1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 20 #include <trace/events/block.h> 21 #include "blk.h" 22 #include "blk-rq-qos.h" 23 24 /* 25 * Test patch to inline a certain number of bi_io_vec's inside the bio 26 * itself, to shrink a bio data allocation from two mempool calls to one 27 */ 28 #define BIO_INLINE_VECS 4 29 30 /* 31 * if you change this list, also change bvec_alloc or things will 32 * break badly! cannot be bigger than what you can fit into an 33 * unsigned short 34 */ 35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 36 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 38 }; 39 #undef BV 40 41 /* 42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 43 * IO code that does not need private memory pools. 44 */ 45 struct bio_set fs_bio_set; 46 EXPORT_SYMBOL(fs_bio_set); 47 48 /* 49 * Our slab pool management 50 */ 51 struct bio_slab { 52 struct kmem_cache *slab; 53 unsigned int slab_ref; 54 unsigned int slab_size; 55 char name[8]; 56 }; 57 static DEFINE_MUTEX(bio_slab_lock); 58 static struct bio_slab *bio_slabs; 59 static unsigned int bio_slab_nr, bio_slab_max; 60 61 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 62 { 63 unsigned int sz = sizeof(struct bio) + extra_size; 64 struct kmem_cache *slab = NULL; 65 struct bio_slab *bslab, *new_bio_slabs; 66 unsigned int new_bio_slab_max; 67 unsigned int i, entry = -1; 68 69 mutex_lock(&bio_slab_lock); 70 71 i = 0; 72 while (i < bio_slab_nr) { 73 bslab = &bio_slabs[i]; 74 75 if (!bslab->slab && entry == -1) 76 entry = i; 77 else if (bslab->slab_size == sz) { 78 slab = bslab->slab; 79 bslab->slab_ref++; 80 break; 81 } 82 i++; 83 } 84 85 if (slab) 86 goto out_unlock; 87 88 if (bio_slab_nr == bio_slab_max && entry == -1) { 89 new_bio_slab_max = bio_slab_max << 1; 90 new_bio_slabs = krealloc(bio_slabs, 91 new_bio_slab_max * sizeof(struct bio_slab), 92 GFP_KERNEL); 93 if (!new_bio_slabs) 94 goto out_unlock; 95 bio_slab_max = new_bio_slab_max; 96 bio_slabs = new_bio_slabs; 97 } 98 if (entry == -1) 99 entry = bio_slab_nr++; 100 101 bslab = &bio_slabs[entry]; 102 103 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 104 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 105 SLAB_HWCACHE_ALIGN, NULL); 106 if (!slab) 107 goto out_unlock; 108 109 bslab->slab = slab; 110 bslab->slab_ref = 1; 111 bslab->slab_size = sz; 112 out_unlock: 113 mutex_unlock(&bio_slab_lock); 114 return slab; 115 } 116 117 static void bio_put_slab(struct bio_set *bs) 118 { 119 struct bio_slab *bslab = NULL; 120 unsigned int i; 121 122 mutex_lock(&bio_slab_lock); 123 124 for (i = 0; i < bio_slab_nr; i++) { 125 if (bs->bio_slab == bio_slabs[i].slab) { 126 bslab = &bio_slabs[i]; 127 break; 128 } 129 } 130 131 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 132 goto out; 133 134 WARN_ON(!bslab->slab_ref); 135 136 if (--bslab->slab_ref) 137 goto out; 138 139 kmem_cache_destroy(bslab->slab); 140 bslab->slab = NULL; 141 142 out: 143 mutex_unlock(&bio_slab_lock); 144 } 145 146 unsigned int bvec_nr_vecs(unsigned short idx) 147 { 148 return bvec_slabs[--idx].nr_vecs; 149 } 150 151 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 152 { 153 if (!idx) 154 return; 155 idx--; 156 157 BIO_BUG_ON(idx >= BVEC_POOL_NR); 158 159 if (idx == BVEC_POOL_MAX) { 160 mempool_free(bv, pool); 161 } else { 162 struct biovec_slab *bvs = bvec_slabs + idx; 163 164 kmem_cache_free(bvs->slab, bv); 165 } 166 } 167 168 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 169 mempool_t *pool) 170 { 171 struct bio_vec *bvl; 172 173 /* 174 * see comment near bvec_array define! 175 */ 176 switch (nr) { 177 case 1: 178 *idx = 0; 179 break; 180 case 2 ... 4: 181 *idx = 1; 182 break; 183 case 5 ... 16: 184 *idx = 2; 185 break; 186 case 17 ... 64: 187 *idx = 3; 188 break; 189 case 65 ... 