1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 20 #include <trace/events/block.h> 21 #include "blk.h" 22 #include "blk-rq-qos.h" 23 24 /* 25 * Test patch to inline a certain number of bi_io_vec's inside the bio 26 * itself, to shrink a bio data allocation from two mempool calls to one 27 */ 28 #define BIO_INLINE_VECS 4 29 30 /* 31 * if you change this list, also change bvec_alloc or things will 32 * break badly! cannot be bigger than what you can fit into an 33 * unsigned short 34 */ 35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 36 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 38 }; 39 #undef BV 40 41 /* 42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 43 * IO code that does not need private memory pools. 44 */ 45 struct bio_set fs_bio_set; 46 EXPORT_SYMBOL(fs_bio_set); 47 48 /* 49 * Our slab pool management 50 */ 51 struct bio_slab { 52 struct kmem_cache *slab; 53 unsigned int slab_ref; 54 unsigned int slab_size; 55 char name[8]; 56 }; 57 static DEFINE_MUTEX(bio_slab_lock); 58 static struct bio_slab *bio_slabs; 59 static unsigned int bio_slab_nr, bio_slab_max; 60 61 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 62 { 63 unsigned int sz = sizeof(struct bio) + extra_size; 64 struct kmem_cache *slab = NULL; 65 struct bio_slab *bslab, *new_bio_slabs; 66 unsigned int new_bio_slab_max; 67 unsigned int i, entry = -1; 68 69 mutex_lock(&bio_slab_lock); 70 71 i = 0; 72 while (i < bio_slab_nr) { 73 bslab = &bio_slabs[i]; 74 75 if (!bslab->slab && entry == -1) 76 entry = i; 77 else if (bslab->slab_size == sz) { 78 slab = bslab->slab; 79 bslab->slab_ref++; 80 break; 81 } 82 i++; 83 } 84 85 if (slab) 86 goto out_unlock; 87 88 if (bio_slab_nr == bio_slab_max && entry == -1) { 89 new_bio_slab_max = bio_slab_max << 1; 90 new_bio_slabs = krealloc(bio_slabs, 91 new_bio_slab_max * sizeof(struct bio_slab), 92 GFP_KERNEL); 93 if (!new_bio_slabs) 94 goto out_unlock; 95 bio_slab_max = new_bio_slab_max; 96 bio_slabs = new_bio_slabs; 97 } 98 if (entry == -1) 99 entry = bio_slab_nr++; 100 101 bslab = &bio_slabs[entry]; 102 103 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 104 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 105 SLAB_HWCACHE_ALIGN, NULL); 106 if (!slab) 107 goto out_unlock; 108 109 bslab->slab = slab; 110 bslab->slab_ref = 1; 111 bslab->slab_size = sz; 112 out_unlock: 113 mutex_unlock(&bio_slab_lock); 114 return slab; 115 } 116 117 static void bio_put_slab(struct bio_set *bs) 118 { 119 struct bio_slab *bslab = NULL; 120 unsigned int i; 121 122 mutex_lock(&bio_slab_lock); 123 124 for (i = 0; i < bio_slab_nr; i++) { 125 if (bs->bio_slab == bio_slabs[i].slab) { 126 bslab = &bio_slabs[i]; 127 break; 128 } 129 } 130 131 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 132 goto out; 133 134 WARN_ON(!bslab->slab_ref); 135 136 if (--bslab->slab_ref) 137 goto out; 138 139 kmem_cache_destroy(bslab->slab); 140 bslab->slab = NULL; 141 142 out: 143 mutex_unlock(&bio_slab_lock); 144 } 145 146 unsigned int bvec_nr_vecs(unsigned short idx) 147 { 148 return bvec_slabs[--idx].nr_vecs; 149 } 150 151 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 152 { 153 if (!idx) 154 return; 155 idx--; 156 157 BIO_BUG_ON(idx >= BVEC_POOL_NR); 158 159 if (idx == BVEC_POOL_MAX) { 160 mempool_free(bv, pool); 161 } else { 162 struct biovec_slab *bvs = bvec_slabs + idx; 163 164 kmem_cache_free(bvs->slab, bv); 165 } 166 } 167 168 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 169 mempool_t *pool) 170 { 171 struct bio_vec *bvl; 172 173 /* 174 * see comment near bvec_array define! 175 */ 176 switch (nr) { 177 case 1: 178 *idx = 0; 179 break; 180 case 2 ... 4: 181 *idx = 1; 182 break; 183 case 5 ... 16: 184 *idx = 2; 185 break; 186 case 17 ... 64: 187 *idx = 3; 188 break; 189 case 65 ... 128: 190 *idx = 4; 191 break; 192 case 129 ... BIO_MAX_PAGES: 193 *idx = 5; 194 break; 195 default: 196 return NULL; 197 } 198 199 /* 200 * idx now points to the pool we want to allocate from. only the 201 * 1-vec entry pool is mempool backed. 202 */ 203 if (*idx == BVEC_POOL_MAX) { 204 fallback: 205 bvl = mempool_alloc(pool, gfp_mask); 206 } else { 207 struct biovec_slab *bvs = bvec_slabs + *idx; 208 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 209 210 /* 211 * Make this allocation restricted and don't dump info on 212 * allocation failures, since we'll fallback to the mempool 213 * in case of failure. 214 */ 215 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 216 217 /* 218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 219 * is set, retry with the 1-entry mempool 220 */ 221 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 222 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 223 *idx = BVEC_POOL_MAX; 224 goto fallback; 225 } 226 } 227 228 (*idx)++; 229 return bvl; 230 } 231 232 void bio_uninit(struct bio *bio) 233 { 234 bio_disassociate_blkg(bio); 235 } 236 EXPORT_SYMBOL(bio_uninit); 237 238 static void bio_free(struct bio *bio) 239 { 240 struct bio_set *bs = bio->bi_pool; 241 void *p; 242 243 bio_uninit(bio); 244 245 if (bs) { 246 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 247 248 /* 249 * If we have front padding, adjust the bio pointer before freeing 250 */ 251 p = bio; 252 p -= bs->front_pad; 253 254 mempool_free(p, &bs->bio_pool); 255 } else { 256 /* Bio was allocated by bio_kmalloc() */ 257 kfree(bio); 258 } 259 } 260 261 /* 262 * Users of this function have their own bio allocation. Subsequently, 263 * they must remember to pair any call to bio_init() with bio_uninit() 264 * when IO has completed, or when the bio is released. 265 */ 266 void bio_init(struct bio *bio, struct bio_vec *table, 267 unsigned short max_vecs) 268 { 269 memset(bio, 0, sizeof(*bio)); 270 atomic_set(&bio->__bi_remaining, 1); 271 atomic_set(&bio->__bi_cnt, 1); 272 273 bio->bi_io_vec = table; 274 bio->bi_max_vecs = max_vecs; 275 } 276 EXPORT_SYMBOL(bio_init); 277 278 /** 279 * bio_reset - reinitialize a bio 280 * @bio: bio to reset 281 * 282 * Description: 283 * After calling bio_reset(), @bio will be in the same state as a freshly 284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 285 * preserved are the ones that are initialized by bio_alloc_bioset(). See 286 * comment in struct bio. 287 */ 288 void bio_reset(struct bio *bio) 289 { 290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 291 292 bio_uninit(bio); 293 294 memset(bio, 0, BIO_RESET_BYTES); 295 bio->bi_flags = flags; 296 atomic_set(&bio->__bi_remaining, 1); 297 } 298 EXPORT_SYMBOL(bio_reset); 299 300 static struct bio *__bio_chain_endio(struct bio *bio) 301 { 302 struct bio *parent = bio->bi_private; 303 304 if (!parent->bi_status) 305 parent->bi_status = bio->bi_status; 306 bio_put(bio); 307 return parent; 308 } 309 310 static void bio_chain_endio(struct bio *bio) 311 { 312 bio_endio(__bio_chain_endio(bio)); 313 } 314 315 /** 316 * bio_chain - chain bio completions 317 * @bio: the target bio 318 * @parent: the @bio's parent bio 319 * 320 * The caller won't have a bi_end_io called when @bio completes - instead, 321 * @parent's bi_end_io won't be called until both @parent and @bio have 322 * completed; the chained bio will also be freed when it completes. 