xref: /linux/block/bio.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
243 void bio_uninit(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248 
249 static void bio_free(struct bio *bio)
250 {
251 	struct bio_set *bs = bio->bi_pool;
252 	void *p;
253 
254 	bio_uninit(bio);
255 
256 	if (bs) {
257 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258 
259 		/*
260 		 * If we have front padding, adjust the bio pointer before freeing
261 		 */
262 		p = bio;
263 		p -= bs->front_pad;
264 
265 		mempool_free(p, bs->bio_pool);
266 	} else {
267 		/* Bio was allocated by bio_kmalloc() */
268 		kfree(bio);
269 	}
270 }
271 
272 /*
273  * Users of this function have their own bio allocation. Subsequently,
274  * they must remember to pair any call to bio_init() with bio_uninit()
275  * when IO has completed, or when the bio is released.
276  */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 	      unsigned short max_vecs)
279 {
280 	memset(bio, 0, sizeof(*bio));
281 	atomic_set(&bio->__bi_remaining, 1);
282 	atomic_set(&bio->__bi_cnt, 1);
283 
284 	bio->bi_io_vec = table;
285 	bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  *
293  * Description:
294  *   After calling bio_reset(), @bio will be in the same state as a freshly
295  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
296  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
297  *   comment in struct bio.
298  */
299 void bio_reset(struct bio *bio)
300 {
301 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302 
303 	bio_uninit(bio);
304 
305 	memset(bio, 0, BIO_RESET_BYTES);
306 	bio->bi_flags = flags;
307 	atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310 
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 	struct bio *parent = bio->bi_private;
314 
315 	if (!parent->bi_status)
316 		parent->bi_status = bio->bi_status;
317 	bio_put(bio);
318 	return parent;
319 }
320 
321 static void bio_chain_endio(struct bio *bio)
322 {
323 	bio_endio(__bio_chain_endio(bio));
324 }
325 
326 /**
327  * bio_chain - chain bio completions
328  * @bio: the target bio
329  * @parent: the @bio's parent bio
330  *
331  * The caller won't have a bi_end_io called when @bio completes - instead,
332  * @parent's bi_end_io won't be called until both @parent and @bio have
333  * completed; the chained bio will also be freed when it completes.
334  *
335  * The caller must not set bi_private or bi_end_io in @bio.
336  */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 	BUG_ON(bio->bi_private || bio->bi_end_io);
340 
341 	bio->bi_private = parent;
342 	bio->bi_end_io	= bio_chain_endio;
343 	bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346 
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 	struct bio *bio;
351 
352 	while (1) {
353 		spin_lock(&bs->rescue_lock);
354 		bio = bio_list_pop(&bs->rescue_list);
355 		spin_unlock(&bs->rescue_lock);
356 
357 		if (!bio)
358 			break;
359 
360 		generic_make_request(bio);
361 	}
362 }
363 
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 	struct bio_list punt, nopunt;
367 	struct bio *bio;
368 
369 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 		return;
371 	/*
372 	 * In order to guarantee forward progress we must punt only bios that
373 	 * were allocated from this bio_set; otherwise, if there was a bio on
374 	 * there for a stacking driver higher up in the stack, processing it
375 	 * could require allocating bios from this bio_set, and doing that from
376 	 * our own rescuer would be bad.
377 	 *
378 	 * Since bio lists are singly linked, pop them all instead of trying to
379 	 * remove from the middle of the list:
380 	 */
381 
382 	bio_list_init(&punt);
383 	bio_list_init(&nopunt);
384 
385 	while ((bio = bio_list_pop(&current->bio_list[0])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[0] = nopunt;
388 
389 	bio_list_init(&nopunt);
390 	while ((bio = bio_list_pop(&current->bio_list[1])))
391 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 	current->bio_list[1] = nopunt;
393 
394 	spin_lock(&bs->rescue_lock);
395 	bio_list_merge(&bs->rescue_list, &punt);
396 	spin_unlock(&bs->rescue_lock);
397 
398 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400 
401 /**
402  * bio_alloc_bioset - allocate a bio for I/O
403  * @gfp_mask:   the GFP_ mask given to the slab allocator
404  * @nr_iovecs:	number of iovecs to pre-allocate
405  * @bs:		the bio_set to allocate from.
406  *
407  * Description:
408  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409  *   backed by the @bs's mempool.
410  *
411  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412  *   always be able to allocate a bio. This is due to the mempool guarantees.
413  *   To make this work, callers must never allocate more than 1 bio at a time
414  *   from this pool. Callers that need to allocate more than 1 bio must always
415  *   submit the previously allocated bio for IO before attempting to allocate
416  *   a new one. Failure to do so can cause deadlocks under memory pressure.
417  *
418  *   Note that when running under generic_make_request() (i.e. any block
419  *   driver), bios are not submitted until after you return - see the code in
420  *   generic_make_request() that converts recursion into iteration, to prevent
421  *   stack overflows.
422  *
423  *   This would normally mean allocating multiple bios under
424  *   generic_make_request() would be susceptible to deadlocks, but we have
425  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
426  *   thread.
427  *
428  *   However, we do not guarantee forward progress for allocations from other
429  *   mempools. Doing multiple allocations from the same mempool under
430  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
431  *   for per bio allocations.
432  *
433  *   RETURNS:
434  *   Pointer to new bio on success, NULL on failure.
435  */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 			     struct bio_set *bs)
438 {
439 	gfp_t saved_gfp = gfp_mask;
440 	unsigned front_pad;
441 	unsigned inline_vecs;
442 	struct bio_vec *bvl = NULL;
443 	struct bio *bio;
444 	void *p;
445 
446 	if (!bs) {
447 		if (nr_iovecs > UIO_MAXIOV)
448 			return NULL;
449 
450 		p = kmalloc(sizeof(struct bio) +
451 			    nr_iovecs * sizeof(struct bio_vec),
452 			    gfp_mask);
453 		front_pad = 0;
454 		inline_vecs = nr_iovecs;
455 	} else {
456 		/* should not use nobvec bioset for nr_iovecs > 0 */
457 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 			return NULL;
459 		/*
460 		 * generic_make_request() converts recursion to iteration; this
461 		 * means if we're running beneath it, any bios we allocate and
462 		 * submit will not be submitted (and thus freed) until after we
463 		 * return.
464 		 *
465 		 * This exposes us to a potential deadlock if we allocate
466 		 * multiple bios from the same bio_set() while running
467 		 * underneath generic_make_request(). If we were to allocate
468 		 * multiple bios (say a stacking block driver that was splitting
469 		 * bios), we would deadlock if we exhausted the mempool's
470 		 * reserve.
471 		 *
472 		 * We solve this, and guarantee forward progress, with a rescuer
473 		 * workqueue per bio_set. If we go to allocate and there are
474 		 * bios on current->bio_list, we first try the allocation
475 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 		 * bios we would be blocking to the rescuer workqueue before
477 		 * we retry with the original gfp_flags.
