xref: /linux/block/bio.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 
23 #include <trace/events/block.h>
24 #include "blk.h"
25 #include "blk-rq-qos.h"
26 
27 /*
28  * Test patch to inline a certain number of bi_io_vec's inside the bio
29  * itself, to shrink a bio data allocation from two mempool calls to one
30  */
31 #define BIO_INLINE_VECS		4
32 
33 /*
34  * if you change this list, also change bvec_alloc or things will
35  * break badly! cannot be bigger than what you can fit into an
36  * unsigned short
37  */
38 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
39 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
40 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
41 };
42 #undef BV
43 
44 /*
45  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46  * IO code that does not need private memory pools.
47  */
48 struct bio_set fs_bio_set;
49 EXPORT_SYMBOL(fs_bio_set);
50 
51 /*
52  * Our slab pool management
53  */
54 struct bio_slab {
55 	struct kmem_cache *slab;
56 	unsigned int slab_ref;
57 	unsigned int slab_size;
58 	char name[8];
59 };
60 static DEFINE_MUTEX(bio_slab_lock);
61 static struct bio_slab *bio_slabs;
62 static unsigned int bio_slab_nr, bio_slab_max;
63 
64 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
65 {
66 	unsigned int sz = sizeof(struct bio) + extra_size;
67 	struct kmem_cache *slab = NULL;
68 	struct bio_slab *bslab, *new_bio_slabs;
69 	unsigned int new_bio_slab_max;
70 	unsigned int i, entry = -1;
71 
72 	mutex_lock(&bio_slab_lock);
73 
74 	i = 0;
75 	while (i < bio_slab_nr) {
76 		bslab = &bio_slabs[i];
77 
78 		if (!bslab->slab && entry == -1)
79 			entry = i;
80 		else if (bslab->slab_size == sz) {
81 			slab = bslab->slab;
82 			bslab->slab_ref++;
83 			break;
84 		}
85 		i++;
86 	}
87 
88 	if (slab)
89 		goto out_unlock;
90 
91 	if (bio_slab_nr == bio_slab_max && entry == -1) {
92 		new_bio_slab_max = bio_slab_max << 1;
93 		new_bio_slabs = krealloc(bio_slabs,
94 					 new_bio_slab_max * sizeof(struct bio_slab),
95 					 GFP_KERNEL);
96 		if (!new_bio_slabs)
97 			goto out_unlock;
98 		bio_slab_max = new_bio_slab_max;
99 		bio_slabs = new_bio_slabs;
100 	}
101 	if (entry == -1)
102 		entry = bio_slab_nr++;
103 
104 	bslab = &bio_slabs[entry];
105 
106 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
107 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
108 				 SLAB_HWCACHE_ALIGN, NULL);
109 	if (!slab)
110 		goto out_unlock;
111 
112 	bslab->slab = slab;
113 	bslab->slab_ref = 1;
114 	bslab->slab_size = sz;
115 out_unlock:
116 	mutex_unlock(&bio_slab_lock);
117 	return slab;
118 }
119 
120 static void bio_put_slab(struct bio_set *bs)
121 {
122 	struct bio_slab *bslab = NULL;
123 	unsigned int i;
124 
125 	mutex_lock(&bio_slab_lock);
126 
127 	for (i = 0; i < bio_slab_nr; i++) {
128 		if (bs->bio_slab == bio_slabs[i].slab) {
129 			bslab = &bio_slabs[i];
130 			break;
131 		}
132 	}
133 
134 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
135 		goto out;
136 
137 	WARN_ON(!bslab->slab_ref);
138 
139 	if (--bslab->slab_ref)
140 		goto out;
141 
142 	kmem_cache_destroy(bslab->slab);
143 	bslab->slab = NULL;
144 
145 out:
146 	mutex_unlock(&bio_slab_lock);
147 }
148 
149 unsigned int bvec_nr_vecs(unsigned short idx)
150 {
151 	return bvec_slabs[--idx].nr_vecs;
152 }
153 
154 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
155 {
156 	if (!idx)
157 		return;
158 	idx--;
159 
160 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
161 
162 	if (idx == BVEC_POOL_MAX) {
163 		mempool_free(bv, pool);
164 	} else {
165 		struct biovec_slab *bvs = bvec_slabs + idx;
166 
167 		kmem_cache_free(bvs->slab, bv);
168 	}
169 }
170 
171 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
172 			   mempool_t *pool)
173 {
174 	struct bio_vec *bvl;
175 
176 	/*
177 	 * see comment near bvec_array define!
178 	 */
179 	switch (nr) {
180 	case 1:
181 		*idx = 0;
182 		break;
183 	case 2 ... 4:
184 		*idx = 1;
185 		break;
186 	case 5 ... 16:
187 		*idx = 2;
188 		break;
189 	case 17 ... 64:
190 		*idx = 3;
191 		break;
192 	case 65 ... 128:
193 		*idx = 4;
194 		break;
195 	case 129 ... BIO_MAX_PAGES:
196 		*idx = 5;
197 		break;
198 	default:
199 		return NULL;
200 	}
201 
202 	/*
203 	 * idx now points to the pool we want to allocate from. only the
204 	 * 1-vec entry pool is mempool backed.
205 	 */
206 	if (*idx == BVEC_POOL_MAX) {
207 fallback:
208 		bvl = mempool_alloc(pool, gfp_mask);
209 	} else {
210 		struct biovec_slab *bvs = bvec_slabs + *idx;
211 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
212 
213 		/*
214 		 * Make this allocation restricted and don't dump info on
215 		 * allocation failures, since we'll fallback to the mempool
216 		 * in case of failure.
217 		 */
218 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
219 
220 		/*
221 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
222 		 * is set, retry with the 1-entry mempool
223 		 */
224 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
225 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
226 			*idx = BVEC_POOL_MAX;
227 			goto fallback;
228 		}
229 	}
230 
231 	(*idx)++;
232 	return bvl;
233 }
234 
235 void bio_uninit(struct bio *bio)
236 {
237 	bio_disassociate_blkg(bio);
238 
239 	if (bio_integrity(bio))
240 		bio_integrity_free(bio);
241 
242 	bio_crypt_free_ctx(bio);
243 }
244 EXPORT_SYMBOL(bio_uninit);
245 
246 static void bio_free(struct bio *bio)
247 {
248 	struct bio_set *bs = bio->bi_pool;
249 	void *p;
250 
251 	bio_uninit(bio);
252 
253 	if (bs) {
254 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
255 
256 		/*
257 		 * If we have front padding, adjust the bio pointer before freeing
258 		 */
259 		p = bio;
260 		p -= bs->front_pad;
261 
262 		mempool_free(p, &bs->bio_pool);
263 	} else {
264 		/* Bio was allocated by bio_kmalloc() */
265 		kfree(bio);
266 	}
267 }
268 
269 /*
270  * Users of this function have their own bio allocation. Subsequently,
271  * they must remember to pair any call to bio_init() with bio_uninit()
272  * when IO has completed, or when the bio is released.
