375  * bio_endio - end I/O on a bio
1376  * @bio:	bio
1377  *
1378  * Description:
1379  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1380  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1381  *   bio unless they own it and thus know that it has an end_io function.
1382  *
1383  *   bio_endio() can be called several times on a bio that has been chained
1384  *   using bio_chain().  The ->bi_end_io() function will only be called the
1385  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1386  *   generated if BIO_TRACE_COMPLETION is set.
1387  **/
1388 void bio_endio(struct bio *bio)
1389 {
1390 again:
1391 	if (!bio_remaining_done(bio))
1392 		return;
1393 	if (!bio_integrity_endio(bio))
1394 		return;
1395 
1396 	if (bio->bi_disk)
1397 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1398 
1399 	/*
1400 	 * Need to have a real endio function for chained bios, otherwise
1401 	 * various corner cases will break (like stacking block devices that
1402 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1403 	 * recursion and blowing the stack. Tail call optimization would
1404 	 * handle this, but compiling with frame pointers also disables
1405 	 * gcc's sibling call optimization.
1406 	 */
1407 	if (bio->bi_end_io == bio_chain_endio) {
1408 		bio = __bio_chain_endio(bio);
1409 		goto again;
1410 	}
1411 
1412 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1413 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1414 					 blk_status_to_errno(bio->bi_status));
1415 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1416 	}
1417 
1418 	blk_throtl_bio_endio(bio);
1419 	/* release cgroup info */
1420 	bio_uninit(bio);
1421 	if (bio->bi_end_io)
1422 		bio->bi_end_io(bio);
1423 }
1424 EXPORT_SYMBOL(bio_endio);
1425 
1426 /**
1427  * bio_split - split a bio
1428  * @bio:	bio to split
1429  * @sectors:	number of sectors to split from the front of @bio
1430  * @gfp:	gfp mask
1431  * @bs:		bio set to allocate from
1432  *
1433  * Allocates and returns a new bio which represents @sectors from the start of
1434  * @bio, and updates @bio to represent the remaining sectors.
1435  *
1436  * Unless this is a discard request the newly allocated bio will point
1437  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1438  * neither @bio nor @bs are freed before the split bio.
1439  */
1440 struct bio *bio_split(struct bio *bio, int sectors,
1441 		      gfp_t gfp, struct bio_set *bs)
1442 {
1443 	struct bio *split;
1444 
1445 	BUG_ON(sectors <= 0);
1446 	BUG_ON(sectors >= bio_sectors(bio));
1447 
1448 	split = bio_clone_fast(bio, gfp, bs);
1449 	if (!split)
1450 		return NULL;
1451 
1452 	split->bi_iter.bi_size = sectors << 9;
1453 
1454 	if (bio_integrity(split))
1455 		bio_integrity_trim(split);
1456 
1457 	bio_advance(bio, split->bi_iter.bi_size);
1458 
1459 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1460 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1461 
1462 	return split;
1463 }
1464 EXPORT_SYMBOL(bio_split);
1465 
1466 /**
1467  * bio_trim - trim a bio
1468  * @bio:	bio to trim
1469  * @offset:	number of sectors to trim from the front of @bio
1470  * @size:	size we want to trim @bio to, in sectors
1471  */
1472 void bio_trim(struct bio *bio, int offset, int size)
1473 {
1474 	/* 'bio' is a cloned bio which we need to trim to match
1475 	 * the given offset and size.
1476 	 */
1477 
1478 	size <<= 9;
1479 	if (offset == 0 && size == bio->bi_iter.bi_size)
1480 		return;
1481 
1482 	bio_advance(bio, offset << 9);
1483 	bio->bi_iter.bi_size = size;
1484 
1485 	if (bio_integrity(bio))
1486 		bio_integrity_trim(bio);
1487 
1488 }
1489 EXPORT_SYMBOL_GPL(bio_trim);
1490 
1491 /*
1492  * create memory pools for biovec's in a bio_set.
1493  * use the global biovec slabs created for general use.
1494  */
1495 int biovec_init_pool(mempool_t *pool, int pool_entries)
1496 {
1497 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1498 
1499 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1500 }
1501 
1502 /*
1503  * bioset_exit - exit a bioset initialized with bioset_init()
1504  *
1505  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1506  * kzalloc()).