478 		 */
479 
480 		if (current->bio_list &&
481 		    (!bio_list_empty(&current->bio_list[0]) ||
482 		     !bio_list_empty(&current->bio_list[1])) &&
483 		    bs->rescue_workqueue)
484 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485 
486 		p = mempool_alloc(bs->bio_pool, gfp_mask);
487 		if (!p && gfp_mask != saved_gfp) {
488 			punt_bios_to_rescuer(bs);
489 			gfp_mask = saved_gfp;
490 			p = mempool_alloc(bs->bio_pool, gfp_mask);
491 		}
492 
493 		front_pad = bs->front_pad;
494 		inline_vecs = BIO_INLINE_VECS;
495 	}
496 
497 	if (unlikely(!p))
498 		return NULL;
499 
500 	bio = p + front_pad;
501 	bio_init(bio, NULL, 0);
502 
503 	if (nr_iovecs > inline_vecs) {
504 		unsigned long idx = 0;
505 
506 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 		if (!bvl && gfp_mask != saved_gfp) {
508 			punt_bios_to_rescuer(bs);
509 			gfp_mask = saved_gfp;
510 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 		}
512 
513 		if (unlikely(!bvl))
514 			goto err_free;
515 
516 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 	} else if (nr_iovecs) {
518 		bvl = bio->bi_inline_vecs;
519 	}
520 
521 	bio->bi_pool = bs;
522 	bio->bi_max_vecs = nr_iovecs;
523 	bio->bi_io_vec = bvl;
524 	return bio;
525 
526 err_free:
527 	mempool_free(p, bs->bio_pool);
528 	return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531 
532 void zero_fill_bio(struct bio *bio)
533 {
534 	unsigned long flags;
535 	struct bio_vec bv;
536 	struct bvec_iter iter;
537 
538 	bio_for_each_segment(bv, bio, iter) {
539 		char *data = bvec_kmap_irq(&bv, &flags);
540 		memset(data, 0, bv.bv_len);
541 		flush_dcache_page(bv.bv_page);
542 		bvec_kunmap_irq(data, &flags);
543 	}
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546 
547 /**
548  * bio_put - release a reference to a bio
549  * @bio:   bio to release reference to
550  *
551  * Description:
552  *   Put a reference to a &struct bio, either one you have gotten with
553  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554  **/
555 void bio_put(struct bio *bio)
556 {
557 	if (!bio_flagged(bio, BIO_REFFED))
558 		bio_free(bio);
559 	else {
560 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561 
562 		/*
563 		 * last put frees it
564 		 */
565 		if (atomic_dec_and_test(&bio->__bi_cnt))
566 			bio_free(bio);
567 	}
568 }
569 EXPORT_SYMBOL(bio_put);
570 
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 		blk_recount_segments(q, bio);
575 
576 	return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579 
580 /**
581  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
582  * 	@bio: destination bio
583  * 	@bio_src: bio to clone
584  *
585  *	Clone a &bio. Caller will own the returned bio, but not
586  *	the actual data it points to. Reference count of returned
587  * 	bio will be one.
588  *
589  * 	Caller must ensure that @bio_src is not freed before @bio.
590  */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594 
595 	/*
596 	 * most users will be overriding ->bi_disk with a new target,
597 	 * so we don't set nor calculate new physical/hw segment counts here
598 	 */
599 	bio->bi_disk = bio_src->bi_disk;
600 	bio_set_flag(bio, BIO_CLONED);
601 	bio->bi_opf = bio_src->bi_opf;
602 	bio->bi_write_hint = bio_src->bi_write_hint;
603 	bio->bi_iter = bio_src->bi_iter;
604 	bio->bi_io_vec = bio_src->bi_io_vec;
605 
606 	bio_clone_blkcg_association(bio, bio_src);
607 }
608 EXPORT_SYMBOL(__bio_clone_fast);
609 
610 /**
611  *	bio_clone_fast - clone a bio that shares the original bio's biovec
612  *	@bio: bio to clone
613  *	@gfp_mask: allocation priority
614  *	@bs: bio_set to allocate from
615  *
616  * 	Like __bio_clone_fast, only also allocates the returned bio
617  */
618 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
619 {
620 	struct bio *b;
621 
622 	b = bio_alloc_bioset(gfp_mask, 0, bs);
623 	if (!b)
624 		return NULL;
625 
626 	__bio_clone_fast(b, bio);
627 
628 	if (bio_integrity(bio)) {
629 		int ret;
630 
631 		ret = bio_integrity_clone(b, bio, gfp_mask);
632 
633 		if (ret < 0) {
634 			bio_put(b);
635 			return NULL;
636 		}
637 	}
638 
639 	return b;
640 }
641 EXPORT_SYMBOL(bio_clone_fast);
642 
643 /**
644  * 	bio_clone_bioset - clone a bio
645  * 	@bio_src: bio to clone
646  *	@gfp_mask: allocation priority
647  *	@bs: bio_set to allocate from
648  *
649  *	Clone bio. Caller will own the returned bio, but not the actual data it
650  *	points to. Reference count of returned bio will be one.
651  */
652 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
653 			     struct bio_set *bs)
654 {
655 	struct bvec_iter iter;
656 	struct bio_vec bv;
657 	struct bio *bio;
658 
659 	/*
660 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
661 	 * bio_src->bi_io_vec to bio->bi_io_vec.
662 	 *
663 	 * We can't do that anymore, because:
664 	 *
665 	 *  - The point of cloning the biovec is to produce a bio with a biovec
666 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
667 	 *
668 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
669 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
670 	 *    But the clone should succeed as long as the number of biovecs we
671 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
672 	 *
673 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
674 	 *    that does not own the bio - reason being drivers don't use it for
675 	 *    iterating over the biovec anymore, so expecting it to be kept up
676 	 *    to date (i.e. for clones that share the parent biovec) is just
677 	 *    asking for trouble and would force extra work on
678 	 *    __bio_clone_fast() anyways.
679 	 */
680 
681 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
682 	if (!bio)
683 		return NULL;
684 	bio->bi_disk		= bio_src->bi_disk;
685 	bio->bi_opf		= bio_src->bi_opf;
686 	bio->bi_write_hint	= bio_src->bi_write_hint;
687 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
688 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
689 
690 	switch (bio_op(bio)) {
691 	case REQ_OP_DISCARD:
692 	case REQ_OP_SECURE_ERASE:
693 	case REQ_OP_WRITE_ZEROES:
694 		break;
695 	case REQ_OP_WRITE_SAME:
696 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
697 		break;
698 	default:
699 		bio_for_each_segment(bv, bio_src, iter)
700 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
701 		break;
702 	}
703 
704 	if (bio_integrity(bio_src)) {
705 		int ret;
706 
707 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
708 		if (ret < 0) {
709 			bio_put(bio);
710 			return NULL;
711 		}
712 	}
713 
714 	bio_clone_blkcg_association(bio, bio_src);
715 
716 	return bio;
717 }
718 EXPORT_SYMBOL(bio_clone_bioset);
719 
720 /**
721  *	bio_add_pc_page	-	attempt to add page to bio
722  *	@q: the target queue
723  *	@bio: destination bio
724  *	@page: page to add
725  *	@len: vec entry length
726  *	@offset: vec entry offset
727  *
728  *	Attempt to add a page to the bio_vec maplist. This can fail for a
729  *	number of reasons, such as the bio being full or target block device
730  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
731  *	so it is always possible to add a single page to an empty bio.
732  *
733  *	This should only be used by REQ_PC bios.