273  */
274 void bio_init(struct bio *bio, struct bio_vec *table,
275 	      unsigned short max_vecs)
276 {
277 	memset(bio, 0, sizeof(*bio));
278 	atomic_set(&bio->__bi_remaining, 1);
279 	atomic_set(&bio->__bi_cnt, 1);
280 
281 	bio->bi_io_vec = table;
282 	bio->bi_max_vecs = max_vecs;
283 }
284 EXPORT_SYMBOL(bio_init);
285 
286 /**
287  * bio_reset - reinitialize a bio
288  * @bio:	bio to reset
289  *
290  * Description:
291  *   After calling bio_reset(), @bio will be in the same state as a freshly
292  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
293  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
294  *   comment in struct bio.
295  */
296 void bio_reset(struct bio *bio)
297 {
298 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
299 
300 	bio_uninit(bio);
301 
302 	memset(bio, 0, BIO_RESET_BYTES);
303 	bio->bi_flags = flags;
304 	atomic_set(&bio->__bi_remaining, 1);
305 }
306 EXPORT_SYMBOL(bio_reset);
307 
308 static struct bio *__bio_chain_endio(struct bio *bio)
309 {
310 	struct bio *parent = bio->bi_private;
311 
312 	if (!parent->bi_status)
313 		parent->bi_status = bio->bi_status;
314 	bio_put(bio);
315 	return parent;
316 }
317 
318 static void bio_chain_endio(struct bio *bio)
319 {
320 	bio_endio(__bio_chain_endio(bio));
321 }
322 
323 /**
324  * bio_chain - chain bio completions
325  * @bio: the target bio
326  * @parent: the @bio's parent bio
327  *
328  * The caller won't have a bi_end_io called when @bio completes - instead,
329  * @parent's bi_end_io won't be called until both @parent and @bio have
330  * completed; the chained bio will also be freed when it completes.
331  *
332  * The caller must not set bi_private or bi_end_io in @bio.
333  */
334 void bio_chain(struct bio *bio, struct bio *parent)
335 {
336 	BUG_ON(bio->bi_private || bio->bi_end_io);
337 
338 	bio->bi_private = parent;
339 	bio->bi_end_io	= bio_chain_endio;
340 	bio_inc_remaining(parent);
341 }
342 EXPORT_SYMBOL(bio_chain);
343 
344 static void bio_alloc_rescue(struct work_struct *work)
345 {
346 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
347 	struct bio *bio;
348 
349 	while (1) {
350 		spin_lock(&bs->rescue_lock);
351 		bio = bio_list_pop(&bs->rescue_list);
352 		spin_unlock(&bs->rescue_lock);
353 
354 		if (!bio)
355 			break;
356 
357 		generic_make_request(bio);
358 	}
359 }
360 
361 static void punt_bios_to_rescuer(struct bio_set *bs)
362 {
363 	struct bio_list punt, nopunt;
364 	struct bio *bio;
365 
366 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
367 		return;
368 	/*
369 	 * In order to guarantee forward progress we must punt only bios that
370 	 * were allocated from this bio_set; otherwise, if there was a bio on
371 	 * there for a stacking driver higher up in the stack, processing it
372 	 * could require allocating bios from this bio_set, and doing that from
373 	 * our own rescuer would be bad.
374 	 *
375 	 * Since bio lists are singly linked, pop them all instead of trying to
376 	 * remove from the middle of the list:
377 	 */
378 
379 	bio_list_init(&punt);
380 	bio_list_init(&nopunt);
381 
382 	while ((bio = bio_list_pop(&current->bio_list[0])))
383 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384 	current->bio_list[0] = nopunt;
385 
386 	bio_list_init(&nopunt);
387 	while ((bio = bio_list_pop(&current->bio_list[1])))
388 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 	current->bio_list[1] = nopunt;
390 
391 	spin_lock(&bs->rescue_lock);
392 	bio_list_merge(&bs->rescue_list, &punt);
393 	spin_unlock(&bs->rescue_lock);
394 
395 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
396 }
397 
398 /**
399  * bio_alloc_bioset - allocate a bio for I/O
400  * @gfp_mask:   the GFP_* mask given to the slab allocator
401  * @nr_iovecs:	number of iovecs to pre-allocate
402  * @bs:		the bio_set to allocate from.
403  *
404  * Description:
405  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
406  *   backed by the @bs's mempool.
407  *
408  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
409  *   always be able to allocate a bio. This is due to the mempool guarantees.
410  *   To make this work, callers must never allocate more than 1 bio at a time
411  *   from this pool. Callers that need to allocate more than 1 bio must always
412  *   submit the previously allocated bio for IO before attempting to allocate
413  *   a new one. Failure to do so can cause deadlocks under memory pressure.
414  *
415  *   Note that when running under generic_make_request() (i.e. any block
416  *   driver), bios are not submitted until after you return - see the code in
417  *   generic_make_request() that converts recursion into iteration, to prevent
418  *   stack overflows.
419  *
420  *   This would normally mean allocating multiple bios under
421  *   generic_make_request() would be susceptible to deadlocks, but we have
422  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
423  *   thread.
424  *
425  *   However, we do not guarantee forward progress for allocations from other
426  *   mempools. Doing multiple allocations from the same mempool under
427  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
428  *   for per bio allocations.
429  *
430  *   RETURNS:
431  *   Pointer to new bio on success, NULL on failure.
432  */
433 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
434 			     struct bio_set *bs)
435 {
436 	gfp_t saved_gfp = gfp_mask;
437 	unsigned front_pad;
438 	unsigned inline_vecs;
439 	struct bio_vec *bvl = NULL;
440 	struct bio *bio;
441 	void *p;
442 
443 	if (!bs) {
444 		if (nr_iovecs > UIO_MAXIOV)
445 			return NULL;
446 
447 		p = kmalloc(sizeof(struct bio) +
448 			    nr_iovecs * sizeof(struct bio_vec),
449 			    gfp_mask);
450 		front_pad = 0;
451 		inline_vecs = nr_iovecs;
452 	} else {
453 		/* should not use nobvec bioset for nr_iovecs > 0 */
454 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
455 				 nr_iovecs > 0))
456 			return NULL;
457 		/*
458 		 * generic_make_request() converts recursion to iteration; this
459 		 * means if we're running beneath it, any bios we allocate and
460 		 * submit will not be submitted (and thus freed) until after we
461 		 * return.
462 		 *
463 		 * This exposes us to a potential deadlock if we allocate
464 		 * multiple bios from the same bio_set() while running
465 		 * underneath generic_make_request(). If we were to allocate
466 		 * multiple bios (say a stacking block driver that was splitting
467 		 * bios), we would deadlock if we exhausted the mempool's
468 		 * reserve.