128: 190 *idx = 4; 191 break; 192 case 129 ... BIO_MAX_PAGES: 193 *idx = 5; 194 break; 195 default: 196 return NULL; 197 } 198 199 /* 200 * idx now points to the pool we want to allocate from. only the 201 * 1-vec entry pool is mempool backed. 202 */ 203 if (*idx == BVEC_POOL_MAX) { 204 fallback: 205 bvl = mempool_alloc(pool, gfp_mask); 206 } else { 207 struct biovec_slab *bvs = bvec_slabs + *idx; 208 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 209 210 /* 211 * Make this allocation restricted and don't dump info on 212 * allocation failures, since we'll fallback to the mempool 213 * in case of failure. 214 */ 215 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 216 217 /* 218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 219 * is set, retry with the 1-entry mempool 220 */ 221 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 222 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 223 *idx = BVEC_POOL_MAX; 224 goto fallback; 225 } 226 } 227 228 (*idx)++; 229 return bvl; 230 } 231 232 void bio_uninit(struct bio *bio) 233 { 234 bio_disassociate_blkg(bio); 235 } 236 EXPORT_SYMBOL(bio_uninit); 237 238 static void bio_free(struct bio *bio) 239 { 240 struct bio_set *bs = bio->bi_pool; 241 void *p; 242 243 bio_uninit(bio); 244 245 if (bs) { 246 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 247 248 /* 249 * If we have front padding, adjust the bio pointer before freeing 250 */ 251 p = bio; 252 p -= bs->front_pad; 253 254 mempool_free(p, &bs->bio_pool); 255 } else { 256 /* Bio was allocated by bio_kmalloc() */ 257 kfree(bio); 258 } 259 } 260 261 /* 262 * Users of this function have their own bio allocation. Subsequently, 263 * they must remember to pair any call to bio_init() with bio_uninit() 264 * when IO has completed, or when the bio is released. 265 */ 266 void bio_init(struct bio *bio, struct bio_vec *table, 267 unsigned short max_vecs) 268 { 269 memset(bio, 0, sizeof(*bio)); 270 atomic_set(&bio->__bi_remaining, 1); 271 atomic_set(&bio->__bi_cnt, 1); 272 273 bio->bi_io_vec = table; 274 bio->bi_max_vecs = max_vecs; 275 } 276 EXPORT_SYMBOL(bio_init); 277 278 /** 279 * bio_reset - reinitialize a bio 280 * @bio: bio to reset 281 * 282 * Description: 283 * After calling bio_reset(), @bio will be in the same state as a freshly 284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 285 * preserved are the ones that are initialized by bio_alloc_bioset(). See 286 * comment in struct bio. 287 */ 288 void bio_reset(struct bio *bio) 289 { 290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 291 292 bio_uninit(bio); 293 294 memset(bio, 0, BIO_RESET_BYTES); 295 bio->bi_flags = flags; 296 atomic_set(&bio->__bi_remaining, 1); 297 } 298 EXPORT_SYMBOL(bio_reset); 299 300 static struct bio *__bio_chain_endio(struct bio *bio) 301 { 302 struct bio *parent = bio->bi_private; 303 304 if (!parent->bi_status) 305 parent->bi_status = bio->bi_status; 306 bio_put(bio); 307 return parent; 308 } 309 310 static void bio_chain_endio(struct bio *bio) 311 { 312 bio_endio(__bio_chain_endio(bio)); 313 } 314 315 /** 316 * bio_chain - chain bio completions 317 * @bio: the target bio 318 * @parent: the @bio's parent bio 319 * 320 * The caller won't have a bi_end_io called when @bio completes - instead, 321 * @parent's bi_end_io won't be called until both @parent and @bio have 322 * completed; the chained bio will also be freed when it completes. 