1507  */
1508 void bioset_exit(struct bio_set *bs)
1509 {
1510 	if (bs->rescue_workqueue)
1511 		destroy_workqueue(bs->rescue_workqueue);
1512 	bs->rescue_workqueue = NULL;
1513 
1514 	mempool_exit(&bs->bio_pool);
1515 	mempool_exit(&bs->bvec_pool);
1516 
1517 	bioset_integrity_free(bs);
1518 	if (bs->bio_slab)
1519 		bio_put_slab(bs);
1520 	bs->bio_slab = NULL;
1521 }
1522 EXPORT_SYMBOL(bioset_exit);
1523 
1524 /**
1525  * bioset_init - Initialize a bio_set
1526  * @bs:		pool to initialize
1527  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1528  * @front_pad:	Number of bytes to allocate in front of the returned bio
1529  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1530  *              and %BIOSET_NEED_RESCUER
1531  *
1532  * Description:
1533  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1534  *    to ask for a number of bytes to be allocated in front of the bio.
1535  *    Front pad allocation is useful for embedding the bio inside
1536  *    another structure, to avoid allocating extra data to go with the bio.
1537  *    Note that the bio must be embedded at the END of that structure always,
1538  *    or things will break badly.
1539  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1540  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1541  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1542  *    dispatch queued requests when the mempool runs out of space.
1543  *
1544  */
1545 int bioset_init(struct bio_set *bs,
1546 		unsigned int pool_size,
1547 		unsigned int front_pad,
1548 		int flags)
1549 {
1550 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1551 
1552 	bs->front_pad = front_pad;
1553 
1554 	spin_lock_init(&bs->rescue_lock);
1555 	bio_list_init(&bs->rescue_list);
1556 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1557 
1558 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1559 	if (!bs->bio_slab)
1560 		return -ENOMEM;
1561 
1562 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1563 		goto bad;
1564 
1565 	if ((flags & BIOSET_NEED_BVECS) &&
1566 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1567 		goto bad;
1568 
1569 	if (!(flags & BIOSET_NEED_RESCUER))
1570 		return 0;
1571 
1572 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1573 	if (!bs->rescue_workqueue)
1574 		goto bad;
1575 
1576 	return 0;
1577 bad:
1578 	bioset_exit(bs);
1579 	return -ENOMEM;
1580 }
1581 EXPORT_SYMBOL(bioset_init);
1582 
1583 /*
1584  * Initialize and setup a new bio_set, based on the settings from
1585  * another bio_set.
1586  */
1587 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1588 {
1589 	int flags;
1590 
1591 	flags = 0;
1592 	if (src->bvec_pool.min_nr)
1593 		flags |= BIOSET_NEED_BVECS;
1594 	if (src->rescue_workqueue)
1595 		flags |= BIOSET_NEED_RESCUER;
1596 
1597 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1598 }
1599 EXPORT_SYMBOL(bioset_init_from_src);
1600 
1601 #ifdef CONFIG_BLK_CGROUP
1602 
1603 /**
1604  * bio_disassociate_blkg - puts back the blkg reference if associated
1605  * @bio: target bio
1606  *
1607  * Helper to disassociate the blkg from @bio if a blkg is associated.
1608  */
1609 void bio_disassociate_blkg(struct bio *bio)
1610 {
1611 	if (bio->bi_blkg) {
1612 		blkg_put(bio->bi_blkg);
1613 		bio->bi_blkg = NULL;
1614 	}
1615 }
1616 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
1617 
1618 /**
1619  * __bio_associate_blkg - associate a bio with the a blkg
1620  * @bio: target bio
1621  * @blkg: the blkg to associate
1622  *
1623  * This tries to associate @bio with the specified @blkg.  Association failure
1624  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
1625  * be anything between @blkg and the root_blkg.  This situation only happens
1626  * when a cgroup is dying and then the remaining bios will spill to the closest
1627  * alive blkg.
1628  *
1629  * A reference will be taken on the @blkg and will be released when @bio is
1630  * freed.
