1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 34 /* 35 * Test patch to inline a certain number of bi_io_vec's inside the bio 36 * itself, to shrink a bio data allocation from two mempool calls to one 37 */ 38 #define BIO_INLINE_VECS 4 39 40 /* 41 * if you change this list, also change bvec_alloc or things will 42 * break badly! cannot be bigger than what you can fit into an 43 * unsigned short 44 */ 45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 48 }; 49 #undef BV 50 51 /* 52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 53 * IO code that does not need private memory pools. 54 */ 55 struct bio_set *fs_bio_set; 56 EXPORT_SYMBOL(fs_bio_set); 57 58 /* 59 * Our slab pool management 60 */ 61 struct bio_slab { 62 struct kmem_cache *slab; 63 unsigned int slab_ref; 64 unsigned int slab_size; 65 char name[8]; 66 }; 67 static DEFINE_MUTEX(bio_slab_lock); 68 static struct bio_slab *bio_slabs; 69 static unsigned int bio_slab_nr, bio_slab_max; 70 71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 72 { 73 unsigned int sz = sizeof(struct bio) + extra_size; 74 struct kmem_cache *slab = NULL; 75 struct bio_slab *bslab, *new_bio_slabs; 76 unsigned int new_bio_slab_max; 77 unsigned int i, entry = -1; 78 79 mutex_lock(&bio_slab_lock); 80 81 i = 0; 82 while (i < bio_slab_nr) { 83 bslab = &bio_slabs[i]; 84 85 if (!bslab->slab && entry == -1) 86 entry = i; 87 else if (bslab->slab_size == sz) { 88 slab = bslab->slab; 89 bslab->slab_ref++; 90 break; 91 } 92 i++; 93 } 94 95 if (slab) 96 goto out_unlock; 97 98 if (bio_slab_nr == bio_slab_max && entry == -1) { 99 new_bio_slab_max = bio_slab_max << 1; 100 new_bio_slabs = krealloc(bio_slabs, 101 new_bio_slab_max * sizeof(struct bio_slab), 102 GFP_KERNEL); 103 if (!new_bio_slabs) 104 goto out_unlock; 105 bio_slab_max = new_bio_slab_max; 106 bio_slabs = new_bio_slabs; 107 } 108 if (entry == -1) 109 entry = bio_slab_nr++; 110 111 bslab = &bio_slabs[entry]; 112 113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 115 SLAB_HWCACHE_ALIGN, NULL); 116 if (!slab) 117 goto out_unlock; 118 119 bslab->slab = slab; 120 bslab->slab_ref = 1; 121 bslab->slab_size = sz; 122 out_unlock: 123 mutex_unlock(&bio_slab_lock); 124 return slab; 125 } 126 127 static void bio_put_slab(struct bio_set *bs) 128 { 129 struct bio_slab *bslab = NULL; 130 unsigned int i; 131 132 mutex_lock(&bio_slab_lock); 133 134 for (i = 0; i < bio_slab_nr; i++) { 135 if (bs->bio_slab == bio_slabs[i].slab) { 136 bslab = &bio_slabs[i]; 137 break; 138 } 139 } 140 141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 142 goto out; 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 kmem_cache_destroy(bslab->slab); 150 bslab->slab = NULL; 151 152 out: 153 mutex_unlock(&bio_slab_lock); 154 } 155 156 unsigned int bvec_nr_vecs(unsigned short idx) 157 { 158 return bvec_slabs[idx].nr_vecs; 159 } 160 161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 162 { 163 if (!idx) 164 return; 165 idx--; 166 167 BIO_BUG_ON(idx >= BVEC_POOL_NR); 168 169 if (idx == BVEC_POOL_MAX) { 170 mempool_free(bv, pool); 171 } else { 172 struct biovec_slab *bvs = bvec_slabs + idx; 173 174 kmem_cache_free(bvs->slab, bv); 175 } 176 } 177 178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 179 mempool_t *pool) 180 { 181 struct bio_vec *bvl; 182 183 /* 184 * see comment near bvec_array define! 185 */ 186 switch (nr) { 187 case 1: 188 *idx = 0; 189 break; 190 case 2 ... 4: 191 *idx = 1; 192 break; 193 case 5 ... 16: 194 *idx = 2; 195 break; 196 case 17 ... 64: 197 *idx = 3; 198 break; 199 case 65 ... 128: 200 *idx = 4; 201 break; 202 case 129 ... BIO_MAX_PAGES: 203 *idx = 5; 204 break; 205 default: 206 return NULL; 207 } 208 209 /* 210 * idx now points to the pool we want to allocate from. only the 211 * 1-vec entry pool is mempool backed. 212 */ 213 if (*idx == BVEC_POOL_MAX) { 214 fallback: 215 bvl = mempool_alloc(pool, gfp_mask); 216 } else { 217 struct biovec_slab *bvs = bvec_slabs + *idx; 218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 219 220 /* 221 * Make this allocation restricted and don't dump info on 222 * allocation failures, since we'll fallback to the mempool 223 * in case of failure. 224 */ 225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 226 227 /* 228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 229 * is set, retry with the 1-entry mempool 230 */ 231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 233 *idx = BVEC_POOL_MAX; 234 goto fallback; 235 } 236 } 237 238 (*idx)++; 239 return bvl; 240 } 241 242 static void __bio_free(struct bio *bio) 243 { 244 bio_disassociate_task(bio); 245 246 if (bio_integrity(bio)) 247 bio_integrity_free(bio); 248 } 249 250 static void bio_free(struct bio *bio) 251 { 252 struct bio_set *bs = bio->bi_pool; 253 void *p; 254 255 __bio_free(bio); 256 257 if (bs) { 258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 259 260 /* 261 * If we have front padding, adjust the bio pointer before freeing 262 */ 263 p = bio; 264 p -= bs->front_pad; 265 266 mempool_free(p, bs->bio_pool); 267 } else { 268 /* Bio was allocated by bio_kmalloc() */ 269 kfree(bio); 270 } 271 } 272 273 void bio_init(struct bio *bio) 274 { 275 memset(bio, 0, sizeof(*bio)); 276 atomic_set(&bio->__bi_remaining, 1); 277 atomic_set(&bio->__bi_cnt, 1); 278 } 279 EXPORT_SYMBOL(bio_init); 280 281 /** 282 * bio_reset - reinitialize a bio 283 * @bio: bio to reset 284 * 285 * Description: 286 * After calling bio_reset(), @bio will be in the same state as a freshly 287 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 288 * preserved are the ones that are initialized by bio_alloc_bioset(). See 289 * comment in struct bio. 290 */ 291 void bio_reset(struct bio *bio) 292 { 293 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 294 295 __bio_free(bio); 296 297 memset(bio, 0, BIO_RESET_BYTES); 298 bio->bi_flags = flags; 299 atomic_set(&bio->__bi_remaining, 1); 300 } 301 EXPORT_SYMBOL(bio_reset); 302 303 static struct bio *__bio_chain_endio(struct bio *bio) 304 { 305 struct bio *parent = bio->bi_private; 306 307 if (!parent->bi_error) 308 parent->bi_error = bio->bi_error; 309 bio_put(bio); 310 return parent; 311 } 312 313 static void bio_chain_endio(struct bio *bio) 314 { 315 bio_endio(__bio_chain_endio(bio)); 316 } 317 318 /** 319 * bio_chain - chain bio completions 320 * @bio: the target bio 321 * @parent: the @bio's parent bio 322 * 323 * The caller won't have a bi_end_io called when @bio completes - instead, 324 * @parent's bi_end_io won't be called until both @parent and @bio have 325 * completed; the chained bio will also be freed when it completes. 