323 * 324 * The caller must not set bi_private or bi_end_io in @bio. 325 */ 326 void bio_chain(struct bio *bio, struct bio *parent) 327 { 328 BUG_ON(bio->bi_private || bio->bi_end_io); 329 330 bio->bi_private = parent; 331 bio->bi_end_io = bio_chain_endio; 332 bio_inc_remaining(parent); 333 } 334 EXPORT_SYMBOL(bio_chain); 335 336 static void bio_alloc_rescue(struct work_struct *work) 337 { 338 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 339 struct bio *bio; 340 341 while (1) { 342 spin_lock(&bs->rescue_lock); 343 bio = bio_list_pop(&bs->rescue_list); 344 spin_unlock(&bs->rescue_lock); 345 346 if (!bio) 347 break; 348 349 generic_make_request(bio); 350 } 351 } 352 353 static void punt_bios_to_rescuer(struct bio_set *bs) 354 { 355 struct bio_list punt, nopunt; 356 struct bio *bio; 357 358 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 359 return; 360 /* 361 * In order to guarantee forward progress we must punt only bios that 362 * were allocated from this bio_set; otherwise, if there was a bio on 363 * there for a stacking driver higher up in the stack, processing it 364 * could require allocating bios from this bio_set, and doing that from 365 * our own rescuer would be bad. 366 * 367 * Since bio lists are singly linked, pop them all instead of trying to 368 * remove from the middle of the list: 369 */ 370 371 bio_list_init(&punt); 372 bio_list_init(&nopunt); 373 374 while ((bio = bio_list_pop(¤t->bio_list[0]))) 375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 376 current->bio_list[0] = nopunt; 377 378 bio_list_init(&nopunt); 379 while ((bio = bio_list_pop(¤t->bio_list[1]))) 380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 381 current->bio_list[1] = nopunt; 382 383 spin_lock(&bs->rescue_lock); 384 bio_list_merge(&bs->rescue_list, &punt); 385 spin_unlock(&bs->rescue_lock); 386 387 queue_work(bs->rescue_workqueue, &bs->rescue_work); 388 } 389 390 /** 391 * bio_alloc_bioset - allocate a bio for I/O 392 * @gfp_mask: the GFP_* mask given to the slab allocator 393 * @nr_iovecs: number of iovecs to pre-allocate 394 * @bs: the bio_set to allocate from. 395 * 396 * Description: 397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 398 * backed by the @bs's mempool. 399 * 400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 401 * always be able to allocate a bio. This is due to the mempool guarantees. 402 * To make this work, callers must never allocate more than 1 bio at a time 403 * from this pool. Callers that need to allocate more than 1 bio must always 404 * submit the previously allocated bio for IO before attempting to allocate 405 * a new one. Failure to do so can cause deadlocks under memory pressure. 406 * 407 * Note that when running under generic_make_request() (i.e. any block 408 * driver), bios are not submitted until after you return - see the code in 409 * generic_make_request() that converts recursion into iteration, to prevent 410 * stack overflows. 411 * 412 * This would normally mean allocating multiple bios under 413 * generic_make_request() would be susceptible to deadlocks, but we have 414 * deadlock avoidance code that resubmits any blocked bios from a rescuer 415 * thread. 416 * 417 * However, we do not guarantee forward progress for allocations from other 418 * mempools. Doing multiple allocations from the same mempool under 419 * generic_make_request() should be avoided - instead, use bio_set's front_pad 420 * for per bio allocations. 421 * 422 * RETURNS: 423 * Pointer to new bio on success, NULL on failure. 424 */ 425 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 426 struct bio_set *bs) 427 { 428 gfp_t saved_gfp = gfp_mask; 429 unsigned front_pad; 430 unsigned inline_vecs; 431 struct bio_vec *bvl = NULL; 432 struct bio *bio; 433 void *p; 434 435 if (!bs) { 436 if (nr_iovecs > UIO_MAXIOV) 437 return NULL; 438 439 p = kmalloc(sizeof(struct bio) + 440 nr_iovecs * sizeof(struct bio_vec), 441 gfp_mask); 442 front_pad = 0; 443 inline_vecs = nr_iovecs; 444 } else { 445 /* should not use nobvec bioset for nr_iovecs > 0 */ 446 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && 447 nr_iovecs > 0)) 448 return NULL; 449 /* 450 * generic_make_request() converts recursion to iteration; this 451 * means if we're running beneath it, any bios we allocate and 452 * submit will not be submitted (and thus freed) until after we 453 * return. 454 * 455 * This exposes us to a potential deadlock if we allocate 456 * multiple bios from the same bio_set() while running 457 * underneath generic_make_request(). If we were to allocate 458 * multiple bios (say a stacking block driver that was splitting 459 * bios), we would deadlock if we exhausted the mempool's 460 * reserve. 461 * 462 * We solve this, and guarantee forward progress, with a rescuer 463 * workqueue per bio_set. If we go to allocate and there are 464 * bios on current->bio_list, we first try the allocation 465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 466 * bios we would be blocking to the rescuer workqueue before 467 * we retry with the original gfp_flags. 468 */ 469 470 if (current->bio_list && 471 (!bio_list_empty(¤t->bio_list[0]) || 472 !bio_list_empty(¤t->bio_list[1])) && 473 bs->rescue_workqueue) 474 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 475 476 p = mempool_alloc(&bs->bio_pool, gfp_mask); 477 if (!p && gfp_mask != saved_gfp) { 478 punt_bios_to_rescuer(bs); 479 gfp_mask = saved_gfp; 480 p = mempool_alloc(&bs->bio_pool, gfp_mask); 481 } 482 483 front_pad = bs->front_pad; 484 inline_vecs = BIO_INLINE_VECS; 485 } 486 487 if (unlikely(!p)) 488 return NULL; 489 490 bio = p + front_pad; 491 bio_init(bio, NULL, 0); 492 493 if (nr_iovecs > inline_vecs) { 494 unsigned long idx = 0; 495 496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 497 if (!bvl && gfp_mask != saved_gfp) { 498 punt_bios_to_rescuer(bs); 499 gfp_mask = saved_gfp; 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 501 } 502 503 if (unlikely(!bvl)) 504 goto err_free; 505 506 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 507 } else if (nr_iovecs) { 508 bvl = bio->bi_inline_vecs; 509 } 510 511 bio->bi_pool = bs; 512 bio->bi_max_vecs = nr_iovecs; 513 bio->bi_io_vec = bvl; 514 return bio; 515 516 err_free: 517 mempool_free(p, &bs->bio_pool); 518 return NULL; 519 } 520 EXPORT_SYMBOL(bio_alloc_bioset); 521 522 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 523 { 524 unsigned long flags; 525 struct bio_vec bv; 526 struct bvec_iter iter; 527 528 __bio_for_each_segment(bv, bio, iter, start) { 529 char *data = bvec_kmap_irq(&bv, &flags); 530 memset(data, 0, bv.bv_len); 531 flush_dcache_page(bv.bv_page); 532 bvec_kunmap_irq(data, &flags); 533 } 534 } 535 EXPORT_SYMBOL(zero_fill_bio_iter); 536 537 /** 538 * bio_put - release a reference to a bio 539 * @bio: bio to release reference to 540 * 541 * Description: 542 * Put a reference to a &struct bio, either one you have gotten with 543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 544 **/ 545 void bio_put(struct bio *bio) 546 { 547 if (!bio_flagged(bio, BIO_REFFED)) 548 bio_free(bio); 549 else { 550 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 551 552 /* 553 * last put frees it 554 */ 555 if (atomic_dec_and_test(&bio->__bi_cnt)) 556 bio_free(bio); 557 } 558 } 559 EXPORT_SYMBOL(bio_put); 560 561 int bio_phys_segments(struct request_queue *q, struct bio *bio) 562 { 563 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 564 blk_recount_segments(q, bio); 565 566 return bio->bi_phys_segments; 567 } 568 569 /** 570 * __bio_clone_fast - clone a bio that shares the original bio's biovec 571 * @bio: destination bio 572 * @bio_src: bio to clone 573 * 574 * Clone a &bio. Caller will own the returned bio, but not 575 * the actual data it points to. Reference count of returned 576 * bio will be one. 577 * 578 * Caller must ensure that @bio_src is not freed before @bio. 579 */ 580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 581 { 582 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 583 584 /* 585 * most users will be overriding ->bi_disk