1631  */
1632 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
1633 {
1634 	bio_disassociate_blkg(bio);
1635 
1636 	bio->bi_blkg = blkg_tryget_closest(blkg);
1637 }
1638 
1639 /**
1640  * bio_associate_blkg_from_css - associate a bio with a specified css
1641  * @bio: target bio
1642  * @css: target css
1643  *
1644  * Associate @bio with the blkg found by combining the css's blkg and the
1645  * request_queue of the @bio.  This falls back to the queue's root_blkg if
1646  * the association fails with the css.
1647  */
1648 void bio_associate_blkg_from_css(struct bio *bio,
1649 				 struct cgroup_subsys_state *css)
1650 {
1651 	struct request_queue *q = bio->bi_disk->queue;
1652 	struct blkcg_gq *blkg;
1653 
1654 	rcu_read_lock();
1655 
1656 	if (!css || !css->parent)
1657 		blkg = q->root_blkg;
1658 	else
1659 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
1660 
1661 	__bio_associate_blkg(bio, blkg);
1662 
1663 	rcu_read_unlock();
1664 }
1665 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1666 
1667 #ifdef CONFIG_MEMCG
1668 /**
1669  * bio_associate_blkg_from_page - associate a bio with the page's blkg
1670  * @bio: target bio
1671  * @page: the page to lookup the blkcg from
1672  *
1673  * Associate @bio with the blkg from @page's owning memcg and the respective
1674  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
1675  * root_blkg.
1676  */
1677 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
1678 {
1679 	struct cgroup_subsys_state *css;
1680 
1681 	if (!page->mem_cgroup)
1682 		return;
1683 
1684 	rcu_read_lock();
1685 
1686 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
1687 	bio_associate_blkg_from_css(bio, css);
1688 
1689 	rcu_read_unlock();
1690 }
1691 #endif /* CONFIG_MEMCG */
1692 
1693 /**
1694  * bio_associate_blkg - associate a bio with a blkg
1695  * @bio: target bio
1696  *
1697  * Associate @bio with the blkg found from the bio's css and request_queue.
1698  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1699  * already associated, the css is reused and association redone as the
1700  * request_queue may have changed.
1701  */
1702 void bio_associate_blkg(struct bio *bio)
1703 {
1704 	struct cgroup_subsys_state *css;
1705 
1706 	rcu_read_lock();
1707 
1708 	if (bio->bi_blkg)
1709 		css = &bio_blkcg(bio)->css;
1710 	else
1711 		css = blkcg_css();
1712 
1713 	bio_associate_blkg_from_css(bio, css);
1714 
1715 	rcu_read_unlock();
1716 }
1717 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1718 
1719 /**
1720  * bio_clone_blkg_association - clone blkg association from src to dst bio
1721  * @dst: destination bio
1722  * @src: source bio
1723  */
1724 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1725 {
1726 	rcu_read_lock();
1727 
1728 	if (src->bi_blkg)
1729 		__bio_associate_blkg(dst, src->bi_blkg);
1730 
1731 	rcu_read_unlock();
1732 }
1733 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1734 #endif /* CONFIG_BLK_CGROUP */
1735 
1736 static void __init biovec_init_slabs(void)
1737 {
1738 	int i;
1739 
1740 	for (i = 0; i < BVEC_POOL_NR; i++) {
1741 		int size;
1742 		struct biovec_slab *bvs = bvec_slabs + i;
1743 
1744 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1745 			bvs->slab = NULL;
1746 			continue;
1747 		}
1748 
1749 		size = bvs->nr_vecs * sizeof(struct bio_vec);
1750 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1751                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1752 	}
1753 }
1754 
1755 static int __init init_bio(void)
1756 {
1757 	bio_slab_max = 2;
1758 	bio_slab_nr = 0;
1759 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1760 			    GFP_KERNEL);
1761 
1762 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1763 
1764 	if (!bio_slabs)
1765 		panic("bio: can't allocate bios\n");
1766 
1767 	bio_integrity_init();
1768 	biovec_init_slabs();
1769 
1770 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1771 		panic("bio: can't allocate bios\n");
1772 
1773 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1774 		panic("bio: can't create integrity pool\n");
1775 
1776 	return 0;
1777 }
1778 subsys_initcall(init_bio);
1779