xref: /linux/block/bio.c (revision baaa68a9796ef2cadfe5caaf4c730412eda0f31c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/blk-crypto.h>
21 #include <linux/xarray.h>
22 
23 #include <trace/events/block.h>
24 #include "blk.h"
25 #include "blk-rq-qos.h"
26 #include "blk-cgroup.h"
27 
28 struct bio_alloc_cache {
29 	struct bio		*free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN,
91 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
92 	if (!bslab->slab)
93 		goto fail_alloc_slab;
94 
95 	bslab->slab_ref = 1;
96 	bslab->slab_size = size;
97 
98 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 		return bslab;
100 
101 	kmem_cache_destroy(bslab->slab);
102 
103 fail_alloc_slab:
104 	kfree(bslab);
105 	return NULL;
106 }
107 
108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109 {
110 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
111 }
112 
113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114 {
115 	unsigned int size = bs_bio_slab_size(bs);
116 	struct bio_slab *bslab;
117 
118 	mutex_lock(&bio_slab_lock);
119 	bslab = xa_load(&bio_slabs, size);
120 	if (bslab)
121 		bslab->slab_ref++;
122 	else
123 		bslab = create_bio_slab(size);
124 	mutex_unlock(&bio_slab_lock);
125 
126 	if (bslab)
127 		return bslab->slab;
128 	return NULL;
129 }
130 
131 static void bio_put_slab(struct bio_set *bs)
132 {
133 	struct bio_slab *bslab = NULL;
134 	unsigned int slab_size = bs_bio_slab_size(bs);
135 
136 	mutex_lock(&bio_slab_lock);
137 
138 	bslab = xa_load(&bio_slabs, slab_size);
139 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 		goto out;
141 
142 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	xa_erase(&bio_slabs, slab_size);
150 
151 	kmem_cache_destroy(bslab->slab);
152 	kfree(bslab);
153 
154 out:
155 	mutex_unlock(&bio_slab_lock);
156 }
157 
158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
159 {
160 	BUG_ON(nr_vecs > BIO_MAX_VECS);
161 
162 	if (nr_vecs == BIO_MAX_VECS)
163 		mempool_free(bv, pool);
164 	else if (nr_vecs > BIO_INLINE_VECS)
165 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
166 }
167 
168 /*
169  * Make the first allocation restricted and don't dump info on allocation
170  * failures, since we'll fall back to the mempool in case of failure.
171  */
172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173 {
174 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
176 }
177 
178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 		gfp_t gfp_mask)
180 {
181 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
182 
183 	if (WARN_ON_ONCE(!bvs))
184 		return NULL;
185 
186 	/*
187 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 	 * We also rely on this in the bvec_free path.
189 	 */
190 	*nr_vecs = bvs->nr_vecs;
191 
192 	/*
193 	 * Try a slab allocation first for all smaller allocations.  If that
194 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
195 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
196 	 */
197 	if (*nr_vecs < BIO_MAX_VECS) {
198 		struct bio_vec *bvl;
199 
200 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
201 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
202 			return bvl;
203 		*nr_vecs = BIO_MAX_VECS;
204 	}
205 
206 	return mempool_alloc(pool, gfp_mask);
207 }
208 
209 void bio_uninit(struct bio *bio)
210 {
211 #ifdef CONFIG_BLK_CGROUP
212 	if (bio->bi_blkg) {
213 		blkg_put(bio->bi_blkg);
214 		bio->bi_blkg = NULL;
215 	}
216 #endif
217 	if (bio_integrity(bio))
218 		bio_integrity_free(bio);
219 
220 	bio_crypt_free_ctx(bio);
221 }
222 EXPORT_SYMBOL(bio_uninit);
223 
224 static void bio_free(struct bio *bio)
225 {
226 	struct bio_set *bs = bio->bi_pool;
227 	void *p;
228 
229 	bio_uninit(bio);
230 
231 	if (bs) {
232 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
233 
234 		/*
235 		 * If we have front padding, adjust the bio pointer before freeing
236 		 */
237 		p = bio;
238 		p -= bs->front_pad;
239 
240 		mempool_free(p, &bs->bio_pool);
241 	} else {
242 		/* Bio was allocated by bio_kmalloc() */
243 		kfree(bio);
244 	}
245 }
246 
247 /*
248  * Users of this function have their own bio allocation. Subsequently,
249  * they must remember to pair any call to bio_init() with bio_uninit()
250  * when IO has completed, or when the bio is released.
251  */
252 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
253 	      unsigned short max_vecs, unsigned int opf)
254 {
255 	bio->bi_next = NULL;
256 	bio->bi_bdev = bdev;
257 	bio->bi_opf = opf;
258 	bio->bi_flags = 0;
259 	bio->bi_ioprio = 0;
260 	bio->bi_write_hint = 0;
261 	bio->bi_status = 0;
262 	bio->bi_iter.bi_sector = 0;
263 	bio->bi_iter.bi_size = 0;
264 	bio->bi_iter.bi_idx = 0;
265 	bio->bi_iter.bi_bvec_done = 0;
266 	bio->bi_end_io = NULL;
267 	bio->bi_private = NULL;
268 #ifdef CONFIG_BLK_CGROUP
269 	bio->bi_blkg = NULL;
270 	bio->bi_issue.value = 0;
271 	if (bdev)
272 		bio_associate_blkg(bio);
273 #ifdef CONFIG_BLK_CGROUP_IOCOST
274 	bio->bi_iocost_cost = 0;
275 #endif
276 #endif
277 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
278 	bio->bi_crypt_context = NULL;
279 #endif
280 #ifdef CONFIG_BLK_DEV_INTEGRITY
281 	bio->bi_integrity = NULL;
282 #endif
283 	bio->bi_vcnt = 0;
284 
285 	atomic_set(&bio->__bi_remaining, 1);
286 	atomic_set(&bio->__bi_cnt, 1);
287 	bio->bi_cookie = BLK_QC_T_NONE;
288 
289 	bio->bi_max_vecs = max_vecs;
290 	bio->bi_io_vec = table;
291 	bio->bi_pool = NULL;
292 }
293 EXPORT_SYMBOL(bio_init);
294 
295 /**
296  * bio_reset - reinitialize a bio
297  * @bio:	bio to reset
298  * @bdev:	block device to use the bio for
299  * @opf:	operation and flags for bio
300  *
301  * Description:
302  *   After calling bio_reset(), @bio will be in the same state as a freshly
303  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
304  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
305  *   comment in struct bio.