469 		 *
470 		 * We solve this, and guarantee forward progress, with a rescuer
471 		 * workqueue per bio_set. If we go to allocate and there are
472 		 * bios on current->bio_list, we first try the allocation
473 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
474 		 * bios we would be blocking to the rescuer workqueue before
475 		 * we retry with the original gfp_flags.
476 		 */
477 
478 		if (current->bio_list &&
479 		    (!bio_list_empty(&current->bio_list[0]) ||
480 		     !bio_list_empty(&current->bio_list[1])) &&
481 		    bs->rescue_workqueue)
482 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
483 
484 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
485 		if (!p && gfp_mask != saved_gfp) {
486 			punt_bios_to_rescuer(bs);
487 			gfp_mask = saved_gfp;
488 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
489 		}
490 
491 		front_pad = bs->front_pad;
492 		inline_vecs = BIO_INLINE_VECS;
493 	}
494 
495 	if (unlikely(!p))
496 		return NULL;
497 
498 	bio = p + front_pad;
499 	bio_init(bio, NULL, 0);
500 
501 	if (nr_iovecs > inline_vecs) {
502 		unsigned long idx = 0;
503 
504 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
505 		if (!bvl && gfp_mask != saved_gfp) {
506 			punt_bios_to_rescuer(bs);
507 			gfp_mask = saved_gfp;
508 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
509 		}
510 
511 		if (unlikely(!bvl))
512 			goto err_free;
513 
514 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
515 	} else if (nr_iovecs) {
516 		bvl = bio->bi_inline_vecs;
517 	}
518 
519 	bio->bi_pool = bs;
520 	bio->bi_max_vecs = nr_iovecs;
521 	bio->bi_io_vec = bvl;
522 	return bio;
523 
524 err_free:
525 	mempool_free(p, &bs->bio_pool);
526 	return NULL;
527 }
528 EXPORT_SYMBOL(bio_alloc_bioset);
529 
530 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
531 {
532 	unsigned long flags;
533 	struct bio_vec bv;
534 	struct bvec_iter iter;
535 
536 	__bio_for_each_segment(bv, bio, iter, start) {
537 		char *data = bvec_kmap_irq(&bv, &flags);
538 		memset(data, 0, bv.bv_len);
539 		flush_dcache_page(bv.bv_page);
540 		bvec_kunmap_irq(data, &flags);
541 	}
542 }
543 EXPORT_SYMBOL(zero_fill_bio_iter);
544 
545 /**
546  * bio_truncate - truncate the bio to small size of @new_size
547  * @bio:	the bio to be truncated
548  * @new_size:	new size for truncating the bio
549  *
550  * Description:
551  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
552  *   REQ_OP_READ, zero the truncated part. This function should only
553  *   be used for handling corner cases, such as bio eod.
554  */
555 void bio_truncate(struct bio *bio, unsigned new_size)
556 {
557 	struct bio_vec bv;
558 	struct bvec_iter iter;
559 	unsigned int done = 0;
560 	bool truncated = false;
561 
562 	if (new_size >= bio->bi_iter.bi_size)
563 		return;
564 
565 	if (bio_op(bio) != REQ_OP_READ)
566 		goto exit;
567 
568 	bio_for_each_segment(bv, bio, iter) {
569 		if (done + bv.bv_len > new_size) {
570 			unsigned offset;
571 
572 			if (!truncated)
573 				offset = new_size - done;
574 			else
575 				offset = 0;
576 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
577 			truncated = true;
578 		}
579 		done += bv.bv_len;
580 	}
581 
582  exit:
583 	/*
584 	 * Don't touch bvec table here and make it really immutable, since
585 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
586 	 * in its .end_bio() callback.
587 	 *
588 	 * It is enough to truncate bio by updating .bi_size since we can make
589 	 * correct bvec with the updated .bi_size for drivers.
590 	 */
591 	bio->bi_iter.bi_size = new_size;
592 }
593 
594 /**
595  * guard_bio_eod - truncate a BIO to fit the block device
596  * @bio:	bio to truncate
597  *
598  * This allows us to do IO even on the odd last sectors of a device, even if the
599  * block size is some multiple of the physical sector size.
600  *
601  * We'll just truncate the bio to the size of the device, and clear the end of
602  * the buffer head manually.  Truly out-of-range accesses will turn into actual
603  * I/O errors, this only handles the "we need to be able to do I/O at the final
604  * sector" case.
605  */
606 void guard_bio_eod(struct bio *bio)
607 {
608 	sector_t maxsector;
609 	struct hd_struct *part;
610 
611 	rcu_read_lock();
612 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
613 	if (part)
614 		maxsector = part_nr_sects_read(part);
615 	else
616 		maxsector = get_capacity(bio->bi_disk);
617 	rcu_read_unlock();
618 
619 	if (!maxsector)
620 		return;
621 
622 	/*
623 	 * If the *whole* IO is past the end of the device,
624 	 * let it through, and the IO layer will turn it into
625 	 * an EIO.
626 	 */
627 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
628 		return;
629 
630 	maxsector -= bio->bi_iter.bi_sector;
631 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
632 		return;
633 
634 	bio_truncate(bio, maxsector << 9);
635 }
636 
637 /**
638  * bio_put - release a reference to a bio
639  * @bio:   bio to release reference to
640  *
641  * Description:
642  *   Put a reference to a &struct bio, either one you have gotten with
643  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
644  **/
645 void bio_put(struct bio *bio)
646 {
647 	if (!bio_flagged(bio, BIO_REFFED))
648 		bio_free(bio);
649 	else {
650 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
651 
652 		/*
653 		 * last put frees it
654 		 */
655 		if (atomic_dec_and_test(&bio->__bi_cnt))
656 			bio_free(bio);
657 	}
658 }
659 EXPORT_SYMBOL(bio_put);
660 
661 /**
662  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
663  * 	@bio: destination bio
664  * 	@bio_src: bio to clone
665  *
666  *	Clone a &bio. Caller will own the returned bio, but not
667  *	the actual data it points to. Reference count of returned
668  * 	bio will be one.
669  *
670  * 	Caller must ensure that @bio_src is not freed before @bio.