with a new target, 586 * so we don't set nor calculate new physical/hw segment counts here 587 */ 588 bio->bi_disk = bio_src->bi_disk; 589 bio->bi_partno = bio_src->bi_partno; 590 bio_set_flag(bio, BIO_CLONED); 591 if (bio_flagged(bio_src, BIO_THROTTLED)) 592 bio_set_flag(bio, BIO_THROTTLED); 593 bio->bi_opf = bio_src->bi_opf; 594 bio->bi_ioprio = bio_src->bi_ioprio; 595 bio->bi_write_hint = bio_src->bi_write_hint; 596 bio->bi_iter = bio_src->bi_iter; 597 bio->bi_io_vec = bio_src->bi_io_vec; 598 599 bio_clone_blkg_association(bio, bio_src); 600 blkcg_bio_issue_init(bio); 601 } 602 EXPORT_SYMBOL(__bio_clone_fast); 603 604 /** 605 * bio_clone_fast - clone a bio that shares the original bio's biovec 606 * @bio: bio to clone 607 * @gfp_mask: allocation priority 608 * @bs: bio_set to allocate from 609 * 610 * Like __bio_clone_fast, only also allocates the returned bio 611 */ 612 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 613 { 614 struct bio *b; 615 616 b = bio_alloc_bioset(gfp_mask, 0, bs); 617 if (!b) 618 return NULL; 619 620 __bio_clone_fast(b, bio); 621 622 if (bio_integrity(bio)) { 623 int ret; 624 625 ret = bio_integrity_clone(b, bio, gfp_mask); 626 627 if (ret < 0) { 628 bio_put(b); 629 return NULL; 630 } 631 } 632 633 return b; 634 } 635 EXPORT_SYMBOL(bio_clone_fast); 636 637 static inline bool page_is_mergeable(const struct bio_vec *bv, 638 struct page *page, unsigned int len, unsigned int off, 639 bool same_page) 640 { 641 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + 642 bv->bv_offset + bv->bv_len - 1; 643 phys_addr_t page_addr = page_to_phys(page); 644 645 if (vec_end_addr + 1 != page_addr + off) 646 return false; 647 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 648 return false; 649 650 if ((vec_end_addr & PAGE_MASK) != page_addr) { 651 if (same_page) 652 return false; 653 if (pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page) 654 return false; 655 } 656 657 WARN_ON_ONCE(same_page && (len + off) > PAGE_SIZE); 658 659 return true; 660 } 661 662 /* 663 * Check if the @page can be added to the current segment(@bv), and make 664 * sure to call it only if page_is_mergeable(@bv, @page) is true 665 */ 666 static bool can_add_page_to_seg(struct request_queue *q, 667 struct bio_vec *bv, struct page *page, unsigned len, 668 unsigned offset) 669 { 670 unsigned long mask = queue_segment_boundary(q); 671 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 672 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 673 674 if ((addr1 | mask) != (addr2 | mask)) 675 return false; 676 677 if (bv->bv_len + len > queue_max_segment_size(q)) 678 return false; 679 680 return true; 681 } 682 683 /** 684 * __bio_add_pc_page - attempt to add page to passthrough bio 685 * @q: the target queue 686 * @bio: destination bio 687 * @page: page to add 688 * @len: vec entry length 689 * @offset: vec entry offset 690 * @put_same_page: put the page if it is same with last added page 691 * 692 * Attempt to add a page to the bio_vec maplist. This can fail for a 693 * number of reasons, such as the bio being full or target block device 694 * limitations. The target block device must allow bio's up to PAGE_SIZE, 695 * so it is always possible to add a single page to an empty bio. 696 * 697 * This should only be used by passthrough bios. 698 */ 699 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio, 700 struct page *page, unsigned int len, unsigned int offset, 701 bool put_same_page) 702 { 703 struct bio_vec *bvec; 704 705 /* 706 * cloned bio must not modify vec list 707 */ 708 if (unlikely(bio_flagged(bio, BIO_CLONED))) 709 return 0; 710 711 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 712 return 0; 713 714 if (bio->bi_vcnt > 0) { 715 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 716 717 if (page == bvec->bv_page && 718 offset == bvec->bv_offset + bvec->bv_len) { 719 if (put_same_page) 720 put_page(page); 721 bvec->bv_len += len; 722 goto done; 723 } 724 725 /* 726 * If the queue doesn't support SG gaps and adding this 727 * offset would create a gap, disallow it. 728 */ 729 if (bvec_gap_to_prev(q, bvec, offset)) 730 return 0; 731 732 if (page_is_mergeable(bvec, page, len, offset, false) && 733 can_add_page_to_seg(q, bvec, page, len, offset)) { 734 bvec->bv_len += len; 735 goto done; 736 } 737 } 738 739 if (bio_full(bio)) 740 return 0; 741 742 if (bio->bi_phys_segments >= queue_max_segments(q)) 743 return 0; 744 745 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 746 bvec->bv_page = page; 747 bvec->bv_len = len; 748 bvec->bv_offset = offset; 749 bio->bi_vcnt++; 750 done: 751 bio->bi_iter.bi_size += len; 752 bio->bi_phys_segments = bio->bi_vcnt; 753 bio_set_flag(bio, BIO_SEG_VALID); 754 return len; 755 } 756 757 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 758 struct page *page, unsigned int len, unsigned int offset) 759 { 760 return __bio_add_pc_page(q, bio, page, len, offset, false); 761 } 762 EXPORT_SYMBOL(bio_add_pc_page); 763 764 /** 765 * __bio_try_merge_page - try appending data to an existing bvec. 766 * @bio: destination bio 767 * @page: start page to add 768 * @len: length of the data to add 769 * @off: offset of the data relative to @page 770 * @same_page: if %true only merge if the new data is in the same physical 771 * page as the last segment of the bio. 772 * 773 * Try to add the data at @page + @off to the last bvec of @bio. This is a 774 * a useful optimisation for file systems with a block size smaller than the 775 * page size. 776 * 777 * Warn if (@len, @off) crosses pages in case that @same_page is true. 778 * 779 * Return %true on success or %false on failure. 780 */ 781 bool __bio_try_merge_page(struct bio *bio, struct page *page, 782 unsigned int len, unsigned int off, bool same_page) 783 { 784 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 785 return false; 786 787 if (bio->bi_vcnt > 0) { 788 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 789 790 if (page_is_mergeable(bv, page, len, off, same_page)) { 791 bv->bv_len += len; 792 bio->bi_iter.bi_size += len; 793 return true; 794 } 795 } 796 return false; 797 } 798 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 799 800 /** 801 * __bio_add_page - add page(s) to a bio in a new segment 802 * @bio: destination bio 803 * @page: start page to add 804 * @len: length of the data to add, may cross pages 805 * @off: offset of the data relative to @page, may cross pages 806 * 807 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 808 * that @bio has space for another bvec. 809 */ 810 void __bio_add_page(struct bio *bio, struct page *page, 811 unsigned int len, unsigned int off) 812 { 813 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 814 815 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 816 WARN_ON_ONCE(bio_full(bio)); 817 818 bv->bv_page = page; 819 bv->bv_offset = off; 820 bv->bv_len = len; 821 822 bio->bi_iter.bi_size += len; 823 bio->bi_vcnt++; 824 } 825 EXPORT_SYMBOL_GPL(__bio_add_page); 826 827 /** 828 * bio_add_page - attempt to add page(s) to bio 829 * @bio: destination bio 830 * @page: start page to add 831 * @len: vec entry length, may cross pages 832 * @offset: vec entry offset relative to @page, may cross pages 833 * 834 * Attempt to add page(s) to the bio_vec maplist. This will only fail 835 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 836 */ 837 int bio_add_page(struct bio *bio, struct page *page, 838 unsigned int len, unsigned int offset) 839 { 840 if (!