306  */
307 void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf)
308 {
309 	bio_uninit(bio);
310 	memset(bio, 0, BIO_RESET_BYTES);
311 	atomic_set(&bio->__bi_remaining, 1);
312 	bio->bi_bdev = bdev;
313 	if (bio->bi_bdev)
314 		bio_associate_blkg(bio);
315 	bio->bi_opf = opf;
316 }
317 EXPORT_SYMBOL(bio_reset);
318 
319 static struct bio *__bio_chain_endio(struct bio *bio)
320 {
321 	struct bio *parent = bio->bi_private;
322 
323 	if (bio->bi_status && !parent->bi_status)
324 		parent->bi_status = bio->bi_status;
325 	bio_put(bio);
326 	return parent;
327 }
328 
329 static void bio_chain_endio(struct bio *bio)
330 {
331 	bio_endio(__bio_chain_endio(bio));
332 }
333 
334 /**
335  * bio_chain - chain bio completions
336  * @bio: the target bio
337  * @parent: the parent bio of @bio
338  *
339  * The caller won't have a bi_end_io called when @bio completes - instead,
340  * @parent's bi_end_io won't be called until both @parent and @bio have
341  * completed; the chained bio will also be freed when it completes.
342  *
343  * The caller must not set bi_private or bi_end_io in @bio.
344  */
345 void bio_chain(struct bio *bio, struct bio *parent)
346 {
347 	BUG_ON(bio->bi_private || bio->bi_end_io);
348 
349 	bio->bi_private = parent;
350 	bio->bi_end_io	= bio_chain_endio;
351 	bio_inc_remaining(parent);
352 }
353 EXPORT_SYMBOL(bio_chain);
354 
355 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
356 		unsigned int nr_pages, unsigned int opf, gfp_t gfp)
357 {
358 	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
359 
360 	if (bio) {
361 		bio_chain(bio, new);
362 		submit_bio(bio);
363 	}
364 
365 	return new;
366 }
367 EXPORT_SYMBOL_GPL(blk_next_bio);
368 
369 static void bio_alloc_rescue(struct work_struct *work)
370 {
371 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
372 	struct bio *bio;
373 
374 	while (1) {
375 		spin_lock(&bs->rescue_lock);
376 		bio = bio_list_pop(&bs->rescue_list);
377 		spin_unlock(&bs->rescue_lock);
378 
379 		if (!bio)
380 			break;
381 
382 		submit_bio_noacct(bio);
383 	}
384 }
385 
386 static void punt_bios_to_rescuer(struct bio_set *bs)
387 {
388 	struct bio_list punt, nopunt;
389 	struct bio *bio;
390 
391 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
392 		return;
393 	/*
394 	 * In order to guarantee forward progress we must punt only bios that
395 	 * were allocated from this bio_set; otherwise, if there was a bio on
396 	 * there for a stacking driver higher up in the stack, processing it
397 	 * could require allocating bios from this bio_set, and doing that from
398 	 * our own rescuer would be bad.
399 	 *
400 	 * Since bio lists are singly linked, pop them all instead of trying to
401 	 * remove from the middle of the list:
402 	 */
403 
404 	bio_list_init(&punt);
405 	bio_list_init(&nopunt);
406 
407 	while ((bio = bio_list_pop(&current->bio_list[0])))
408 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
409 	current->bio_list[0] = nopunt;
410 
411 	bio_list_init(&nopunt);
412 	while ((bio = bio_list_pop(&current->bio_list[1])))
413 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
414 	current->bio_list[1] = nopunt;
415 
416 	spin_lock(&bs->rescue_lock);
417 	bio_list_merge(&bs->rescue_list, &punt);
418 	spin_unlock(&bs->rescue_lock);
419 
420 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
421 }
422 
423 /**
424  * bio_alloc_bioset - allocate a bio for I/O
425  * @bdev:	block device to allocate the bio for (can be %NULL)
426  * @nr_vecs:	number of bvecs to pre-allocate
427  * @opf:	operation and flags for bio
428  * @gfp_mask:   the GFP_* mask given to the slab allocator
429  * @bs:		the bio_set to allocate from.
430  *
431  * Allocate a bio from the mempools in @bs.
432  *
433  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
434  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
435  * callers must never allocate more than 1 bio at a time from the general pool.
436  * Callers that need to allocate more than 1 bio must always submit the
437  * previously allocated bio for IO before attempting to allocate a new one.
438  * Failure to do so can cause deadlocks under memory pressure.
439  *
440  * Note that when running under submit_bio_noacct() (i.e. any block driver),
441  * bios are not submitted until after you return - see the code in
442  * submit_bio_noacct() that converts recursion into iteration, to prevent
443  * stack overflows.
444  *
445  * This would normally mean allocating multiple bios under submit_bio_noacct()
446  * would be susceptible to deadlocks, but we have
447  * deadlock avoidance code that resubmits any blocked bios from a rescuer
448  * thread.
449  *
450  * However, we do not guarantee forward progress for allocations from other
451  * mempools. Doing multiple allocations from the same mempool under
452  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
453  * for per bio allocations.
454  *
455  * Returns: Pointer to new bio on success, NULL on failure.
456  */
457 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
458 			     unsigned int opf, gfp_t gfp_mask,
459 			     struct bio_set *bs)
460 {
461 	gfp_t saved_gfp = gfp_mask;
462 	struct bio *bio;
463 	void *p;
464 
465 	/* should not use nobvec bioset for nr_vecs > 0 */
466 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
467 		return NULL;
468 
469 	/*
470 	 * submit_bio_noacct() converts recursion to iteration; this means if
471 	 * we're running beneath it, any bios we allocate and submit will not be
472 	 * submitted (and thus freed) until after we return.
473 	 *
474 	 * This exposes us to a potential deadlock if we allocate multiple bios
475 	 * from the same bio_set() while running underneath submit_bio_noacct().
476 	 * If we were to allocate multiple bios (say a stacking block driver
477 	 * that was splitting bios), we would deadlock if we exhausted the
478 	 * mempool's reserve.
479 	 *
480 	 * We solve this, and guarantee forward progress, with a rescuer
481 	 * workqueue per bio_set. If we go to allocate and there are bios on
482 	 * current->bio_list, we first try the allocation without
483 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
484 	 * blocking to the rescuer workqueue before we retry with the original
485 	 * gfp_flags.