734  */
735 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
736 		    *page, unsigned int len, unsigned int offset)
737 {
738 	int retried_segments = 0;
739 	struct bio_vec *bvec;
740 
741 	/*
742 	 * cloned bio must not modify vec list
743 	 */
744 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
745 		return 0;
746 
747 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
748 		return 0;
749 
750 	/*
751 	 * For filesystems with a blocksize smaller than the pagesize
752 	 * we will often be called with the same page as last time and
753 	 * a consecutive offset.  Optimize this special case.
754 	 */
755 	if (bio->bi_vcnt > 0) {
756 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
757 
758 		if (page == prev->bv_page &&
759 		    offset == prev->bv_offset + prev->bv_len) {
760 			prev->bv_len += len;
761 			bio->bi_iter.bi_size += len;
762 			goto done;
763 		}
764 
765 		/*
766 		 * If the queue doesn't support SG gaps and adding this
767 		 * offset would create a gap, disallow it.
768 		 */
769 		if (bvec_gap_to_prev(q, prev, offset))
770 			return 0;
771 	}
772 
773 	if (bio->bi_vcnt >= bio->bi_max_vecs)
774 		return 0;
775 
776 	/*
777 	 * setup the new entry, we might clear it again later if we
778 	 * cannot add the page
779 	 */
780 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
781 	bvec->bv_page = page;
782 	bvec->bv_len = len;
783 	bvec->bv_offset = offset;
784 	bio->bi_vcnt++;
785 	bio->bi_phys_segments++;
786 	bio->bi_iter.bi_size += len;
787 
788 	/*
789 	 * Perform a recount if the number of segments is greater
790 	 * than queue_max_segments(q).
791 	 */
792 
793 	while (bio->bi_phys_segments > queue_max_segments(q)) {
794 
795 		if (retried_segments)
796 			goto failed;
797 
798 		retried_segments = 1;
799 		blk_recount_segments(q, bio);
800 	}
801 
802 	/* If we may be able to merge these biovecs, force a recount */
803 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
804 		bio_clear_flag(bio, BIO_SEG_VALID);
805 
806  done:
807 	return len;
808 
809  failed:
810 	bvec->bv_page = NULL;
811 	bvec->bv_len = 0;
812 	bvec->bv_offset = 0;
813 	bio->bi_vcnt--;
814 	bio->bi_iter.bi_size -= len;
815 	blk_recount_segments(q, bio);
816 	return 0;
817 }
818 EXPORT_SYMBOL(bio_add_pc_page);
819 
820 /**
821  *	bio_add_page	-	attempt to add page to bio
822  *	@bio: destination bio
823  *	@page: page to add
824  *	@len: vec entry length
825  *	@offset: vec entry offset
826  *
827  *	Attempt to add a page to the bio_vec maplist. This will only fail
828  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
829  */
830 int bio_add_page(struct bio *bio, struct page *page,
831 		 unsigned int len, unsigned int offset)
832 {
833 	struct bio_vec *bv;
834 
835 	/*
836 	 * cloned bio must not modify vec list
837 	 */
838 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
839 		return 0;
840 
841 	/*
842 	 * For filesystems with a blocksize smaller than the pagesize
843 	 * we will often be called with the same page as last time and
844 	 * a consecutive offset.  Optimize this special case.
845 	 */
846 	if (bio->bi_vcnt > 0) {
847 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
848 
849 		if (page == bv->bv_page &&
850 		    offset == bv->bv_offset + bv->bv_len) {
851 			bv->bv_len += len;
852 			goto done;
853 		}
854 	}
855 
856 	if (bio->bi_vcnt >= bio->bi_max_vecs)
857 		return 0;
858 
859 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
860 	bv->bv_page	= page;
861 	bv->bv_len	= len;
862 	bv->bv_offset	= offset;
863 
864 	bio->bi_vcnt++;
865 done:
866 	bio->bi_iter.bi_size += len;
867 	return len;
868 }
869 EXPORT_SYMBOL(bio_add_page);
870 
871 /**
872  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
873  * @bio: bio to add pages to
874  * @iter: iov iterator describing the region to be mapped
875  *
876  * Pins as many pages from *iter and appends them to @bio's bvec array. The
877  * pages will have to be released using put_page() when done.
878  */
879 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
880 {
881 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
882 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
883 	struct page **pages = (struct page **)bv;
884 	size_t offset, diff;
885 	ssize_t size;
886 
887 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
888 	if (unlikely(size <= 0))
889 		return size ? size : -EFAULT;
890 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
891 
892 	/*
893 	 * Deep magic below:  We need to walk the pinned pages backwards
894 	 * because we are abusing the space allocated for the bio_vecs
895 	 * for the page array.  Because the bio_vecs are larger than the
896 	 * page pointers by definition this will always work.  But it also
897 	 * means we can't use bio_add_page, so any changes to it's semantics
898 	 * need to be reflected here as well.
899 	 */
900 	bio->bi_iter.bi_size += size;
901 	bio->bi_vcnt += nr_pages;
902 
903 	diff = (nr_pages * PAGE_SIZE - offset) - size;
904 	while (nr_pages--) {
905 		bv[nr_pages].bv_page = pages[nr_pages];
906 		bv[nr_pages].bv_len = PAGE_SIZE;
907 		bv[nr_pages].bv_offset = 0;
908 	}
909 
910 	bv[0].bv_offset += offset;
911 	bv[0].bv_len -= offset;
912 	if (diff)
913 		bv[bio->bi_vcnt - 1].bv_len -= diff;
914 
915 	iov_iter_advance(iter, size);
916 	return 0;
917 }
918 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
919 
920 struct submit_bio_ret {
921 	struct completion event;
922 	int error;
923 };
924 
925 static void submit_bio_wait_endio(struct bio *bio)
926 {
927 	struct submit_bio_ret *ret = bio->bi_private;
928 
929 	ret->error = blk_status_to_errno(bio->bi_status);
930 	complete(&ret->event);
931 }
932 
933 /**
934  * submit_bio_wait - submit a bio, and wait until it completes
935  * @bio: The &struct bio which describes the I/O
936  *
937  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
938  * bio_endio() on failure.
939  *
940  * WARNING: Unlike to how submit_bio() is usually used, this function does not
941  * result in bio reference to be consumed. The caller must drop the reference
942  * on his own.
943  */
944 int submit_bio_wait(struct bio *bio)
945 {
946 	struct submit_bio_ret ret;
947 
948 	init_completion(&ret.event);
949 	bio->bi_private = &ret;
950 	bio->bi_end_io = submit_bio_wait_endio;
951 	bio->bi_opf |= REQ_SYNC;
952 	submit_bio(bio);
953 	wait_for_completion_io(&ret.event);
954 
955 	return ret.error;
956 }
957 EXPORT_SYMBOL(submit_bio_wait);
958 
959 /**
960  * bio_advance - increment/complete a bio by some number of bytes
961  * @bio:	bio to advance
962  * @bytes:	number of bytes to complete
963  *
964  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
965  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
966  * be updated on the last bvec as well.
967  *
968  * @bio will then represent the remaining, uncompleted portion of the io.
969  */
970 void bio_advance(struct bio *bio, unsigned bytes)
971 {
972 	if (bio_integrity(bio))
973 		bio_integrity_advance(bio, bytes);
974 
975 	bio_advance_iter(bio, &bio->bi_iter, bytes);
976 }
977 EXPORT_SYMBOL(bio_advance);
978 
979 /**
980  * bio_alloc_pages - allocates a single page for each bvec in a bio
981  * @bio: bio to allocate pages for
982  * @gfp_mask: flags for allocation
983  *
984  * Allocates pages up to @bio->bi_vcnt.