323 * 324 * The caller must not set bi_private or bi_end_io in @bio. 325 */ 326 void bio_chain(struct bio *bio, struct bio *parent) 327 { 328 BUG_ON(bio->bi_private || bio->bi_end_io); 329 330 bio->bi_private = parent; 331 bio->bi_end_io = bio_chain_endio; 332 bio_inc_remaining(parent); 333 } 334 EXPORT_SYMBOL(bio_chain); 335 336 static void bio_alloc_rescue(struct work_struct *work) 337 { 338 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 339 struct bio *bio; 340 341 while (1) { 342 spin_lock(&bs->rescue_lock); 343 bio = bio_list_pop(&bs->rescue_list); 344 spin_unlock(&bs->rescue_lock); 345 346 if (!bio) 347 break; 348 349 generic_make_request(bio); 350 } 351 } 352 353 static void punt_bios_to_rescuer(struct bio_set *bs) 354 { 355 struct bio_list punt, nopunt; 356 struct bio *bio; 357 358 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 359 return; 360 /* 361 * In order to guarantee forward progress we must punt only bios that 362 * were allocated from this bio_set; otherwise, if there was a bio on 363 * there for a stacking driver higher up in the stack, processing it 364 * could require allocating bios from this bio_set, and doing that from 365 * our own rescuer would be bad. 366 * 367 * Since bio lists are singly linked, pop them all instead of trying to 368 * remove from the middle of the list: 369 */ 370 371 bio_list_init(&punt); 372 bio_list_init(&nopunt); 373 374 while ((bio = bio_list_pop(¤t->bio_list[0]))) 375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 376 current->bio_list[0] = nopunt; 377 378 bio_list_init(&nopunt); 379 while ((bio = bio_list_pop(¤t->bio_list[1]))) 380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 381 current->bio_list[1] = nopunt; 382 383 spin_lock(&bs->rescue_lock); 384 bio_list_merge(&bs->rescue_list, &punt); 385 spin_unlock(&bs->rescue_lock); 386 387 queue_work(bs->rescue_workqueue, &bs->rescue_work); 388 } 389 390 /** 391 * bio_alloc_bioset - allocate a bio for I/O 392 * @gfp_mask: the GFP_* mask given to the slab allocator 393 * @nr_iovecs: number of iovecs to pre-allocate 394 * @bs: the bio_set to allocate from. 395 * 396 * Description: 397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 398 * backed by the @bs's mempool. 399 * 400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 401 * always be able to allocate a bio. This is due to the mempool guarantees. 402 * To make this work, callers must never allocate more than 1 bio at a time 403 * from this pool. Callers that need to allocate more than 1 bio must always 404 * submit the previously allocated bio for IO before attempting to allocate 405 * a new one. Failure to do so can cause deadlocks under memory pressure. 406 * 407 * Note that when running under generic_make_request() (i.e. any block 408 * driver), bios are not submitted until after you return - see the code in 409 * generic_make_request() that converts recursion into iteration, to prevent 410 * stack overflows. 411 * 412 * This would normally mean allocating multiple bios under 413 * generic_make_request() would be susceptible to deadlocks, but we have 414 * deadlock avoidance code that resubmits any blocked bios from a rescuer 415 * thread. 416 * 417 * However, we do not guarantee forward progress for allocations from other 418 * mempools. Doing multiple allocations from the same mempool under 419 * generic_make_request() should be avoided - instead, use bio_set's front_pad 420 * for per bio allocations. 421 * 422 * RETURNS: 423 * Pointer to new bio on success, NULL on failure. 424 */ 425 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 426 struct bio_set *bs) 427 { 428 gfp_t saved_gfp = gfp_mask; 429 unsigned front_pad; 430 unsigned inline_vecs; 431 struct bio_vec *bvl = NULL; 432 struct bio *bio; 433 void *p; 434 435 if (!bs) { 436 if (nr_iovecs > UIO_MAXIOV) 437 return NULL; 438 439 p = kmalloc(sizeof(struct bio) + 440 nr_iovecs * sizeof(struct bio_vec), 441 gfp_mask); 442 front_pad = 0; 443 inline_vecs = nr_iovecs; 444 } else { 445 /* should not use nobvec bioset for nr_iovecs > 0 */ 446 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && 447 nr_iovecs > 0)) 448 return NULL; 449 /* 450 * generic_make_request() converts recursion to iteration; this 451 * means if we're running beneath it, any bios we allocate and 452 * submit will not be submitted (and thus freed) until after we 453 * return. 