671  */
672 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
673 {
674 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
675 
676 	/*
677 	 * most users will be overriding ->bi_disk with a new target,
678 	 * so we don't set nor calculate new physical/hw segment counts here
679 	 */
680 	bio->bi_disk = bio_src->bi_disk;
681 	bio->bi_partno = bio_src->bi_partno;
682 	bio_set_flag(bio, BIO_CLONED);
683 	if (bio_flagged(bio_src, BIO_THROTTLED))
684 		bio_set_flag(bio, BIO_THROTTLED);
685 	bio->bi_opf = bio_src->bi_opf;
686 	bio->bi_ioprio = bio_src->bi_ioprio;
687 	bio->bi_write_hint = bio_src->bi_write_hint;
688 	bio->bi_iter = bio_src->bi_iter;
689 	bio->bi_io_vec = bio_src->bi_io_vec;
690 
691 	bio_clone_blkg_association(bio, bio_src);
692 	blkcg_bio_issue_init(bio);
693 }
694 EXPORT_SYMBOL(__bio_clone_fast);
695 
696 /**
697  *	bio_clone_fast - clone a bio that shares the original bio's biovec
698  *	@bio: bio to clone
699  *	@gfp_mask: allocation priority
700  *	@bs: bio_set to allocate from
701  *
702  * 	Like __bio_clone_fast, only also allocates the returned bio
703  */
704 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
705 {
706 	struct bio *b;
707 
708 	b = bio_alloc_bioset(gfp_mask, 0, bs);
709 	if (!b)
710 		return NULL;
711 
712 	__bio_clone_fast(b, bio);
713 
714 	bio_crypt_clone(b, bio, gfp_mask);
715 
716 	if (bio_integrity(bio)) {
717 		int ret;
718 
719 		ret = bio_integrity_clone(b, bio, gfp_mask);
720 
721 		if (ret < 0) {
722 			bio_put(b);
723 			return NULL;
724 		}
725 	}
726 
727 	return b;
728 }
729 EXPORT_SYMBOL(bio_clone_fast);
730 
731 const char *bio_devname(struct bio *bio, char *buf)
732 {
733 	return disk_name(bio->bi_disk, bio->bi_partno, buf);
734 }
735 EXPORT_SYMBOL(bio_devname);
736 
737 static inline bool page_is_mergeable(const struct bio_vec *bv,
738 		struct page *page, unsigned int len, unsigned int off,
739 		bool *same_page)
740 {
741 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
742 		bv->bv_offset + bv->bv_len - 1;
743 	phys_addr_t page_addr = page_to_phys(page);
744 
745 	if (vec_end_addr + 1 != page_addr + off)
746 		return false;
747 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
748 		return false;
749 
750 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
751 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
752 		return false;
753 	return true;
754 }
755 
756 /*
757  * Try to merge a page into a segment, while obeying the hardware segment
758  * size limit.  This is not for normal read/write bios, but for passthrough
759  * or Zone Append operations that we can't split.
760  */
761 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
762 				 struct page *page, unsigned len,
763 				 unsigned offset, bool *same_page)
764 {
765 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
766 	unsigned long mask = queue_segment_boundary(q);
767 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
768 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
769 
770 	if ((addr1 | mask) != (addr2 | mask))
771 		return false;
772 	if (bv->bv_len + len > queue_max_segment_size(q))
773 		return false;
774 	return __bio_try_merge_page(bio, page, len, offset, same_page);
775 }
776 
777 /**
778  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
779  * @q: the target queue
780  * @bio: destination bio
781  * @page: page to add
782  * @len: vec entry length
783  * @offset: vec entry offset
784  * @max_sectors: maximum number of sectors that can be added
785  * @same_page: return if the segment has been merged inside the same page
786  *
787  * Add a page to a bio while respecting the hardware max_sectors, max_segment
788  * and gap limitations.
789  */
790 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
791 		struct page *page, unsigned int len, unsigned int offset,
792 		unsigned int max_sectors, bool *same_page)
793 {
794 	struct bio_vec *bvec;
795 
796 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
797 		return 0;
798 
799 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
800 		return 0;
801 
802 	if (bio->bi_vcnt > 0) {
803 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
804 			return len;
805 
806 		/*
807 		 * If the queue doesn't support SG gaps and adding this segment
808 		 * would create a gap, disallow it.
809 		 */
810 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
811 		if (bvec_gap_to_prev(q, bvec, offset))
812 			return 0;
813 	}
814 
815 	if (bio_full(bio, len))
816 		return 0;
817 
818 	if (bio->bi_vcnt >= queue_max_segments(q))
819 		return 0;
820 
821 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
822 	bvec->bv_page = page;
823 	bvec->bv_len = len;
824 	bvec->bv_offset = offset;
825 	bio->bi_vcnt++;
826 	bio->bi_iter.bi_size += len;
827 	return len;
828 }
829 
830 /**
831  * bio_add_pc_page	- attempt to add page to passthrough bio
832  * @q: the target queue
833  * @bio: destination bio
834  * @page: page to add
835  * @len: vec entry length
836  * @offset: vec entry offset
837  *
838  * Attempt to add a page to the bio_vec maplist. This can fail for a
839  * number of reasons, such as the bio being full or target block device
840  * limitations. The target block device must allow bio's up to PAGE_SIZE,
841  * so it is always possible to add a single page to an empty bio.
842  *
843  * This should only be used by passthrough bios.
844  */
845 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
846 		struct page *page, unsigned int len, unsigned int offset)
847 {
848 	bool same_page = false;
849 	return bio_add_hw_page(q, bio, page, len, offset,
850 			queue_max_hw_sectors(q), &same_page);
851 }
852 EXPORT_SYMBOL(bio_add_pc_page);
853 
854 /**
855  * __bio_try_merge_page - try appending data to an existing bvec.
856  * @bio: destination bio
857  * @page: start page to add
858  * @len: length of the data to add
859  * @off: offset of the data relative to @page
860  * @same_page: return if the segment has been merged inside the same page
861  *
862  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
863  * a useful optimisation for file systems with a block size smaller than the
864  * page size.
865  *
866  * Warn if (@len, @off) crosses pages in case that @same_page is true.
867  *
868  * Return %true on success or %false on failure.
869  */
870 bool __bio_try_merge_page(struct bio *bio, struct page *page,
871 		unsigned int len, unsigned int off, bool *same_page)
872 {
873 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
874 		return false;
875 
876 	if (bio->bi_vcnt > 0) {
877 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
878 
879 		if (page_is_mergeable(bv, page, len, off, same_page)) {
880 			if (bio->bi_iter.bi_size > UINT_MAX - len)
881 				return false;
882 			bv->bv_len += len;
883 			bio->bi_iter.bi_size += len;
884 			return true;
885 		}
886 	}
887 	return false;
888 }
889 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
890 
891 /**
892  * __bio_add_page - add page(s) to a bio in a new segment
893  * @bio: destination bio
894  * @page: start page to add
895  * @len: length of the data to add, may cross pages
896  * @off: offset of the data relative to @page, may cross pages
897  *
898  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
899  * that @bio has space for another bvec.
