xref: /linux/block/bio.c (revision c1f3caff2450048ab6c053e5b23698b58f286159)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 struct bio_alloc_cache {
29 	struct bio		*free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN,
91 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
92 	if (!bslab->slab)
93 		goto fail_alloc_slab;
94 
95 	bslab->slab_ref = 1;
96 	bslab->slab_size = size;
97 
98 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 		return bslab;
100 
101 	kmem_cache_destroy(bslab->slab);
102 
103 fail_alloc_slab:
104 	kfree(bslab);
105 	return NULL;
106 }
107 
108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109 {
110 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
111 }
112 
113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114 {
115 	unsigned int size = bs_bio_slab_size(bs);
116 	struct bio_slab *bslab;
117 
118 	mutex_lock(&bio_slab_lock);
119 	bslab = xa_load(&bio_slabs, size);
120 	if (bslab)
121 		bslab->slab_ref++;
122 	else
123 		bslab = create_bio_slab(size);
124 	mutex_unlock(&bio_slab_lock);
125 
126 	if (bslab)
127 		return bslab->slab;
128 	return NULL;
129 }
130 
131 static void bio_put_slab(struct bio_set *bs)
132 {
133 	struct bio_slab *bslab = NULL;
134 	unsigned int slab_size = bs_bio_slab_size(bs);
135 
136 	mutex_lock(&bio_slab_lock);
137 
138 	bslab = xa_load(&bio_slabs, slab_size);
139 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 		goto out;
141 
142 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	xa_erase(&bio_slabs, slab_size);
150 
151 	kmem_cache_destroy(bslab->slab);
152 	kfree(bslab);
153 
154 out:
155 	mutex_unlock(&bio_slab_lock);
156 }
157 
158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
159 {
160 	BUG_ON(nr_vecs > BIO_MAX_VECS);
161 
162 	if (nr_vecs == BIO_MAX_VECS)
163 		mempool_free(bv, pool);
164 	else if (nr_vecs > BIO_INLINE_VECS)
165 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
166 }
167 
168 /*
169  * Make the first allocation restricted and don't dump info on allocation
170  * failures, since we'll fall back to the mempool in case of failure.
171  */
172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173 {
174 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
176 }
177 
178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 		gfp_t gfp_mask)
180 {
181 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
182 
183 	if (WARN_ON_ONCE(!bvs))
184 		return NULL;
185 
186 	/*
187 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 	 * We also rely on this in the bvec_free path.
189 	 */
190 	*nr_vecs = bvs->nr_vecs;
191 
192 	/*
193 	 * Try a slab allocation first for all smaller allocations.  If that
194 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
195 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
196 	 */
197 	if (*nr_vecs < BIO_MAX_VECS) {
198 		struct bio_vec *bvl;
199 
200 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
201 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
202 			return bvl;
203 		*nr_vecs = BIO_MAX_VECS;
204 	}
205 
206 	return mempool_alloc(pool, gfp_mask);
207 }
208 
209 void bio_uninit(struct bio *bio)
210 {
211 #ifdef CONFIG_BLK_CGROUP
212 	if (bio->bi_blkg) {
213 		blkg_put(bio->bi_blkg);
214 		bio->bi_blkg = NULL;
215 	}
216 #endif
217 	if (bio_integrity(bio))
218 		bio_integrity_free(bio);
219 
220 	bio_crypt_free_ctx(bio);
221 }
222 EXPORT_SYMBOL(bio_uninit);
223 
224 static void bio_free(struct bio *bio)
225 {
226 	struct bio_set *bs = bio->bi_pool;
227 	void *p;
228 
229 	bio_uninit(bio);
230 
231 	if (bs) {
232 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
233 
234 		/*
235 		 * If we have front padding, adjust the bio pointer before freeing
236 		 */
237 		p = bio;
238 		p -= bs->front_pad;
239 
240 		mempool_free(p, &bs->bio_pool);
241 	} else {
242 		/* Bio was allocated by bio_kmalloc() */
243 		kfree(bio);
244 	}
245 }
246 
247 /*
248  * Users of this function have their own bio allocation. Subsequently,
249  * they must remember to pair any call to bio_init() with bio_uninit()
250  * when IO has completed, or when the bio is released.
251  */
252 void bio_init(struct bio *bio, struct bio_vec *table,
253 	      unsigned short max_vecs)
254 {
255 	bio->bi_next = NULL;
256 	bio->bi_bdev = NULL;
257 	bio->bi_opf = 0;
258 	bio->bi_flags = 0;
259 	bio->bi_ioprio = 0;
260 	bio->bi_write_hint = 0;
261 	bio->bi_status = 0;
262 	bio->bi_iter.bi_sector = 0;
263 	bio->bi_iter.bi_size = 0;
264 	bio->bi_iter.bi_idx = 0;
265 	bio->bi_iter.bi_bvec_done = 0;
266 	bio->bi_end_io = NULL;
267 	bio->bi_private = NULL;
268 #ifdef CONFIG_BLK_CGROUP
269 	bio->bi_blkg = NULL;
270 	bio->bi_issue.value = 0;
271 #ifdef CONFIG_BLK_CGROUP_IOCOST
272 	bio->bi_iocost_cost = 0;
273 #endif
274 #endif
275 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
276 	bio->bi_crypt_context = NULL;
277 #endif
278 #ifdef CONFIG_BLK_DEV_INTEGRITY
279 	bio->bi_integrity = NULL;
280 #endif
281 	bio->bi_vcnt = 0;
282 
283 	atomic_set(&bio->__bi_remaining, 1);
284 	atomic_set(&bio->__bi_cnt, 1);
285 	bio->bi_cookie = BLK_QC_T_NONE;
286 
287 	bio->bi_max_vecs = max_vecs;
288 	bio->bi_io_vec = table;
289 	bio->bi_pool = NULL;
290 }
291 EXPORT_SYMBOL(bio_init);
292 
293 /**
294  * bio_reset - reinitialize a bio
295  * @bio:	bio to reset
296  *
297  * Description:
298  *   After calling bio_reset(), @bio will be in the same state as a freshly
299  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
300  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
301  *   comment in struct bio.