__bio_try_merge_page(bio, page, len, offset, false)) { 841 if (bio_full(bio)) 842 return 0; 843 __bio_add_page(bio, page, len, offset); 844 } 845 return len; 846 } 847 EXPORT_SYMBOL(bio_add_page); 848 849 static void bio_get_pages(struct bio *bio) 850 { 851 struct bvec_iter_all iter_all; 852 struct bio_vec *bvec; 853 854 bio_for_each_segment_all(bvec, bio, iter_all) 855 get_page(bvec->bv_page); 856 } 857 858 static void bio_release_pages(struct bio *bio) 859 { 860 struct bvec_iter_all iter_all; 861 struct bio_vec *bvec; 862 863 bio_for_each_segment_all(bvec, bio, iter_all) 864 put_page(bvec->bv_page); 865 } 866 867 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) 868 { 869 const struct bio_vec *bv = iter->bvec; 870 unsigned int len; 871 size_t size; 872 873 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) 874 return -EINVAL; 875 876 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); 877 size = bio_add_page(bio, bv->bv_page, len, 878 bv->bv_offset + iter->iov_offset); 879 if (unlikely(size != len)) 880 return -EINVAL; 881 iov_iter_advance(iter, size); 882 return 0; 883 } 884 885 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 886 887 /** 888 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 889 * @bio: bio to add pages to 890 * @iter: iov iterator describing the region to be mapped 891 * 892 * Pins pages from *iter and appends them to @bio's bvec array. The 893 * pages will have to be released using put_page() when done. 894 * For multi-segment *iter, this function only adds pages from the 895 * the next non-empty segment of the iov iterator. 896 */ 897 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 898 { 899 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 900 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 901 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 902 struct page **pages = (struct page **)bv; 903 ssize_t size, left; 904 unsigned len, i; 905 size_t offset; 906 907 /* 908 * Move page array up in the allocated memory for the bio vecs as far as 909 * possible so that we can start filling biovecs from the beginning 910 * without overwriting the temporary page array. 911 */ 912 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 913 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 914 915 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 916 if (unlikely(size <= 0)) 917 return size ? size : -EFAULT; 918 919 for (left = size, i = 0; left > 0; left -= len, i++) { 920 struct page *page = pages[i]; 921 922 len = min_t(size_t, PAGE_SIZE - offset, left); 923 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len)) 924 return -EINVAL; 925 offset = 0; 926 } 927 928 iov_iter_advance(iter, size); 929 return 0; 930 } 931 932 /** 933 * bio_iov_iter_get_pages - add user or kernel pages to a bio 934 * @bio: bio to add pages to 935 * @iter: iov iterator describing the region to be added 936 * 937 * This takes either an iterator pointing to user memory, or one pointing to 938 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 939 * map them into the kernel. On IO completion, the caller should put those 940 * pages. If we're adding kernel pages, and the caller told us it's safe to 941 * do so, we just have to add the pages to the bio directly. We don't grab an 942 * extra reference to those pages (the user should already have that), and we 943 * don't put the page on IO completion. The caller needs to check if the bio is 944 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be 945 * released. 946 * 947 * The function tries, but does not guarantee, to pin as many pages as 948 * fit into the bio, or are requested in *iter, whatever is smaller. If 949 * MM encounters an error pinning the requested pages, it stops. Error 950 * is returned only if 0 pages could be pinned. 951 */ 952 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 953 { 954 const bool is_bvec = iov_iter_is_bvec(iter); 955 int ret; 956 957 if (WARN_ON_ONCE(bio->bi_vcnt)) 958 return -EINVAL; 959 960 do { 961 if (is_bvec) 962 ret = __bio_iov_bvec_add_pages(bio, iter); 963 else 964 ret = __bio_iov_iter_get_pages(bio, iter); 965 } while (!ret && iov_iter_count(iter) && !bio_full(bio)); 966 967 if (iov_iter_bvec_no_ref(iter)) 968 bio_set_flag(bio, BIO_NO_PAGE_REF); 969 else if (is_bvec) 970 bio_get_pages(bio); 971 972 return bio->bi_vcnt ? 0 : ret; 973 } 974 975 static void submit_bio_wait_endio(struct bio *bio) 976 { 977 complete(bio->bi_private); 978 } 979 980 /** 981 * submit_bio_wait - submit a bio, and wait until it completes 982 * @bio: The &struct bio which describes the I/O 983 * 984 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 985 * bio_endio() on failure. 986 * 987 * WARNING: Unlike to how submit_bio() is usually used, this function does not 988 * result in bio reference to be consumed. The caller must drop the reference 989 * on his own. 990 */ 991 int submit_bio_wait(struct bio *bio) 992 { 993 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 994 995 bio->bi_private = &done; 996 bio->bi_end_io = submit_bio_wait_endio; 997 bio->bi_opf |= REQ_SYNC; 998 submit_bio(bio); 999 wait_for_completion_io(&done); 1000 1001 return blk_status_to_errno(bio->bi_status); 1002 } 1003 EXPORT_SYMBOL(submit_bio_wait); 1004 1005 /** 1006 * bio_advance - increment/complete a bio by some number of bytes 1007 * @bio: bio to advance 1008 * @bytes: number of bytes to complete 1009 * 1010 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 1011 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 1012 * be updated on the last bvec as well. 1013 * 1014 * @bio will then represent the remaining, uncompleted portion of the io. 1015 */ 1016 void bio_advance(struct bio *bio, unsigned bytes) 1017 { 1018 if (bio_integrity(bio)) 1019 bio_integrity_advance(bio, bytes); 1020 1021 bio_advance_iter(bio, &bio->bi_iter, bytes); 1022 } 1023 EXPORT_SYMBOL(bio_advance); 1024 1025 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1026 struct bio *src, struct bvec_iter *src_iter) 1027 { 1028 struct bio_vec src_bv, dst_bv; 1029 void *src_p, *dst_p; 1030 unsigned bytes; 1031 1032 while (src_iter->bi_size && dst_iter->bi_size) { 1033 src_bv = bio_iter_iovec(src, *src_iter); 1034 dst_bv = bio_iter_iovec(dst, *dst_iter); 1035 1036 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1037 1038 src_p = kmap_atomic(src_bv.bv_page); 1039 dst_p = kmap_atomic(dst_bv.bv_page); 1040 1041 memcpy(dst_p + dst_bv.bv_offset, 1042 src_p + src_bv.bv_offset, 1043 bytes); 1044 1045 kunmap_atomic(dst_p); 1046 kunmap_atomic(src_p); 1047 1048 flush_dcache_page(dst_bv.bv_page); 1049 1050 bio_advance_iter(src, src_iter, bytes); 1051 bio_advance_iter(dst, dst_iter, bytes); 1052 } 1053 } 1054 EXPORT_SYMBOL(bio_copy_data_iter); 1055 1056 /** 1057 * bio_copy_data - copy contents of data buffers from one bio to another 1058 * @src: source bio 1059 * @dst: destination bio 1060 * 1061 * Stops when it reaches the end of either @src or @dst - that is, copies 1062 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1063 */ 1064 void bio_copy_data(struct bio *dst, struct bio *src) 1065 { 1066 struct bvec_iter src_iter = src->bi_iter; 1067 struct bvec_iter dst_iter = dst->bi_iter; 1068 1069 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1070 } 1071 EXPORT_SYMBOL(bio_copy_data); 1072 1073 /** 1074 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1075 * another 1076 * @src: source bio list 1077 * @dst: destination bio list 1078 * 1079 * Stops when it reaches the end of either the @src list or @dst list - that is, 1080 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1081 * bios). 