326 * 327 * The caller must not set bi_private or bi_end_io in @bio. 328 */ 329 void bio_chain(struct bio *bio, struct bio *parent) 330 { 331 BUG_ON(bio->bi_private || bio->bi_end_io); 332 333 bio->bi_private = parent; 334 bio->bi_end_io = bio_chain_endio; 335 bio_inc_remaining(parent); 336 } 337 EXPORT_SYMBOL(bio_chain); 338 339 static void bio_alloc_rescue(struct work_struct *work) 340 { 341 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 342 struct bio *bio; 343 344 while (1) { 345 spin_lock(&bs->rescue_lock); 346 bio = bio_list_pop(&bs->rescue_list); 347 spin_unlock(&bs->rescue_lock); 348 349 if (!bio) 350 break; 351 352 generic_make_request(bio); 353 } 354 } 355 356 static void punt_bios_to_rescuer(struct bio_set *bs) 357 { 358 struct bio_list punt, nopunt; 359 struct bio *bio; 360 361 /* 362 * In order to guarantee forward progress we must punt only bios that 363 * were allocated from this bio_set; otherwise, if there was a bio on 364 * there for a stacking driver higher up in the stack, processing it 365 * could require allocating bios from this bio_set, and doing that from 366 * our own rescuer would be bad. 367 * 368 * Since bio lists are singly linked, pop them all instead of trying to 369 * remove from the middle of the list: 370 */ 371 372 bio_list_init(&punt); 373 bio_list_init(&nopunt); 374 375 while ((bio = bio_list_pop(current->bio_list))) 376 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 377 378 *current->bio_list = nopunt; 379 380 spin_lock(&bs->rescue_lock); 381 bio_list_merge(&bs->rescue_list, &punt); 382 spin_unlock(&bs->rescue_lock); 383 384 queue_work(bs->rescue_workqueue, &bs->rescue_work); 385 } 386 387 /** 388 * bio_alloc_bioset - allocate a bio for I/O 389 * @gfp_mask: the GFP_ mask given to the slab allocator 390 * @nr_iovecs: number of iovecs to pre-allocate 391 * @bs: the bio_set to allocate from. 392 * 393 * Description: 394 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 395 * backed by the @bs's mempool. 396 * 397 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 398 * always be able to allocate a bio. This is due to the mempool guarantees. 399 * To make this work, callers must never allocate more than 1 bio at a time 400 * from this pool. Callers that need to allocate more than 1 bio must always 401 * submit the previously allocated bio for IO before attempting to allocate 402 * a new one. Failure to do so can cause deadlocks under memory pressure. 403 * 404 * Note that when running under generic_make_request() (i.e. any block 405 * driver), bios are not submitted until after you return - see the code in 406 * generic_make_request() that converts recursion into iteration, to prevent 407 * stack overflows. 408 * 409 * This would normally mean allocating multiple bios under 410 * generic_make_request() would be susceptible to deadlocks, but we have 411 * deadlock avoidance code that resubmits any blocked bios from a rescuer 412 * thread. 413 * 414 * However, we do not guarantee forward progress for allocations from other 415 * mempools. Doing multiple allocations from the same mempool under 416 * generic_make_request() should be avoided - instead, use bio_set's front_pad 417 * for per bio allocations. 418 * 419 * RETURNS: 420 * Pointer to new bio on success, NULL on failure. 421 */ 422 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 423 { 424 gfp_t saved_gfp = gfp_mask; 425 unsigned front_pad; 426 unsigned inline_vecs; 427 struct bio_vec *bvl = NULL; 428 struct bio *bio; 429 void *p; 430 431 if (!bs) { 432 if (nr_iovecs > UIO_MAXIOV) 433 return NULL; 434 435 p = kmalloc(sizeof(struct bio) + 436 nr_iovecs * sizeof(struct bio_vec), 437 gfp_mask); 438 front_pad = 0; 439 inline_vecs = nr_iovecs; 440 } else { 441 /* should not use nobvec bioset for nr_iovecs > 0 */ 442 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 443 return NULL; 444 /* 445 * generic_make_request() converts recursion to iteration; this 446 * means if we're running beneath it, any bios we allocate and 447 * submit will not be submitted (and thus freed) until after we 448 * return. 449 * 450 * This exposes us to a potential deadlock if we allocate 451 * multiple bios from the same bio_set() while running 452 * underneath generic_make_request(). If we were to allocate 453 * multiple bios (say a stacking block driver that was splitting 454 * bios), we would deadlock if we exhausted the mempool's 455 * reserve. 456 * 457 * We solve this, and guarantee forward progress, with a rescuer 458 * workqueue per bio_set. If we go to allocate and there are 459 * bios on current->bio_list, we first try the allocation 460 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 461 * bios we would be blocking to the rescuer workqueue before 462 * we retry with the original gfp_flags. 463 */ 464 465 if (current->bio_list && !bio_list_empty(current->bio_list)) 466 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 467 468 p = mempool_alloc(bs->bio_pool, gfp_mask); 469 if (!p && gfp_mask != saved_gfp) { 470 punt_bios_to_rescuer(bs); 471 gfp_mask = saved_gfp; 472 p = mempool_alloc(bs->bio_pool, gfp_mask); 473 } 474 475 front_pad = bs->front_pad; 476 inline_vecs = BIO_INLINE_VECS; 477 } 478 479 if (unlikely(!p)) 480 return NULL; 481 482 bio = p + front_pad; 483 bio_init(bio); 484 485 if (nr_iovecs > inline_vecs) { 486 unsigned long idx = 0; 487 488 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 489 if (!bvl && gfp_mask != saved_gfp) { 490 punt_bios_to_rescuer(bs); 491 gfp_mask = saved_gfp; 492 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 493 } 494 495 if (unlikely(!bvl)) 496 goto err_free; 497 498 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 499 } else if (nr_iovecs) { 500 bvl = bio->bi_inline_vecs; 501 } 502 503 bio->bi_pool = bs; 504 bio->bi_max_vecs = nr_iovecs; 505 bio->bi_io_vec = bvl; 506 return bio; 507 508 err_free: 509 mempool_free(p, bs->bio_pool); 510 return NULL; 511 } 512 EXPORT_SYMBOL(bio_alloc_bioset); 513 514 void zero_fill_bio(struct bio *bio) 515 { 516 unsigned long flags; 517 struct bio_vec bv; 518 struct bvec_iter iter; 519 520 bio_for_each_segment(bv, bio, iter) { 521 char *data = bvec_kmap_irq(&bv, &flags); 522 memset(data, 0, bv.bv_len); 523 flush_dcache_page(bv.bv_page); 524 bvec_kunmap_irq(data, &flags); 525 } 526 } 527 EXPORT_SYMBOL(zero_fill_bio); 528 529 /** 530 * bio_put - release a reference to a bio 531 * @bio: bio to release reference to 532 * 533 * Description: 534 * Put a reference to a &struct bio, either one you have gotten with 535 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 536 **/ 537 void bio_put(struct bio *bio) 538 { 539 if (!bio_flagged(bio, BIO_REFFED)) 540 bio_free(bio); 541 else { 542 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 543 544 /* 545 * last put frees it 546 */ 547 if (atomic_dec_and_test(&bio->__bi_cnt)) 548 bio_free(bio); 549 } 550 } 551 EXPORT_SYMBOL(bio_put); 552 553 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 554 { 555 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 556 blk_recount_segments(q, bio); 557 558 return bio->bi_phys_segments; 559 } 560 EXPORT_SYMBOL(bio_phys_segments); 561 562 /** 563 * __bio_clone_fast - clone a bio that shares the original bio's biovec 564 * @bio: destination bio 565 * @bio_src: bio to clone 566 * 567 * Clone a &bio. Caller will own the returned bio, but not 568 * the actual data it points to. Reference count of returned 569 * bio will be one. 570 * 571 * Caller must ensure that @bio_src is not freed before @bio. 572 */ 573 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 574 { 575 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 576 577 /* 578 * most users will be overriding ->bi_bdev with a new target, 579 * so we don't set nor calculate new physical/hw segment counts here 580 */ 581 bio->bi_bdev = bio_src->bi_bdev; 582 bio_set_flag(bio, BIO_CLONED); 583 bio->bi_opf = bio_src->bi_opf; 584 bio->bi_iter = bio_src->bi_iter; 585 bio->bi_io_vec = bio_src->bi_io_vec; 586 587 bio_clone_blkcg_association(bio, bio_src); 588 } 589 EXPORT_SYMBOL(__bio_clone_fast); 590 591 /** 592 * bio_clone_fast - clone a bio that shares the original bio's biovec 593 * @bio: bio to clone 594 * @gfp_mask: allocation priority 595 * @bs: bio_set to allocate from 596 * 597 * Like __bio_clone_fast, only also allocates the returned bio 598 */ 599 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 600 { 601 struct bio *b; 602 603 b = bio_alloc_bioset(gfp_mask, 0, bs); 604 if (!b) 605 return NULL; 606 607 __bio_clone_fast(b, bio); 608 609 if (bio_integrity(bio)) { 610 int ret; 611 612 ret = bio_integrity_clone(b, bio, gfp_mask); 613 614 if (ret < 0) { 615 bio_put(b); 616 return NULL; 617 } 618 } 619 620 return b; 621 } 622 EXPORT_SYMBOL(bio_clone_fast); 623 624 /** 625 * bio_clone_bioset - clone a bio 626 * @bio_src: bio to clone 627 * @gfp_mask: allocation priority 628 * @bs: bio_set to allocate from 629 * 630 * Clone bio. Caller will own the returned bio, but not the actual data it 631 * points to. Reference count of returned bio will be one. 632 */ 633 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 634 struct bio_set *bs) 635 { 636 struct bvec_iter iter; 637 struct bio_vec bv; 638 struct bio *bio; 639 640 /* 641 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 642 * bio_src->bi_io_vec to bio->bi_io_vec. 643 * 644 * We can't do that anymore, because: 645 * 646 * - The point of cloning the biovec is to produce a bio with a biovec 647 * the caller can modify: bi_idx and bi_bvec_done should be 0. 648 * 649 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 650 * we tried to clone the whole thing bio_alloc_bioset() would fail. 651 * But the clone should succeed as long as the number of biovecs we 652 * actually need to allocate is fewer than BIO_MAX_PAGES. 653 * 654 * - Lastly, bi_vcnt should not be looked at or relied upon by code 655 * that does not own the bio - reason being drivers don't use it for 656 * iterating over the biovec anymore, so expecting it to be kept up 657 * to date (i.e. for clones that share the parent biovec) is just 658 * asking for trouble and would force extra work on 659 * __bio_clone_fast() anyways. 660 */ 661 662 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 663 if (!bio) 664 return NULL; 665 bio->bi_bdev = bio_src->bi_bdev; 666 bio->bi_opf = bio_src->bi_opf; 667 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 668 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 669 670 if (bio_op(bio) == REQ_OP_DISCARD) 671 goto integrity_clone; 672 673 if (bio_op(bio) == REQ_OP_WRITE_SAME) { 674 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 675 goto integrity_clone; 676 } 677 678 bio_for_each_segment(bv, bio_src, iter) 679 bio->bi_io_vec[bio->bi_vcnt++] = bv; 680 681 integrity_clone: 682 if (bio_integrity(bio_src)) { 683 int ret; 684 685 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 686 if (ret < 0) { 687 bio_put(bio); 688 return NULL; 689 } 690 } 691 692 bio_clone_blkcg_association(bio, bio_src); 693 694 return bio; 695 } 696 EXPORT_SYMBOL(bio_clone_bioset); 697 698 /** 699 * bio_add_pc_page - attempt to add page to bio 700 * @q: the target queue 701 * @bio: destination bio 702 * @page: page to add 703 * @len: vec entry length 704 * @offset: vec entry offset 705 * 706 * Attempt to add a page to the bio_vec maplist. This can fail for a 707 * number of reasons, such as the bio being full or target block device 708 * limitations. The target block device must allow bio's up to PAGE_SIZE, 709 * so it is always possible to add a single page to an empty bio. 710 * 711 * This should only be used by REQ_PC bios. 712 */ 713 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 714 *page, unsigned int len, unsigned int offset) 715 { 716 int retried_segments = 0; 717 struct bio_vec *bvec; 718 719 /* 720 * cloned bio must not modify vec list 721 */ 722 if (unlikely(bio_flagged(bio, BIO_CLONED))) 723 return 0; 724 725 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 726 return 0; 727 728 /* 729 * For filesystems with a blocksize smaller than the pagesize 730 * we will often be called with the same page as last time and 731 * a consecutive offset. Optimize this special case. 732 */ 733 if (bio->bi_vcnt > 0) { 734 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 735 736 if (page == prev->bv_page && 737 offset == prev->bv_offset + prev->bv_len) { 738 prev->bv_len += len; 739 bio->bi_iter.bi_size += len; 740 goto done; 741 } 742 743 /* 744 * If the queue doesn't support SG gaps and adding this 745 * offset would create a gap, disallow it. 746 */ 747 if (bvec_gap_to_prev(q, prev, offset)) 748 return 0; 749 } 750 751 if (bio->bi_vcnt >= bio->bi_max_vecs) 752 return 0; 753 754 /* 755 * setup the new entry, we might clear it again later if we 756 * cannot add the page 757 */ 758 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 759 bvec->bv_page = page; 760 bvec->bv_len = len; 761 bvec->bv_offset = offset; 762 bio->bi_vcnt++; 763 bio->bi_phys_segments++; 764 bio->bi_iter.bi_size += len; 765 766 /* 767 * Perform a recount if the number of segments is greater 768 * than queue_max_segments(q). 