985  *
986  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
987  * freed.
988  */
989 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
990 {
991 	int i;
992 	struct bio_vec *bv;
993 
994 	bio_for_each_segment_all(bv, bio, i) {
995 		bv->bv_page = alloc_page(gfp_mask);
996 		if (!bv->bv_page) {
997 			while (--bv >= bio->bi_io_vec)
998 				__free_page(bv->bv_page);
999 			return -ENOMEM;
1000 		}
1001 	}
1002 
1003 	return 0;
1004 }
1005 EXPORT_SYMBOL(bio_alloc_pages);
1006 
1007 /**
1008  * bio_copy_data - copy contents of data buffers from one chain of bios to
1009  * another
1010  * @src: source bio list
1011  * @dst: destination bio list
1012  *
1013  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1014  * @src and @dst as linked lists of bios.
1015  *
1016  * Stops when it reaches the end of either @src or @dst - that is, copies
1017  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1018  */
1019 void bio_copy_data(struct bio *dst, struct bio *src)
1020 {
1021 	struct bvec_iter src_iter, dst_iter;
1022 	struct bio_vec src_bv, dst_bv;
1023 	void *src_p, *dst_p;
1024 	unsigned bytes;
1025 
1026 	src_iter = src->bi_iter;
1027 	dst_iter = dst->bi_iter;
1028 
1029 	while (1) {
1030 		if (!src_iter.bi_size) {
1031 			src = src->bi_next;
1032 			if (!src)
1033 				break;
1034 
1035 			src_iter = src->bi_iter;
1036 		}
1037 
1038 		if (!dst_iter.bi_size) {
1039 			dst = dst->bi_next;
1040 			if (!dst)
1041 				break;
1042 
1043 			dst_iter = dst->bi_iter;
1044 		}
1045 
1046 		src_bv = bio_iter_iovec(src, src_iter);
1047 		dst_bv = bio_iter_iovec(dst, dst_iter);
1048 
1049 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1050 
1051 		src_p = kmap_atomic(src_bv.bv_page);
1052 		dst_p = kmap_atomic(dst_bv.bv_page);
1053 
1054 		memcpy(dst_p + dst_bv.bv_offset,
1055 		       src_p + src_bv.bv_offset,
1056 		       bytes);
1057 
1058 		kunmap_atomic(dst_p);
1059 		kunmap_atomic(src_p);
1060 
1061 		bio_advance_iter(src, &src_iter, bytes);
1062 		bio_advance_iter(dst, &dst_iter, bytes);
1063 	}
1064 }
1065 EXPORT_SYMBOL(bio_copy_data);
1066 
1067 struct bio_map_data {
1068 	int is_our_pages;
1069 	struct iov_iter iter;
1070 	struct iovec iov[];
1071 };
1072 
1073 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1074 					       gfp_t gfp_mask)
1075 {
1076 	if (iov_count > UIO_MAXIOV)
1077 		return NULL;
1078 
1079 	return kmalloc(sizeof(struct bio_map_data) +
1080 		       sizeof(struct iovec) * iov_count, gfp_mask);
1081 }
1082 
1083 /**
1084  * bio_copy_from_iter - copy all pages from iov_iter to bio
1085  * @bio: The &struct bio which describes the I/O as destination
1086  * @iter: iov_iter as source
1087  *
1088  * Copy all pages from iov_iter to bio.
1089  * Returns 0 on success, or error on failure.
1090  */
1091 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1092 {
1093 	int i;
1094 	struct bio_vec *bvec;
1095 
1096 	bio_for_each_segment_all(bvec, bio, i) {
1097 		ssize_t ret;
1098 
1099 		ret = copy_page_from_iter(bvec->bv_page,
1100 					  bvec->bv_offset,
1101 					  bvec->bv_len,
1102 					  &iter);
1103 
1104 		if (!iov_iter_count(&iter))
1105 			break;
1106 
1107 		if (ret < bvec->bv_len)
1108 			return -EFAULT;
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 /**
1115  * bio_copy_to_iter - copy all pages from bio to iov_iter
1116  * @bio: The &struct bio which describes the I/O as source
1117  * @iter: iov_iter as destination
1118  *
1119  * Copy all pages from bio to iov_iter.
1120  * Returns 0 on success, or error on failure.
1121  */
1122 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1123 {
1124 	int i;
1125 	struct bio_vec *bvec;
1126 
1127 	bio_for_each_segment_all(bvec, bio, i) {
1128 		ssize_t ret;
1129 
1130 		ret = copy_page_to_iter(bvec->bv_page,
1131 					bvec->bv_offset,
1132 					bvec->bv_len,
1133 					&iter);
1134 
1135 		if (!iov_iter_count(&iter))
1136 			break;
1137 
1138 		if (ret < bvec->bv_len)
1139 			return -EFAULT;
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 void bio_free_pages(struct bio *bio)
1146 {
1147 	struct bio_vec *bvec;
1148 	int i;
1149 
1150 	bio_for_each_segment_all(bvec, bio, i)
1151 		__free_page(bvec->bv_page);
1152 }
1153 EXPORT_SYMBOL(bio_free_pages);
1154 
1155 /**
1156  *	bio_uncopy_user	-	finish previously mapped bio
1157  *	@bio: bio being terminated
1158  *
1159  *	Free pages allocated from bio_copy_user_iov() and write back data
1160  *	to user space in case of a read.
1161  */
1162 int bio_uncopy_user(struct bio *bio)
1163 {
1164 	struct bio_map_data *bmd = bio->bi_private;
1165 	int ret = 0;
1166 
1167 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1168 		/*
1169 		 * if we're in a workqueue, the request is orphaned, so
1170 		 * don't copy into a random user address space, just free
1171 		 * and return -EINTR so user space doesn't expect any data.
1172 		 */
1173 		if (!current->mm)
1174 			ret = -EINTR;
1175 		else if (bio_data_dir(bio) == READ)
1176 			ret = bio_copy_to_iter(bio, bmd->iter);
1177 		if (bmd->is_our_pages)
1178 			bio_free_pages(bio);
1179 	}
1180 	kfree(bmd);
1181 	bio_put(bio);
1182 	return ret;
1183 }
1184 
1185 /**
1186  *	bio_copy_user_iov	-	copy user data to bio
1187  *	@q:		destination block queue
1188  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1189  *	@iter:		iovec iterator
1190  *	@gfp_mask:	memory allocation flags
1191  *
1192  *	Prepares and returns a bio for indirect user io, bouncing data
1193  *	to/from kernel pages as necessary. Must be paired with
1194  *	call bio_uncopy_user() on io completion.