1082 */ 1083 void bio_list_copy_data(struct bio *dst, struct bio *src) 1084 { 1085 struct bvec_iter src_iter = src->bi_iter; 1086 struct bvec_iter dst_iter = dst->bi_iter; 1087 1088 while (1) { 1089 if (!src_iter.bi_size) { 1090 src = src->bi_next; 1091 if (!src) 1092 break; 1093 1094 src_iter = src->bi_iter; 1095 } 1096 1097 if (!dst_iter.bi_size) { 1098 dst = dst->bi_next; 1099 if (!dst) 1100 break; 1101 1102 dst_iter = dst->bi_iter; 1103 } 1104 1105 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1106 } 1107 } 1108 EXPORT_SYMBOL(bio_list_copy_data); 1109 1110 struct bio_map_data { 1111 int is_our_pages; 1112 struct iov_iter iter; 1113 struct iovec iov[]; 1114 }; 1115 1116 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1117 gfp_t gfp_mask) 1118 { 1119 struct bio_map_data *bmd; 1120 if (data->nr_segs > UIO_MAXIOV) 1121 return NULL; 1122 1123 bmd = kmalloc(sizeof(struct bio_map_data) + 1124 sizeof(struct iovec) * data->nr_segs, gfp_mask); 1125 if (!bmd) 1126 return NULL; 1127 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1128 bmd->iter = *data; 1129 bmd->iter.iov = bmd->iov; 1130 return bmd; 1131 } 1132 1133 /** 1134 * bio_copy_from_iter - copy all pages from iov_iter to bio 1135 * @bio: The &struct bio which describes the I/O as destination 1136 * @iter: iov_iter as source 1137 * 1138 * Copy all pages from iov_iter to bio. 1139 * Returns 0 on success, or error on failure. 1140 */ 1141 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1142 { 1143 struct bio_vec *bvec; 1144 struct bvec_iter_all iter_all; 1145 1146 bio_for_each_segment_all(bvec, bio, iter_all) { 1147 ssize_t ret; 1148 1149 ret = copy_page_from_iter(bvec->bv_page, 1150 bvec->bv_offset, 1151 bvec->bv_len, 1152 iter); 1153 1154 if (!iov_iter_count(iter)) 1155 break; 1156 1157 if (ret < bvec->bv_len) 1158 return -EFAULT; 1159 } 1160 1161 return 0; 1162 } 1163 1164 /** 1165 * bio_copy_to_iter - copy all pages from bio to iov_iter 1166 * @bio: The &struct bio which describes the I/O as source 1167 * @iter: iov_iter as destination 1168 * 1169 * Copy all pages from bio to iov_iter. 1170 * Returns 0 on success, or error on failure. 1171 */ 1172 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1173 { 1174 struct bio_vec *bvec; 1175 struct bvec_iter_all iter_all; 1176 1177 bio_for_each_segment_all(bvec, bio, iter_all) { 1178 ssize_t ret; 1179 1180 ret = copy_page_to_iter(bvec->bv_page, 1181 bvec->bv_offset, 1182 bvec->bv_len, 1183 &iter); 1184 1185 if (!iov_iter_count(&iter)) 1186 break; 1187 1188 if (ret < bvec->bv_len) 1189 return -EFAULT; 1190 } 1191 1192 return 0; 1193 } 1194 1195 void bio_free_pages(struct bio *bio) 1196 { 1197 struct bio_vec *bvec; 1198 struct bvec_iter_all iter_all; 1199 1200 bio_for_each_segment_all(bvec, bio, iter_all) 1201 __free_page(bvec->bv_page); 1202 } 1203 EXPORT_SYMBOL(bio_free_pages); 1204 1205 /** 1206 * bio_uncopy_user - finish previously mapped bio 1207 * @bio: bio being terminated 1208 * 1209 * Free pages allocated from bio_copy_user_iov() and write back data 1210 * to user space in case of a read. 1211 */ 1212 int bio_uncopy_user(struct bio *bio) 1213 { 1214 struct bio_map_data *bmd = bio->bi_private; 1215 int ret = 0; 1216 1217 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1218 /* 1219 * if we're in a workqueue, the request is orphaned, so 1220 * don't copy into a random user address space, just free 1221 * and return -EINTR so user space doesn't expect any data. 1222 */ 1223 if (!current->mm) 1224 ret = -EINTR; 1225 else if (bio_data_dir(bio) == READ) 1226 ret = bio_copy_to_iter(bio, bmd->iter); 1227 if (bmd->is_our_pages) 1228 bio_free_pages(bio); 1229 } 1230 kfree(bmd); 1231 bio_put(bio); 1232 return ret; 1233 } 1234 1235 /** 1236 * bio_copy_user_iov - copy user data to bio 1237 * @q: destination block queue 1238 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1239 * @iter: iovec iterator 1240 * @gfp_mask: memory allocation flags 1241 * 1242 * Prepares and returns a bio for indirect user io, bouncing data 1243 * to/from kernel pages as necessary. Must be paired with 1244 * call bio_uncopy_user() on io completion. 1245 */ 1246 struct bio *bio_copy_user_iov(struct request_queue *q, 1247 struct rq_map_data *map_data, 1248 struct iov_iter *iter, 1249 gfp_t gfp_mask) 1250 { 1251 struct bio_map_data *bmd; 1252 struct page *page; 1253 struct bio *bio; 1254 int i = 0, ret; 1255 int nr_pages; 1256 unsigned int len = iter->count; 1257 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1258 1259 bmd = bio_alloc_map_data(iter, gfp_mask); 1260 if (!bmd) 1261 return ERR_PTR(-ENOMEM); 1262 1263 /* 1264 * We need to do a deep copy of the iov_iter including the iovecs. 1265 * The caller provided iov might point to an on-stack or otherwise 1266 * shortlived one. 1267 */ 1268 bmd->is_our_pages = map_data ? 0 : 1; 1269 1270 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1271 if (nr_pages > BIO_MAX_PAGES) 1272 nr_pages = BIO_MAX_PAGES; 1273 1274 ret = -ENOMEM; 1275 bio = bio_kmalloc(gfp_mask, nr_pages); 1276 if (!bio) 1277 goto out_bmd; 1278 1279 ret = 0; 1280 1281 if (map_data) { 1282 nr_pages = 1 << map_data->page_order; 1283 i = map_data->offset / PAGE_SIZE; 1284 } 1285 while (len) { 1286 unsigned int bytes = PAGE_SIZE; 1287 1288 bytes -= offset; 1289 1290 if (bytes > len) 1291 bytes = len; 1292 1293 if (map_data) { 1294 if (i == map_data->nr_entries * nr_pages) { 1295 ret = -ENOMEM; 1296 break; 1297 } 1298 1299 page = map_data->pages[i / nr_pages]; 1300 page += (i % nr_pages); 1301 1302 i++; 1303 } else { 1304 page = alloc_page(q->bounce_gfp | gfp_mask); 1305 if (!page) { 1306 ret = -ENOMEM; 1307 break; 1308 } 1309 } 1310 1311 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) { 1312 if (!map_data) 1313 __free_page(page); 1314 break; 1315 } 1316 1317 len -= bytes; 1318 offset = 0; 1319 } 1320 1321 if (ret) 1322 goto cleanup; 1323 1324 if (map_data) 1325 map_data->offset += bio->bi_iter.bi_size; 1326 1327 /* 1328 * success 1329 */ 1330 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) || 1331 (map_data && map_data->from_user)) { 1332 ret = bio_copy_from_iter(bio, iter); 1333 if (ret) 1334 goto cleanup; 1335 } else { 1336 if (bmd->is_our_pages) 1337 zero_fill_bio(bio); 1338 iov_iter_advance(iter, bio->bi_iter.bi_size); 1339 } 1340 1341 bio->bi_private = bmd; 1342 if (map_data && map_data->null_mapped) 1343 bio_set_flag(bio, BIO_NULL_MAPPED); 1344 return bio; 1345 cleanup: 1346 if (!map_data) 1347 bio_free_pages(bio); 1348 bio_put(bio); 1349 out_bmd: 1350 kfree(bmd); 1351 return ERR_PTR(ret); 1352 } 1353 1354 /** 1355 * bio_map_user_iov - map user iovec into bio 1356 * @q: the struct request_queue for the bio 1357 * @iter: iovec iterator 1358 * @gfp_mask: memory allocation flags 1359 * 1360 * Map the user space address into a bio suitable for io to a block 1361 * device. Returns an error pointer in case of error. 1362 */ 1363 struct bio *bio_map_user_iov(struct request_queue *q, 1364 struct iov_iter *iter, 1365 gfp_t gfp_mask) 1366 { 1367 int j; 1368 struct bio *bio; 1369 int ret; 1370 struct bio_vec *bvec; 1371 struct bvec_iter_all iter_all; 1372 1373 if (!iov_iter_count(iter)) 1374 return ERR_PTR(-EINVAL); 1375 1376 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1377 if (!bio) 1378 return ERR_PTR(-ENOMEM); 1379 1380 while (iov_iter_count(iter)) { 1381 struct page **pages; 1382 ssize_t bytes; 1383 size_t offs, added = 0; 1384 int npages; 1385 1386 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1387 if (unlikely(bytes <= 0)) { 1388 ret = bytes ? bytes : -EFAULT; 1389 goto out_unmap; 1390 } 1391 1392 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1393 1394 if (unlikely(offs & queue_dma_alignment(q))) { 1395 ret = -EINVAL; 1396 j = 0; 1397 } else { 1398 for (j = 0; j < npages; j++) { 1399 struct page *page = pages[j]; 1400 unsigned int n = PAGE_SIZE - offs; 1401 1402 if (n > bytes) 1403 n = bytes; 1404 1405 if (!