900  */
901 void __bio_add_page(struct bio *bio, struct page *page,
902 		unsigned int len, unsigned int off)
903 {
904 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
905 
906 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
907 	WARN_ON_ONCE(bio_full(bio, len));
908 
909 	bv->bv_page = page;
910 	bv->bv_offset = off;
911 	bv->bv_len = len;
912 
913 	bio->bi_iter.bi_size += len;
914 	bio->bi_vcnt++;
915 
916 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
917 		bio_set_flag(bio, BIO_WORKINGSET);
918 }
919 EXPORT_SYMBOL_GPL(__bio_add_page);
920 
921 /**
922  *	bio_add_page	-	attempt to add page(s) to bio
923  *	@bio: destination bio
924  *	@page: start page to add
925  *	@len: vec entry length, may cross pages
926  *	@offset: vec entry offset relative to @page, may cross pages
927  *
928  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
929  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
930  */
931 int bio_add_page(struct bio *bio, struct page *page,
932 		 unsigned int len, unsigned int offset)
933 {
934 	bool same_page = false;
935 
936 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
937 		if (bio_full(bio, len))
938 			return 0;
939 		__bio_add_page(bio, page, len, offset);
940 	}
941 	return len;
942 }
943 EXPORT_SYMBOL(bio_add_page);
944 
945 void bio_release_pages(struct bio *bio, bool mark_dirty)
946 {
947 	struct bvec_iter_all iter_all;
948 	struct bio_vec *bvec;
949 
950 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
951 		return;
952 
953 	bio_for_each_segment_all(bvec, bio, iter_all) {
954 		if (mark_dirty && !PageCompound(bvec->bv_page))
955 			set_page_dirty_lock(bvec->bv_page);
956 		put_page(bvec->bv_page);
957 	}
958 }
959 EXPORT_SYMBOL_GPL(bio_release_pages);
960 
961 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
962 {
963 	const struct bio_vec *bv = iter->bvec;
964 	unsigned int len;
965 	size_t size;
966 
967 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
968 		return -EINVAL;
969 
970 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
971 	size = bio_add_page(bio, bv->bv_page, len,
972 				bv->bv_offset + iter->iov_offset);
973 	if (unlikely(size != len))
974 		return -EINVAL;
975 	iov_iter_advance(iter, size);
976 	return 0;
977 }
978 
979 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
980 
981 /**
982  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
983  * @bio: bio to add pages to
984  * @iter: iov iterator describing the region to be mapped
985  *
986  * Pins pages from *iter and appends them to @bio's bvec array. The
987  * pages will have to be released using put_page() when done.
988  * For multi-segment *iter, this function only adds pages from the
989  * the next non-empty segment of the iov iterator.
990  */
991 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
992 {
993 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
994 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
995 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
996 	struct page **pages = (struct page **)bv;
997 	bool same_page = false;
998 	ssize_t size, left;
999 	unsigned len, i;
1000 	size_t offset;
1001 
1002 	/*
1003 	 * Move page array up in the allocated memory for the bio vecs as far as
1004 	 * possible so that we can start filling biovecs from the beginning
1005 	 * without overwriting the temporary page array.
1006 	*/
1007 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1008 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1009 
1010 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1011 	if (unlikely(size <= 0))
1012 		return size ? size : -EFAULT;
1013 
1014 	for (left = size, i = 0; left > 0; left -= len, i++) {
1015 		struct page *page = pages[i];
1016 
1017 		len = min_t(size_t, PAGE_SIZE - offset, left);
1018 
1019 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1020 			if (same_page)
1021 				put_page(page);
1022 		} else {
1023 			if (WARN_ON_ONCE(bio_full(bio, len)))
1024                                 return -EINVAL;
1025 			__bio_add_page(bio, page, len, offset);
1026 		}
1027 		offset = 0;
1028 	}
1029 
1030 	iov_iter_advance(iter, size);
1031 	return 0;
1032 }
1033 
1034 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1035 {
1036 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1037 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1038 	struct request_queue *q = bio->bi_disk->queue;
1039 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1040 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1041 	struct page **pages = (struct page **)bv;
1042 	ssize_t size, left;
1043 	unsigned len, i;
1044 	size_t offset;
1045 
1046 	if (WARN_ON_ONCE(!max_append_sectors))
1047 		return 0;
1048 
1049 	/*
1050 	 * Move page array up in the allocated memory for the bio vecs as far as
1051 	 * possible so that we can start filling biovecs from the beginning
1052 	 * without overwriting the temporary page array.
1053 	 */
1054 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1055 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1056 
1057 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1058 	if (unlikely(size <= 0))
1059 		return size ? size : -EFAULT;
1060 
1061 	for (left = size, i = 0; left > 0; left -= len, i++) {
1062 		struct page *page = pages[i];
1063 		bool same_page = false;
1064 
1065 		len = min_t(size_t, PAGE_SIZE - offset, left);
1066 		if (bio_add_hw_page(q, bio, page, len, offset,
1067 				max_append_sectors, &same_page) != len)
1068 			return -EINVAL;
1069 		if (same_page)
1070 			put_page(page);
1071 		offset = 0;
1072 	}
1073 
1074 	iov_iter_advance(iter, size);
1075 	return 0;
1076 }
1077 
1078 /**
1079  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1080  * @bio: bio to add pages to
1081  * @iter: iov iterator describing the region to be added
1082  *
1083  * This takes either an iterator pointing to user memory, or one pointing to
1084  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1085  * map them into the kernel. On IO completion, the caller should put those
1086  * pages. If we're adding kernel pages, and the caller told us it's safe to
1087  * do so, we just have to add the pages to the bio directly. We don't grab an
1088  * extra reference to those pages (the user should already have that), and we
1089  * don't put the page on IO completion. The caller needs to check if the bio is
1090  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1091  * released.
1092  *
1093  * The function tries, but does not guarantee, to pin as many pages as
1094  * fit into the bio, or are requested in *iter, whatever is smaller. If
1095  * MM encounters an error pinning the requested pages, it stops. Error
1096  * is returned only if 0 pages could be pinned.
1097  */
1098 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1099 {
1100 	const bool is_bvec = iov_iter_is_bvec(iter);
1101 	int ret;
1102 
1103 	if (WARN_ON_ONCE(bio->bi_vcnt))
1104 		return -EINVAL;
1105 
1106 	do {
1107 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1108 			if (WARN_ON_ONCE(is_bvec))
1109 				return -EINVAL;
1110 			ret = __bio_iov_append_get_pages(bio, iter);
1111 		} else {
1112 			if (is_bvec)
1113 				ret = __bio_iov_bvec_add_pages(bio, iter);
1114 			else
1115 				ret = __bio_iov_iter_get_pages(bio, iter);
1116 		}
1117 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1118 
1119 	if (is_bvec)
1120 		bio_set_flag(bio, BIO_NO_PAGE_REF);
1121 	return bio->bi_vcnt ? 0 : ret;
1122 }
1123 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1124 
1125 static void submit_bio_wait_endio(struct bio *bio)
1126 {
1127 	complete(bio->bi_private);
1128 }
1129 
1130 /**
1131  * submit_bio_wait - submit a bio, and wait until it completes
1132  * @bio: The &struct bio which describes the I/O
1133  *
1134  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1135  * bio_endio() on failure.
1136  *
1137  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1138  * result in bio reference to be consumed. The caller must drop the reference
1139  * on his own.