486 	 */
487 	if (current->bio_list &&
488 	    (!bio_list_empty(&current->bio_list[0]) ||
489 	     !bio_list_empty(&current->bio_list[1])) &&
490 	    bs->rescue_workqueue)
491 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
492 
493 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
494 	if (!p && gfp_mask != saved_gfp) {
495 		punt_bios_to_rescuer(bs);
496 		gfp_mask = saved_gfp;
497 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
498 	}
499 	if (unlikely(!p))
500 		return NULL;
501 
502 	bio = p + bs->front_pad;
503 	if (nr_vecs > BIO_INLINE_VECS) {
504 		struct bio_vec *bvl = NULL;
505 
506 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
507 		if (!bvl && gfp_mask != saved_gfp) {
508 			punt_bios_to_rescuer(bs);
509 			gfp_mask = saved_gfp;
510 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
511 		}
512 		if (unlikely(!bvl))
513 			goto err_free;
514 
515 		bio_init(bio, bdev, bvl, nr_vecs, opf);
516 	} else if (nr_vecs) {
517 		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
518 	} else {
519 		bio_init(bio, bdev, NULL, 0, opf);
520 	}
521 
522 	bio->bi_pool = bs;
523 	return bio;
524 
525 err_free:
526 	mempool_free(p, &bs->bio_pool);
527 	return NULL;
528 }
529 EXPORT_SYMBOL(bio_alloc_bioset);
530 
531 /**
532  * bio_kmalloc - kmalloc a bio for I/O
533  * @gfp_mask:   the GFP_* mask given to the slab allocator
534  * @nr_iovecs:	number of iovecs to pre-allocate
535  *
536  * Use kmalloc to allocate and initialize a bio.
537  *
538  * Returns: Pointer to new bio on success, NULL on failure.
539  */
540 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
541 {
542 	struct bio *bio;
543 
544 	if (nr_iovecs > UIO_MAXIOV)
545 		return NULL;
546 
547 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
548 	if (unlikely(!bio))
549 		return NULL;
550 	bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs,
551 		 0);
552 	bio->bi_pool = NULL;
553 	return bio;
554 }
555 EXPORT_SYMBOL(bio_kmalloc);
556 
557 void zero_fill_bio(struct bio *bio)
558 {
559 	struct bio_vec bv;
560 	struct bvec_iter iter;
561 
562 	bio_for_each_segment(bv, bio, iter)
563 		memzero_bvec(&bv);
564 }
565 EXPORT_SYMBOL(zero_fill_bio);
566 
567 /**
568  * bio_truncate - truncate the bio to small size of @new_size
569  * @bio:	the bio to be truncated
570  * @new_size:	new size for truncating the bio
571  *
572  * Description:
573  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
574  *   REQ_OP_READ, zero the truncated part. This function should only
575  *   be used for handling corner cases, such as bio eod.
576  */
577 static void bio_truncate(struct bio *bio, unsigned new_size)
578 {
579 	struct bio_vec bv;
580 	struct bvec_iter iter;
581 	unsigned int done = 0;
582 	bool truncated = false;
583 
584 	if (new_size >= bio->bi_iter.bi_size)
585 		return;
586 
587 	if (bio_op(bio) != REQ_OP_READ)
588 		goto exit;
589 
590 	bio_for_each_segment(bv, bio, iter) {
591 		if (done + bv.bv_len > new_size) {
592 			unsigned offset;
593 
594 			if (!truncated)
595 				offset = new_size - done;
596 			else
597 				offset = 0;
598 			zero_user(bv.bv_page, bv.bv_offset + offset,
599 				  bv.bv_len - offset);
600 			truncated = true;
601 		}
602 		done += bv.bv_len;
603 	}
604 
605  exit:
606 	/*
607 	 * Don't touch bvec table here and make it really immutable, since
608 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
609 	 * in its .end_bio() callback.
610 	 *
611 	 * It is enough to truncate bio by updating .bi_size since we can make
612 	 * correct bvec with the updated .bi_size for drivers.
613 	 */
614 	bio->bi_iter.bi_size = new_size;
615 }
616 
617 /**
618  * guard_bio_eod - truncate a BIO to fit the block device
619  * @bio:	bio to truncate
620  *
621  * This allows us to do IO even on the odd last sectors of a device, even if the
622  * block size is some multiple of the physical sector size.
623  *
624  * We'll just truncate the bio to the size of the device, and clear the end of
625  * the buffer head manually.  Truly out-of-range accesses will turn into actual
626  * I/O errors, this only handles the "we need to be able to do I/O at the final
627  * sector" case.
628  */
629 void guard_bio_eod(struct bio *bio)
630 {
631 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
632 
633 	if (!maxsector)
634 		return;
635 
636 	/*
637 	 * If the *whole* IO is past the end of the device,
638 	 * let it through, and the IO layer will turn it into
639 	 * an EIO.
640 	 */
641 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
642 		return;
643 
644 	maxsector -= bio->bi_iter.bi_sector;
645 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
646 		return;
647 
648 	bio_truncate(bio, maxsector << 9);
649 }
650 
651 #define ALLOC_CACHE_MAX		512
652 #define ALLOC_CACHE_SLACK	 64
653 
654 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
655 				  unsigned int nr)
656 {
657 	unsigned int i = 0;
658 	struct bio *bio;
659 
660 	while ((bio = cache->free_list) != NULL) {
661 		cache->free_list = bio->bi_next;
662 		cache->nr--;
663 		bio_free(bio);
664 		if (++i == nr)
665 			break;
666 	}
667 }
668 
669 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
670 {
671 	struct bio_set *bs;
672 
673 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
674 	if (bs->cache) {
675 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
676 
677 		bio_alloc_cache_prune(cache, -1U);
678 	}
679 	return 0;
680 }
681 
682 static void bio_alloc_cache_destroy(struct bio_set *bs)
683 {
684 	int cpu;
685 
686 	if (!bs->cache)
687 		return;
688 
689 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
690 	for_each_possible_cpu(cpu) {
691 		struct bio_alloc_cache *cache;
692 
693 		cache = per_cpu_ptr(bs->cache, cpu);
694 		bio_alloc_cache_prune(cache, -1U);
695 	}
696 	free_percpu(bs->cache);
697 }
698 
699 /**
700  * bio_put - release a reference to a bio
701  * @bio:   bio to release reference to
702  *
703  * Description:
704  *   Put a reference to a &struct bio, either one you have gotten with
705  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
706  **/
707 void bio_put(struct bio *bio)
708 {
709 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
710 		BUG_ON(!atomic_read(&bio->__bi_cnt));
711 		if (!atomic_dec_and_test(&bio->__bi_cnt))
712 			return;
713 	}
714 
715 	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
716 		struct bio_alloc_cache *cache;
717 
718 		bio_uninit(bio);
719 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
720 		bio->bi_next = cache->free_list;
721 		cache->free_list = bio;
722 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
723 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
724 		put_cpu();
725 	} else {
726 		bio_free(bio);
727 	}
728 }
729 EXPORT_SYMBOL(bio_put);
730 
731 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
732 {
733 	bio_set_flag(bio, BIO_CLONED);
734 	if (bio_flagged(bio_src, BIO_THROTTLED))
735 		bio_set_flag(bio, BIO_THROTTLED);
736 	if (bio->bi_bdev == bio_src->bi_bdev &&
737 	    bio_flagged(bio_src, BIO_REMAPPED))
738 		bio_set_flag(bio, BIO_REMAPPED);
739 	bio->bi_ioprio = bio_src->bi_ioprio;
740 	bio->bi_write_hint = bio_src->bi_write_hint;
741 	bio->bi_iter = bio_src->bi_iter;
742 
743 	bio_clone_blkg_association(bio, bio_src);
744 	blkcg_bio_issue_init(bio);
745 
746 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
747 		return -ENOMEM;
748 	if (bio_integrity(bio_src) &&
749 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
750 		return -ENOMEM;
751 	return 0;
752 }
753 
754 /**
755  * bio_alloc_clone - clone a bio that shares the original bio's biovec
756  * @bdev: block_device to clone onto
757  * @bio_src: bio to clone from
758  * @gfp: allocation priority
759  * @bs: bio_set to allocate from
760  *
761  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
762  * bio, but not the actual data it points to.