769 */ 770 771 while (bio->bi_phys_segments > queue_max_segments(q)) { 772 773 if (retried_segments) 774 goto failed; 775 776 retried_segments = 1; 777 blk_recount_segments(q, bio); 778 } 779 780 /* If we may be able to merge these biovecs, force a recount */ 781 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 782 bio_clear_flag(bio, BIO_SEG_VALID); 783 784 done: 785 return len; 786 787 failed: 788 bvec->bv_page = NULL; 789 bvec->bv_len = 0; 790 bvec->bv_offset = 0; 791 bio->bi_vcnt--; 792 bio->bi_iter.bi_size -= len; 793 blk_recount_segments(q, bio); 794 return 0; 795 } 796 EXPORT_SYMBOL(bio_add_pc_page); 797 798 /** 799 * bio_add_page - attempt to add page to bio 800 * @bio: destination bio 801 * @page: page to add 802 * @len: vec entry length 803 * @offset: vec entry offset 804 * 805 * Attempt to add a page to the bio_vec maplist. This will only fail 806 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 807 */ 808 int bio_add_page(struct bio *bio, struct page *page, 809 unsigned int len, unsigned int offset) 810 { 811 struct bio_vec *bv; 812 813 /* 814 * cloned bio must not modify vec list 815 */ 816 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 817 return 0; 818 819 /* 820 * For filesystems with a blocksize smaller than the pagesize 821 * we will often be called with the same page as last time and 822 * a consecutive offset. Optimize this special case. 823 */ 824 if (bio->bi_vcnt > 0) { 825 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 826 827 if (page == bv->bv_page && 828 offset == bv->bv_offset + bv->bv_len) { 829 bv->bv_len += len; 830 goto done; 831 } 832 } 833 834 if (bio->bi_vcnt >= bio->bi_max_vecs) 835 return 0; 836 837 bv = &bio->bi_io_vec[bio->bi_vcnt]; 838 bv->bv_page = page; 839 bv->bv_len = len; 840 bv->bv_offset = offset; 841 842 bio->bi_vcnt++; 843 done: 844 bio->bi_iter.bi_size += len; 845 return len; 846 } 847 EXPORT_SYMBOL(bio_add_page); 848 849 struct submit_bio_ret { 850 struct completion event; 851 int error; 852 }; 853 854 static void submit_bio_wait_endio(struct bio *bio) 855 { 856 struct submit_bio_ret *ret = bio->bi_private; 857 858 ret->error = bio->bi_error; 859 complete(&ret->event); 860 } 861 862 /** 863 * submit_bio_wait - submit a bio, and wait until it completes 864 * @bio: The &struct bio which describes the I/O 865 * 866 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 867 * bio_endio() on failure. 868 */ 869 int submit_bio_wait(struct bio *bio) 870 { 871 struct submit_bio_ret ret; 872 873 init_completion(&ret.event); 874 bio->bi_private = &ret; 875 bio->bi_end_io = submit_bio_wait_endio; 876 bio->bi_opf |= REQ_SYNC; 877 submit_bio(bio); 878 wait_for_completion_io(&ret.event); 879 880 return ret.error; 881 } 882 EXPORT_SYMBOL(submit_bio_wait); 883 884 /** 885 * bio_advance - increment/complete a bio by some number of bytes 886 * @bio: bio to advance 887 * @bytes: number of bytes to complete 888 * 889 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 890 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 891 * be updated on the last bvec as well. 892 * 893 * @bio will then represent the remaining, uncompleted portion of the io. 894 */ 895 void bio_advance(struct bio *bio, unsigned bytes) 896 { 897 if (bio_integrity(bio)) 898 bio_integrity_advance(bio, bytes); 899 900 bio_advance_iter(bio, &bio->bi_iter, bytes); 901 } 902 EXPORT_SYMBOL(bio_advance); 903 904 /** 905 * bio_alloc_pages - allocates a single page for each bvec in a bio 906 * @bio: bio to allocate pages for 907 * @gfp_mask: flags for allocation 908 * 909 * Allocates pages up to @bio->bi_vcnt. 910 * 911 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 912 * freed. 913 */ 914 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 915 { 916 int i; 917 struct bio_vec *bv; 918 919 bio_for_each_segment_all(bv, bio, i) { 920 bv->bv_page = alloc_page(gfp_mask); 921 if (!bv->bv_page) { 922 while (--bv >= bio->bi_io_vec) 923 __free_page(bv->bv_page); 924 return -ENOMEM; 925 } 926 } 927 928 return 0; 929 } 930 EXPORT_SYMBOL(bio_alloc_pages); 931 932 /** 933 * bio_copy_data - copy contents of data buffers from one chain of bios to 934 * another 935 * @src: source bio list 936 * @dst: destination bio list 937 * 938 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 939 * @src and @dst as linked lists of bios. 940 * 941 * Stops when it reaches the end of either @src or @dst - that is, copies 942 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 943 */ 944 void bio_copy_data(struct bio *dst, struct bio *src) 945 { 946 struct bvec_iter src_iter, dst_iter; 947 struct bio_vec src_bv, dst_bv; 948 void *src_p, *dst_p; 949 unsigned bytes; 950 951 src_iter = src->bi_iter; 952 dst_iter = dst->bi_iter; 953 954 while (1) { 955 if (!src_iter.bi_size) { 956 src = src->bi_next; 957 if (!src) 958 break; 959 960 src_iter = src->bi_iter; 961 } 962 963 if (!dst_iter.bi_size) { 964 dst = dst->bi_next; 965 if (!dst) 966 break; 967 968 dst_iter = dst->bi_iter; 969 } 970 971 src_bv = bio_iter_iovec(src, src_iter); 972 dst_bv = bio_iter_iovec(dst, dst_iter); 973 974 bytes = min(src_bv.bv_len, dst_bv.bv_len); 975 976 src_p = kmap_atomic(src_bv.bv_page); 977 dst_p = kmap_atomic(dst_bv.bv_page); 978 979 memcpy(dst_p + dst_bv.bv_offset, 980 src_p + src_bv.bv_offset, 981 bytes); 982 983 kunmap_atomic(dst_p); 984 kunmap_atomic(src_p); 985 986 bio_advance_iter(src, &src_iter, bytes); 987 bio_advance_iter(dst, &dst_iter, bytes); 988 } 989 } 990 EXPORT_SYMBOL(bio_copy_data); 991 992 struct bio_map_data { 993 int is_our_pages; 994 struct iov_iter iter; 995 struct iovec iov[]; 996 }; 997 998 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 999 gfp_t gfp_mask) 1000 { 1001 if (iov_count > UIO_MAXIOV) 1002 return NULL; 1003 1004 return kmalloc(sizeof(struct bio_map_data) + 1005 sizeof(struct iovec) * iov_count, gfp_mask); 1006 } 1007 1008 /** 1009 * bio_copy_from_iter - copy all pages from iov_iter to bio 1010 * @bio: The &struct bio which describes the I/O as destination 1011 * @iter: iov_iter as source 1012 * 1013 * Copy all pages from iov_iter to bio. 1014 * Returns 0 on success, or error on failure. 1015 */ 1016 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1017 { 1018 int i; 1019 struct bio_vec *bvec; 1020 1021 bio_for_each_segment_all(bvec, bio, i) { 1022 ssize_t ret; 1023 1024 ret = copy_page_from_iter(bvec->bv_page, 1025 bvec->bv_offset, 1026 bvec->bv_len, 1027 &iter); 1028 1029 if (!iov_iter_count(&iter)) 1030 break; 1031 1032 if (ret < bvec->bv_len) 1033 return -EFAULT; 1034 } 1035 1036 return 0; 1037 } 1038 1039 /** 1040 * bio_copy_to_iter - copy all pages from bio to iov_iter 1041 * @bio: The &struct bio which describes the I/O as source 1042 * @iter: iov_iter as destination 1043 * 1044 * Copy all pages from bio to iov_iter. 1045 * Returns 0 on success, or error on failure. 