__bio_add_pc_page(q, bio, page, n, offs, 1406 true)) 1407 break; 1408 1409 added += n; 1410 bytes -= n; 1411 offs = 0; 1412 } 1413 iov_iter_advance(iter, added); 1414 } 1415 /* 1416 * release the pages we didn't map into the bio, if any 1417 */ 1418 while (j < npages) 1419 put_page(pages[j++]); 1420 kvfree(pages); 1421 /* couldn't stuff something into bio? */ 1422 if (bytes) 1423 break; 1424 } 1425 1426 bio_set_flag(bio, BIO_USER_MAPPED); 1427 1428 /* 1429 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1430 * it would normally disappear when its bi_end_io is run. 1431 * however, we need it for the unmap, so grab an extra 1432 * reference to it 1433 */ 1434 bio_get(bio); 1435 return bio; 1436 1437 out_unmap: 1438 bio_for_each_segment_all(bvec, bio, iter_all) { 1439 put_page(bvec->bv_page); 1440 } 1441 bio_put(bio); 1442 return ERR_PTR(ret); 1443 } 1444 1445 static void __bio_unmap_user(struct bio *bio) 1446 { 1447 struct bio_vec *bvec; 1448 struct bvec_iter_all iter_all; 1449 1450 /* 1451 * make sure we dirty pages we wrote to 1452 */ 1453 bio_for_each_segment_all(bvec, bio, iter_all) { 1454 if (bio_data_dir(bio) == READ) 1455 set_page_dirty_lock(bvec->bv_page); 1456 1457 put_page(bvec->bv_page); 1458 } 1459 1460 bio_put(bio); 1461 } 1462 1463 /** 1464 * bio_unmap_user - unmap a bio 1465 * @bio: the bio being unmapped 1466 * 1467 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1468 * process context. 1469 * 1470 * bio_unmap_user() may sleep. 1471 */ 1472 void bio_unmap_user(struct bio *bio) 1473 { 1474 __bio_unmap_user(bio); 1475 bio_put(bio); 1476 } 1477 1478 static void bio_map_kern_endio(struct bio *bio) 1479 { 1480 bio_put(bio); 1481 } 1482 1483 /** 1484 * bio_map_kern - map kernel address into bio 1485 * @q: the struct request_queue for the bio 1486 * @data: pointer to buffer to map 1487 * @len: length in bytes 1488 * @gfp_mask: allocation flags for bio allocation 1489 * 1490 * Map the kernel address into a bio suitable for io to a block 1491 * device. Returns an error pointer in case of error. 1492 */ 1493 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1494 gfp_t gfp_mask) 1495 { 1496 unsigned long kaddr = (unsigned long)data; 1497 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1498 unsigned long start = kaddr >> PAGE_SHIFT; 1499 const int nr_pages = end - start; 1500 int offset, i; 1501 struct bio *bio; 1502 1503 bio = bio_kmalloc(gfp_mask, nr_pages); 1504 if (!bio) 1505 return ERR_PTR(-ENOMEM); 1506 1507 offset = offset_in_page(kaddr); 1508 for (i = 0; i < nr_pages; i++) { 1509 unsigned int bytes = PAGE_SIZE - offset; 1510 1511 if (len <= 0) 1512 break; 1513 1514 if (bytes > len) 1515 bytes = len; 1516 1517 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1518 offset) < bytes) { 1519 /* we don't support partial mappings */ 1520 bio_put(bio); 1521 return ERR_PTR(-EINVAL); 1522 } 1523 1524 data += bytes; 1525 len -= bytes; 1526 offset = 0; 1527 } 1528 1529 bio->bi_end_io = bio_map_kern_endio; 1530 return bio; 1531 } 1532 EXPORT_SYMBOL(bio_map_kern); 1533 1534 static void bio_copy_kern_endio(struct bio *bio) 1535 { 1536 bio_free_pages(bio); 1537 bio_put(bio); 1538 } 1539 1540 static void bio_copy_kern_endio_read(struct bio *bio) 1541 { 1542 char *p = bio->bi_private; 1543 struct bio_vec *bvec; 1544 struct bvec_iter_all iter_all; 1545 1546 bio_for_each_segment_all(bvec, bio, iter_all) { 1547 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1548 p += bvec->bv_len; 1549 } 1550 1551 bio_copy_kern_endio(bio); 1552 } 1553 1554 /** 1555 * bio_copy_kern - copy kernel address into bio 1556 * @q: the struct request_queue for the bio 1557 * @data: pointer to buffer to copy 1558 * @len: length in bytes 1559 * @gfp_mask: allocation flags for bio and page allocation 1560 * @reading: data direction is READ 1561 * 1562 * copy the kernel address into a bio suitable for io to a block 1563 * device. Returns an error pointer in case of error. 1564 */ 1565 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1566 gfp_t gfp_mask, int reading) 1567 { 1568 unsigned long kaddr = (unsigned long)data; 1569 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1570 unsigned long start = kaddr >> PAGE_SHIFT; 1571 struct bio *bio; 1572 void *p = data; 1573 int nr_pages = 0; 1574 1575 /* 1576 * Overflow, abort 1577 */ 1578 if (end < start) 1579 return ERR_PTR(-EINVAL); 1580 1581 nr_pages = end - start; 1582 bio = bio_kmalloc(gfp_mask, nr_pages); 1583 if (!bio) 1584 return ERR_PTR(-ENOMEM); 1585 1586 while (len) { 1587 struct page *page; 1588 unsigned int bytes = PAGE_SIZE; 1589 1590 if (bytes > len) 1591 bytes = len; 1592 1593 page = alloc_page(q->bounce_gfp | gfp_mask); 1594 if (!page) 1595 goto cleanup; 1596 1597 if (!reading) 1598 memcpy(page_address(page), p, bytes); 1599 1600 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1601 break; 1602 1603 len -= bytes; 1604 p += bytes; 1605 } 1606 1607 if (reading) { 1608 bio->bi_end_io = bio_copy_kern_endio_read; 1609 bio->bi_private = data; 1610 } else { 1611 bio->bi_end_io = bio_copy_kern_endio; 1612 } 1613 1614 return bio; 1615 1616 cleanup: 1617 bio_free_pages(bio); 1618 bio_put(bio); 1619 return ERR_PTR(-ENOMEM); 1620 } 1621 1622 /* 1623 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1624 * for performing direct-IO in BIOs. 1625 * 1626 * The problem is that we cannot run set_page_dirty() from interrupt context 1627 * because the required locks are not interrupt-safe. So what we can do is to 1628 * mark the pages dirty _before_ performing IO. And in interrupt context, 1629 * check that the pages are still dirty. If so, fine. If not, redirty them 1630 * in process context. 1631 * 1632 * We special-case compound pages here: normally this means reads into hugetlb 1633 * pages. The logic in here doesn't really work right for compound pages 1634 * because the VM does not uniformly chase down the head page in all cases. 1635 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1636 * handle them at all. So we skip compound pages here at an early stage. 1637 * 1638 * Note that this code is very hard to test under normal circumstances because 1639 * direct-io pins the pages with get_user_pages(). This makes 1640 * is_page_cache_freeable return false, and the VM will not clean the pages. 1641 * But other code (eg, flusher threads) could clean the pages if they are mapped 1642 * pagecache. 1643 * 1644 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1645 * deferred bio dirtying paths. 1646 */ 1647 1648 /* 1649 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1650 */ 1651 void bio_set_pages_dirty(struct bio *bio) 1652 { 1653 struct bio_vec *bvec; 1654 struct bvec_iter_all iter_all; 1655 1656 bio_for_each_segment_all(bvec, bio, iter_all) { 1657 if (!PageCompound(bvec->bv_page)) 1658 set_page_dirty_lock(bvec->bv_page); 1659 } 1660 } 1661 1662 /* 1663 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1664 * If they are, then fine. If, however, some pages are clean then they must 1665 * have been written out during the direct-IO read. So we take another ref on 1666 * the BIO and re-dirty the pages in process context. 