763  *
764  * The caller must ensure that the return bio is not freed before @bio_src.
765  */
766 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
767 		gfp_t gfp, struct bio_set *bs)
768 {
769 	struct bio *bio;
770 
771 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
772 	if (!bio)
773 		return NULL;
774 
775 	if (__bio_clone(bio, bio_src, gfp) < 0) {
776 		bio_put(bio);
777 		return NULL;
778 	}
779 	bio->bi_io_vec = bio_src->bi_io_vec;
780 
781 	return bio;
782 }
783 EXPORT_SYMBOL(bio_alloc_clone);
784 
785 /**
786  * bio_init_clone - clone a bio that shares the original bio's biovec
787  * @bdev: block_device to clone onto
788  * @bio: bio to clone into
789  * @bio_src: bio to clone from
790  * @gfp: allocation priority
791  *
792  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
793  * The caller owns the returned bio, but not the actual data it points to.
794  *
795  * The caller must ensure that @bio_src is not freed before @bio.
796  */
797 int bio_init_clone(struct block_device *bdev, struct bio *bio,
798 		struct bio *bio_src, gfp_t gfp)
799 {
800 	int ret;
801 
802 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
803 	ret = __bio_clone(bio, bio_src, gfp);
804 	if (ret)
805 		bio_uninit(bio);
806 	return ret;
807 }
808 EXPORT_SYMBOL(bio_init_clone);
809 
810 /**
811  * bio_full - check if the bio is full
812  * @bio:	bio to check
813  * @len:	length of one segment to be added
814  *
815  * Return true if @bio is full and one segment with @len bytes can't be
816  * added to the bio, otherwise return false
817  */
818 static inline bool bio_full(struct bio *bio, unsigned len)
819 {
820 	if (bio->bi_vcnt >= bio->bi_max_vecs)
821 		return true;
822 	if (bio->bi_iter.bi_size > UINT_MAX - len)
823 		return true;
824 	return false;
825 }
826 
827 static inline bool page_is_mergeable(const struct bio_vec *bv,
828 		struct page *page, unsigned int len, unsigned int off,
829 		bool *same_page)
830 {
831 	size_t bv_end = bv->bv_offset + bv->bv_len;
832 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
833 	phys_addr_t page_addr = page_to_phys(page);
834 
835 	if (vec_end_addr + 1 != page_addr + off)
836 		return false;
837 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
838 		return false;
839 
840 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
841 	if (*same_page)
842 		return true;
843 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
844 }
845 
846 /**
847  * __bio_try_merge_page - try appending data to an existing bvec.
848  * @bio: destination bio
849  * @page: start page to add
850  * @len: length of the data to add
851  * @off: offset of the data relative to @page
852  * @same_page: return if the segment has been merged inside the same page
853  *
854  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
855  * useful optimisation for file systems with a block size smaller than the
856  * page size.
857  *
858  * Warn if (@len, @off) crosses pages in case that @same_page is true.
859  *
860  * Return %true on success or %false on failure.
861  */
862 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
863 		unsigned int len, unsigned int off, bool *same_page)
864 {
865 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
866 		return false;
867 
868 	if (bio->bi_vcnt > 0) {
869 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
870 
871 		if (page_is_mergeable(bv, page, len, off, same_page)) {
872 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
873 				*same_page = false;
874 				return false;
875 			}
876 			bv->bv_len += len;
877 			bio->bi_iter.bi_size += len;
878 			return true;
879 		}
880 	}
881 	return false;
882 }
883 
884 /*
885  * Try to merge a page into a segment, while obeying the hardware segment
886  * size limit.  This is not for normal read/write bios, but for passthrough
887  * or Zone Append operations that we can't split.
888  */
889 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
890 				 struct page *page, unsigned len,
891 				 unsigned offset, bool *same_page)
892 {
893 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
894 	unsigned long mask = queue_segment_boundary(q);
895 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
896 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
897 
898 	if ((addr1 | mask) != (addr2 | mask))
899 		return false;
900 	if (bv->bv_len + len > queue_max_segment_size(q))
901 		return false;
902 	return __bio_try_merge_page(bio, page, len, offset, same_page);
903 }
904 
905 /**
906  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
907  * @q: the target queue
908  * @bio: destination bio
909  * @page: page to add
910  * @len: vec entry length
911  * @offset: vec entry offset
912  * @max_sectors: maximum number of sectors that can be added
913  * @same_page: return if the segment has been merged inside the same page
914  *
915  * Add a page to a bio while respecting the hardware max_sectors, max_segment
916  * and gap limitations.
917  */
918 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
919 		struct page *page, unsigned int len, unsigned int offset,
920 		unsigned int max_sectors, bool *same_page)
921 {
922 	struct bio_vec *bvec;
923 
924 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
925 		return 0;
926 
927 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
928 		return 0;
929 
930 	if (bio->bi_vcnt > 0) {
931 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
932 			return len;
933 
934 		/*
935 		 * If the queue doesn't support SG gaps and adding this segment
936 		 * would create a gap, disallow it.
937 		 */
938 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
939 		if (bvec_gap_to_prev(q, bvec, offset))
940 			return 0;
941 	}
942 
943 	if (bio_full(bio, len))
944 		return 0;
945 
946 	if (bio->bi_vcnt >= queue_max_segments(q))
947 		return 0;
948 
949 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
950 	bvec->bv_page = page;
951 	bvec->bv_len = len;
952 	bvec->bv_offset = offset;
953 	bio->bi_vcnt++;
954 	bio->bi_iter.bi_size += len;
955 	return len;
956 }
957 
958 /**
959  * bio_add_pc_page	- attempt to add page to passthrough bio
960  * @q: the target queue
961  * @bio: destination bio
962  * @page: page to add
963  * @len: vec entry length
964  * @offset: vec entry offset
965  *
966  * Attempt to add a page to the bio_vec maplist. This can fail for a
967  * number of reasons, such as the bio being full or target block device
968  * limitations. The target block device must allow bio's up to PAGE_SIZE,
969  * so it is always possible to add a single page to an empty bio.