454 * 455 * This exposes us to a potential deadlock if we allocate 456 * multiple bios from the same bio_set() while running 457 * underneath generic_make_request(). If we were to allocate 458 * multiple bios (say a stacking block driver that was splitting 459 * bios), we would deadlock if we exhausted the mempool's 460 * reserve. 461 * 462 * We solve this, and guarantee forward progress, with a rescuer 463 * workqueue per bio_set. If we go to allocate and there are 464 * bios on current->bio_list, we first try the allocation 465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 466 * bios we would be blocking to the rescuer workqueue before 467 * we retry with the original gfp_flags. 468 */ 469 470 if (current->bio_list && 471 (!bio_list_empty(¤t->bio_list[0]) || 472 !bio_list_empty(¤t->bio_list[1])) && 473 bs->rescue_workqueue) 474 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 475 476 p = mempool_alloc(&bs->bio_pool, gfp_mask); 477 if (!p && gfp_mask != saved_gfp) { 478 punt_bios_to_rescuer(bs); 479 gfp_mask = saved_gfp; 480 p = mempool_alloc(&bs->bio_pool, gfp_mask); 481 } 482 483 front_pad = bs->front_pad; 484 inline_vecs = BIO_INLINE_VECS; 485 } 486 487 if (unlikely(!p)) 488 return NULL; 489 490 bio = p + front_pad; 491 bio_init(bio, NULL, 0); 492 493 if (nr_iovecs > inline_vecs) { 494 unsigned long idx = 0; 495 496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 497 if (!bvl && gfp_mask != saved_gfp) { 498 punt_bios_to_rescuer(bs); 499 gfp_mask = saved_gfp; 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 501 } 502 503 if (unlikely(!bvl)) 504 goto err_free; 505 506 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 507 } else if (nr_iovecs) { 508 bvl = bio->bi_inline_vecs; 509 } 510 511 bio->bi_pool = bs; 512 bio->bi_max_vecs = nr_iovecs; 513 bio->bi_io_vec = bvl; 514 return bio; 515 516 err_free: 517 mempool_free(p, &bs->bio_pool); 518 return NULL; 519 } 520 EXPORT_SYMBOL(bio_alloc_bioset); 521 522 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 523 { 524 unsigned long flags; 525 struct bio_vec bv; 526 struct bvec_iter iter; 527 528 __bio_for_each_segment(bv, bio, iter, start) { 529 char *data = bvec_kmap_irq(&bv, &flags); 530 memset(data, 0, bv.bv_len); 531 flush_dcache_page(bv.bv_page); 532 bvec_kunmap_irq(data, &flags); 533 } 534 } 535 EXPORT_SYMBOL(zero_fill_bio_iter); 536 537 /** 538 * bio_put - release a reference to a bio 539 * @bio: bio to release reference to 540 * 541 * Description: 542 * Put a reference to a &struct bio, either one you have gotten with 543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 544 **/ 545 void bio_put(struct bio *bio) 546 { 547 if (!bio_flagged(bio, BIO_REFFED)) 548 bio_free(bio); 549 else { 550 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 551 552 /* 553 * last put frees it 554 */ 555 if (atomic_dec_and_test(&bio->__bi_cnt)) 556 bio_free(bio); 557 } 558 } 559 EXPORT_SYMBOL(bio_put); 560 561 int bio_phys_segments(struct request_queue *q, struct bio *bio) 562 { 563 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 564 blk_recount_segments(q, bio); 565 566 return bio->bi_phys_segments; 567 } 568 569 /** 570 * __bio_clone_fast - clone a bio that shares the original bio's biovec 571 * @bio: destination bio 572 * @bio_src: bio to clone 573 * 574 * Clone a &bio. Caller will own the returned bio, but not 575 * the actual data it points to. Reference count of returned 576 * bio will be one. 577 * 578 * Caller must ensure that @bio_src is not freed before @bio. 579 */ 580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 581 { 582 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 583 584 /* 585 * most users will be overriding ->bi_disk with a new target, 586 * so we don't set nor calculate new physical/hw segment counts here 587 */ 588 bio->bi_disk = bio_src->bi_disk; 589 bio->bi_partno = bio_src->bi_partno; 590 bio_set_flag(bio, BIO_CLONED); 591 if (bio_flagged(bio_src, BIO_THROTTLED)) 