302  */
303 void bio_reset(struct bio *bio)
304 {
305 	bio_uninit(bio);
306 	memset(bio, 0, BIO_RESET_BYTES);
307 	atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310 
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 	struct bio *parent = bio->bi_private;
314 
315 	if (bio->bi_status && !parent->bi_status)
316 		parent->bi_status = bio->bi_status;
317 	bio_put(bio);
318 	return parent;
319 }
320 
321 static void bio_chain_endio(struct bio *bio)
322 {
323 	bio_endio(__bio_chain_endio(bio));
324 }
325 
326 /**
327  * bio_chain - chain bio completions
328  * @bio: the target bio
329  * @parent: the parent bio of @bio
330  *
331  * The caller won't have a bi_end_io called when @bio completes - instead,
332  * @parent's bi_end_io won't be called until both @parent and @bio have
333  * completed; the chained bio will also be freed when it completes.
334  *
335  * The caller must not set bi_private or bi_end_io in @bio.
336  */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 	BUG_ON(bio->bi_private || bio->bi_end_io);
340 
341 	bio->bi_private = parent;
342 	bio->bi_end_io	= bio_chain_endio;
343 	bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346 
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 	struct bio *bio;
351 
352 	while (1) {
353 		spin_lock(&bs->rescue_lock);
354 		bio = bio_list_pop(&bs->rescue_list);
355 		spin_unlock(&bs->rescue_lock);
356 
357 		if (!bio)
358 			break;
359 
360 		submit_bio_noacct(bio);
361 	}
362 }
363 
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 	struct bio_list punt, nopunt;
367 	struct bio *bio;
368 
369 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 		return;
371 	/*
372 	 * In order to guarantee forward progress we must punt only bios that
373 	 * were allocated from this bio_set; otherwise, if there was a bio on
374 	 * there for a stacking driver higher up in the stack, processing it
375 	 * could require allocating bios from this bio_set, and doing that from
376 	 * our own rescuer would be bad.
377 	 *
378 	 * Since bio lists are singly linked, pop them all instead of trying to
379 	 * remove from the middle of the list:
380 	 */
381 
382 	bio_list_init(&punt);
383 	bio_list_init(&nopunt);
384 
385 	while ((bio = bio_list_pop(&current->bio_list[0])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[0] = nopunt;
388 
389 	bio_list_init(&nopunt);
390 	while ((bio = bio_list_pop(&current->bio_list[1])))
391 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 	current->bio_list[1] = nopunt;
393 
394 	spin_lock(&bs->rescue_lock);
395 	bio_list_merge(&bs->rescue_list, &punt);
396 	spin_unlock(&bs->rescue_lock);
397 
398 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400 
401 /**
402  * bio_alloc_bioset - allocate a bio for I/O
403  * @gfp_mask:   the GFP_* mask given to the slab allocator
404  * @nr_iovecs:	number of iovecs to pre-allocate
405  * @bs:		the bio_set to allocate from.
406  *
407  * Allocate a bio from the mempools in @bs.
408  *
409  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
410  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
411  * callers must never allocate more than 1 bio at a time from the general pool.
412  * Callers that need to allocate more than 1 bio must always submit the
413  * previously allocated bio for IO before attempting to allocate a new one.
414  * Failure to do so can cause deadlocks under memory pressure.
415  *
416  * Note that when running under submit_bio_noacct() (i.e. any block driver),
417  * bios are not submitted until after you return - see the code in
418  * submit_bio_noacct() that converts recursion into iteration, to prevent
419  * stack overflows.
420  *
421  * This would normally mean allocating multiple bios under submit_bio_noacct()
422  * would be susceptible to deadlocks, but we have
423  * deadlock avoidance code that resubmits any blocked bios from a rescuer
424  * thread.
425  *
426  * However, we do not guarantee forward progress for allocations from other
427  * mempools. Doing multiple allocations from the same mempool under
428  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
429  * for per bio allocations.
430  *
431  * Returns: Pointer to new bio on success, NULL on failure.
432  */
433 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
434 			     struct bio_set *bs)
435 {
436 	gfp_t saved_gfp = gfp_mask;
437 	struct bio *bio;
438 	void *p;
439 
440 	/* should not use nobvec bioset for nr_iovecs > 0 */
441 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
442 		return NULL;
443 
444 	/*
445 	 * submit_bio_noacct() converts recursion to iteration; this means if
446 	 * we're running beneath it, any bios we allocate and submit will not be
447 	 * submitted (and thus freed) until after we return.
448 	 *
449 	 * This exposes us to a potential deadlock if we allocate multiple bios
450 	 * from the same bio_set() while running underneath submit_bio_noacct().
451 	 * If we were to allocate multiple bios (say a stacking block driver
452 	 * that was splitting bios), we would deadlock if we exhausted the
453 	 * mempool's reserve.
454 	 *
455 	 * We solve this, and guarantee forward progress, with a rescuer
456 	 * workqueue per bio_set. If we go to allocate and there are bios on
457 	 * current->bio_list, we first try the allocation without
458 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
459 	 * blocking to the rescuer workqueue before we retry with the original
460 	 * gfp_flags.
461 	 */
462 	if (current->bio_list &&
463 	    (!bio_list_empty(&current->bio_list[0]) ||
464 	     !bio_list_empty(&current->bio_list[1])) &&
465 	    bs->rescue_workqueue)
466 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
467 
468 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
469 	if (!p && gfp_mask != saved_gfp) {
470 		punt_bios_to_rescuer(bs);
471 		gfp_mask = saved_gfp;
472 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
473 	}
474 	if (unlikely(!p))
475 		return NULL;
476 
477 	bio = p + bs->front_pad;
478 	if (nr_iovecs > BIO_INLINE_VECS) {
479 		struct bio_vec *bvl = NULL;
480 
481 		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
482 		if (!bvl && gfp_mask != saved_gfp) {
483 			punt_bios_to_rescuer(bs);
484 			gfp_mask = saved_gfp;
485 			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
486 		}
487 		if (unlikely(!bvl))
488 			goto err_free;
489 
490 		bio_init(bio, bvl, nr_iovecs);
491 	} else if (nr_iovecs) {
492 		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
493 	} else {
494 		bio_init(bio, NULL, 0);
495 	}
496 
497 	bio->bi_pool = bs;
498 	return bio;
499 
500 err_free:
501 	mempool_free(p, &bs->bio_pool);
502 	return NULL;
503 }
504 EXPORT_SYMBOL(bio_alloc_bioset);
505 
506 /**
507  * bio_kmalloc - kmalloc a bio for I/O
508  * @gfp_mask:   the GFP_* mask given to the slab allocator
509  * @nr_iovecs:	number of iovecs to pre-allocate
510  *
511  * Use kmalloc to allocate and initialize a bio.