1667 * 1668 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1669 * here on. It will run one put_page() against each page and will run one 1670 * bio_put() against the BIO. 1671 */ 1672 1673 static void bio_dirty_fn(struct work_struct *work); 1674 1675 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1676 static DEFINE_SPINLOCK(bio_dirty_lock); 1677 static struct bio *bio_dirty_list; 1678 1679 /* 1680 * This runs in process context 1681 */ 1682 static void bio_dirty_fn(struct work_struct *work) 1683 { 1684 struct bio *bio, *next; 1685 1686 spin_lock_irq(&bio_dirty_lock); 1687 next = bio_dirty_list; 1688 bio_dirty_list = NULL; 1689 spin_unlock_irq(&bio_dirty_lock); 1690 1691 while ((bio = next) != NULL) { 1692 next = bio->bi_private; 1693 1694 bio_set_pages_dirty(bio); 1695 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) 1696 bio_release_pages(bio); 1697 bio_put(bio); 1698 } 1699 } 1700 1701 void bio_check_pages_dirty(struct bio *bio) 1702 { 1703 struct bio_vec *bvec; 1704 unsigned long flags; 1705 struct bvec_iter_all iter_all; 1706 1707 bio_for_each_segment_all(bvec, bio, iter_all) { 1708 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1709 goto defer; 1710 } 1711 1712 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) 1713 bio_release_pages(bio); 1714 bio_put(bio); 1715 return; 1716 defer: 1717 spin_lock_irqsave(&bio_dirty_lock, flags); 1718 bio->bi_private = bio_dirty_list; 1719 bio_dirty_list = bio; 1720 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1721 schedule_work(&bio_dirty_work); 1722 } 1723 1724 void update_io_ticks(struct hd_struct *part, unsigned long now) 1725 { 1726 unsigned long stamp; 1727 again: 1728 stamp = READ_ONCE(part->stamp); 1729 if (unlikely(stamp != now)) { 1730 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) { 1731 __part_stat_add(part, io_ticks, 1); 1732 } 1733 } 1734 if (part->partno) { 1735 part = &part_to_disk(part)->part0; 1736 goto again; 1737 } 1738 } 1739 1740 void generic_start_io_acct(struct request_queue *q, int op, 1741 unsigned long sectors, struct hd_struct *part) 1742 { 1743 const int sgrp = op_stat_group(op); 1744 1745 part_stat_lock(); 1746 1747 update_io_ticks(part, jiffies); 1748 part_stat_inc(part, ios[sgrp]); 1749 part_stat_add(part, sectors[sgrp], sectors); 1750 part_inc_in_flight(q, part, op_is_write(op)); 1751 1752 part_stat_unlock(); 1753 } 1754 EXPORT_SYMBOL(generic_start_io_acct); 1755 1756 void generic_end_io_acct(struct request_queue *q, int req_op, 1757 struct hd_struct *part, unsigned long start_time) 1758 { 1759 unsigned long now = jiffies; 1760 unsigned long duration = now - start_time; 1761 const int sgrp = op_stat_group(req_op); 1762 1763 part_stat_lock(); 1764 1765 update_io_ticks(part, now); 1766 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1767 part_stat_add(part, time_in_queue, duration); 1768 part_dec_in_flight(q, part, op_is_write(req_op)); 1769 1770 part_stat_unlock(); 1771 } 1772 EXPORT_SYMBOL(generic_end_io_acct); 1773 1774 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1775 void bio_flush_dcache_pages(struct bio *bi) 1776 { 1777 struct bio_vec bvec; 1778 struct bvec_iter iter; 1779 1780 bio_for_each_segment(bvec, bi, iter) 1781 flush_dcache_page(bvec.bv_page); 1782 } 1783 EXPORT_SYMBOL(bio_flush_dcache_pages); 1784 #endif 1785 1786 static inline bool bio_remaining_done(struct bio *bio) 1787 { 1788 /* 1789 * If we're not chaining, then ->__bi_remaining is always 1 and 1790 * we always end io on the first invocation. 1791 */ 1792 if (!bio_flagged(bio, BIO_CHAIN)) 1793 return true; 1794 1795 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1796 1797 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1798 bio_clear_flag(bio, BIO_CHAIN); 1799 return true; 1800 } 1801 1802 return false; 1803 } 1804 1805 /** 1806 * bio_endio - end I/O on a bio 1807 * @bio: bio 1808 * 1809 * Description: 1810 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1811 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1812 * bio unless they own it and thus know that it has an end_io function. 1813 * 1814 * bio_endio() can be called several times on a bio that has been chained 1815 * using bio_chain(). The ->bi_end_io() function will only be called the 1816 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1817 * generated if BIO_TRACE_COMPLETION is set. 1818 **/ 1819 void bio_endio(struct bio *bio) 1820 { 1821 again: 1822 if (!bio_remaining_done(bio)) 1823 return; 1824 if (!bio_integrity_endio(bio)) 1825 return; 1826 1827 if (bio->bi_disk) 1828 rq_qos_done_bio(bio->bi_disk->queue, bio); 1829 1830 /* 1831 * Need to have a real endio function for chained bios, otherwise 1832 * various corner cases will break (like stacking block devices that 1833 * save/restore bi_end_io) - however, we want to avoid unbounded 1834 * recursion and blowing the stack. Tail call optimization would 1835 * handle this, but compiling with frame pointers also disables 1836 * gcc's sibling call optimization. 1837 */ 1838 if (bio->bi_end_io == bio_chain_endio) { 1839 bio = __bio_chain_endio(bio); 1840 goto again; 1841 } 1842 1843 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1844 trace_block_bio_complete(bio->bi_disk->queue, bio, 1845 blk_status_to_errno(bio->bi_status)); 1846 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1847 } 1848 1849 blk_throtl_bio_endio(bio); 1850 /* release cgroup info */ 1851 bio_uninit(bio); 1852 if (bio->bi_end_io) 1853 bio->bi_end_io(bio); 1854 } 1855 EXPORT_SYMBOL(bio_endio); 1856 1857 /** 1858 * bio_split - split a bio 1859 * @bio: bio to split 1860 * @sectors: number of sectors to split from the front of @bio 1861 * @gfp: gfp mask 1862 * @bs: bio set to allocate from 1863 * 1864 * Allocates and returns a new bio which represents @sectors from the start of 1865 * @bio, and updates @bio to represent the remaining sectors. 1866 * 1867 * Unless this is a discard request the newly allocated bio will point 1868 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1869 * @bio is not freed before the split. 1870 */ 1871 struct bio *bio_split(struct bio *bio, int sectors, 1872 gfp_t gfp, struct bio_set *bs) 1873 { 1874 struct bio *split; 1875 1876 BUG_ON(sectors <= 0); 1877 BUG_ON(sectors >= bio_sectors(bio)); 1878 1879 split = bio_clone_fast(bio, gfp, bs); 1880 if (!split) 1881 return NULL; 1882 1883 split->bi_iter.bi_size = sectors << 9; 1884 1885 if (bio_integrity(split)) 1886 bio_integrity_trim(split); 1887 1888 bio_advance(bio, split->bi_iter.bi_size); 1889 1890 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1891 bio_set_flag(split, BIO_TRACE_COMPLETION); 1892 1893 return split; 1894 } 1895 EXPORT_SYMBOL(bio_split); 1896 1897 /** 1898 * bio_trim - trim a bio 1899 * @bio: bio to trim 1900 * @offset: number of sectors to trim from the front of @bio 1901 * @size: size we want to trim @bio to, in sectors 1902 */ 1903 void bio_trim(struct bio *bio, int offset, int size) 1904 { 1905 /* 'bio' is a cloned bio which we need to trim to match 1906 * the given offset and size. 1907 */ 1908 1909 size <<= 9; 1910 if (offset == 0 && size == bio->bi_iter.bi_size) 1911 return; 1912 1913 bio_clear_flag(bio, BIO_SEG_VALID); 1914 1915 bio_advance(bio, offset << 9); 1916 1917 bio->bi_iter.bi_size = size; 1918 1919 if (bio_integrity(bio)) 1920 bio_integrity_trim(bio); 1921 1922 } 1923 EXPORT_SYMBOL_GPL(bio_trim); 1924 1925 /* 1926 * create memory pools for biovec's in a bio_set. 1927 * use the global biovec slabs created for general use. 1928 */ 1929 int biovec_init_pool(mempool_t *pool, int pool_entries) 1930 { 1931 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1932 1933 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1934 } 1935 1936 /* 1937 * bioset_exit - exit a bioset initialized with bioset_init() 1938 * 1939 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1940 * kzalloc()). 