592 bio_set_flag(bio, BIO_THROTTLED); 593 bio->bi_opf = bio_src->bi_opf; 594 bio->bi_ioprio = bio_src->bi_ioprio; 595 bio->bi_write_hint = bio_src->bi_write_hint; 596 bio->bi_iter = bio_src->bi_iter; 597 bio->bi_io_vec = bio_src->bi_io_vec; 598 599 bio_clone_blkg_association(bio, bio_src); 600 blkcg_bio_issue_init(bio); 601 } 602 EXPORT_SYMBOL(__bio_clone_fast); 603 604 /** 605 * bio_clone_fast - clone a bio that shares the original bio's biovec 606 * @bio: bio to clone 607 * @gfp_mask: allocation priority 608 * @bs: bio_set to allocate from 609 * 610 * Like __bio_clone_fast, only also allocates the returned bio 611 */ 612 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 613 { 614 struct bio *b; 615 616 b = bio_alloc_bioset(gfp_mask, 0, bs); 617 if (!b) 618 return NULL; 619 620 __bio_clone_fast(b, bio); 621 622 if (bio_integrity(bio)) { 623 int ret; 624 625 ret = bio_integrity_clone(b, bio, gfp_mask); 626 627 if (ret < 0) { 628 bio_put(b); 629 return NULL; 630 } 631 } 632 633 return b; 634 } 635 EXPORT_SYMBOL(bio_clone_fast); 636 637 static inline bool page_is_mergeable(const struct bio_vec *bv, 638 struct page *page, unsigned int len, unsigned int off, 639 bool *same_page) 640 { 641 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + 642 bv->bv_offset + bv->bv_len - 1; 643 phys_addr_t page_addr = page_to_phys(page); 644 645 if (vec_end_addr + 1 != page_addr + off) 646 return false; 647 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 648 return false; 649 650 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 651 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page) 652 return false; 653 return true; 654 } 655 656 /* 657 * Check if the @page can be added to the current segment(@bv), and make 658 * sure to call it only if page_is_mergeable(@bv, @page) is true 659 */ 660 static bool can_add_page_to_seg(struct request_queue *q, 661 struct bio_vec *bv, struct page *page, unsigned len, 662 unsigned offset) 663 { 664 unsigned long mask = queue_segment_boundary(q); 665 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 666 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 667 668 if ((addr1 | mask) != (addr2 | mask)) 669 return false; 670 671 if (bv->bv_len + len > queue_max_segment_size(q)) 672 return false; 673 674 return true; 675 } 676 677 /** 678 * __bio_add_pc_page - attempt to add page to passthrough bio 679 * @q: the target queue 680 * @bio: destination bio 681 * @page: page to add 682 * @len: vec entry length 683 * @offset: vec entry offset 684 * @put_same_page: put the page if it is same with last added page 685 * 686 * Attempt to add a page to the bio_vec maplist. This can fail for a 687 * number of reasons, such as the bio being full or target block device 688 * limitations. The target block device must allow bio's up to PAGE_SIZE, 689 * so it is always possible to add a single page to an empty bio. 690 * 691 * This should only be used by passthrough bios. 692 */ 693 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio, 694 struct page *page, unsigned int len, unsigned int offset, 695 bool put_same_page) 696 { 697 struct bio_vec *bvec; 698 bool same_page = false; 699 700 /* 701 * cloned bio must not modify vec list 702 */ 703 if (unlikely(bio_flagged(bio, BIO_CLONED))) 704 return 0; 705 706 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 707 return 0; 708 709 if (bio->bi_vcnt > 0) { 710 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 711 712 if (page == bvec->bv_page && 713 offset == bvec->bv_offset + bvec->bv_len) { 714 if (put_same_page) 715 put_page(page); 716 bvec->bv_len += len; 717 goto done; 718 } 719 720 /* 721 * If the queue doesn't support SG gaps and adding this 722 * offset would create a gap, disallow it. 723 */ 724 if (bvec_gap_to_prev(q, bvec, offset)) 725 return 0; 726 727 if (page_is_mergeable(bvec, page, len, offset, &same_page) && 728 