512  *
513  * Returns: Pointer to new bio on success, NULL on failure.
514  */
515 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
516 {
517 	struct bio *bio;
518 
519 	if (nr_iovecs > UIO_MAXIOV)
520 		return NULL;
521 
522 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
523 	if (unlikely(!bio))
524 		return NULL;
525 	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
526 	bio->bi_pool = NULL;
527 	return bio;
528 }
529 EXPORT_SYMBOL(bio_kmalloc);
530 
531 void zero_fill_bio(struct bio *bio)
532 {
533 	struct bio_vec bv;
534 	struct bvec_iter iter;
535 
536 	bio_for_each_segment(bv, bio, iter)
537 		memzero_bvec(&bv);
538 }
539 EXPORT_SYMBOL(zero_fill_bio);
540 
541 /**
542  * bio_truncate - truncate the bio to small size of @new_size
543  * @bio:	the bio to be truncated
544  * @new_size:	new size for truncating the bio
545  *
546  * Description:
547  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
548  *   REQ_OP_READ, zero the truncated part. This function should only
549  *   be used for handling corner cases, such as bio eod.
550  */
551 static void bio_truncate(struct bio *bio, unsigned new_size)
552 {
553 	struct bio_vec bv;
554 	struct bvec_iter iter;
555 	unsigned int done = 0;
556 	bool truncated = false;
557 
558 	if (new_size >= bio->bi_iter.bi_size)
559 		return;
560 
561 	if (bio_op(bio) != REQ_OP_READ)
562 		goto exit;
563 
564 	bio_for_each_segment(bv, bio, iter) {
565 		if (done + bv.bv_len > new_size) {
566 			unsigned offset;
567 
568 			if (!truncated)
569 				offset = new_size - done;
570 			else
571 				offset = 0;
572 			zero_user(bv.bv_page, bv.bv_offset + offset,
573 				  bv.bv_len - offset);
574 			truncated = true;
575 		}
576 		done += bv.bv_len;
577 	}
578 
579  exit:
580 	/*
581 	 * Don't touch bvec table here and make it really immutable, since
582 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
583 	 * in its .end_bio() callback.
584 	 *
585 	 * It is enough to truncate bio by updating .bi_size since we can make
586 	 * correct bvec with the updated .bi_size for drivers.
587 	 */
588 	bio->bi_iter.bi_size = new_size;
589 }
590 
591 /**
592  * guard_bio_eod - truncate a BIO to fit the block device
593  * @bio:	bio to truncate
594  *
595  * This allows us to do IO even on the odd last sectors of a device, even if the
596  * block size is some multiple of the physical sector size.
597  *
598  * We'll just truncate the bio to the size of the device, and clear the end of
599  * the buffer head manually.  Truly out-of-range accesses will turn into actual
600  * I/O errors, this only handles the "we need to be able to do I/O at the final
601  * sector" case.
602  */
603 void guard_bio_eod(struct bio *bio)
604 {
605 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
606 
607 	if (!maxsector)
608 		return;
609 
610 	/*
611 	 * If the *whole* IO is past the end of the device,
612 	 * let it through, and the IO layer will turn it into
613 	 * an EIO.
614 	 */
615 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
616 		return;
617 
618 	maxsector -= bio->bi_iter.bi_sector;
619 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
620 		return;
621 
622 	bio_truncate(bio, maxsector << 9);
623 }
624 
625 #define ALLOC_CACHE_MAX		512
626 #define ALLOC_CACHE_SLACK	 64
627 
628 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
629 				  unsigned int nr)
630 {
631 	unsigned int i = 0;
632 	struct bio *bio;
633 
634 	while ((bio = cache->free_list) != NULL) {
635 		cache->free_list = bio->bi_next;
636 		cache->nr--;
637 		bio_free(bio);
638 		if (++i == nr)
639 			break;
640 	}
641 }
642 
643 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
644 {
645 	struct bio_set *bs;
646 
647 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
648 	if (bs->cache) {
649 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
650 
651 		bio_alloc_cache_prune(cache, -1U);
652 	}
653 	return 0;
654 }
655 
656 static void bio_alloc_cache_destroy(struct bio_set *bs)
657 {
658 	int cpu;
659 
660 	if (!bs->cache)
661 		return;
662 
663 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
664 	for_each_possible_cpu(cpu) {
665 		struct bio_alloc_cache *cache;
666 
667 		cache = per_cpu_ptr(bs->cache, cpu);
668 		bio_alloc_cache_prune(cache, -1U);
669 	}
670 	free_percpu(bs->cache);
671 }
672 
673 /**
674  * bio_put - release a reference to a bio
675  * @bio:   bio to release reference to
676  *
677  * Description:
678  *   Put a reference to a &struct bio, either one you have gotten with
679  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
680  **/
681 void bio_put(struct bio *bio)
682 {
683 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
684 		BUG_ON(!atomic_read(&bio->__bi_cnt));
685 		if (!atomic_dec_and_test(&bio->__bi_cnt))
686 			return;
687 	}
688 
689 	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
690 		struct bio_alloc_cache *cache;
691 
692 		bio_uninit(bio);
693 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
694 		bio->bi_next = cache->free_list;
695 		cache->free_list = bio;
696 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
697 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
698 		put_cpu();
699 	} else {
700 		bio_free(bio);
701 	}
702 }
703 EXPORT_SYMBOL(bio_put);
704 
705 /**
706  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
707  * 	@bio: destination bio
708  * 	@bio_src: bio to clone
709  *
710  *	Clone a &bio. Caller will own the returned bio, but not
711  *	the actual data it points to. Reference count of returned
712  * 	bio will be one.
713  *
714  * 	Caller must ensure that @bio_src is not freed before @bio.