1195  */
1196 struct bio *bio_copy_user_iov(struct request_queue *q,
1197 			      struct rq_map_data *map_data,
1198 			      const struct iov_iter *iter,
1199 			      gfp_t gfp_mask)
1200 {
1201 	struct bio_map_data *bmd;
1202 	struct page *page;
1203 	struct bio *bio;
1204 	int i, ret;
1205 	int nr_pages = 0;
1206 	unsigned int len = iter->count;
1207 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1208 
1209 	for (i = 0; i < iter->nr_segs; i++) {
1210 		unsigned long uaddr;
1211 		unsigned long end;
1212 		unsigned long start;
1213 
1214 		uaddr = (unsigned long) iter->iov[i].iov_base;
1215 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1216 			>> PAGE_SHIFT;
1217 		start = uaddr >> PAGE_SHIFT;
1218 
1219 		/*
1220 		 * Overflow, abort
1221 		 */
1222 		if (end < start)
1223 			return ERR_PTR(-EINVAL);
1224 
1225 		nr_pages += end - start;
1226 	}
1227 
1228 	if (offset)
1229 		nr_pages++;
1230 
1231 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1232 	if (!bmd)
1233 		return ERR_PTR(-ENOMEM);
1234 
1235 	/*
1236 	 * We need to do a deep copy of the iov_iter including the iovecs.
1237 	 * The caller provided iov might point to an on-stack or otherwise
1238 	 * shortlived one.
1239 	 */
1240 	bmd->is_our_pages = map_data ? 0 : 1;
1241 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1242 	bmd->iter = *iter;
1243 	bmd->iter.iov = bmd->iov;
1244 
1245 	ret = -ENOMEM;
1246 	bio = bio_kmalloc(gfp_mask, nr_pages);
1247 	if (!bio)
1248 		goto out_bmd;
1249 
1250 	ret = 0;
1251 
1252 	if (map_data) {
1253 		nr_pages = 1 << map_data->page_order;
1254 		i = map_data->offset / PAGE_SIZE;
1255 	}
1256 	while (len) {
1257 		unsigned int bytes = PAGE_SIZE;
1258 
1259 		bytes -= offset;
1260 
1261 		if (bytes > len)
1262 			bytes = len;
1263 
1264 		if (map_data) {
1265 			if (i == map_data->nr_entries * nr_pages) {
1266 				ret = -ENOMEM;
1267 				break;
1268 			}
1269 
1270 			page = map_data->pages[i / nr_pages];
1271 			page += (i % nr_pages);
1272 
1273 			i++;
1274 		} else {
1275 			page = alloc_page(q->bounce_gfp | gfp_mask);
1276 			if (!page) {
1277 				ret = -ENOMEM;
1278 				break;
1279 			}
1280 		}
1281 
1282 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1283 			break;
1284 
1285 		len -= bytes;
1286 		offset = 0;
1287 	}
1288 
1289 	if (ret)
1290 		goto cleanup;
1291 
1292 	/*
1293 	 * success
1294 	 */
1295 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1296 	    (map_data && map_data->from_user)) {
1297 		ret = bio_copy_from_iter(bio, *iter);
1298 		if (ret)
1299 			goto cleanup;
1300 	}
1301 
1302 	bio->bi_private = bmd;
1303 	return bio;
1304 cleanup:
1305 	if (!map_data)
1306 		bio_free_pages(bio);
1307 	bio_put(bio);
1308 out_bmd:
1309 	kfree(bmd);
1310 	return ERR_PTR(ret);
1311 }
1312 
1313 /**
1314  *	bio_map_user_iov - map user iovec into bio
1315  *	@q:		the struct request_queue for the bio
1316  *	@iter:		iovec iterator
1317  *	@gfp_mask:	memory allocation flags
1318  *
1319  *	Map the user space address into a bio suitable for io to a block
1320  *	device. Returns an error pointer in case of error.
1321  */
1322 struct bio *bio_map_user_iov(struct request_queue *q,
1323 			     const struct iov_iter *iter,
1324 			     gfp_t gfp_mask)
1325 {
1326 	int j;
1327 	int nr_pages = 0;
1328 	struct page **pages;
1329 	struct bio *bio;
1330 	int cur_page = 0;
1331 	int ret, offset;
1332 	struct iov_iter i;
1333 	struct iovec iov;
1334 	struct bio_vec *bvec;
1335 
1336 	iov_for_each(iov, i, *iter) {
1337 		unsigned long uaddr = (unsigned long) iov.iov_base;
1338 		unsigned long len = iov.iov_len;
1339 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1340 		unsigned long start = uaddr >> PAGE_SHIFT;
1341 
1342 		/*
1343 		 * Overflow, abort
1344 		 */
1345 		if (end < start)
1346 			return ERR_PTR(-EINVAL);
1347 
1348 		nr_pages += end - start;
1349 		/*
1350 		 * buffer must be aligned to at least logical block size for now
1351 		 */
1352 		if (uaddr & queue_dma_alignment(q))
1353 			return ERR_PTR(-EINVAL);
1354 	}
1355 
1356 	if (!nr_pages)
1357 		return ERR_PTR(-EINVAL);
1358 
1359 	bio = bio_kmalloc(gfp_mask, nr_pages);
1360 	if (!bio)
1361 		return ERR_PTR(-ENOMEM);
1362 
1363 	ret = -ENOMEM;
1364 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1365 	if (!pages)
1366 		goto out;
1367 
1368 	iov_for_each(iov, i, *iter) {
1369 		unsigned long uaddr = (unsigned long) iov.iov_base;
1370 		unsigned long len = iov.iov_len;
1371 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1372 		unsigned long start = uaddr >> PAGE_SHIFT;
1373 		const int local_nr_pages = end - start;
1374 		const int page_limit = cur_page + local_nr_pages;
1375 
1376 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1377 				(iter->type & WRITE) != WRITE,
1378 				&pages[cur_page]);
1379 		if (unlikely(ret < local_nr_pages)) {
1380 			for (j = cur_page; j < page_limit; j++) {
1381 				if (!pages[j])
1382 					break;
1383 				put_page(pages[j]);
1384 			}
1385 			ret = -EFAULT;
1386 			goto out_unmap;
1387 		}
1388 
1389 		offset = offset_in_page(uaddr);
1390 		for (j = cur_page; j < page_limit; j++) {
1391 			unsigned int bytes = PAGE_SIZE - offset;
1392 			unsigned short prev_bi_vcnt = bio->bi_vcnt;
1393 
1394 			if (len <= 0)
1395 				break;
1396 
1397 			if (bytes > len)
1398 				bytes = len;
1399 
1400 			/*
1401 			 * sorry...
1402 			 */
1403 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1404 					    bytes)
1405 				break;
1406 
1407 			/*
1408 			 * check if vector was merged with previous
1409 			 * drop page reference if needed
1410 			 */
1411 			if (bio->bi_vcnt == prev_bi_vcnt)
1412 				put_page(pages[j]);
1413 
1414 			len -= bytes;
1415 			offset = 0;
1416 		}
1417 
1418 		cur_page = j;
1419 		/*
1420 		 * release the pages we didn't map into the bio, if any
1421 		 */
1422 		while (j < page_limit)
1423 			put_page(pages[j++]);
1424 	}
1425 
1426 	kfree(pages);
1427 
1428 	bio_set_flag(bio, BIO_USER_MAPPED);
1429 
1430 	/*
1431 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1432 	 * it would normally disappear when its bi_end_io is run.