can_add_page_to_seg(q, bvec, page, len, offset)) { 729 bvec->bv_len += len; 730 goto done; 731 } 732 } 733 734 if (bio_full(bio)) 735 return 0; 736 737 if (bio->bi_phys_segments >= queue_max_segments(q)) 738 return 0; 739 740 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 741 bvec->bv_page = page; 742 bvec->bv_len = len; 743 bvec->bv_offset = offset; 744 bio->bi_vcnt++; 745 done: 746 bio->bi_iter.bi_size += len; 747 bio->bi_phys_segments = bio->bi_vcnt; 748 bio_set_flag(bio, BIO_SEG_VALID); 749 return len; 750 } 751 752 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 753 struct page *page, unsigned int len, unsigned int offset) 754 { 755 return __bio_add_pc_page(q, bio, page, len, offset, false); 756 } 757 EXPORT_SYMBOL(bio_add_pc_page); 758 759 /** 760 * __bio_try_merge_page - try appending data to an existing bvec. 761 * @bio: destination bio 762 * @page: start page to add 763 * @len: length of the data to add 764 * @off: offset of the data relative to @page 765 * @same_page: return if the segment has been merged inside the same page 766 * 767 * Try to add the data at @page + @off to the last bvec of @bio. This is a 768 * a useful optimisation for file systems with a block size smaller than the 769 * page size. 770 * 771 * Warn if (@len, @off) crosses pages in case that @same_page is true. 772 * 773 * Return %true on success or %false on failure. 774 */ 775 bool __bio_try_merge_page(struct bio *bio, struct page *page, 776 unsigned int len, unsigned int off, bool *same_page) 777 { 778 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 779 return false; 780 781 if (bio->bi_vcnt > 0) { 782 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 783 784 if (page_is_mergeable(bv, page, len, off, same_page)) { 785 bv->bv_len += len; 786 bio->bi_iter.bi_size += len; 787 return true; 788 } 789 } 790 return false; 791 } 792 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 793 794 /** 795 * __bio_add_page - add page(s) to a bio in a new segment 796 * @bio: destination bio 797 * @page: start page to add 798 * @len: length of the data to add, may cross pages 799 * @off: offset of the data relative to @page, may cross pages 800 * 801 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 802 * that @bio has space for another bvec. 803 */ 804 void __bio_add_page(struct bio *bio, struct page *page, 805 unsigned int len, unsigned int off) 806 { 807 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 808 809 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 810 WARN_ON_ONCE(bio_full(bio)); 811 812 bv->bv_page = page; 813 bv->bv_offset = off; 814 bv->bv_len = len; 815 816 bio->bi_iter.bi_size += len; 817 bio->bi_vcnt++; 818 } 819 EXPORT_SYMBOL_GPL(__bio_add_page); 820 821 /** 822 * bio_add_page - attempt to add page(s) to bio 823 * @bio: destination bio 824 * @page: start page to add 825 * @len: vec entry length, may cross pages 826 * @offset: vec entry offset relative to @page, may cross pages 827 * 828 * Attempt to add page(s) to the bio_vec maplist. This will only fail 829 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 830 */ 831 int bio_add_page(struct bio *bio, struct page *page, 832 unsigned int len, unsigned int offset) 833 { 834 bool same_page = false; 835 836 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 837 if (bio_full(bio)) 838 return 0; 839 __bio_add_page(bio, page, len, offset); 840 } 841 return len; 842 } 843 EXPORT_SYMBOL(bio_add_page); 844 845 static void bio_get_pages(struct bio *bio) 846 { 847 struct bvec_iter_all iter_all; 848 struct bio_vec *bvec; 849 850 bio_for_each_segment_all(bvec, bio, iter_all) 851 get_page(bvec->bv_page); 852 } 853 854 static void bio_release_pages(struct bio *bio) 855 { 856 struct bvec_iter_all iter_all; 857 struct bio_vec *bvec; 858 859 bio_for_each_segment_all(bvec, bio, iter_all) 860 put_page(bvec->bv_page); 861 } 862 863 