715  */
716 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
717 {
718 	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
719 
720 	/*
721 	 * most users will be overriding ->bi_bdev with a new target,
722 	 * so we don't set nor calculate new physical/hw segment counts here
723 	 */
724 	bio->bi_bdev = bio_src->bi_bdev;
725 	bio_set_flag(bio, BIO_CLONED);
726 	if (bio_flagged(bio_src, BIO_THROTTLED))
727 		bio_set_flag(bio, BIO_THROTTLED);
728 	if (bio_flagged(bio_src, BIO_REMAPPED))
729 		bio_set_flag(bio, BIO_REMAPPED);
730 	bio->bi_opf = bio_src->bi_opf;
731 	bio->bi_ioprio = bio_src->bi_ioprio;
732 	bio->bi_write_hint = bio_src->bi_write_hint;
733 	bio->bi_iter = bio_src->bi_iter;
734 	bio->bi_io_vec = bio_src->bi_io_vec;
735 
736 	bio_clone_blkg_association(bio, bio_src);
737 	blkcg_bio_issue_init(bio);
738 }
739 EXPORT_SYMBOL(__bio_clone_fast);
740 
741 /**
742  *	bio_clone_fast - clone a bio that shares the original bio's biovec
743  *	@bio: bio to clone
744  *	@gfp_mask: allocation priority
745  *	@bs: bio_set to allocate from
746  *
747  * 	Like __bio_clone_fast, only also allocates the returned bio
748  */
749 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
750 {
751 	struct bio *b;
752 
753 	b = bio_alloc_bioset(gfp_mask, 0, bs);
754 	if (!b)
755 		return NULL;
756 
757 	__bio_clone_fast(b, bio);
758 
759 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
760 		goto err_put;
761 
762 	if (bio_integrity(bio) &&
763 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
764 		goto err_put;
765 
766 	return b;
767 
768 err_put:
769 	bio_put(b);
770 	return NULL;
771 }
772 EXPORT_SYMBOL(bio_clone_fast);
773 
774 const char *bio_devname(struct bio *bio, char *buf)
775 {
776 	return bdevname(bio->bi_bdev, buf);
777 }
778 EXPORT_SYMBOL(bio_devname);
779 
780 /**
781  * bio_full - check if the bio is full
782  * @bio:	bio to check
783  * @len:	length of one segment to be added
784  *
785  * Return true if @bio is full and one segment with @len bytes can't be
786  * added to the bio, otherwise return false
787  */
788 static inline bool bio_full(struct bio *bio, unsigned len)
789 {
790 	if (bio->bi_vcnt >= bio->bi_max_vecs)
791 		return true;
792 	if (bio->bi_iter.bi_size > UINT_MAX - len)
793 		return true;
794 	return false;
795 }
796 
797 static inline bool page_is_mergeable(const struct bio_vec *bv,
798 		struct page *page, unsigned int len, unsigned int off,
799 		bool *same_page)
800 {
801 	size_t bv_end = bv->bv_offset + bv->bv_len;
802 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
803 	phys_addr_t page_addr = page_to_phys(page);
804 
805 	if (vec_end_addr + 1 != page_addr + off)
806 		return false;
807 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
808 		return false;
809 
810 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
811 	if (*same_page)
812 		return true;
813 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
814 }
815 
816 /**
817  * __bio_try_merge_page - try appending data to an existing bvec.
818  * @bio: destination bio
819  * @page: start page to add
820  * @len: length of the data to add
821  * @off: offset of the data relative to @page
822  * @same_page: return if the segment has been merged inside the same page
823  *
824  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
825  * useful optimisation for file systems with a block size smaller than the
826  * page size.
827  *
828  * Warn if (@len, @off) crosses pages in case that @same_page is true.
829  *
830  * Return %true on success or %false on failure.
831  */
832 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
833 		unsigned int len, unsigned int off, bool *same_page)
834 {
835 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
836 		return false;
837 
838 	if (bio->bi_vcnt > 0) {
839 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
840 
841 		if (page_is_mergeable(bv, page, len, off, same_page)) {
842 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
843 				*same_page = false;
844 				return false;
845 			}
846 			bv->bv_len += len;
847 			bio->bi_iter.bi_size += len;
848 			return true;
849 		}
850 	}
851 	return false;
852 }
853 
854 /*
855  * Try to merge a page into a segment, while obeying the hardware segment
856  * size limit.  This is not for normal read/write bios, but for passthrough
857  * or Zone Append operations that we can't split.
858  */
859 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
860 				 struct page *page, unsigned len,
861 				 unsigned offset, bool *same_page)
862 {
863 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
864 	unsigned long mask = queue_segment_boundary(q);
865 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
866 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
867 
868 	if ((addr1 | mask) != (addr2 | mask))
869 		return false;
870 	if (bv->bv_len + len > queue_max_segment_size(q))
871 		return false;
872 	return __bio_try_merge_page(bio, page, len, offset, same_page);
873 }
874 
875 /**
876  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
877  * @q: the target queue
878  * @bio: destination bio
879  * @page: page to add
880  * @len: vec entry length
881  * @offset: vec entry offset
882  * @max_sectors: maximum number of sectors that can be added
883  * @same_page: return if the segment has been merged inside the same page
884  *
885  * Add a page to a bio while respecting the hardware max_sectors, max_segment
886  * and gap limitations.
887  */
888 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
889 		struct page *page, unsigned int len, unsigned int offset,
890 		unsigned int max_sectors, bool *same_page)
891 {
892 	struct bio_vec *bvec;
893 
894 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
895 		return 0;
896 
897 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
898 		return 0;
899 
900 	if (bio->bi_vcnt > 0) {
901 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
902 			return len;
903 
904 		/*
905 		 * If the queue doesn't support SG gaps and adding this segment
906 		 * would create a gap, disallow it.
907 		 */
908 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
909 		if (bvec_gap_to_prev(q, bvec, offset))
910 			return 0;
911 	}
912 
913 	if (bio_full(bio, len))
914 		return 0;
915 
916 	if (bio->bi_vcnt >= queue_max_segments(q))
917 		return 0;
918 
919 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
920 	bvec->bv_page = page;
921 	bvec->bv_len = len;
922 	bvec->bv_offset = offset;
923 	bio->bi_vcnt++;
924 	bio->bi_iter.bi_size += len;
925 	return len;
926 }
927 
928 /**
929  * bio_add_pc_page	- attempt to add page to passthrough bio
930  * @q: the target queue
931  * @bio: destination bio
932  * @page: page to add
933  * @len: vec entry length
934  * @offset: vec entry offset
935  *
936  * Attempt to add a page to the bio_vec maplist. This can fail for a
937  * number of reasons, such as the bio being full or target block device
938  * limitations. The target block device must allow bio's up to PAGE_SIZE,
939  * so it is always possible to add a single page to an empty bio.
940  *
941  * This should only be used by passthrough bios.