1046 */ 1047 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1048 { 1049 int i; 1050 struct bio_vec *bvec; 1051 1052 bio_for_each_segment_all(bvec, bio, i) { 1053 ssize_t ret; 1054 1055 ret = copy_page_to_iter(bvec->bv_page, 1056 bvec->bv_offset, 1057 bvec->bv_len, 1058 &iter); 1059 1060 if (!iov_iter_count(&iter)) 1061 break; 1062 1063 if (ret < bvec->bv_len) 1064 return -EFAULT; 1065 } 1066 1067 return 0; 1068 } 1069 1070 static void bio_free_pages(struct bio *bio) 1071 { 1072 struct bio_vec *bvec; 1073 int i; 1074 1075 bio_for_each_segment_all(bvec, bio, i) 1076 __free_page(bvec->bv_page); 1077 } 1078 1079 /** 1080 * bio_uncopy_user - finish previously mapped bio 1081 * @bio: bio being terminated 1082 * 1083 * Free pages allocated from bio_copy_user_iov() and write back data 1084 * to user space in case of a read. 1085 */ 1086 int bio_uncopy_user(struct bio *bio) 1087 { 1088 struct bio_map_data *bmd = bio->bi_private; 1089 int ret = 0; 1090 1091 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1092 /* 1093 * if we're in a workqueue, the request is orphaned, so 1094 * don't copy into a random user address space, just free 1095 * and return -EINTR so user space doesn't expect any data. 1096 */ 1097 if (!current->mm) 1098 ret = -EINTR; 1099 else if (bio_data_dir(bio) == READ) 1100 ret = bio_copy_to_iter(bio, bmd->iter); 1101 if (bmd->is_our_pages) 1102 bio_free_pages(bio); 1103 } 1104 kfree(bmd); 1105 bio_put(bio); 1106 return ret; 1107 } 1108 1109 /** 1110 * bio_copy_user_iov - copy user data to bio 1111 * @q: destination block queue 1112 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1113 * @iter: iovec iterator 1114 * @gfp_mask: memory allocation flags 1115 * 1116 * Prepares and returns a bio for indirect user io, bouncing data 1117 * to/from kernel pages as necessary. Must be paired with 1118 * call bio_uncopy_user() on io completion. 1119 */ 1120 struct bio *bio_copy_user_iov(struct request_queue *q, 1121 struct rq_map_data *map_data, 1122 const struct iov_iter *iter, 1123 gfp_t gfp_mask) 1124 { 1125 struct bio_map_data *bmd; 1126 struct page *page; 1127 struct bio *bio; 1128 int i, ret; 1129 int nr_pages = 0; 1130 unsigned int len = iter->count; 1131 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1132 1133 for (i = 0; i < iter->nr_segs; i++) { 1134 unsigned long uaddr; 1135 unsigned long end; 1136 unsigned long start; 1137 1138 uaddr = (unsigned long) iter->iov[i].iov_base; 1139 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1140 >> PAGE_SHIFT; 1141 start = uaddr >> PAGE_SHIFT; 1142 1143 /* 1144 * Overflow, abort 1145 */ 1146 if (end < start) 1147 return ERR_PTR(-EINVAL); 1148 1149 nr_pages += end - start; 1150 } 1151 1152 if (offset) 1153 nr_pages++; 1154 1155 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1156 if (!bmd) 1157 return ERR_PTR(-ENOMEM); 1158 1159 /* 1160 * We need to do a deep copy of the iov_iter including the iovecs. 1161 * The caller provided iov might point to an on-stack or otherwise 1162 * shortlived one. 1163 */ 1164 bmd->is_our_pages = map_data ? 0 : 1; 1165 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1166 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1167 iter->nr_segs, iter->count); 1168 1169 ret = -ENOMEM; 1170 bio = bio_kmalloc(gfp_mask, nr_pages); 1171 if (!bio) 1172 goto out_bmd; 1173 1174 if (iter->type & WRITE) 1175 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1176 1177 ret = 0; 1178 1179 if (map_data) { 1180 nr_pages = 1 << map_data->page_order; 1181 i = map_data->offset / PAGE_SIZE; 1182 } 1183 while (len) { 1184 unsigned int bytes = PAGE_SIZE; 1185 1186 bytes -= offset; 1187 1188 if (bytes > len) 1189 bytes = len; 1190 1191 if (map_data) { 1192 if (i == map_data->nr_entries * nr_pages) { 1193 ret = -ENOMEM; 1194 break; 1195 } 1196 1197 page = map_data->pages[i / nr_pages]; 1198 page += (i % nr_pages); 1199 1200 i++; 1201 } else { 1202 page = alloc_page(q->bounce_gfp | gfp_mask); 1203 if (!page) { 1204 ret = -ENOMEM; 1205 break; 1206 } 1207 } 1208 1209 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1210 break; 1211 1212 len -= bytes; 1213 offset = 0; 1214 } 1215 1216 if (ret) 1217 goto cleanup; 1218 1219 /* 1220 * success 1221 */ 1222 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1223 (map_data && map_data->from_user)) { 1224 ret = bio_copy_from_iter(bio, *iter); 1225 if (ret) 1226 goto cleanup; 1227 } 1228 1229 bio->bi_private = bmd; 1230 return bio; 1231 cleanup: 1232 if (!map_data) 1233 bio_free_pages(bio); 1234 bio_put(bio); 1235 out_bmd: 1236 kfree(bmd); 1237 return ERR_PTR(ret); 1238 } 1239 1240 /** 1241 * bio_map_user_iov - map user iovec into bio 1242 * @q: the struct request_queue for the bio 1243 * @iter: iovec iterator 1244 * @gfp_mask: memory allocation flags 1245 * 1246 * Map the user space address into a bio suitable for io to a block 1247 * device. Returns an error pointer in case of error. 1248 */ 1249 struct bio *bio_map_user_iov(struct request_queue *q, 1250 const struct iov_iter *iter, 1251 gfp_t gfp_mask) 1252 { 1253 int j; 1254 int nr_pages = 0; 1255 struct page **pages; 1256 struct bio *bio; 1257 int cur_page = 0; 1258 int ret, offset; 1259 struct iov_iter i; 1260 struct iovec iov; 1261 1262 iov_for_each(iov, i, *iter) { 1263 unsigned long uaddr = (unsigned long) iov.iov_base; 1264 unsigned long len = iov.iov_len; 1265 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1266 unsigned long start = uaddr >> PAGE_SHIFT; 1267 1268 /* 1269 * Overflow, abort 1270 */ 1271 if (end < start) 1272 return ERR_PTR(-EINVAL); 1273 1274 nr_pages += end - start; 1275 /* 1276 * buffer must be aligned to at least hardsector size for now 1277 */ 1278 if (uaddr & queue_dma_alignment(q)) 1279 return ERR_PTR(-EINVAL); 1280 } 1281 1282 if (!nr_pages) 1283 return ERR_PTR(-EINVAL); 1284 1285 bio = bio_kmalloc(gfp_mask, nr_pages); 1286 if (!bio) 1287 return ERR_PTR(-ENOMEM); 1288 1289 ret = -ENOMEM; 1290 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1291 if (!pages) 1292 goto out; 1293 1294 iov_for_each(iov, i, *iter) { 1295 unsigned long uaddr = (unsigned long) iov.iov_base; 1296 unsigned long len = iov.iov_len; 1297 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1298 unsigned long start = uaddr >> PAGE_SHIFT; 1299 const int local_nr_pages = end - start; 1300 const int page_limit = cur_page + local_nr_pages; 1301 1302 ret = get_user_pages_fast(uaddr, local_nr_pages, 1303 (iter->type & WRITE) != WRITE, 1304 &pages[cur_page]); 1305 if (ret < local_nr_pages) { 1306 ret = -EFAULT; 1307 goto out_unmap; 1308 } 1309 1310 offset = offset_in_page(uaddr); 1311 for (j = cur_page; j < page_limit; j++) { 1312 unsigned int bytes = PAGE_SIZE - offset; 1313 1314 if (len <= 0) 1315 break; 1316 1317 if (bytes > len) 1318 bytes = len; 1319 1320 /* 1321 * sorry... 