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) 864 { 865 const struct bio_vec *bv = iter->bvec; 866 unsigned int len; 867 size_t size; 868 869 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) 870 return -EINVAL; 871 872 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); 873 size = bio_add_page(bio, bv->bv_page, len, 874 bv->bv_offset + iter->iov_offset); 875 if (unlikely(size != len)) 876 return -EINVAL; 877 iov_iter_advance(iter, size); 878 return 0; 879 } 880 881 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 882 883 /** 884 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 885 * @bio: bio to add pages to 886 * @iter: iov iterator describing the region to be mapped 887 * 888 * Pins pages from *iter and appends them to @bio's bvec array. The 889 * pages will have to be released using put_page() when done. 890 * For multi-segment *iter, this function only adds pages from the 891 * the next non-empty segment of the iov iterator. 892 */ 893 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 894 { 895 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 896 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 897 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 898 struct page **pages = (struct page **)bv; 899 bool same_page = false; 900 ssize_t size, left; 901 unsigned len, i; 902 size_t offset; 903 904 /* 905 * Move page array up in the allocated memory for the bio vecs as far as 906 * possible so that we can start filling biovecs from the beginning 907 * without overwriting the temporary page array. 908 */ 909 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 910 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 911 912 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 913 if (unlikely(size <= 0)) 914 return size ? size : -EFAULT; 915 916 for (left = size, i = 0; left > 0; left -= len, i++) { 917 struct page *page = pages[i]; 918 919 len = min_t(size_t, PAGE_SIZE - offset, left); 920 921 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 922 if (same_page) 923 put_page(page); 924 } else { 925 if (WARN_ON_ONCE(bio_full(bio))) 926 return -EINVAL; 927 __bio_add_page(bio, page, len, offset); 928 } 929 offset = 0; 930 } 931 932 iov_iter_advance(iter, size); 933 return 0; 934 } 935 936 /** 937 * bio_iov_iter_get_pages - add user or kernel pages to a bio 938 * @bio: bio to add pages to 939 * @iter: iov iterator describing the region to be added 940 * 941 * This takes either an iterator pointing to user memory, or one pointing to 942 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 943 * map them into the kernel. On IO completion, the caller should put those 944 * pages. If we're adding kernel pages, and the caller told us it's safe to 945 * do so, we just have to add the pages to the bio directly. We don't grab an 946 * extra reference to those pages (the user should already have that), and we 947 * don't put the page on IO completion. The caller needs to check if the bio is 948 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be 949 * released. 950 * 951 * The function tries, but does not guarantee, to pin as many pages as 952 * fit into the bio, or are requested in *iter, whatever is smaller. If 953 * MM encounters an error pinning the requested pages, it stops. Error 954 * is returned only if 0 pages could be pinned. 955 */ 956 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 957 { 958 const bool is_bvec = iov_iter_is_bvec(iter); 959 int ret; 960 961 if (WARN_ON_ONCE(bio->bi_vcnt)) 962 return -EINVAL; 963 964 do { 965 if (is_bvec) 966 ret = __bio_iov_bvec_add_pages(bio, iter); 967 else 968 ret = __bio_iov_iter_get_pages(bio, iter); 969 } while (!ret && iov_iter_count(iter) && !bio_full(bio)); 970 971 if (iov_iter_bvec_no_ref(iter)) 972 bio_set_flag(bio, BIO_NO_PAGE_REF); 973 else if (is_bvec) 974 bio_get_pages(bio); 975 976 return bio->bi_vcnt ? 