942  */
943 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
944 		struct page *page, unsigned int len, unsigned int offset)
945 {
946 	bool same_page = false;
947 	return bio_add_hw_page(q, bio, page, len, offset,
948 			queue_max_hw_sectors(q), &same_page);
949 }
950 EXPORT_SYMBOL(bio_add_pc_page);
951 
952 /**
953  * bio_add_zone_append_page - attempt to add page to zone-append bio
954  * @bio: destination bio
955  * @page: page to add
956  * @len: vec entry length
957  * @offset: vec entry offset
958  *
959  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
960  * for a zone-append request. This can fail for a number of reasons, such as the
961  * bio being full or the target block device is not a zoned block device or
962  * other limitations of the target block device. The target block device must
963  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
964  * to an empty bio.
965  *
966  * Returns: number of bytes added to the bio, or 0 in case of a failure.
967  */
968 int bio_add_zone_append_page(struct bio *bio, struct page *page,
969 			     unsigned int len, unsigned int offset)
970 {
971 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
972 	bool same_page = false;
973 
974 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
975 		return 0;
976 
977 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
978 		return 0;
979 
980 	return bio_add_hw_page(q, bio, page, len, offset,
981 			       queue_max_zone_append_sectors(q), &same_page);
982 }
983 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
984 
985 /**
986  * __bio_add_page - add page(s) to a bio in a new segment
987  * @bio: destination bio
988  * @page: start page to add
989  * @len: length of the data to add, may cross pages
990  * @off: offset of the data relative to @page, may cross pages
991  *
992  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
993  * that @bio has space for another bvec.
994  */
995 void __bio_add_page(struct bio *bio, struct page *page,
996 		unsigned int len, unsigned int off)
997 {
998 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
999 
1000 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1001 	WARN_ON_ONCE(bio_full(bio, len));
1002 
1003 	bv->bv_page = page;
1004 	bv->bv_offset = off;
1005 	bv->bv_len = len;
1006 
1007 	bio->bi_iter.bi_size += len;
1008 	bio->bi_vcnt++;
1009 
1010 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1011 		bio_set_flag(bio, BIO_WORKINGSET);
1012 }
1013 EXPORT_SYMBOL_GPL(__bio_add_page);
1014 
1015 /**
1016  *	bio_add_page	-	attempt to add page(s) to bio
1017  *	@bio: destination bio
1018  *	@page: start page to add
1019  *	@len: vec entry length, may cross pages
1020  *	@offset: vec entry offset relative to @page, may cross pages
1021  *
1022  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1023  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1024  */
1025 int bio_add_page(struct bio *bio, struct page *page,
1026 		 unsigned int len, unsigned int offset)
1027 {
1028 	bool same_page = false;
1029 
1030 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1031 		if (bio_full(bio, len))
1032 			return 0;
1033 		__bio_add_page(bio, page, len, offset);
1034 	}
1035 	return len;
1036 }
1037 EXPORT_SYMBOL(bio_add_page);
1038 
1039 /**
1040  * bio_add_folio - Attempt to add part of a folio to a bio.
1041  * @bio: BIO to add to.
1042  * @folio: Folio to add.
1043  * @len: How many bytes from the folio to add.
1044  * @off: First byte in this folio to add.
1045  *
1046  * Filesystems that use folios can call this function instead of calling
1047  * bio_add_page() for each page in the folio.  If @off is bigger than
1048  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1049  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1050  *
1051  * Return: Whether the addition was successful.
1052  */
1053 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1054 		   size_t off)
1055 {
1056 	if (len > UINT_MAX || off > UINT_MAX)
1057 		return 0;
1058 	return bio_add_page(bio, &folio->page, len, off) > 0;
1059 }
1060 
1061 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1062 {
1063 	struct bvec_iter_all iter_all;
1064 	struct bio_vec *bvec;
1065 
1066 	bio_for_each_segment_all(bvec, bio, iter_all) {
1067 		if (mark_dirty && !PageCompound(bvec->bv_page))
1068 			set_page_dirty_lock(bvec->bv_page);
1069 		put_page(bvec->bv_page);
1070 	}
1071 }
1072 EXPORT_SYMBOL_GPL(__bio_release_pages);
1073 
1074 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1075 {
1076 	size_t size = iov_iter_count(iter);
1077 
1078 	WARN_ON_ONCE(bio->bi_max_vecs);
1079 
1080 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1081 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1082 		size_t max_sectors = queue_max_zone_append_sectors(q);
1083 
1084 		size = min(size, max_sectors << SECTOR_SHIFT);
1085 	}
1086 
1087 	bio->bi_vcnt = iter->nr_segs;
1088 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1089 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1090 	bio->bi_iter.bi_size = size;
1091 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1092 	bio_set_flag(bio, BIO_CLONED);
1093 }
1094 
1095 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1096 {
1097 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1098 
1099 	for (i = 0; i < nr; i++)
1100 		put_page(pages[i]);
1101 }
1102 
1103 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1104 
1105 /**
1106  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1107  * @bio: bio to add pages to
1108  * @iter: iov iterator describing the region to be mapped
1109  *
1110  * Pins pages from *iter and appends them to @bio's bvec array. The
1111  * pages will have to be released using put_page() when done.
1112  * For multi-segment *iter, this function only adds pages from the
1113  * next non-empty segment of the iov iterator.
1114  */
1115 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1116 {
1117 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1118 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1119 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1120 	struct page **pages = (struct page **)bv;
1121 	bool same_page = false;
1122 	ssize_t size, left;
1123 	unsigned len, i;
1124 	size_t offset;
1125 
1126 	/*
1127 	 * Move page array up in the allocated memory for the bio vecs as far as
1128 	 * possible so that we can start filling biovecs from the beginning
1129 	 * without overwriting the temporary page array.
1130 	*/
1131 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1132 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1133 
1134 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1135 	if (unlikely(size <= 0))
1136 		return size ? size : -EFAULT;
1137 
1138 	for (left = size, i = 0; left > 0; left -= len, i++) {
1139 		struct page *page = pages[i];
1140 
1141 		len = min_t(size_t, PAGE_SIZE - offset, left);
1142 
1143 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1144 			if (same_page)
1145 				put_page(page);
1146 		} else {
1147 			if (WARN_ON_ONCE(bio_full(bio, len))) {
1148 				bio_put_pages(pages + i, left, offset);
1149 				return -EINVAL;
1150 			}
1151 			__bio_add_page(bio, page, len, offset);
1152 		}
1153 		offset = 0;
1154 	}
1155 
1156 	iov_iter_advance(iter, size);
1157 	return 0;
1158 }
1159 
1160 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1161 {
1162 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1163 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1164 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1165 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1166 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1167 	struct page **pages = (struct page **)bv;
1168 	ssize_t size, left;
1169 	unsigned len, i;
1170 	size_t offset;
1171 	int ret = 0;
1172 
1173 	if (WARN_ON_ONCE(!max_append_sectors))
1174 		return 0;
1175 
1176 	/*
1177 	 * Move page array up in the allocated memory for the bio vecs as far as
1178 	 * possible so that we can start filling biovecs from the beginning
1179 	 * without overwriting the temporary page array.