1433 	 * however, we need it for the unmap, so grab an extra
1434 	 * reference to it
1435 	 */
1436 	bio_get(bio);
1437 	return bio;
1438 
1439  out_unmap:
1440 	bio_for_each_segment_all(bvec, bio, j) {
1441 		put_page(bvec->bv_page);
1442 	}
1443  out:
1444 	kfree(pages);
1445 	bio_put(bio);
1446 	return ERR_PTR(ret);
1447 }
1448 
1449 static void __bio_unmap_user(struct bio *bio)
1450 {
1451 	struct bio_vec *bvec;
1452 	int i;
1453 
1454 	/*
1455 	 * make sure we dirty pages we wrote to
1456 	 */
1457 	bio_for_each_segment_all(bvec, bio, i) {
1458 		if (bio_data_dir(bio) == READ)
1459 			set_page_dirty_lock(bvec->bv_page);
1460 
1461 		put_page(bvec->bv_page);
1462 	}
1463 
1464 	bio_put(bio);
1465 }
1466 
1467 /**
1468  *	bio_unmap_user	-	unmap a bio
1469  *	@bio:		the bio being unmapped
1470  *
1471  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1472  *	process context.
1473  *
1474  *	bio_unmap_user() may sleep.
1475  */
1476 void bio_unmap_user(struct bio *bio)
1477 {
1478 	__bio_unmap_user(bio);
1479 	bio_put(bio);
1480 }
1481 
1482 static void bio_map_kern_endio(struct bio *bio)
1483 {
1484 	bio_put(bio);
1485 }
1486 
1487 /**
1488  *	bio_map_kern	-	map kernel address into bio
1489  *	@q: the struct request_queue for the bio
1490  *	@data: pointer to buffer to map
1491  *	@len: length in bytes
1492  *	@gfp_mask: allocation flags for bio allocation
1493  *
1494  *	Map the kernel address into a bio suitable for io to a block
1495  *	device. Returns an error pointer in case of error.
1496  */
1497 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1498 			 gfp_t gfp_mask)
1499 {
1500 	unsigned long kaddr = (unsigned long)data;
1501 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 	unsigned long start = kaddr >> PAGE_SHIFT;
1503 	const int nr_pages = end - start;
1504 	int offset, i;
1505 	struct bio *bio;
1506 
1507 	bio = bio_kmalloc(gfp_mask, nr_pages);
1508 	if (!bio)
1509 		return ERR_PTR(-ENOMEM);
1510 
1511 	offset = offset_in_page(kaddr);
1512 	for (i = 0; i < nr_pages; i++) {
1513 		unsigned int bytes = PAGE_SIZE - offset;
1514 
1515 		if (len <= 0)
1516 			break;
1517 
1518 		if (bytes > len)
1519 			bytes = len;
1520 
1521 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1522 				    offset) < bytes) {
1523 			/* we don't support partial mappings */
1524 			bio_put(bio);
1525 			return ERR_PTR(-EINVAL);
1526 		}
1527 
1528 		data += bytes;
1529 		len -= bytes;
1530 		offset = 0;
1531 	}
1532 
1533 	bio->bi_end_io = bio_map_kern_endio;
1534 	return bio;
1535 }
1536 EXPORT_SYMBOL(bio_map_kern);
1537 
1538 static void bio_copy_kern_endio(struct bio *bio)
1539 {
1540 	bio_free_pages(bio);
1541 	bio_put(bio);
1542 }
1543 
1544 static void bio_copy_kern_endio_read(struct bio *bio)
1545 {
1546 	char *p = bio->bi_private;
1547 	struct bio_vec *bvec;
1548 	int i;
1549 
1550 	bio_for_each_segment_all(bvec, bio, i) {
1551 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1552 		p += bvec->bv_len;
1553 	}
1554 
1555 	bio_copy_kern_endio(bio);
1556 }
1557 
1558 /**
1559  *	bio_copy_kern	-	copy kernel address into bio
1560  *	@q: the struct request_queue for the bio
1561  *	@data: pointer to buffer to copy
1562  *	@len: length in bytes
1563  *	@gfp_mask: allocation flags for bio and page allocation
1564  *	@reading: data direction is READ
1565  *
1566  *	copy the kernel address into a bio suitable for io to a block
1567  *	device. Returns an error pointer in case of error.
1568  */
1569 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1570 			  gfp_t gfp_mask, int reading)
1571 {
1572 	unsigned long kaddr = (unsigned long)data;
1573 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1574 	unsigned long start = kaddr >> PAGE_SHIFT;
1575 	struct bio *bio;
1576 	void *p = data;
1577 	int nr_pages = 0;
1578 
1579 	/*
1580 	 * Overflow, abort
1581 	 */
1582 	if (end < start)
1583 		return ERR_PTR(-EINVAL);
1584 
1585 	nr_pages = end - start;
1586 	bio = bio_kmalloc(gfp_mask, nr_pages);
1587 	if (!bio)
1588 		return ERR_PTR(-ENOMEM);
1589 
1590 	while (len) {
1591 		struct page *page;
1592 		unsigned int bytes = PAGE_SIZE;
1593 
1594 		if (bytes > len)
1595 			bytes = len;
1596 
1597 		page = alloc_page(q->bounce_gfp | gfp_mask);
1598 		if (!page)
1599 			goto cleanup;
1600 
1601 		if (!reading)
1602 			memcpy(page_address(page), p, bytes);
1603 
1604 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1605 			break;
1606 
1607 		len -= bytes;
1608 		p += bytes;
1609 	}
1610 
1611 	if (reading) {
1612 		bio->bi_end_io = bio_copy_kern_endio_read;
1613 		bio->bi_private = data;
1614 	} else {
1615 		bio->bi_end_io = bio_copy_kern_endio;
1616 	}
1617 
1618 	return bio;
1619 
1620 cleanup:
1621 	bio_free_pages(bio);
1622 	bio_put(bio);
1623 	return ERR_PTR(-ENOMEM);
1624 }
1625 
1626 /*
1627  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1628  * for performing direct-IO in BIOs.
1629  *
1630  * The problem is that we cannot run set_page_dirty() from interrupt context
1631  * because the required locks are not interrupt-safe.  So what we can do is to
1632  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1633  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1634  * in process context.
1635  *
1636  * We special-case compound pages here: normally this means reads into hugetlb
1637  * pages.  The logic in here doesn't really work right for compound pages
1638  * because the VM does not uniformly chase down the head page in all cases.
1639  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1640  * handle them at all.  So we skip compound pages here at an early stage.
1641  *
1642  * Note that this code is very hard to test under normal circumstances because
1643  * direct-io pins the pages with get_user_pages().  This makes
1644  * is_page_cache_freeable return false, and the VM will not clean the pages.
1645  * But other code (eg, flusher threads) could clean the pages if they are mapped
1646  * pagecache.
1647  *
1648  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1649  * deferred bio dirtying paths.
1650  */
1651 
1652 /*
1653  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1654  */
1655 void bio_set_pages_dirty(struct bio *bio)
1656 {
1657 	struct bio_vec *bvec;
1658 	int i;
1659 
1660 	bio_for_each_segment_all(bvec, bio, i) {
1661 		struct page *page = bvec->bv_page;
1662 
1663 		if (page && !PageCompound(page))
1664 			set_page_dirty_lock(page);
1665 	}
1666 }
1667 
1668 static void bio_release_pages(struct bio *bio)
1669 {
1670 	struct bio_vec *bvec;
1671 	int i;
1672 
1673 	bio_for_each_segment_all(bvec, bio, i) {
1674 		struct page *page = bvec->bv_page;
1675 
1676 		if (page)
1677 			put_page(page);
1678 	}
1679 }
1680 
1681 /*
1682  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1683  * If they are, then fine.  If, however, some pages are clean then they must
1684  * have been written out during the direct-IO read.  So we take another ref on
1685  * the BIO and the offending pages and re-dirty the pages in process context.