970  *
971  * This should only be used by passthrough bios.
972  */
973 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
974 		struct page *page, unsigned int len, unsigned int offset)
975 {
976 	bool same_page = false;
977 	return bio_add_hw_page(q, bio, page, len, offset,
978 			queue_max_hw_sectors(q), &same_page);
979 }
980 EXPORT_SYMBOL(bio_add_pc_page);
981 
982 /**
983  * bio_add_zone_append_page - attempt to add page to zone-append bio
984  * @bio: destination bio
985  * @page: page to add
986  * @len: vec entry length
987  * @offset: vec entry offset
988  *
989  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
990  * for a zone-append request. This can fail for a number of reasons, such as the
991  * bio being full or the target block device is not a zoned block device or
992  * other limitations of the target block device. The target block device must
993  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
994  * to an empty bio.
995  *
996  * Returns: number of bytes added to the bio, or 0 in case of a failure.
997  */
998 int bio_add_zone_append_page(struct bio *bio, struct page *page,
999 			     unsigned int len, unsigned int offset)
1000 {
1001 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1002 	bool same_page = false;
1003 
1004 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1005 		return 0;
1006 
1007 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
1008 		return 0;
1009 
1010 	return bio_add_hw_page(q, bio, page, len, offset,
1011 			       queue_max_zone_append_sectors(q), &same_page);
1012 }
1013 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1014 
1015 /**
1016  * __bio_add_page - add page(s) to a bio in a new segment
1017  * @bio: destination bio
1018  * @page: start page to add
1019  * @len: length of the data to add, may cross pages
1020  * @off: offset of the data relative to @page, may cross pages
1021  *
1022  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1023  * that @bio has space for another bvec.
1024  */
1025 void __bio_add_page(struct bio *bio, struct page *page,
1026 		unsigned int len, unsigned int off)
1027 {
1028 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
1029 
1030 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1031 	WARN_ON_ONCE(bio_full(bio, len));
1032 
1033 	bv->bv_page = page;
1034 	bv->bv_offset = off;
1035 	bv->bv_len = len;
1036 
1037 	bio->bi_iter.bi_size += len;
1038 	bio->bi_vcnt++;
1039 
1040 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1041 		bio_set_flag(bio, BIO_WORKINGSET);
1042 }
1043 EXPORT_SYMBOL_GPL(__bio_add_page);
1044 
1045 /**
1046  *	bio_add_page	-	attempt to add page(s) to bio
1047  *	@bio: destination bio
1048  *	@page: start page to add
1049  *	@len: vec entry length, may cross pages
1050  *	@offset: vec entry offset relative to @page, may cross pages
1051  *
1052  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1053  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1054  */
1055 int bio_add_page(struct bio *bio, struct page *page,
1056 		 unsigned int len, unsigned int offset)
1057 {
1058 	bool same_page = false;
1059 
1060 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1061 		if (bio_full(bio, len))
1062 			return 0;
1063 		__bio_add_page(bio, page, len, offset);
1064 	}
1065 	return len;
1066 }
1067 EXPORT_SYMBOL(bio_add_page);
1068 
1069 /**
1070  * bio_add_folio - Attempt to add part of a folio to a bio.
1071  * @bio: BIO to add to.
1072  * @folio: Folio to add.
1073  * @len: How many bytes from the folio to add.
1074  * @off: First byte in this folio to add.
1075  *
1076  * Filesystems that use folios can call this function instead of calling
1077  * bio_add_page() for each page in the folio.  If @off is bigger than
1078  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1079  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1080  *
1081  * Return: Whether the addition was successful.
1082  */
1083 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1084 		   size_t off)
1085 {
1086 	if (len > UINT_MAX || off > UINT_MAX)
1087 		return false;
1088 	return bio_add_page(bio, &folio->page, len, off) > 0;
1089 }
1090 
1091 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1092 {
1093 	struct bvec_iter_all iter_all;
1094 	struct bio_vec *bvec;
1095 
1096 	bio_for_each_segment_all(bvec, bio, iter_all) {
1097 		if (mark_dirty && !PageCompound(bvec->bv_page))
1098 			set_page_dirty_lock(bvec->bv_page);
1099 		put_page(bvec->bv_page);
1100 	}
1101 }
1102 EXPORT_SYMBOL_GPL(__bio_release_pages);
1103 
1104 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1105 {
1106 	size_t size = iov_iter_count(iter);
1107 
1108 	WARN_ON_ONCE(bio->bi_max_vecs);
1109 
1110 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1111 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1112 		size_t max_sectors = queue_max_zone_append_sectors(q);
1113 
1114 		size = min(size, max_sectors << SECTOR_SHIFT);
1115 	}
1116 
1117 	bio->bi_vcnt = iter->nr_segs;
1118 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1119 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1120 	bio->bi_iter.bi_size = size;
1121 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1122 	bio_set_flag(bio, BIO_CLONED);
1123 }
1124 
1125 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1126 {
1127 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1128 
1129 	for (i = 0; i < nr; i++)
1130 		put_page(pages[i]);
1131 }
1132 
1133 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1134 
1135 /**
1136  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1137  * @bio: bio to add pages to
1138  * @iter: iov iterator describing the region to be mapped
1139  *
1140  * Pins pages from *iter and appends them to @bio's bvec array. The
1141  * pages will have to be released using put_page() when done.
1142  * For multi-segment *iter, this function only adds pages from the
1143  * next non-empty segment of the iov iterator.
1144  */
1145 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1146 {
1147 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1148 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1149 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1150 	struct page **pages = (struct page **)bv;
1151 	bool same_page = false;
1152 	ssize_t size, left;
1153 	unsigned len, i;
1154 	size_t offset;
1155 
1156 	/*
1157 	 * Move page array up in the allocated memory for the bio vecs as far as
1158 	 * possible so that we can start filling biovecs from the beginning
1159 	 * without overwriting the temporary page array.