1180 	 */
1181 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1182 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1183 
1184 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1185 	if (unlikely(size <= 0))
1186 		return size ? size : -EFAULT;
1187 
1188 	for (left = size, i = 0; left > 0; left -= len, i++) {
1189 		struct page *page = pages[i];
1190 		bool same_page = false;
1191 
1192 		len = min_t(size_t, PAGE_SIZE - offset, left);
1193 		if (bio_add_hw_page(q, bio, page, len, offset,
1194 				max_append_sectors, &same_page) != len) {
1195 			bio_put_pages(pages + i, left, offset);
1196 			ret = -EINVAL;
1197 			break;
1198 		}
1199 		if (same_page)
1200 			put_page(page);
1201 		offset = 0;
1202 	}
1203 
1204 	iov_iter_advance(iter, size - left);
1205 	return ret;
1206 }
1207 
1208 /**
1209  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1210  * @bio: bio to add pages to
1211  * @iter: iov iterator describing the region to be added
1212  *
1213  * This takes either an iterator pointing to user memory, or one pointing to
1214  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1215  * map them into the kernel. On IO completion, the caller should put those
1216  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1217  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1218  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1219  * completed by a call to ->ki_complete() or returns with an error other than
1220  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1221  * on IO completion. If it isn't, then pages should be released.
1222  *
1223  * The function tries, but does not guarantee, to pin as many pages as
1224  * fit into the bio, or are requested in @iter, whatever is smaller. If
1225  * MM encounters an error pinning the requested pages, it stops. Error
1226  * is returned only if 0 pages could be pinned.
1227  *
1228  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1229  * responsible for setting BIO_WORKINGSET if necessary.
1230  */
1231 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1232 {
1233 	int ret = 0;
1234 
1235 	if (iov_iter_is_bvec(iter)) {
1236 		bio_iov_bvec_set(bio, iter);
1237 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1238 		return 0;
1239 	}
1240 
1241 	do {
1242 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1243 			ret = __bio_iov_append_get_pages(bio, iter);
1244 		else
1245 			ret = __bio_iov_iter_get_pages(bio, iter);
1246 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1247 
1248 	/* don't account direct I/O as memory stall */
1249 	bio_clear_flag(bio, BIO_WORKINGSET);
1250 	return bio->bi_vcnt ? 0 : ret;
1251 }
1252 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1253 
1254 static void submit_bio_wait_endio(struct bio *bio)
1255 {
1256 	complete(bio->bi_private);
1257 }
1258 
1259 /**
1260  * submit_bio_wait - submit a bio, and wait until it completes
1261  * @bio: The &struct bio which describes the I/O
1262  *
1263  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1264  * bio_endio() on failure.
1265  *
1266  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1267  * result in bio reference to be consumed. The caller must drop the reference
1268  * on his own.
1269  */
1270 int submit_bio_wait(struct bio *bio)
1271 {
1272 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1273 			bio->bi_bdev->bd_disk->lockdep_map);
1274 	unsigned long hang_check;
1275 
1276 	bio->bi_private = &done;
1277 	bio->bi_end_io = submit_bio_wait_endio;
1278 	bio->bi_opf |= REQ_SYNC;
1279 	submit_bio(bio);
1280 
1281 	/* Prevent hang_check timer from firing at us during very long I/O */
1282 	hang_check = sysctl_hung_task_timeout_secs;
1283 	if (hang_check)
1284 		while (!wait_for_completion_io_timeout(&done,
1285 					hang_check * (HZ/2)))
1286 			;
1287 	else
1288 		wait_for_completion_io(&done);
1289 
1290 	return blk_status_to_errno(bio->bi_status);
1291 }
1292 EXPORT_SYMBOL(submit_bio_wait);
1293 
1294 void __bio_advance(struct bio *bio, unsigned bytes)
1295 {
1296 	if (bio_integrity(bio))
1297 		bio_integrity_advance(bio, bytes);
1298 
1299 	bio_crypt_advance(bio, bytes);
1300 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1301 }
1302 EXPORT_SYMBOL(__bio_advance);
1303 
1304 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1305 			struct bio *src, struct bvec_iter *src_iter)
1306 {
1307 	while (src_iter->bi_size && dst_iter->bi_size) {
1308 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1309 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1310 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1311 		void *src_buf;
1312 
1313 		src_buf = bvec_kmap_local(&src_bv);
1314 		memcpy_to_bvec(&dst_bv, src_buf);
1315 		kunmap_local(src_buf);
1316 
1317 		bio_advance_iter_single(src, src_iter, bytes);
1318 		bio_advance_iter_single(dst, dst_iter, bytes);
1319 	}
1320 }
1321 EXPORT_SYMBOL(bio_copy_data_iter);
1322 
1323 /**
1324  * bio_copy_data - copy contents of data buffers from one bio to another
1325  * @src: source bio
1326  * @dst: destination bio
1327  *
1328  * Stops when it reaches the end of either @src or @dst - that is, copies
1329  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1330  */
1331 void bio_copy_data(struct bio *dst, struct bio *src)
1332 {
1333 	struct bvec_iter src_iter = src->bi_iter;
1334 	struct bvec_iter dst_iter = dst->bi_iter;
1335 
1336 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1337 }
1338 EXPORT_SYMBOL(bio_copy_data);
1339 
1340 void bio_free_pages(struct bio *bio)
1341 {
1342 	struct bio_vec *bvec;
1343 	struct bvec_iter_all iter_all;
1344 
1345 	bio_for_each_segment_all(bvec, bio, iter_all)
1346 		__free_page(bvec->bv_page);
1347 }
1348 EXPORT_SYMBOL(bio_free_pages);
1349 
1350 /*
1351  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1352  * for performing direct-IO in BIOs.
1353  *
1354  * The problem is that we cannot run set_page_dirty() from interrupt context
1355  * because the required locks are not interrupt-safe.  So what we can do is to
1356  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1357  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1358  * in process context.