1140  */
1141 int submit_bio_wait(struct bio *bio)
1142 {
1143 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1144 	unsigned long hang_check;
1145 
1146 	bio->bi_private = &done;
1147 	bio->bi_end_io = submit_bio_wait_endio;
1148 	bio->bi_opf |= REQ_SYNC;
1149 	submit_bio(bio);
1150 
1151 	/* Prevent hang_check timer from firing at us during very long I/O */
1152 	hang_check = sysctl_hung_task_timeout_secs;
1153 	if (hang_check)
1154 		while (!wait_for_completion_io_timeout(&done,
1155 					hang_check * (HZ/2)))
1156 			;
1157 	else
1158 		wait_for_completion_io(&done);
1159 
1160 	return blk_status_to_errno(bio->bi_status);
1161 }
1162 EXPORT_SYMBOL(submit_bio_wait);
1163 
1164 /**
1165  * bio_advance - increment/complete a bio by some number of bytes
1166  * @bio:	bio to advance
1167  * @bytes:	number of bytes to complete
1168  *
1169  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1170  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1171  * be updated on the last bvec as well.
1172  *
1173  * @bio will then represent the remaining, uncompleted portion of the io.
1174  */
1175 void bio_advance(struct bio *bio, unsigned bytes)
1176 {
1177 	if (bio_integrity(bio))
1178 		bio_integrity_advance(bio, bytes);
1179 
1180 	bio_crypt_advance(bio, bytes);
1181 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1182 }
1183 EXPORT_SYMBOL(bio_advance);
1184 
1185 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1186 			struct bio *src, struct bvec_iter *src_iter)
1187 {
1188 	struct bio_vec src_bv, dst_bv;
1189 	void *src_p, *dst_p;
1190 	unsigned bytes;
1191 
1192 	while (src_iter->bi_size && dst_iter->bi_size) {
1193 		src_bv = bio_iter_iovec(src, *src_iter);
1194 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1195 
1196 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1197 
1198 		src_p = kmap_atomic(src_bv.bv_page);
1199 		dst_p = kmap_atomic(dst_bv.bv_page);
1200 
1201 		memcpy(dst_p + dst_bv.bv_offset,
1202 		       src_p + src_bv.bv_offset,
1203 		       bytes);
1204 
1205 		kunmap_atomic(dst_p);
1206 		kunmap_atomic(src_p);
1207 
1208 		flush_dcache_page(dst_bv.bv_page);
1209 
1210 		bio_advance_iter(src, src_iter, bytes);
1211 		bio_advance_iter(dst, dst_iter, bytes);
1212 	}
1213 }
1214 EXPORT_SYMBOL(bio_copy_data_iter);
1215 
1216 /**
1217  * bio_copy_data - copy contents of data buffers from one bio to another
1218  * @src: source bio
1219  * @dst: destination bio
1220  *
1221  * Stops when it reaches the end of either @src or @dst - that is, copies
1222  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1223  */
1224 void bio_copy_data(struct bio *dst, struct bio *src)
1225 {
1226 	struct bvec_iter src_iter = src->bi_iter;
1227 	struct bvec_iter dst_iter = dst->bi_iter;
1228 
1229 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1230 }
1231 EXPORT_SYMBOL(bio_copy_data);
1232 
1233 /**
1234  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1235  * another
1236  * @src: source bio list
1237  * @dst: destination bio list
1238  *
1239  * Stops when it reaches the end of either the @src list or @dst list - that is,
1240  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1241  * bios).
1242  */
1243 void bio_list_copy_data(struct bio *dst, struct bio *src)
1244 {
1245 	struct bvec_iter src_iter = src->bi_iter;
1246 	struct bvec_iter dst_iter = dst->bi_iter;
1247 
1248 	while (1) {
1249 		if (!src_iter.bi_size) {
1250 			src = src->bi_next;
1251 			if (!src)
1252 				break;
1253 
1254 			src_iter = src->bi_iter;
1255 		}
1256 
1257 		if (!dst_iter.bi_size) {
1258 			dst = dst->bi_next;
1259 			if (!dst)
1260 				break;
1261 
1262 			dst_iter = dst->bi_iter;
1263 		}
1264 
1265 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1266 	}
1267 }
1268 EXPORT_SYMBOL(bio_list_copy_data);
1269 
1270 void bio_free_pages(struct bio *bio)
1271 {
1272 	struct bio_vec *bvec;
1273 	struct bvec_iter_all iter_all;
1274 
1275 	bio_for_each_segment_all(bvec, bio, iter_all)
1276 		__free_page(bvec->bv_page);
1277 }
1278 EXPORT_SYMBOL(bio_free_pages);
1279 
1280 /*
1281  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1282  * for performing direct-IO in BIOs.
1283  *
1284  * The problem is that we cannot run set_page_dirty() from interrupt context
1285  * because the required locks are not interrupt-safe.  So what we can do is to
1286  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1287  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1288  * in process context.
1289  *
1290  * We special-case compound pages here: normally this means reads into hugetlb
1291  * pages.  The logic in here doesn't really work right for compound pages
1292  * because the VM does not uniformly chase down the head page in all cases.
1293  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1294  * handle them at all.  So we skip compound pages here at an early stage.
1295  *
1296  * Note that this code is very hard to test under normal circumstances because
1297  * direct-io pins the pages with get_user_pages().  This makes
1298  * is_page_cache_freeable return false, and the VM will not clean the pages.
1299  * But other code (eg, flusher threads) could clean the pages if they are mapped
1300  * pagecache.
1301  *
1302  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1303  * deferred bio dirtying paths.
1304  */
1305 
1306 /*
1307  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1308  */
1309 void bio_set_pages_dirty(struct bio *bio)
1310 {
1311 	struct bio_vec *bvec;
1312 	struct bvec_iter_all iter_all;
1313 
1314 	bio_for_each_segment_all(bvec, bio, iter_all) {
1315 		if (!PageCompound(bvec->bv_page))
1316 			set_page_dirty_lock(bvec->bv_page);
1317 	}
1318 }
1319 
1320 /*
1321  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1322  * If they are, then fine.  If, however, some pages are clean then they must
1323  * have been written out during the direct-IO read.  So we take another ref on
1324  * the BIO and re-dirty the pages in process context.
1325  *
1326  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1327  * here on.  It will run one put_page() against each page and will run one
1328  * bio_put() against the BIO.