1160 	*/
1161 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1162 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1163 
1164 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1165 	if (unlikely(size <= 0))
1166 		return size ? size : -EFAULT;
1167 
1168 	for (left = size, i = 0; left > 0; left -= len, i++) {
1169 		struct page *page = pages[i];
1170 
1171 		len = min_t(size_t, PAGE_SIZE - offset, left);
1172 
1173 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1174 			if (same_page)
1175 				put_page(page);
1176 		} else {
1177 			if (WARN_ON_ONCE(bio_full(bio, len))) {
1178 				bio_put_pages(pages + i, left, offset);
1179 				return -EINVAL;
1180 			}
1181 			__bio_add_page(bio, page, len, offset);
1182 		}
1183 		offset = 0;
1184 	}
1185 
1186 	iov_iter_advance(iter, size);
1187 	return 0;
1188 }
1189 
1190 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1191 {
1192 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1193 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1194 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1195 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1196 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1197 	struct page **pages = (struct page **)bv;
1198 	ssize_t size, left;
1199 	unsigned len, i;
1200 	size_t offset;
1201 	int ret = 0;
1202 
1203 	if (WARN_ON_ONCE(!max_append_sectors))
1204 		return 0;
1205 
1206 	/*
1207 	 * Move page array up in the allocated memory for the bio vecs as far as
1208 	 * possible so that we can start filling biovecs from the beginning
1209 	 * without overwriting the temporary page array.
1210 	 */
1211 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1212 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1213 
1214 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1215 	if (unlikely(size <= 0))
1216 		return size ? size : -EFAULT;
1217 
1218 	for (left = size, i = 0; left > 0; left -= len, i++) {
1219 		struct page *page = pages[i];
1220 		bool same_page = false;
1221 
1222 		len = min_t(size_t, PAGE_SIZE - offset, left);
1223 		if (bio_add_hw_page(q, bio, page, len, offset,
1224 				max_append_sectors, &same_page) != len) {
1225 			bio_put_pages(pages + i, left, offset);
1226 			ret = -EINVAL;
1227 			break;
1228 		}
1229 		if (same_page)
1230 			put_page(page);
1231 		offset = 0;
1232 	}
1233 
1234 	iov_iter_advance(iter, size - left);
1235 	return ret;
1236 }
1237 
1238 /**
1239  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1240  * @bio: bio to add pages to
1241  * @iter: iov iterator describing the region to be added
1242  *
1243  * This takes either an iterator pointing to user memory, or one pointing to
1244  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1245  * map them into the kernel. On IO completion, the caller should put those
1246  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1247  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1248  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1249  * completed by a call to ->ki_complete() or returns with an error other than
1250  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1251  * on IO completion. If it isn't, then pages should be released.
1252  *
1253  * The function tries, but does not guarantee, to pin as many pages as
1254  * fit into the bio, or are requested in @iter, whatever is smaller. If
1255  * MM encounters an error pinning the requested pages, it stops. Error
1256  * is returned only if 0 pages could be pinned.
1257  *
1258  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1259  * responsible for setting BIO_WORKINGSET if necessary.
1260  */
1261 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1262 {
1263 	int ret = 0;
1264 
1265 	if (iov_iter_is_bvec(iter)) {
1266 		bio_iov_bvec_set(bio, iter);
1267 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1268 		return 0;
1269 	}
1270 
1271 	do {
1272 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1273 			ret = __bio_iov_append_get_pages(bio, iter);
1274 		else
1275 			ret = __bio_iov_iter_get_pages(bio, iter);
1276 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1277 
1278 	/* don't account direct I/O as memory stall */
1279 	bio_clear_flag(bio, BIO_WORKINGSET);
1280 	return bio->bi_vcnt ? 0 : ret;
1281 }
1282 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1283 
1284 static void submit_bio_wait_endio(struct bio *bio)
1285 {
1286 	complete(bio->bi_private);
1287 }
1288 
1289 /**
1290  * submit_bio_wait - submit a bio, and wait until it completes
1291  * @bio: The &struct bio which describes the I/O
1292  *
1293  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1294  * bio_endio() on failure.
1295  *
1296  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1297  * result in bio reference to be consumed. The caller must drop the reference
1298  * on his own.
1299  */
1300 int submit_bio_wait(struct bio *bio)
1301 {
1302 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1303 			bio->bi_bdev->bd_disk->lockdep_map);
1304 	unsigned long hang_check;
1305 
1306 	bio->bi_private = &done;
1307 	bio->bi_end_io = submit_bio_wait_endio;
1308 	bio->bi_opf |= REQ_SYNC;
1309 	submit_bio(bio);
1310 
1311 	/* Prevent hang_check timer from firing at us during very long I/O */
1312 	hang_check = sysctl_hung_task_timeout_secs;
1313 	if (hang_check)
1314 		while (!wait_for_completion_io_timeout(&done,
1315 					hang_check * (HZ/2)))
1316 			;
1317 	else
1318 		wait_for_completion_io(&done);
1319 
1320 	return blk_status_to_errno(bio->bi_status);
1321 }
1322 EXPORT_SYMBOL(submit_bio_wait);
1323 
1324 void __bio_advance(struct bio *bio, unsigned bytes)
1325 {
1326 	if (bio_integrity(bio))
1327 		bio_integrity_advance(bio, bytes);
1328 
1329 	bio_crypt_advance(bio, bytes);
1330 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1331 }
1332 EXPORT_SYMBOL(__bio_advance);
1333 
1334 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1335 			struct bio *src, struct bvec_iter *src_iter)
1336 {
1337 	while (src_iter->bi_size && dst_iter->bi_size) {
1338 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1339 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1340 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1341 		void *src_buf;
1342 
1343 		src_buf = bvec_kmap_local(&src_bv);
1344 		memcpy_to_bvec(&dst_bv, src_buf);
1345 		kunmap_local(src_buf);
1346 
1347 		bio_advance_iter_single(src, src_iter, bytes);
1348 		bio_advance_iter_single(dst, dst_iter, bytes);
1349 	}
1350 }
1351 EXPORT_SYMBOL(bio_copy_data_iter);
1352 
1353 /**
1354  * bio_copy_data - copy contents of data buffers from one bio to another
1355  * @src: source bio
1356  * @dst: destination bio
1357  *
1358  * Stops when it reaches the end of either @src or @dst - that is, copies
1359  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1360  */
1361 void bio_copy_data(struct bio *dst, struct bio *src)
1362 {
1363 	struct bvec_iter src_iter = src->bi_iter;
1364 	struct bvec_iter dst_iter = dst->bi_iter;
1365 
1366 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1367 }
1368 EXPORT_SYMBOL(bio_copy_data);
1369 
1370 void bio_free_pages(struct bio *bio)
1371 {
1372 	struct bio_vec *bvec;
1373 	struct bvec_iter_all iter_all;
1374 
1375 	bio_for_each_segment_all(bvec, bio, iter_all)
1376 		__free_page(bvec->bv_page);
1377 }
1378 EXPORT_SYMBOL(bio_free_pages);
1379 
1380 /*
1381  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1382  * for performing direct-IO in BIOs.