1359  *
1360  * We special-case compound pages here: normally this means reads into hugetlb
1361  * pages.  The logic in here doesn't really work right for compound pages
1362  * because the VM does not uniformly chase down the head page in all cases.
1363  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1364  * handle them at all.  So we skip compound pages here at an early stage.
1365  *
1366  * Note that this code is very hard to test under normal circumstances because
1367  * direct-io pins the pages with get_user_pages().  This makes
1368  * is_page_cache_freeable return false, and the VM will not clean the pages.
1369  * But other code (eg, flusher threads) could clean the pages if they are mapped
1370  * pagecache.
1371  *
1372  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1373  * deferred bio dirtying paths.
1374  */
1375 
1376 /*
1377  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1378  */
1379 void bio_set_pages_dirty(struct bio *bio)
1380 {
1381 	struct bio_vec *bvec;
1382 	struct bvec_iter_all iter_all;
1383 
1384 	bio_for_each_segment_all(bvec, bio, iter_all) {
1385 		if (!PageCompound(bvec->bv_page))
1386 			set_page_dirty_lock(bvec->bv_page);
1387 	}
1388 }
1389 
1390 /*
1391  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1392  * If they are, then fine.  If, however, some pages are clean then they must
1393  * have been written out during the direct-IO read.  So we take another ref on
1394  * the BIO and re-dirty the pages in process context.
1395  *
1396  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1397  * here on.  It will run one put_page() against each page and will run one
1398  * bio_put() against the BIO.
1399  */
1400 
1401 static void bio_dirty_fn(struct work_struct *work);
1402 
1403 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1404 static DEFINE_SPINLOCK(bio_dirty_lock);
1405 static struct bio *bio_dirty_list;
1406 
1407 /*
1408  * This runs in process context
1409  */
1410 static void bio_dirty_fn(struct work_struct *work)
1411 {
1412 	struct bio *bio, *next;
1413 
1414 	spin_lock_irq(&bio_dirty_lock);
1415 	next = bio_dirty_list;
1416 	bio_dirty_list = NULL;
1417 	spin_unlock_irq(&bio_dirty_lock);
1418 
1419 	while ((bio = next) != NULL) {
1420 		next = bio->bi_private;
1421 
1422 		bio_release_pages(bio, true);
1423 		bio_put(bio);
1424 	}
1425 }
1426 
1427 void bio_check_pages_dirty(struct bio *bio)
1428 {
1429 	struct bio_vec *bvec;
1430 	unsigned long flags;
1431 	struct bvec_iter_all iter_all;
1432 
1433 	bio_for_each_segment_all(bvec, bio, iter_all) {
1434 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1435 			goto defer;
1436 	}
1437 
1438 	bio_release_pages(bio, false);
1439 	bio_put(bio);
1440 	return;
1441 defer:
1442 	spin_lock_irqsave(&bio_dirty_lock, flags);
1443 	bio->bi_private = bio_dirty_list;
1444 	bio_dirty_list = bio;
1445 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1446 	schedule_work(&bio_dirty_work);
1447 }
1448 
1449 static inline bool bio_remaining_done(struct bio *bio)
1450 {
1451 	/*
1452 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1453 	 * we always end io on the first invocation.
1454 	 */
1455 	if (!bio_flagged(bio, BIO_CHAIN))
1456 		return true;
1457 
1458 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1459 
1460 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1461 		bio_clear_flag(bio, BIO_CHAIN);
1462 		return true;
1463 	}
1464 
1465 	return false;
1466 }
1467 
1468 /**
1469  * bio_endio - end I/O on a bio
1470  * @bio:	bio
1471  *
1472  * Description:
1473  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1474  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1475  *   bio unless they own it and thus know that it has an end_io function.
1476  *
1477  *   bio_endio() can be called several times on a bio that has been chained
1478  *   using bio_chain().  The ->bi_end_io() function will only be called the
1479  *   last time.
1480  **/
1481 void bio_endio(struct bio *bio)
1482 {
1483 again:
1484 	if (!bio_remaining_done(bio))
1485 		return;
1486 	if (!bio_integrity_endio(bio))
1487 		return;
1488 
1489 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1490 		rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
1491 
1492 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1493 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1494 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1495 	}
1496 
1497 	/*
1498 	 * Need to have a real endio function for chained bios, otherwise
1499 	 * various corner cases will break (like stacking block devices that
1500 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1501 	 * recursion and blowing the stack. Tail call optimization would
1502 	 * handle this, but compiling with frame pointers also disables
1503 	 * gcc's sibling call optimization.
1504 	 */
1505 	if (bio->bi_end_io == bio_chain_endio) {
1506 		bio = __bio_chain_endio(bio);
1507 		goto again;
1508 	}
1509 
1510 	blk_throtl_bio_endio(bio);
1511 	/* release cgroup info */
1512 	bio_uninit(bio);
1513 	if (bio->bi_end_io)
1514 		bio->bi_end_io(bio);
1515 }
1516 EXPORT_SYMBOL(bio_endio);
1517 
1518 /**
1519  * bio_split - split a bio
1520  * @bio:	bio to split
1521  * @sectors:	number of sectors to split from the front of @bio
1522  * @gfp:	gfp mask
1523  * @bs:		bio set to allocate from
1524  *
1525  * Allocates and returns a new bio which represents @sectors from the start of
1526  * @bio, and updates @bio to represent the remaining sectors.
1527  *
1528  * Unless this is a discard request the newly allocated bio will point
1529  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1530  * neither @bio nor @bs are freed before the split bio.
1531  */
1532 struct bio *bio_split(struct bio *bio, int sectors,
1533 		      gfp_t gfp, struct bio_set *bs)
1534 {
1535 	struct bio *split;
1536 
1537 	BUG_ON(sectors <= 0);
1538 	BUG_ON(sectors >= bio_sectors(bio));
1539 
1540 	/* Zone append commands cannot be split */
1541 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1542 		return NULL;
1543 
1544 	split = bio_clone_fast(bio, gfp, bs);
1545 	if (!split)
1546 		return NULL;
1547 
1548 	split->bi_iter.bi_size = sectors << 9;
1549 
1550 	if (bio_integrity(split))
1551 		bio_integrity_trim(split);
1552 
1553 	bio_advance(bio, split->bi_iter.bi_size);
1554 
1555 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1556 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1557 
1558 	return split;
1559 }
1560 EXPORT_SYMBOL(bio_split);
1561 
1562 /**
1563  * bio_trim - trim a bio
1564  * @bio:	bio to trim
1565  * @offset:	number of sectors to trim from the front of @bio
1566  * @size:	size we want to trim @bio to, in sectors
1567  *
1568  * This function is typically used for bios that are cloned and submitted
1569  * to the underlying device in parts.