1329  */
1330 
1331 static void bio_dirty_fn(struct work_struct *work);
1332 
1333 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1334 static DEFINE_SPINLOCK(bio_dirty_lock);
1335 static struct bio *bio_dirty_list;
1336 
1337 /*
1338  * This runs in process context
1339  */
1340 static void bio_dirty_fn(struct work_struct *work)
1341 {
1342 	struct bio *bio, *next;
1343 
1344 	spin_lock_irq(&bio_dirty_lock);
1345 	next = bio_dirty_list;
1346 	bio_dirty_list = NULL;
1347 	spin_unlock_irq(&bio_dirty_lock);
1348 
1349 	while ((bio = next) != NULL) {
1350 		next = bio->bi_private;
1351 
1352 		bio_release_pages(bio, true);
1353 		bio_put(bio);
1354 	}
1355 }
1356 
1357 void bio_check_pages_dirty(struct bio *bio)
1358 {
1359 	struct bio_vec *bvec;
1360 	unsigned long flags;
1361 	struct bvec_iter_all iter_all;
1362 
1363 	bio_for_each_segment_all(bvec, bio, iter_all) {
1364 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1365 			goto defer;
1366 	}
1367 
1368 	bio_release_pages(bio, false);
1369 	bio_put(bio);
1370 	return;
1371 defer:
1372 	spin_lock_irqsave(&bio_dirty_lock, flags);
1373 	bio->bi_private = bio_dirty_list;
1374 	bio_dirty_list = bio;
1375 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1376 	schedule_work(&bio_dirty_work);
1377 }
1378 
1379 static inline bool bio_remaining_done(struct bio *bio)
1380 {
1381 	/*
1382 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1383 	 * we always end io on the first invocation.
1384 	 */
1385 	if (!bio_flagged(bio, BIO_CHAIN))
1386 		return true;
1387 
1388 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1389 
1390 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1391 		bio_clear_flag(bio, BIO_CHAIN);
1392 		return true;
1393 	}
1394 
1395 	return false;
1396 }
1397 
1398 /**
1399  * bio_endio - end I/O on a bio
1400  * @bio:	bio
1401  *
1402  * Description:
1403  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1404  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1405  *   bio unless they own it and thus know that it has an end_io function.
1406  *
1407  *   bio_endio() can be called several times on a bio that has been chained
1408  *   using bio_chain().  The ->bi_end_io() function will only be called the
1409  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1410  *   generated if BIO_TRACE_COMPLETION is set.
1411  **/
1412 void bio_endio(struct bio *bio)
1413 {
1414 again:
1415 	if (!bio_remaining_done(bio))
1416 		return;
1417 	if (!bio_integrity_endio(bio))
1418 		return;
1419 
1420 	if (bio->bi_disk)
1421 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1422 
1423 	/*
1424 	 * Need to have a real endio function for chained bios, otherwise
1425 	 * various corner cases will break (like stacking block devices that
1426 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1427 	 * recursion and blowing the stack. Tail call optimization would
1428 	 * handle this, but compiling with frame pointers also disables
1429 	 * gcc's sibling call optimization.
1430 	 */
1431 	if (bio->bi_end_io == bio_chain_endio) {
1432 		bio = __bio_chain_endio(bio);
1433 		goto again;
1434 	}
1435 
1436 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1437 		trace_block_bio_complete(bio->bi_disk->queue, bio);
1438 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1439 	}
1440 
1441 	blk_throtl_bio_endio(bio);
1442 	/* release cgroup info */
1443 	bio_uninit(bio);
1444 	if (bio->bi_end_io)
1445 		bio->bi_end_io(bio);
1446 }
1447 EXPORT_SYMBOL(bio_endio);
1448 
1449 /**
1450  * bio_split - split a bio
1451  * @bio:	bio to split
1452  * @sectors:	number of sectors to split from the front of @bio
1453  * @gfp:	gfp mask
1454  * @bs:		bio set to allocate from
1455  *
1456  * Allocates and returns a new bio which represents @sectors from the start of
1457  * @bio, and updates @bio to represent the remaining sectors.
1458  *
1459  * Unless this is a discard request the newly allocated bio will point
1460  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1461  * neither @bio nor @bs are freed before the split bio.
1462  */
1463 struct bio *bio_split(struct bio *bio, int sectors,
1464 		      gfp_t gfp, struct bio_set *bs)
1465 {
1466 	struct bio *split;
1467 
1468 	BUG_ON(sectors <= 0);
1469 	BUG_ON(sectors >= bio_sectors(bio));
1470 
1471 	/* Zone append commands cannot be split */
1472 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1473 		return NULL;
1474 
1475 	split = bio_clone_fast(bio, gfp, bs);
1476 	if (!split)
1477 		return NULL;
1478 
1479 	split->bi_iter.bi_size = sectors << 9;
1480 
1481 	if (bio_integrity(split))
1482 		bio_integrity_trim(split);
1483 
1484 	bio_advance(bio, split->bi_iter.bi_size);
1485 
1486 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1487 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1488 
1489 	return split;
1490 }
1491 EXPORT_SYMBOL(bio_split);
1492 
1493 /**
1494  * bio_trim - trim a bio
1495  * @bio:	bio to trim
1496  * @offset:	number of sectors to trim from the front of @bio
1497  * @size:	size we want to trim @bio to, in sectors
1498  */
1499 void bio_trim(struct bio *bio, int offset, int size)
1500 {
1501 	/* 'bio' is a cloned bio which we need to trim to match
1502 	 * the given offset and size.
1503 	 */
1504 
1505 	size <<= 9;
1506 	if (offset == 0 && size == bio->bi_iter.bi_size)
1507 		return;
1508 
1509 	bio_advance(bio, offset << 9);
1510 	bio->bi_iter.bi_size = size;
1511 
1512 	if (bio_integrity(bio))
1513 		bio_integrity_trim(bio);
1514 
1515 }
1516 EXPORT_SYMBOL_GPL(bio_trim);
1517 
1518 /*
1519  * create memory pools for biovec's in a bio_set.
1520  * use the global biovec slabs created for general use.
1521  */
1522 int biovec_init_pool(mempool_t *pool, int pool_entries)
1523 {
1524 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1525 
1526 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1527 }
1528 
1529 /*
1530  * bioset_exit - exit a bioset initialized with bioset_init()
1531  *
1532  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1533  * kzalloc()).
1534  */
1535 void bioset_exit(struct bio_set *bs)
1536 {
1537 	if (bs->rescue_workqueue)
1538 		destroy_workqueue(bs->rescue_workqueue);
1539 	bs->rescue_workqueue = NULL;
1540 
1541 	mempool_exit(&bs->bio_pool);
1542 	mempool_exit(&bs->bvec_pool);
1543 
1544 	bioset_integrity_free(bs);
1545 	if (bs->bio_slab)
1546 		bio_put_slab(bs);
1547 	bs->bio_slab = NULL;
1548 }
1549 EXPORT_SYMBOL(bioset_exit);
1550 
1551 /**
1552  * bioset_init - Initialize a bio_set
1553  * @bs:		pool to initialize
1554  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1555  * @front_pad:	Number of bytes to allocate in front of the returned bio
1556  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1557  *              and %BIOSET_NEED_RESCUER
1558  *
1559  * Description:
1560  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1561  *    to ask for a number of bytes to be allocated in front of the bio.
1562  *    Front pad allocation is useful for embedding the bio inside
1563  *    another structure, to avoid allocating extra data to go with the bio.
1564  *    Note that the bio must be embedded at the END of that structure always,
1565  *    or things will break badly.
1566  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1567  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1568  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1569  *    dispatch queued requests when the mempool runs out of space.