1686  *
1687  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1688  * here on.  It will run one put_page() against each page and will run one
1689  * bio_put() against the BIO.
1690  */
1691 
1692 static void bio_dirty_fn(struct work_struct *work);
1693 
1694 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1695 static DEFINE_SPINLOCK(bio_dirty_lock);
1696 static struct bio *bio_dirty_list;
1697 
1698 /*
1699  * This runs in process context
1700  */
1701 static void bio_dirty_fn(struct work_struct *work)
1702 {
1703 	unsigned long flags;
1704 	struct bio *bio;
1705 
1706 	spin_lock_irqsave(&bio_dirty_lock, flags);
1707 	bio = bio_dirty_list;
1708 	bio_dirty_list = NULL;
1709 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1710 
1711 	while (bio) {
1712 		struct bio *next = bio->bi_private;
1713 
1714 		bio_set_pages_dirty(bio);
1715 		bio_release_pages(bio);
1716 		bio_put(bio);
1717 		bio = next;
1718 	}
1719 }
1720 
1721 void bio_check_pages_dirty(struct bio *bio)
1722 {
1723 	struct bio_vec *bvec;
1724 	int nr_clean_pages = 0;
1725 	int i;
1726 
1727 	bio_for_each_segment_all(bvec, bio, i) {
1728 		struct page *page = bvec->bv_page;
1729 
1730 		if (PageDirty(page) || PageCompound(page)) {
1731 			put_page(page);
1732 			bvec->bv_page = NULL;
1733 		} else {
1734 			nr_clean_pages++;
1735 		}
1736 	}
1737 
1738 	if (nr_clean_pages) {
1739 		unsigned long flags;
1740 
1741 		spin_lock_irqsave(&bio_dirty_lock, flags);
1742 		bio->bi_private = bio_dirty_list;
1743 		bio_dirty_list = bio;
1744 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1745 		schedule_work(&bio_dirty_work);
1746 	} else {
1747 		bio_put(bio);
1748 	}
1749 }
1750 
1751 void generic_start_io_acct(struct request_queue *q, int rw,
1752 			   unsigned long sectors, struct hd_struct *part)
1753 {
1754 	int cpu = part_stat_lock();
1755 
1756 	part_round_stats(q, cpu, part);
1757 	part_stat_inc(cpu, part, ios[rw]);
1758 	part_stat_add(cpu, part, sectors[rw], sectors);
1759 	part_inc_in_flight(q, part, rw);
1760 
1761 	part_stat_unlock();
1762 }
1763 EXPORT_SYMBOL(generic_start_io_acct);
1764 
1765 void generic_end_io_acct(struct request_queue *q, int rw,
1766 			 struct hd_struct *part, unsigned long start_time)
1767 {
1768 	unsigned long duration = jiffies - start_time;
1769 	int cpu = part_stat_lock();
1770 
1771 	part_stat_add(cpu, part, ticks[rw], duration);
1772 	part_round_stats(q, cpu, part);
1773 	part_dec_in_flight(q, part, rw);
1774 
1775 	part_stat_unlock();
1776 }
1777 EXPORT_SYMBOL(generic_end_io_acct);
1778 
1779 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1780 void bio_flush_dcache_pages(struct bio *bi)
1781 {
1782 	struct bio_vec bvec;
1783 	struct bvec_iter iter;
1784 
1785 	bio_for_each_segment(bvec, bi, iter)
1786 		flush_dcache_page(bvec.bv_page);
1787 }
1788 EXPORT_SYMBOL(bio_flush_dcache_pages);
1789 #endif
1790 
1791 static inline bool bio_remaining_done(struct bio *bio)
1792 {
1793 	/*
1794 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1795 	 * we always end io on the first invocation.
1796 	 */
1797 	if (!bio_flagged(bio, BIO_CHAIN))
1798 		return true;
1799 
1800 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1801 
1802 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1803 		bio_clear_flag(bio, BIO_CHAIN);
1804 		return true;
1805 	}
1806 
1807 	return false;
1808 }
1809 
1810 /**
1811  * bio_endio - end I/O on a bio
1812  * @bio:	bio
1813  *
1814  * Description:
1815  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1816  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1817  *   bio unless they own it and thus know that it has an end_io function.
1818  *
1819  *   bio_endio() can be called several times on a bio that has been chained
1820  *   using bio_chain().  The ->bi_end_io() function will only be called the
1821  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1822  *   generated if BIO_TRACE_COMPLETION is set.
1823  **/
1824 void bio_endio(struct bio *bio)
1825 {
1826 again:
1827 	if (!bio_remaining_done(bio))
1828 		return;
1829 	if (!bio_integrity_endio(bio))
1830 		return;
1831 
1832 	/*
1833 	 * Need to have a real endio function for chained bios, otherwise
1834 	 * various corner cases will break (like stacking block devices that
1835 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1836 	 * recursion and blowing the stack. Tail call optimization would
1837 	 * handle this, but compiling with frame pointers also disables
1838 	 * gcc's sibling call optimization.
1839 	 */
1840 	if (bio->bi_end_io == bio_chain_endio) {
1841 		bio = __bio_chain_endio(bio);
1842 		goto again;
1843 	}
1844 
1845 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1846 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1847 					 blk_status_to_errno(bio->bi_status));
1848 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1849 	}
1850 
1851 	blk_throtl_bio_endio(bio);
1852 	/* release cgroup info */
1853 	bio_uninit(bio);
1854 	if (bio->bi_end_io)
1855 		bio->bi_end_io(bio);
1856 }
1857 EXPORT_SYMBOL(bio_endio);
1858 
1859 /**
1860  * bio_split - split a bio
1861  * @bio:	bio to split
1862  * @sectors:	number of sectors to split from the front of @bio
1863  * @gfp:	gfp mask
1864  * @bs:		bio set to allocate from
1865  *
1866  * Allocates and returns a new bio which represents @sectors from the start of
1867  * @bio, and updates @bio to represent the remaining sectors.
1868  *
1869  * Unless this is a discard request the newly allocated bio will point
1870  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1871  * @bio is not freed before the split.
1872  */
1873 struct bio *bio_split(struct bio *bio, int sectors,
1874 		      gfp_t gfp, struct bio_set *bs)
1875 {
1876 	struct bio *split = NULL;
1877 
1878 	BUG_ON(sectors <= 0);
1879 	BUG_ON(sectors >= bio_sectors(bio));
1880 
1881 	split = bio_clone_fast(bio, gfp, bs);
1882 	if (!split)
1883 		return NULL;
1884 
1885 	split->bi_iter.bi_size = sectors << 9;
1886 
1887 	if (bio_integrity(split))
1888 		bio_integrity_trim(split);
1889 
1890 	bio_advance(bio, split->bi_iter.bi_size);
1891 
1892 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1893 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1894 
1895 	return split;
1896 }
1897 EXPORT_SYMBOL(bio_split);
1898 
1899 /**
1900  * bio_trim - trim a bio
1901  * @bio:	bio to trim
1902  * @offset:	number of sectors to trim from the front of @bio
1903  * @size:	size we want to trim @bio to, in sectors
1904  */
1905 void bio_trim(struct bio *bio, int offset, int size)
1906 {
1907 	/* 'bio' is a cloned bio which we need to trim to match
1908 	 * the given offset and size.