1322 */ 1323 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1324 bytes) 1325 break; 1326 1327 len -= bytes; 1328 offset = 0; 1329 } 1330 1331 cur_page = j; 1332 /* 1333 * release the pages we didn't map into the bio, if any 1334 */ 1335 while (j < page_limit) 1336 put_page(pages[j++]); 1337 } 1338 1339 kfree(pages); 1340 1341 /* 1342 * set data direction, and check if mapped pages need bouncing 1343 */ 1344 if (iter->type & WRITE) 1345 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1346 1347 bio_set_flag(bio, BIO_USER_MAPPED); 1348 1349 /* 1350 * subtle -- if __bio_map_user() ended up bouncing a bio, 1351 * it would normally disappear when its bi_end_io is run. 1352 * however, we need it for the unmap, so grab an extra 1353 * reference to it 1354 */ 1355 bio_get(bio); 1356 return bio; 1357 1358 out_unmap: 1359 for (j = 0; j < nr_pages; j++) { 1360 if (!pages[j]) 1361 break; 1362 put_page(pages[j]); 1363 } 1364 out: 1365 kfree(pages); 1366 bio_put(bio); 1367 return ERR_PTR(ret); 1368 } 1369 1370 static void __bio_unmap_user(struct bio *bio) 1371 { 1372 struct bio_vec *bvec; 1373 int i; 1374 1375 /* 1376 * make sure we dirty pages we wrote to 1377 */ 1378 bio_for_each_segment_all(bvec, bio, i) { 1379 if (bio_data_dir(bio) == READ) 1380 set_page_dirty_lock(bvec->bv_page); 1381 1382 put_page(bvec->bv_page); 1383 } 1384 1385 bio_put(bio); 1386 } 1387 1388 /** 1389 * bio_unmap_user - unmap a bio 1390 * @bio: the bio being unmapped 1391 * 1392 * Unmap a bio previously mapped by bio_map_user(). Must be called with 1393 * a process context. 1394 * 1395 * bio_unmap_user() may sleep. 1396 */ 1397 void bio_unmap_user(struct bio *bio) 1398 { 1399 __bio_unmap_user(bio); 1400 bio_put(bio); 1401 } 1402 1403 static void bio_map_kern_endio(struct bio *bio) 1404 { 1405 bio_put(bio); 1406 } 1407 1408 /** 1409 * bio_map_kern - map kernel address into bio 1410 * @q: the struct request_queue for the bio 1411 * @data: pointer to buffer to map 1412 * @len: length in bytes 1413 * @gfp_mask: allocation flags for bio allocation 1414 * 1415 * Map the kernel address into a bio suitable for io to a block 1416 * device. Returns an error pointer in case of error. 1417 */ 1418 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1419 gfp_t gfp_mask) 1420 { 1421 unsigned long kaddr = (unsigned long)data; 1422 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1423 unsigned long start = kaddr >> PAGE_SHIFT; 1424 const int nr_pages = end - start; 1425 int offset, i; 1426 struct bio *bio; 1427 1428 bio = bio_kmalloc(gfp_mask, nr_pages); 1429 if (!bio) 1430 return ERR_PTR(-ENOMEM); 1431 1432 offset = offset_in_page(kaddr); 1433 for (i = 0; i < nr_pages; i++) { 1434 unsigned int bytes = PAGE_SIZE - offset; 1435 1436 if (len <= 0) 1437 break; 1438 1439 if (bytes > len) 1440 bytes = len; 1441 1442 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1443 offset) < bytes) { 1444 /* we don't support partial mappings */ 1445 bio_put(bio); 1446 return ERR_PTR(-EINVAL); 1447 } 1448 1449 data += bytes; 1450 len -= bytes; 1451 offset = 0; 1452 } 1453 1454 bio->bi_end_io = bio_map_kern_endio; 1455 return bio; 1456 } 1457 EXPORT_SYMBOL(bio_map_kern); 1458 1459 static void bio_copy_kern_endio(struct bio *bio) 1460 { 1461 bio_free_pages(bio); 1462 bio_put(bio); 1463 } 1464 1465 static void bio_copy_kern_endio_read(struct bio *bio) 1466 { 1467 char *p = bio->bi_private; 1468 struct bio_vec *bvec; 1469 int i; 1470 1471 bio_for_each_segment_all(bvec, bio, i) { 1472 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1473 p += bvec->bv_len; 1474 } 1475 1476 bio_copy_kern_endio(bio); 1477 } 1478 1479 /** 1480 * bio_copy_kern - copy kernel address into bio 1481 * @q: the struct request_queue for the bio 1482 * @data: pointer to buffer to copy 1483 * @len: length in bytes 1484 * @gfp_mask: allocation flags for bio and page allocation 1485 * @reading: data direction is READ 1486 * 1487 * copy the kernel address into a bio suitable for io to a block 1488 * device. Returns an error pointer in case of error. 1489 */ 1490 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1491 gfp_t gfp_mask, int reading) 1492 { 1493 unsigned long kaddr = (unsigned long)data; 1494 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1495 unsigned long start = kaddr >> PAGE_SHIFT; 1496 struct bio *bio; 1497 void *p = data; 1498 int nr_pages = 0; 1499 1500 /* 1501 * Overflow, abort 1502 */ 1503 if (end < start) 1504 return ERR_PTR(-EINVAL); 1505 1506 nr_pages = end - start; 1507 bio = bio_kmalloc(gfp_mask, nr_pages); 1508 if (!bio) 1509 return ERR_PTR(-ENOMEM); 1510 1511 while (len) { 1512 struct page *page; 1513 unsigned int bytes = PAGE_SIZE; 1514 1515 if (bytes > len) 1516 bytes = len; 1517 1518 page = alloc_page(q->bounce_gfp | gfp_mask); 1519 if (!page) 1520 goto cleanup; 1521 1522 if (!reading) 1523 memcpy(page_address(page), p, bytes); 1524 1525 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1526 break; 1527 1528 len -= bytes; 1529 p += bytes; 1530 } 1531 1532 if (reading) { 1533 bio->bi_end_io = bio_copy_kern_endio_read; 1534 bio->bi_private = data; 1535 } else { 1536 bio->bi_end_io = bio_copy_kern_endio; 1537 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1538 } 1539 1540 return bio; 1541 1542 cleanup: 1543 bio_free_pages(bio); 1544 bio_put(bio); 1545 return ERR_PTR(-ENOMEM); 1546 } 1547 1548 /* 1549 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1550 * for performing direct-IO in BIOs. 1551 * 1552 * The problem is that we cannot run set_page_dirty() from interrupt context 1553 * because the required locks are not interrupt-safe. So what we can do is to 1554 * mark the pages dirty _before_ performing IO. And in interrupt context, 1555 * check that the pages are still dirty. If so, fine. If not, redirty them 1556 * in process context. 1557 * 1558 * We special-case compound pages here: normally this means reads into hugetlb 1559 * pages. The logic in here doesn't really work right for compound pages 1560 * because the VM does not uniformly chase down the head page in all cases. 1561 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1562 * handle them at all. So we skip compound pages here at an early stage. 1563 * 1564 * Note that this code is very hard to test under normal circumstances because 1565 * direct-io pins the pages with get_user_pages(). This makes 1566 * is_page_cache_freeable return false, and the VM will not clean the pages. 1567 * But other code (eg, flusher threads) could clean the pages if they are mapped 1568 * pagecache. 1569 * 1570 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1571 * deferred bio dirtying paths. 