1383  *
1384  * The problem is that we cannot run set_page_dirty() from interrupt context
1385  * because the required locks are not interrupt-safe.  So what we can do is to
1386  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1387  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1388  * in process context.
1389  *
1390  * We special-case compound pages here: normally this means reads into hugetlb
1391  * pages.  The logic in here doesn't really work right for compound pages
1392  * because the VM does not uniformly chase down the head page in all cases.
1393  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1394  * handle them at all.  So we skip compound pages here at an early stage.
1395  *
1396  * Note that this code is very hard to test under normal circumstances because
1397  * direct-io pins the pages with get_user_pages().  This makes
1398  * is_page_cache_freeable return false, and the VM will not clean the pages.
1399  * But other code (eg, flusher threads) could clean the pages if they are mapped
1400  * pagecache.
1401  *
1402  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1403  * deferred bio dirtying paths.
1404  */
1405 
1406 /*
1407  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1408  */
1409 void bio_set_pages_dirty(struct bio *bio)
1410 {
1411 	struct bio_vec *bvec;
1412 	struct bvec_iter_all iter_all;
1413 
1414 	bio_for_each_segment_all(bvec, bio, iter_all) {
1415 		if (!PageCompound(bvec->bv_page))
1416 			set_page_dirty_lock(bvec->bv_page);
1417 	}
1418 }
1419 
1420 /*
1421  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1422  * If they are, then fine.  If, however, some pages are clean then they must
1423  * have been written out during the direct-IO read.  So we take another ref on
1424  * the BIO and re-dirty the pages in process context.
1425  *
1426  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1427  * here on.  It will run one put_page() against each page and will run one
1428  * bio_put() against the BIO.
1429  */
1430 
1431 static void bio_dirty_fn(struct work_struct *work);
1432 
1433 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1434 static DEFINE_SPINLOCK(bio_dirty_lock);
1435 static struct bio *bio_dirty_list;
1436 
1437 /*
1438  * This runs in process context
1439  */
1440 static void bio_dirty_fn(struct work_struct *work)
1441 {
1442 	struct bio *bio, *next;
1443 
1444 	spin_lock_irq(&bio_dirty_lock);
1445 	next = bio_dirty_list;
1446 	bio_dirty_list = NULL;
1447 	spin_unlock_irq(&bio_dirty_lock);
1448 
1449 	while ((bio = next) != NULL) {
1450 		next = bio->bi_private;
1451 
1452 		bio_release_pages(bio, true);
1453 		bio_put(bio);
1454 	}
1455 }
1456 
1457 void bio_check_pages_dirty(struct bio *bio)
1458 {
1459 	struct bio_vec *bvec;
1460 	unsigned long flags;
1461 	struct bvec_iter_all iter_all;
1462 
1463 	bio_for_each_segment_all(bvec, bio, iter_all) {
1464 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1465 			goto defer;
1466 	}
1467 
1468 	bio_release_pages(bio, false);
1469 	bio_put(bio);
1470 	return;
1471 defer:
1472 	spin_lock_irqsave(&bio_dirty_lock, flags);
1473 	bio->bi_private = bio_dirty_list;
1474 	bio_dirty_list = bio;
1475 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1476 	schedule_work(&bio_dirty_work);
1477 }
1478 
1479 static inline bool bio_remaining_done(struct bio *bio)
1480 {
1481 	/*
1482 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1483 	 * we always end io on the first invocation.
1484 	 */
1485 	if (!bio_flagged(bio, BIO_CHAIN))
1486 		return true;
1487 
1488 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1489 
1490 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1491 		bio_clear_flag(bio, BIO_CHAIN);
1492 		return true;
1493 	}
1494 
1495 	return false;
1496 }
1497 
1498 /**
1499  * bio_endio - end I/O on a bio
1500  * @bio:	bio
1501  *
1502  * Description:
1503  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1504  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1505  *   bio unless they own it and thus know that it has an end_io function.
1506  *
1507  *   bio_endio() can be called several times on a bio that has been chained
1508  *   using bio_chain().  The ->bi_end_io() function will only be called the
1509  *   last time.
1510  **/
1511 void bio_endio(struct bio *bio)
1512 {
1513 again:
1514 	if (!bio_remaining_done(bio))
1515 		return;
1516 	if (!bio_integrity_endio(bio))
1517 		return;
1518 
1519 	rq_qos_done_bio(bio);
1520 
1521 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1522 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1523 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1524 	}
1525 
1526 	/*
1527 	 * Need to have a real endio function for chained bios, otherwise
1528 	 * various corner cases will break (like stacking block devices that
1529 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1530 	 * recursion and blowing the stack. Tail call optimization would
1531 	 * handle this, but compiling with frame pointers also disables
1532 	 * gcc's sibling call optimization.
1533 	 */
1534 	if (bio->bi_end_io == bio_chain_endio) {
1535 		bio = __bio_chain_endio(bio);
1536 		goto again;
1537 	}
1538 
1539 	blk_throtl_bio_endio(bio);
1540 	/* release cgroup info */
1541 	bio_uninit(bio);
1542 	if (bio->bi_end_io)
1543 		bio->bi_end_io(bio);
1544 }
1545 EXPORT_SYMBOL(bio_endio);
1546 
1547 /**
1548  * bio_split - split a bio
1549  * @bio:	bio to split
1550  * @sectors:	number of sectors to split from the front of @bio
1551  * @gfp:	gfp mask
1552  * @bs:		bio set to allocate from
1553  *
1554  * Allocates and returns a new bio which represents @sectors from the start of
1555  * @bio, and updates @bio to represent the remaining sectors.
1556  *
1557  * Unless this is a discard request the newly allocated bio will point
1558  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1559  * neither @bio nor @bs are freed before the split bio.
1560  */
1561 struct bio *bio_split(struct bio *bio, int sectors,
1562 		      gfp_t gfp, struct bio_set *bs)
1563 {
1564 	struct bio *split;
1565 
1566 	BUG_ON(sectors <= 0);
1567 	BUG_ON(sectors >= bio_sectors(bio));
1568 
1569 	/* Zone append commands cannot be split */
1570 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1571 		return NULL;
1572 
1573 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1574 	if (!split)
1575 		return NULL;
1576 
1577 	split->bi_iter.bi_size = sectors << 9;
1578 
1579 	if (bio_integrity(split))
1580 		bio_integrity_trim(split);
1581 
1582 	bio_advance(bio, split->bi_iter.bi_size);
1583 
1584 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1585 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1586 
1587 	return split;
1588 }
1589 EXPORT_SYMBOL(bio_split);
1590 
1591 /**
1592  * bio_trim - trim a bio
1593  * @bio:	bio to trim
1594  * @offset:	number of sectors to trim from the front of @bio
1595  * @size:	size we want to trim @bio to, in sectors
1596  *
1597  * This function is typically used for bios that are cloned and submitted
1598  * to the underlying device in parts.