1909 	 */
1910 
1911 	size <<= 9;
1912 	if (offset == 0 && size == bio->bi_iter.bi_size)
1913 		return;
1914 
1915 	bio_clear_flag(bio, BIO_SEG_VALID);
1916 
1917 	bio_advance(bio, offset << 9);
1918 
1919 	bio->bi_iter.bi_size = size;
1920 
1921 	if (bio_integrity(bio))
1922 		bio_integrity_trim(bio);
1923 
1924 }
1925 EXPORT_SYMBOL_GPL(bio_trim);
1926 
1927 /*
1928  * create memory pools for biovec's in a bio_set.
1929  * use the global biovec slabs created for general use.
1930  */
1931 mempool_t *biovec_create_pool(int pool_entries)
1932 {
1933 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1934 
1935 	return mempool_create_slab_pool(pool_entries, bp->slab);
1936 }
1937 
1938 void bioset_free(struct bio_set *bs)
1939 {
1940 	if (bs->rescue_workqueue)
1941 		destroy_workqueue(bs->rescue_workqueue);
1942 
1943 	if (bs->bio_pool)
1944 		mempool_destroy(bs->bio_pool);
1945 
1946 	if (bs->bvec_pool)
1947 		mempool_destroy(bs->bvec_pool);
1948 
1949 	bioset_integrity_free(bs);
1950 	bio_put_slab(bs);
1951 
1952 	kfree(bs);
1953 }
1954 EXPORT_SYMBOL(bioset_free);
1955 
1956 /**
1957  * bioset_create  - Create a bio_set
1958  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1959  * @front_pad:	Number of bytes to allocate in front of the returned bio
1960  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1961  *              and %BIOSET_NEED_RESCUER
1962  *
1963  * Description:
1964  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1965  *    to ask for a number of bytes to be allocated in front of the bio.
1966  *    Front pad allocation is useful for embedding the bio inside
1967  *    another structure, to avoid allocating extra data to go with the bio.
1968  *    Note that the bio must be embedded at the END of that structure always,
1969  *    or things will break badly.
1970  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1971  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1972  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1973  *    dispatch queued requests when the mempool runs out of space.
1974  *
1975  */
1976 struct bio_set *bioset_create(unsigned int pool_size,
1977 			      unsigned int front_pad,
1978 			      int flags)
1979 {
1980 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1981 	struct bio_set *bs;
1982 
1983 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1984 	if (!bs)
1985 		return NULL;
1986 
1987 	bs->front_pad = front_pad;
1988 
1989 	spin_lock_init(&bs->rescue_lock);
1990 	bio_list_init(&bs->rescue_list);
1991 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1992 
1993 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1994 	if (!bs->bio_slab) {
1995 		kfree(bs);
1996 		return NULL;
1997 	}
1998 
1999 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
2000 	if (!bs->bio_pool)
2001 		goto bad;
2002 
2003 	if (flags & BIOSET_NEED_BVECS) {
2004 		bs->bvec_pool = biovec_create_pool(pool_size);
2005 		if (!bs->bvec_pool)
2006 			goto bad;
2007 	}
2008 
2009 	if (!(flags & BIOSET_NEED_RESCUER))
2010 		return bs;
2011 
2012 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2013 	if (!bs->rescue_workqueue)
2014 		goto bad;
2015 
2016 	return bs;
2017 bad:
2018 	bioset_free(bs);
2019 	return NULL;
2020 }
2021 EXPORT_SYMBOL(bioset_create);
2022 
2023 #ifdef CONFIG_BLK_CGROUP
2024 
2025 /**
2026  * bio_associate_blkcg - associate a bio with the specified blkcg
2027  * @bio: target bio
2028  * @blkcg_css: css of the blkcg to associate
2029  *
2030  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2031  * treat @bio as if it were issued by a task which belongs to the blkcg.
2032  *
2033  * This function takes an extra reference of @blkcg_css which will be put
2034  * when @bio is released.  The caller must own @bio and is responsible for
2035  * synchronizing calls to this function.
2036  */
2037 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2038 {
2039 	if (unlikely(bio->bi_css))
2040 		return -EBUSY;
2041 	css_get(blkcg_css);
2042 	bio->bi_css = blkcg_css;
2043 	return 0;
2044 }
2045 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2046 
2047 /**
2048  * bio_associate_current - associate a bio with %current
2049  * @bio: target bio
2050  *
2051  * Associate @bio with %current if it hasn't been associated yet.  Block
2052  * layer will treat @bio as if it were issued by %current no matter which
2053  * task actually issues it.
2054  *
2055  * This function takes an extra reference of @task's io_context and blkcg
2056  * which will be put when @bio is released.  The caller must own @bio,
2057  * ensure %current->io_context exists, and is responsible for synchronizing
2058  * calls to this function.
2059  */
2060 int bio_associate_current(struct bio *bio)
2061 {
2062 	struct io_context *ioc;
2063 
2064 	if (bio->bi_css)
2065 		return -EBUSY;
2066 
2067 	ioc = current->io_context;
2068 	if (!ioc)
2069 		return -ENOENT;
2070 
2071 	get_io_context_active(ioc);
2072 	bio->bi_ioc = ioc;
2073 	bio->bi_css = task_get_css(current, io_cgrp_id);
2074 	return 0;
2075 }
2076 EXPORT_SYMBOL_GPL(bio_associate_current);
2077 
2078 /**
2079  * bio_disassociate_task - undo bio_associate_current()
2080  * @bio: target bio
2081  */
2082 void bio_disassociate_task(struct bio *bio)
2083 {
2084 	if (bio->bi_ioc) {
2085 		put_io_context(bio->bi_ioc);
2086 		bio->bi_ioc = NULL;
2087 	}
2088 	if (bio->bi_css) {
2089 		css_put(bio->bi_css);
2090 		bio->bi_css = NULL;
2091 	}
2092 }
2093 
2094 /**
2095  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2096  * @dst: destination bio
2097  * @src: source bio
2098  */
2099 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2100 {
2101 	if (src->bi_css)
2102 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2103 }
2104 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2105 #endif /* CONFIG_BLK_CGROUP */
2106 
2107 static void __init biovec_init_slabs(void)
2108 {
2109 	int i;
2110 
2111 	for (i = 0; i < BVEC_POOL_NR; i++) {
2112 		int size;
2113 		struct biovec_slab *bvs = bvec_slabs + i;
2114 
2115 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2116 			bvs->slab = NULL;
2117 			continue;
2118 		}
2119 
2120 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2121 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2122                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2123 	}
2124 }
2125 
2126 static int __init init_bio(void)
2127 {
2128 	bio_slab_max = 2;
2129 	bio_slab_nr = 0;
2130 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2131 	if (!bio_slabs)
2132 		panic("bio: can't allocate bios\n");
2133 
2134 	bio_integrity_init();
2135 	biovec_init_slabs();
2136 
2137 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2138 	if (!fs_bio_set)
2139 		panic("bio: can't allocate bios\n");
2140 
2141 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2142 		panic("bio: can't create integrity pool\n");
2143 
2144 	return 0;
2145 }
2146 subsys_initcall(init_bio);
2147