1572 */ 1573 1574 /* 1575 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1576 */ 1577 void bio_set_pages_dirty(struct bio *bio) 1578 { 1579 struct bio_vec *bvec; 1580 int i; 1581 1582 bio_for_each_segment_all(bvec, bio, i) { 1583 struct page *page = bvec->bv_page; 1584 1585 if (page && !PageCompound(page)) 1586 set_page_dirty_lock(page); 1587 } 1588 } 1589 1590 static void bio_release_pages(struct bio *bio) 1591 { 1592 struct bio_vec *bvec; 1593 int i; 1594 1595 bio_for_each_segment_all(bvec, bio, i) { 1596 struct page *page = bvec->bv_page; 1597 1598 if (page) 1599 put_page(page); 1600 } 1601 } 1602 1603 /* 1604 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1605 * If they are, then fine. If, however, some pages are clean then they must 1606 * have been written out during the direct-IO read. So we take another ref on 1607 * the BIO and the offending pages and re-dirty the pages in process context. 1608 * 1609 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1610 * here on. It will run one put_page() against each page and will run one 1611 * bio_put() against the BIO. 1612 */ 1613 1614 static void bio_dirty_fn(struct work_struct *work); 1615 1616 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1617 static DEFINE_SPINLOCK(bio_dirty_lock); 1618 static struct bio *bio_dirty_list; 1619 1620 /* 1621 * This runs in process context 1622 */ 1623 static void bio_dirty_fn(struct work_struct *work) 1624 { 1625 unsigned long flags; 1626 struct bio *bio; 1627 1628 spin_lock_irqsave(&bio_dirty_lock, flags); 1629 bio = bio_dirty_list; 1630 bio_dirty_list = NULL; 1631 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1632 1633 while (bio) { 1634 struct bio *next = bio->bi_private; 1635 1636 bio_set_pages_dirty(bio); 1637 bio_release_pages(bio); 1638 bio_put(bio); 1639 bio = next; 1640 } 1641 } 1642 1643 void bio_check_pages_dirty(struct bio *bio) 1644 { 1645 struct bio_vec *bvec; 1646 int nr_clean_pages = 0; 1647 int i; 1648 1649 bio_for_each_segment_all(bvec, bio, i) { 1650 struct page *page = bvec->bv_page; 1651 1652 if (PageDirty(page) || PageCompound(page)) { 1653 put_page(page); 1654 bvec->bv_page = NULL; 1655 } else { 1656 nr_clean_pages++; 1657 } 1658 } 1659 1660 if (nr_clean_pages) { 1661 unsigned long flags; 1662 1663 spin_lock_irqsave(&bio_dirty_lock, flags); 1664 bio->bi_private = bio_dirty_list; 1665 bio_dirty_list = bio; 1666 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1667 schedule_work(&bio_dirty_work); 1668 } else { 1669 bio_put(bio); 1670 } 1671 } 1672 1673 void generic_start_io_acct(int rw, unsigned long sectors, 1674 struct hd_struct *part) 1675 { 1676 int cpu = part_stat_lock(); 1677 1678 part_round_stats(cpu, part); 1679 part_stat_inc(cpu, part, ios[rw]); 1680 part_stat_add(cpu, part, sectors[rw], sectors); 1681 part_inc_in_flight(part, rw); 1682 1683 part_stat_unlock(); 1684 } 1685 EXPORT_SYMBOL(generic_start_io_acct); 1686 1687 void generic_end_io_acct(int rw, struct hd_struct *part, 1688 unsigned long start_time) 1689 { 1690 unsigned long duration = jiffies - start_time; 1691 int cpu = part_stat_lock(); 1692 1693 part_stat_add(cpu, part, ticks[rw], duration); 1694 part_round_stats(cpu, part); 1695 part_dec_in_flight(part, rw); 1696 1697 part_stat_unlock(); 1698 } 1699 EXPORT_SYMBOL(generic_end_io_acct); 1700 1701 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1702 void bio_flush_dcache_pages(struct bio *bi) 1703 { 1704 struct bio_vec bvec; 1705 struct bvec_iter iter; 1706 1707 bio_for_each_segment(bvec, bi, iter) 1708 flush_dcache_page(bvec.bv_page); 1709 } 1710 EXPORT_SYMBOL(bio_flush_dcache_pages); 1711 #endif 1712 1713 static inline bool bio_remaining_done(struct bio *bio) 1714 { 1715 /* 1716 * If we're not chaining, then ->__bi_remaining is always 1 and 1717 * we always end io on the first invocation. 1718 */ 1719 if (!bio_flagged(bio, BIO_CHAIN)) 1720 return true; 1721 1722 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1723 1724 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1725 bio_clear_flag(bio, BIO_CHAIN); 1726 return true; 1727 } 1728 1729 return false; 1730 } 1731 1732 /** 1733 * bio_endio - end I/O on a bio 1734 * @bio: bio 1735 * 1736 * Description: 1737 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1738 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1739 * bio unless they own it and thus know that it has an end_io function. 1740 **/ 1741 void bio_endio(struct bio *bio) 1742 { 1743 again: 1744 if (!bio_remaining_done(bio)) 1745 return; 1746 1747 /* 1748 * Need to have a real endio function for chained bios, otherwise 1749 * various corner cases will break (like stacking block devices that 1750 * save/restore bi_end_io) - however, we want to avoid unbounded 1751 * recursion and blowing the stack. Tail call optimization would 1752 * handle this, but compiling with frame pointers also disables 1753 * gcc's sibling call optimization. 1754 */ 1755 if (bio->bi_end_io == bio_chain_endio) { 1756 bio = __bio_chain_endio(bio); 1757 goto again; 1758 } 1759 1760 if (bio->bi_end_io) 1761 bio->bi_end_io(bio); 1762 } 1763 EXPORT_SYMBOL(bio_endio); 1764 1765 /** 1766 * bio_split - split a bio 1767 * @bio: bio to split 1768 * @sectors: number of sectors to split from the front of @bio 1769 * @gfp: gfp mask 1770 * @bs: bio set to allocate from 1771 * 1772 * Allocates and returns a new bio which represents @sectors from the start of 1773 * @bio, and updates @bio to represent the remaining sectors. 1774 * 1775 * Unless this is a discard request the newly allocated bio will point 1776 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1777 * @bio is not freed before the split. 1778 */ 1779 struct bio *bio_split(struct bio *bio, int sectors, 1780 gfp_t gfp, struct bio_set *bs) 1781 { 1782 struct bio *split = NULL; 1783 1784 BUG_ON(sectors <= 0); 1785 BUG_ON(sectors >= bio_sectors(bio)); 1786 1787 /* 1788 * Discards need a mutable bio_vec to accommodate the payload 1789 * required by the DSM TRIM and UNMAP commands. 