1570  */
1571 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1572 {
1573 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1574 			 offset + size > bio->bi_iter.bi_size))
1575 		return;
1576 
1577 	size <<= 9;
1578 	if (offset == 0 && size == bio->bi_iter.bi_size)
1579 		return;
1580 
1581 	bio_advance(bio, offset << 9);
1582 	bio->bi_iter.bi_size = size;
1583 
1584 	if (bio_integrity(bio))
1585 		bio_integrity_trim(bio);
1586 }
1587 EXPORT_SYMBOL_GPL(bio_trim);
1588 
1589 /*
1590  * create memory pools for biovec's in a bio_set.
1591  * use the global biovec slabs created for general use.
1592  */
1593 int biovec_init_pool(mempool_t *pool, int pool_entries)
1594 {
1595 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1596 
1597 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1598 }
1599 
1600 /*
1601  * bioset_exit - exit a bioset initialized with bioset_init()
1602  *
1603  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1604  * kzalloc()).
1605  */
1606 void bioset_exit(struct bio_set *bs)
1607 {
1608 	bio_alloc_cache_destroy(bs);
1609 	if (bs->rescue_workqueue)
1610 		destroy_workqueue(bs->rescue_workqueue);
1611 	bs->rescue_workqueue = NULL;
1612 
1613 	mempool_exit(&bs->bio_pool);
1614 	mempool_exit(&bs->bvec_pool);
1615 
1616 	bioset_integrity_free(bs);
1617 	if (bs->bio_slab)
1618 		bio_put_slab(bs);
1619 	bs->bio_slab = NULL;
1620 }
1621 EXPORT_SYMBOL(bioset_exit);
1622 
1623 /**
1624  * bioset_init - Initialize a bio_set
1625  * @bs:		pool to initialize
1626  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1627  * @front_pad:	Number of bytes to allocate in front of the returned bio
1628  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1629  *              and %BIOSET_NEED_RESCUER
1630  *
1631  * Description:
1632  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1633  *    to ask for a number of bytes to be allocated in front of the bio.
1634  *    Front pad allocation is useful for embedding the bio inside
1635  *    another structure, to avoid allocating extra data to go with the bio.
1636  *    Note that the bio must be embedded at the END of that structure always,
1637  *    or things will break badly.
1638  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1639  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1640  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1641  *    dispatch queued requests when the mempool runs out of space.
1642  *
1643  */
1644 int bioset_init(struct bio_set *bs,
1645 		unsigned int pool_size,
1646 		unsigned int front_pad,
1647 		int flags)
1648 {
1649 	bs->front_pad = front_pad;
1650 	if (flags & BIOSET_NEED_BVECS)
1651 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1652 	else
1653 		bs->back_pad = 0;
1654 
1655 	spin_lock_init(&bs->rescue_lock);
1656 	bio_list_init(&bs->rescue_list);
1657 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1658 
1659 	bs->bio_slab = bio_find_or_create_slab(bs);
1660 	if (!bs->bio_slab)
1661 		return -ENOMEM;
1662 
1663 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1664 		goto bad;
1665 
1666 	if ((flags & BIOSET_NEED_BVECS) &&
1667 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1668 		goto bad;
1669 
1670 	if (flags & BIOSET_NEED_RESCUER) {
1671 		bs->rescue_workqueue = alloc_workqueue("bioset",
1672 							WQ_MEM_RECLAIM, 0);
1673 		if (!bs->rescue_workqueue)
1674 			goto bad;
1675 	}
1676 	if (flags & BIOSET_PERCPU_CACHE) {
1677 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1678 		if (!bs->cache)
1679 			goto bad;
1680 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1681 	}
1682 
1683 	return 0;
1684 bad:
1685 	bioset_exit(bs);
1686 	return -ENOMEM;
1687 }
1688 EXPORT_SYMBOL(bioset_init);
1689 
1690 /*
1691  * Initialize and setup a new bio_set, based on the settings from
1692  * another bio_set.
1693  */
1694 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1695 {
1696 	int flags;
1697 
1698 	flags = 0;
1699 	if (src->bvec_pool.min_nr)
1700 		flags |= BIOSET_NEED_BVECS;
1701 	if (src->rescue_workqueue)
1702 		flags |= BIOSET_NEED_RESCUER;
1703 
1704 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1705 }
1706 EXPORT_SYMBOL(bioset_init_from_src);
1707 
1708 /**
1709  * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1710  * @kiocb:	kiocb describing the IO
1711  * @nr_vecs:	number of iovecs to pre-allocate
1712  * @bs:		bio_set to allocate from
1713  *
1714  * Description:
1715  *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1716  *    used to check if we should dip into the per-cpu bio_set allocation
1717  *    cache. The allocation uses GFP_KERNEL internally. On return, the
1718  *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1719  *    MUST be done from process context, not hard/soft IRQ.
1720  *
1721  */
1722 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1723 			    struct bio_set *bs)
1724 {
1725 	struct bio_alloc_cache *cache;
1726 	struct bio *bio;
1727 
1728 	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1729 		return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1730 
1731 	cache = per_cpu_ptr(bs->cache, get_cpu());
1732 	if (cache->free_list) {
1733 		bio = cache->free_list;
1734 		cache->free_list = bio->bi_next;
1735 		cache->nr--;
1736 		put_cpu();
1737 		bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1738 		bio->bi_pool = bs;
1739 		bio_set_flag(bio, BIO_PERCPU_CACHE);
1740 		return bio;
1741 	}
1742 	put_cpu();
1743 	bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1744 	bio_set_flag(bio, BIO_PERCPU_CACHE);
1745 	return bio;
1746 }
1747 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1748 
1749 static int __init init_bio(void)
1750 {
1751 	int i;
1752 
1753 	bio_integrity_init();
1754 
1755 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1756 		struct biovec_slab *bvs = bvec_slabs + i;
1757 
1758 		bvs->slab = kmem_cache_create(bvs->name,
1759 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1760 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1761 	}
1762 
1763 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1764 					bio_cpu_dead);
1765 
1766 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1767 		panic("bio: can't allocate bios\n");
1768 
1769 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1770 		panic("bio: can't create integrity pool\n");
1771 
1772 	return 0;
1773 }
1774 subsys_initcall(init_bio);
1775