1599  */
1600 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1601 {
1602 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1603 			 offset + size > bio->bi_iter.bi_size))
1604 		return;
1605 
1606 	size <<= 9;
1607 	if (offset == 0 && size == bio->bi_iter.bi_size)
1608 		return;
1609 
1610 	bio_advance(bio, offset << 9);
1611 	bio->bi_iter.bi_size = size;
1612 
1613 	if (bio_integrity(bio))
1614 		bio_integrity_trim(bio);
1615 }
1616 EXPORT_SYMBOL_GPL(bio_trim);
1617 
1618 /*
1619  * create memory pools for biovec's in a bio_set.
1620  * use the global biovec slabs created for general use.
1621  */
1622 int biovec_init_pool(mempool_t *pool, int pool_entries)
1623 {
1624 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1625 
1626 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1627 }
1628 
1629 /*
1630  * bioset_exit - exit a bioset initialized with bioset_init()
1631  *
1632  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1633  * kzalloc()).
1634  */
1635 void bioset_exit(struct bio_set *bs)
1636 {
1637 	bio_alloc_cache_destroy(bs);
1638 	if (bs->rescue_workqueue)
1639 		destroy_workqueue(bs->rescue_workqueue);
1640 	bs->rescue_workqueue = NULL;
1641 
1642 	mempool_exit(&bs->bio_pool);
1643 	mempool_exit(&bs->bvec_pool);
1644 
1645 	bioset_integrity_free(bs);
1646 	if (bs->bio_slab)
1647 		bio_put_slab(bs);
1648 	bs->bio_slab = NULL;
1649 }
1650 EXPORT_SYMBOL(bioset_exit);
1651 
1652 /**
1653  * bioset_init - Initialize a bio_set
1654  * @bs:		pool to initialize
1655  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1656  * @front_pad:	Number of bytes to allocate in front of the returned bio
1657  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1658  *              and %BIOSET_NEED_RESCUER
1659  *
1660  * Description:
1661  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1662  *    to ask for a number of bytes to be allocated in front of the bio.
1663  *    Front pad allocation is useful for embedding the bio inside
1664  *    another structure, to avoid allocating extra data to go with the bio.
1665  *    Note that the bio must be embedded at the END of that structure always,
1666  *    or things will break badly.
1667  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1668  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1669  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1670  *    to dispatch queued requests when the mempool runs out of space.
1671  *
1672  */
1673 int bioset_init(struct bio_set *bs,
1674 		unsigned int pool_size,
1675 		unsigned int front_pad,
1676 		int flags)
1677 {
1678 	bs->front_pad = front_pad;
1679 	if (flags & BIOSET_NEED_BVECS)
1680 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1681 	else
1682 		bs->back_pad = 0;
1683 
1684 	spin_lock_init(&bs->rescue_lock);
1685 	bio_list_init(&bs->rescue_list);
1686 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1687 
1688 	bs->bio_slab = bio_find_or_create_slab(bs);
1689 	if (!bs->bio_slab)
1690 		return -ENOMEM;
1691 
1692 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1693 		goto bad;
1694 
1695 	if ((flags & BIOSET_NEED_BVECS) &&
1696 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1697 		goto bad;
1698 
1699 	if (flags & BIOSET_NEED_RESCUER) {
1700 		bs->rescue_workqueue = alloc_workqueue("bioset",
1701 							WQ_MEM_RECLAIM, 0);
1702 		if (!bs->rescue_workqueue)
1703 			goto bad;
1704 	}
1705 	if (flags & BIOSET_PERCPU_CACHE) {
1706 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1707 		if (!bs->cache)
1708 			goto bad;
1709 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1710 	}
1711 
1712 	return 0;
1713 bad:
1714 	bioset_exit(bs);
1715 	return -ENOMEM;
1716 }
1717 EXPORT_SYMBOL(bioset_init);
1718 
1719 /*
1720  * Initialize and setup a new bio_set, based on the settings from
1721  * another bio_set.
1722  */
1723 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1724 {
1725 	int flags;
1726 
1727 	flags = 0;
1728 	if (src->bvec_pool.min_nr)
1729 		flags |= BIOSET_NEED_BVECS;
1730 	if (src->rescue_workqueue)
1731 		flags |= BIOSET_NEED_RESCUER;
1732 
1733 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1734 }
1735 EXPORT_SYMBOL(bioset_init_from_src);
1736 
1737 /**
1738  * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1739  * @kiocb:	kiocb describing the IO
1740  * @bdev:	block device to allocate the bio for (can be %NULL)
1741  * @nr_vecs:	number of iovecs to pre-allocate
1742  * @opf:	operation and flags for bio
1743  * @bs:		bio_set to allocate from
1744  *
1745  * Description:
1746  *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1747  *    used to check if we should dip into the per-cpu bio_set allocation
1748  *    cache. The allocation uses GFP_KERNEL internally. On return, the
1749  *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1750  *    MUST be done from process context, not hard/soft IRQ.
1751  *
1752  */
1753 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev,
1754 		unsigned short nr_vecs, unsigned int opf, struct bio_set *bs)
1755 {
1756 	struct bio_alloc_cache *cache;
1757 	struct bio *bio;
1758 
1759 	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1760 		return bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1761 
1762 	cache = per_cpu_ptr(bs->cache, get_cpu());
1763 	if (cache->free_list) {
1764 		bio = cache->free_list;
1765 		cache->free_list = bio->bi_next;
1766 		cache->nr--;
1767 		put_cpu();
1768 		bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL,
1769 			 nr_vecs, opf);
1770 		bio->bi_pool = bs;
1771 		bio_set_flag(bio, BIO_PERCPU_CACHE);
1772 		return bio;
1773 	}
1774 	put_cpu();
1775 	bio = bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1776 	bio_set_flag(bio, BIO_PERCPU_CACHE);
1777 	return bio;
1778 }
1779 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1780 
1781 static int __init init_bio(void)
1782 {
1783 	int i;
1784 
1785 	bio_integrity_init();
1786 
1787 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1788 		struct biovec_slab *bvs = bvec_slabs + i;
1789 
1790 		bvs->slab = kmem_cache_create(bvs->name,
1791 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1792 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1793 	}
1794 
1795 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1796 					bio_cpu_dead);
1797 
1798 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1799 		panic("bio: can't allocate bios\n");
1800 
1801 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1802 		panic("bio: can't create integrity pool\n");
1803 
1804 	return 0;
1805 }
1806 subsys_initcall(init_bio);
1807