1790 */ 1791 if (bio_op(bio) == REQ_OP_DISCARD) 1792 split = bio_clone_bioset(bio, gfp, bs); 1793 else 1794 split = bio_clone_fast(bio, gfp, bs); 1795 1796 if (!split) 1797 return NULL; 1798 1799 split->bi_iter.bi_size = sectors << 9; 1800 1801 if (bio_integrity(split)) 1802 bio_integrity_trim(split, 0, sectors); 1803 1804 bio_advance(bio, split->bi_iter.bi_size); 1805 1806 return split; 1807 } 1808 EXPORT_SYMBOL(bio_split); 1809 1810 /** 1811 * bio_trim - trim a bio 1812 * @bio: bio to trim 1813 * @offset: number of sectors to trim from the front of @bio 1814 * @size: size we want to trim @bio to, in sectors 1815 */ 1816 void bio_trim(struct bio *bio, int offset, int size) 1817 { 1818 /* 'bio' is a cloned bio which we need to trim to match 1819 * the given offset and size. 1820 */ 1821 1822 size <<= 9; 1823 if (offset == 0 && size == bio->bi_iter.bi_size) 1824 return; 1825 1826 bio_clear_flag(bio, BIO_SEG_VALID); 1827 1828 bio_advance(bio, offset << 9); 1829 1830 bio->bi_iter.bi_size = size; 1831 } 1832 EXPORT_SYMBOL_GPL(bio_trim); 1833 1834 /* 1835 * create memory pools for biovec's in a bio_set. 1836 * use the global biovec slabs created for general use. 1837 */ 1838 mempool_t *biovec_create_pool(int pool_entries) 1839 { 1840 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1841 1842 return mempool_create_slab_pool(pool_entries, bp->slab); 1843 } 1844 1845 void bioset_free(struct bio_set *bs) 1846 { 1847 if (bs->rescue_workqueue) 1848 destroy_workqueue(bs->rescue_workqueue); 1849 1850 if (bs->bio_pool) 1851 mempool_destroy(bs->bio_pool); 1852 1853 if (bs->bvec_pool) 1854 mempool_destroy(bs->bvec_pool); 1855 1856 bioset_integrity_free(bs); 1857 bio_put_slab(bs); 1858 1859 kfree(bs); 1860 } 1861 EXPORT_SYMBOL(bioset_free); 1862 1863 static struct bio_set *__bioset_create(unsigned int pool_size, 1864 unsigned int front_pad, 1865 bool create_bvec_pool) 1866 { 1867 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1868 struct bio_set *bs; 1869 1870 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1871 if (!bs) 1872 return NULL; 1873 1874 bs->front_pad = front_pad; 1875 1876 spin_lock_init(&bs->rescue_lock); 1877 bio_list_init(&bs->rescue_list); 1878 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1879 1880 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1881 if (!bs->bio_slab) { 1882 kfree(bs); 1883 return NULL; 1884 } 1885 1886 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1887 if (!bs->bio_pool) 1888 goto bad; 1889 1890 if (create_bvec_pool) { 1891 bs->bvec_pool = biovec_create_pool(pool_size); 1892 if (!bs->bvec_pool) 1893 goto bad; 1894 } 1895 1896 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1897 if (!bs->rescue_workqueue) 1898 goto bad; 1899 1900 return bs; 1901 bad: 1902 bioset_free(bs); 1903 return NULL; 1904 } 1905 1906 /** 1907 * bioset_create - Create a bio_set 1908 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1909 * @front_pad: Number of bytes to allocate in front of the returned bio 1910 * 1911 * Description: 1912 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1913 * to ask for a number of bytes to be allocated in front of the bio. 1914 * Front pad allocation is useful for embedding the bio inside 1915 * another structure, to avoid allocating extra data to go with the bio. 1916 * Note that the bio must be embedded at the END of that structure always, 1917 * or things will break badly. 1918 */ 1919 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1920 { 1921 return __bioset_create(pool_size, front_pad, true); 1922 } 1923 EXPORT_SYMBOL(bioset_create); 1924 1925 /** 1926 * bioset_create_nobvec - Create a bio_set without bio_vec mempool 1927 * @pool_size: Number of bio to cache in the mempool 1928 * @front_pad: Number of bytes to allocate in front of the returned bio 1929 * 1930 * Description: 1931 * Same functionality as bioset_create() except that mempool is not 1932 * created for bio_vecs. Saving some memory for bio_clone_fast() users. 1933 */ 1934 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) 1935 { 1936 return __bioset_create(pool_size, front_pad, false); 1937 } 1938 EXPORT_SYMBOL(bioset_create_nobvec); 1939 1940 #ifdef CONFIG_BLK_CGROUP 1941 1942 /** 1943 * bio_associate_blkcg - associate a bio with the specified blkcg 1944 * @bio: target bio 1945 * @blkcg_css: css of the blkcg to associate 1946 * 1947 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 1948 * treat @bio as if it were issued by a task which belongs to the blkcg. 1949 * 1950 * This function takes an extra reference of @blkcg_css which will be put 1951 * when @bio is released. The caller must own @bio and is responsible for 1952 * synchronizing calls to this function. 1953 */ 1954 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 1955 { 1956 if (unlikely(bio->bi_css)) 1957 return -EBUSY; 1958 css_get(blkcg_css); 1959 bio->bi_css = blkcg_css; 1960 return 0; 1961 } 1962 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 1963 1964 /** 1965 * bio_associate_current - associate a bio with %current 1966 * @bio: target bio 1967 * 1968 * Associate @bio with %current if it hasn't been associated yet. Block 1969 * layer will treat @bio as if it were issued by %current no matter which 1970 * task actually issues it. 1971 * 1972 * This function takes an extra reference of @task's io_context and blkcg 1973 * which will be put when @bio is released. The caller must own @bio, 1974 * ensure %current->io_context exists, and is responsible for synchronizing 1975 * calls to this function. 1976 */ 1977 int bio_associate_current(struct bio *bio) 1978 { 1979 struct io_context *ioc; 1980 1981 if (bio->bi_css) 1982 return -EBUSY; 1983 1984 ioc = current->io_context; 1985 if (!ioc) 1986 return -ENOENT; 1987 1988 get_io_context_active(ioc); 1989 bio->bi_ioc = ioc; 1990 bio->bi_css = task_get_css(current, io_cgrp_id); 1991 return 0; 1992 } 1993 EXPORT_SYMBOL_GPL(bio_associate_current); 1994 1995 /** 1996 * bio_disassociate_task - undo bio_associate_current() 1997 * @bio: target bio 1998 */ 1999 void bio_disassociate_task(struct bio *bio) 2000 { 2001 if (bio->bi_ioc) { 2002 put_io_context(bio->bi_ioc); 2003 bio->bi_ioc = NULL; 2004 } 2005 if (bio->bi_css) { 2006 css_put(bio->bi_css); 2007 bio->bi_css = NULL; 2008 } 2009 } 2010 2011 /** 2012 * bio_clone_blkcg_association - clone blkcg association from src to dst bio 2013 * @dst: destination bio 2014 * @src: source bio 2015 */ 2016 void bio_clone_blkcg_association(struct bio *dst, struct bio *src) 2017 { 2018 if (src->bi_css) 2019 WARN_ON(bio_associate_blkcg(dst, src->bi_css)); 2020 } 2021 2022 #endif /* CONFIG_BLK_CGROUP */ 2023 2024 static void __init biovec_init_slabs(void) 2025 { 2026 int i; 2027 2028 for (i = 0; i < BVEC_POOL_NR; i++) { 2029 int size; 2030 struct biovec_slab *bvs = bvec_slabs + i; 2031 2032 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2033 bvs->slab = NULL; 2034 continue; 2035 } 2036 2037 size = bvs->nr_vecs * sizeof(struct bio_vec); 2038 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2039 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2040 } 2041 } 2042 2043 static int __init init_bio(void) 2044 { 2045 bio_slab_max = 2; 2046 bio_slab_nr = 0; 2047 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2048 if (!bio_slabs) 2049 panic("bio: can't allocate bios\n"); 2050 2051 bio_integrity_init(); 2052 biovec_init_slabs(); 2053 2054 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2055 if (!fs_bio_set) 2056 panic("bio: can't allocate bios\n"); 2057 2058 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2059 panic("bio: can't create integrity pool\n"); 2060 2061 return 0; 2062 } 2063 subsys_initcall(init_bio); 2064