1941 */ 1942 void bioset_exit(struct bio_set *bs) 1943 { 1944 if (bs->rescue_workqueue) 1945 destroy_workqueue(bs->rescue_workqueue); 1946 bs->rescue_workqueue = NULL; 1947 1948 mempool_exit(&bs->bio_pool); 1949 mempool_exit(&bs->bvec_pool); 1950 1951 bioset_integrity_free(bs); 1952 if (bs->bio_slab) 1953 bio_put_slab(bs); 1954 bs->bio_slab = NULL; 1955 } 1956 EXPORT_SYMBOL(bioset_exit); 1957 1958 /** 1959 * bioset_init - Initialize a bio_set 1960 * @bs: pool to initialize 1961 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1962 * @front_pad: Number of bytes to allocate in front of the returned bio 1963 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1964 * and %BIOSET_NEED_RESCUER 1965 * 1966 * Description: 1967 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1968 * to ask for a number of bytes to be allocated in front of the bio. 1969 * Front pad allocation is useful for embedding the bio inside 1970 * another structure, to avoid allocating extra data to go with the bio. 1971 * Note that the bio must be embedded at the END of that structure always, 1972 * or things will break badly. 1973 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1974 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1975 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1976 * dispatch queued requests when the mempool runs out of space. 1977 * 1978 */ 1979 int bioset_init(struct bio_set *bs, 1980 unsigned int pool_size, 1981 unsigned int front_pad, 1982 int flags) 1983 { 1984 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1985 1986 bs->front_pad = front_pad; 1987 1988 spin_lock_init(&bs->rescue_lock); 1989 bio_list_init(&bs->rescue_list); 1990 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1991 1992 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1993 if (!bs->bio_slab) 1994 return -ENOMEM; 1995 1996 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1997 goto bad; 1998 1999 if ((flags & BIOSET_NEED_BVECS) && 2000 biovec_init_pool(&bs->bvec_pool, pool_size)) 2001 goto bad; 2002 2003 if (!(flags & BIOSET_NEED_RESCUER)) 2004 return 0; 2005 2006 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 2007 if (!bs->rescue_workqueue) 2008 goto bad; 2009 2010 return 0; 2011 bad: 2012 bioset_exit(bs); 2013 return -ENOMEM; 2014 } 2015 EXPORT_SYMBOL(bioset_init); 2016 2017 /* 2018 * Initialize and setup a new bio_set, based on the settings from 2019 * another bio_set. 2020 */ 2021 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 2022 { 2023 int flags; 2024 2025 flags = 0; 2026 if (src->bvec_pool.min_nr) 2027 flags |= BIOSET_NEED_BVECS; 2028 if (src->rescue_workqueue) 2029 flags |= BIOSET_NEED_RESCUER; 2030 2031 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 2032 } 2033 EXPORT_SYMBOL(bioset_init_from_src); 2034 2035 #ifdef CONFIG_BLK_CGROUP 2036 2037 /** 2038 * bio_disassociate_blkg - puts back the blkg reference if associated 2039 * @bio: target bio 2040 * 2041 * Helper to disassociate the blkg from @bio if a blkg is associated. 2042 */ 2043 void bio_disassociate_blkg(struct bio *bio) 2044 { 2045 if (bio->bi_blkg) { 2046 blkg_put(bio->bi_blkg); 2047 bio->bi_blkg = NULL; 2048 } 2049 } 2050 EXPORT_SYMBOL_GPL(bio_disassociate_blkg); 2051 2052 /** 2053 * __bio_associate_blkg - associate a bio with the a blkg 2054 * @bio: target bio 2055 * @blkg: the blkg to associate 2056 * 2057 * This tries to associate @bio with the specified @blkg. Association failure 2058 * is handled by walking up the blkg tree. Therefore, the blkg associated can 2059 * be anything between @blkg and the root_blkg. This situation only happens 2060 * when a cgroup is dying and then the remaining bios will spill to the closest 2061 * alive blkg. 2062 * 2063 * A reference will be taken on the @blkg and will be released when @bio is 2064 * freed. 2065 */ 2066 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) 2067 { 2068 bio_disassociate_blkg(bio); 2069 2070 bio->bi_blkg = blkg_tryget_closest(blkg); 2071 } 2072 2073 /** 2074 * bio_associate_blkg_from_css - associate a bio with a specified css 2075 * @bio: target bio 2076 * @css: target css 2077 * 2078 * Associate @bio with the blkg found by combining the css's blkg and the 2079 * request_queue of the @bio. This falls back to the queue's root_blkg if 2080 * the association fails with the css. 2081 */ 2082 void bio_associate_blkg_from_css(struct bio *bio, 2083 struct cgroup_subsys_state *css) 2084 { 2085 struct request_queue *q = bio->bi_disk->queue; 2086 struct blkcg_gq *blkg; 2087 2088 rcu_read_lock(); 2089 2090 if (!css || !css->parent) 2091 blkg = q->root_blkg; 2092 else 2093 blkg = blkg_lookup_create(css_to_blkcg(css), q); 2094 2095 __bio_associate_blkg(bio, blkg); 2096 2097 rcu_read_unlock(); 2098 } 2099 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2100 2101 #ifdef CONFIG_MEMCG 2102 /** 2103 * bio_associate_blkg_from_page - associate a bio with the page's blkg 2104 * @bio: target bio 2105 * @page: the page to lookup the blkcg from 2106 * 2107 * Associate @bio with the blkg from @page's owning memcg and the respective 2108 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's 2109 * root_blkg. 2110 */ 2111 void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 2112 { 2113 struct cgroup_subsys_state *css; 2114 2115 if (!page->mem_cgroup) 2116 return; 2117 2118 rcu_read_lock(); 2119 2120 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); 2121 bio_associate_blkg_from_css(bio, css); 2122 2123 rcu_read_unlock(); 2124 } 2125 #endif /* CONFIG_MEMCG */ 2126 2127 /** 2128 * bio_associate_blkg - associate a bio with a blkg 2129 * @bio: target bio 2130 * 2131 * Associate @bio with the blkg found from the bio's css and request_queue. 2132 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2133 * already associated, the css is reused and association redone as the 2134 * request_queue may have changed. 2135 */ 2136 void bio_associate_blkg(struct bio *bio) 2137 { 2138 struct cgroup_subsys_state *css; 2139 2140 rcu_read_lock(); 2141 2142 if (bio->bi_blkg) 2143 css = &bio_blkcg(bio)->css; 2144 else 2145 css = blkcg_css(); 2146 2147 bio_associate_blkg_from_css(bio, css); 2148 2149 rcu_read_unlock(); 2150 } 2151 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2152 2153 /** 2154 * bio_clone_blkg_association - clone blkg association from src to dst bio 2155 * @dst: destination bio 2156 * @src: source bio 2157 */ 2158 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2159 { 2160 rcu_read_lock(); 2161 2162 if (src->bi_blkg) 2163 __bio_associate_blkg(dst, src->bi_blkg); 2164 2165 rcu_read_unlock(); 2166 } 2167 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2168 #endif /* CONFIG_BLK_CGROUP */ 2169 2170 static void __init biovec_init_slabs(void) 2171 { 2172 int i; 2173 2174 for (i = 0; i < BVEC_POOL_NR; i++) { 2175 int size; 2176 struct biovec_slab *bvs = bvec_slabs + i; 2177 2178 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2179 bvs->slab = NULL; 2180 continue; 2181 } 2182 2183 size = bvs->nr_vecs * sizeof(struct bio_vec); 2184 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2185 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2186 } 2187 } 2188 2189 static int __init init_bio(void) 2190 { 2191 bio_slab_max = 2; 2192 bio_slab_nr = 0; 2193 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), 2194 GFP_KERNEL); 2195 2196 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); 2197 2198 if (!bio_slabs) 2199 panic("bio: can't allocate bios\n"); 2200 2201 bio_integrity_init(); 2202 biovec_init_slabs(); 2203 2204 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 2205 panic("bio: can't allocate bios\n"); 2206 2207 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 2208 panic("bio: can't create integrity pool\n"); 2209 2210 return 0; 2211 } 2212 subsys_initcall(init_bio); 2213