1570  *
1571  */
1572 int bioset_init(struct bio_set *bs,
1573 		unsigned int pool_size,
1574 		unsigned int front_pad,
1575 		int flags)
1576 {
1577 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1578 
1579 	bs->front_pad = front_pad;
1580 
1581 	spin_lock_init(&bs->rescue_lock);
1582 	bio_list_init(&bs->rescue_list);
1583 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1584 
1585 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1586 	if (!bs->bio_slab)
1587 		return -ENOMEM;
1588 
1589 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1590 		goto bad;
1591 
1592 	if ((flags & BIOSET_NEED_BVECS) &&
1593 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1594 		goto bad;
1595 
1596 	if (!(flags & BIOSET_NEED_RESCUER))
1597 		return 0;
1598 
1599 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1600 	if (!bs->rescue_workqueue)
1601 		goto bad;
1602 
1603 	return 0;
1604 bad:
1605 	bioset_exit(bs);
1606 	return -ENOMEM;
1607 }
1608 EXPORT_SYMBOL(bioset_init);
1609 
1610 /*
1611  * Initialize and setup a new bio_set, based on the settings from
1612  * another bio_set.
1613  */
1614 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1615 {
1616 	int flags;
1617 
1618 	flags = 0;
1619 	if (src->bvec_pool.min_nr)
1620 		flags |= BIOSET_NEED_BVECS;
1621 	if (src->rescue_workqueue)
1622 		flags |= BIOSET_NEED_RESCUER;
1623 
1624 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1625 }
1626 EXPORT_SYMBOL(bioset_init_from_src);
1627 
1628 #ifdef CONFIG_BLK_CGROUP
1629 
1630 /**
1631  * bio_disassociate_blkg - puts back the blkg reference if associated
1632  * @bio: target bio
1633  *
1634  * Helper to disassociate the blkg from @bio if a blkg is associated.
1635  */
1636 void bio_disassociate_blkg(struct bio *bio)
1637 {
1638 	if (bio->bi_blkg) {
1639 		blkg_put(bio->bi_blkg);
1640 		bio->bi_blkg = NULL;
1641 	}
1642 }
1643 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
1644 
1645 /**
1646  * __bio_associate_blkg - associate a bio with the a blkg
1647  * @bio: target bio
1648  * @blkg: the blkg to associate
1649  *
1650  * This tries to associate @bio with the specified @blkg.  Association failure
1651  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
1652  * be anything between @blkg and the root_blkg.  This situation only happens
1653  * when a cgroup is dying and then the remaining bios will spill to the closest
1654  * alive blkg.
1655  *
1656  * A reference will be taken on the @blkg and will be released when @bio is
1657  * freed.
1658  */
1659 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
1660 {
1661 	bio_disassociate_blkg(bio);
1662 
1663 	bio->bi_blkg = blkg_tryget_closest(blkg);
1664 }
1665 
1666 /**
1667  * bio_associate_blkg_from_css - associate a bio with a specified css
1668  * @bio: target bio
1669  * @css: target css
1670  *
1671  * Associate @bio with the blkg found by combining the css's blkg and the
1672  * request_queue of the @bio.  This falls back to the queue's root_blkg if
1673  * the association fails with the css.
1674  */
1675 void bio_associate_blkg_from_css(struct bio *bio,
1676 				 struct cgroup_subsys_state *css)
1677 {
1678 	struct request_queue *q = bio->bi_disk->queue;
1679 	struct blkcg_gq *blkg;
1680 
1681 	rcu_read_lock();
1682 
1683 	if (!css || !css->parent)
1684 		blkg = q->root_blkg;
1685 	else
1686 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
1687 
1688 	__bio_associate_blkg(bio, blkg);
1689 
1690 	rcu_read_unlock();
1691 }
1692 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1693 
1694 #ifdef CONFIG_MEMCG
1695 /**
1696  * bio_associate_blkg_from_page - associate a bio with the page's blkg
1697  * @bio: target bio
1698  * @page: the page to lookup the blkcg from
1699  *
1700  * Associate @bio with the blkg from @page's owning memcg and the respective
1701  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
1702  * root_blkg.
1703  */
1704 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
1705 {
1706 	struct cgroup_subsys_state *css;
1707 
1708 	if (!page->mem_cgroup)
1709 		return;
1710 
1711 	rcu_read_lock();
1712 
1713 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
1714 	bio_associate_blkg_from_css(bio, css);
1715 
1716 	rcu_read_unlock();
1717 }
1718 #endif /* CONFIG_MEMCG */
1719 
1720 /**
1721  * bio_associate_blkg - associate a bio with a blkg
1722  * @bio: target bio
1723  *
1724  * Associate @bio with the blkg found from the bio's css and request_queue.
1725  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1726  * already associated, the css is reused and association redone as the
1727  * request_queue may have changed.
1728  */
1729 void bio_associate_blkg(struct bio *bio)
1730 {
1731 	struct cgroup_subsys_state *css;
1732 
1733 	rcu_read_lock();
1734 
1735 	if (bio->bi_blkg)
1736 		css = &bio_blkcg(bio)->css;
1737 	else
1738 		css = blkcg_css();
1739 
1740 	bio_associate_blkg_from_css(bio, css);
1741 
1742 	rcu_read_unlock();
1743 }
1744 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1745 
1746 /**
1747  * bio_clone_blkg_association - clone blkg association from src to dst bio
1748  * @dst: destination bio
1749  * @src: source bio
1750  */
1751 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1752 {
1753 	rcu_read_lock();
1754 
1755 	if (src->bi_blkg)
1756 		__bio_associate_blkg(dst, src->bi_blkg);
1757 
1758 	rcu_read_unlock();
1759 }
1760 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1761 #endif /* CONFIG_BLK_CGROUP */
1762 
1763 static void __init biovec_init_slabs(void)
1764 {
1765 	int i;
1766 
1767 	for (i = 0; i < BVEC_POOL_NR; i++) {
1768 		int size;
1769 		struct biovec_slab *bvs = bvec_slabs + i;
1770 
1771 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1772 			bvs->slab = NULL;
1773 			continue;
1774 		}
1775 
1776 		size = bvs->nr_vecs * sizeof(struct bio_vec);
1777 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1778                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1779 	}
1780 }
1781 
1782 static int __init init_bio(void)
1783 {
1784 	bio_slab_max = 2;
1785 	bio_slab_nr = 0;
1786 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1787 			    GFP_KERNEL);
1788 
1789 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1790 
1791 	if (!bio_slabs)
1792 		panic("bio: can't allocate bios\n");
1793 
1794 	bio_integrity_init();
1795 	biovec_init_slabs();
1796 
1797 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1798 		panic("bio: can't allocate bios\n");
1799 
1800 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1801 		panic("bio: can't create integrity pool\n");
1802 
1803 	return 0;
1804 }
1805 subsys_initcall(init_bio);
1806