0 : ret; 977 } 978 979 static void submit_bio_wait_endio(struct bio *bio) 980 { 981 complete(bio->bi_private); 982 } 983 984 /** 985 * submit_bio_wait - submit a bio, and wait until it completes 986 * @bio: The &struct bio which describes the I/O 987 * 988 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 989 * bio_endio() on failure. 990 * 991 * WARNING: Unlike to how submit_bio() is usually used, this function does not 992 * result in bio reference to be consumed. The caller must drop the reference 993 * on his own. 994 */ 995 int submit_bio_wait(struct bio *bio) 996 { 997 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 998 999 bio->bi_private = &done; 1000 bio->bi_end_io = submit_bio_wait_endio; 1001 bio->bi_opf |= REQ_SYNC; 1002 submit_bio(bio); 1003 wait_for_completion_io(&done); 1004 1005 return blk_status_to_errno(bio->bi_status); 1006 } 1007 EXPORT_SYMBOL(submit_bio_wait); 1008 1009 /** 1010 * bio_advance - increment/complete a bio by some number of bytes 1011 * @bio: bio to advance 1012 * @bytes: number of bytes to complete 1013 * 1014 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 1015 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 1016 * be updated on the last bvec as well. 1017 * 1018 * @bio will then represent the remaining, uncompleted portion of the io. 1019 */ 1020 void bio_advance(struct bio *bio, unsigned bytes) 1021 { 1022 if (bio_integrity(bio)) 1023 bio_integrity_advance(bio, bytes); 1024 1025 bio_advance_iter(bio, &bio->bi_iter, bytes); 1026 } 1027 EXPORT_SYMBOL(bio_advance); 1028 1029 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1030 struct bio *src, struct bvec_iter *src_iter) 1031 { 1032 struct bio_vec src_bv, dst_bv; 1033 void *src_p, *dst_p; 1034 unsigned bytes; 1035 1036 while (src_iter->bi_size && dst_iter->bi_size) { 1037 src_bv = bio_iter_iovec(src, *src_iter); 1038 dst_bv = bio_iter_iovec(dst, *dst_iter); 1039 1040 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1041 1042 src_p = kmap_atomic(src_bv.bv_page); 1043 dst_p = kmap_atomic(dst_bv.bv_page); 1044 1045 memcpy(dst_p + dst_bv.bv_offset, 1046 src_p + src_bv.bv_offset, 1047 bytes); 1048 1049 kunmap_atomic(dst_p); 1050 kunmap_atomic(src_p); 1051 1052 flush_dcache_page(dst_bv.bv_page); 1053 1054 bio_advance_iter(src, src_iter, bytes); 1055 bio_advance_iter(dst, dst_iter, bytes); 1056 } 1057 } 1058 EXPORT_SYMBOL(bio_copy_data_iter); 1059 1060 /** 1061 * bio_copy_data - copy contents of data buffers from one bio to another 1062 * @src: source bio 1063 * @dst: destination bio 1064 * 1065 * Stops when it reaches the end of either @src or @dst - that is, copies 1066 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1067 */ 1068 void bio_copy_data(struct bio *dst, struct bio *src) 1069 { 1070 struct bvec_iter src_iter = src->bi_iter; 1071 struct bvec_iter dst_iter = dst->bi_iter; 1072 1073 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1074 } 1075 EXPORT_SYMBOL(bio_copy_data); 1076 1077 /** 1078 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1079 * another 1080 * @src: source bio list 1081 * @dst: destination bio list 1082 * 1083 * Stops when it reaches the end of either the @src list or @dst list - that is, 1084 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1085 * bios). 1086 */ 1087 void bio_list_copy_data(struct bio *dst, struct bio *src) 1088 { 1089 struct bvec_iter src_iter = src->bi_iter; 1090 struct bvec_iter dst_iter = dst->bi_iter; 1091 1092 while (1) { 1093 if (!src_iter.bi_size) { 1094 src = src->bi_next; 1095 if (!src) 1096 break; 1097 1098 src_iter = src->bi_iter; 1099 } 1100 1101 if (!dst_iter.bi_size) { 1102 dst = dst->bi_next; 1103 if (!dst) 1104 break; 1105 1106 dst_iter = dst->bi_iter; 1107 } 1108 1109 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1110 } 1111 } 1112 EXPORT_SYMBOL(bio_list_copy_data); 1113 1114 struct bio_map_data { 1115 int is_our_pages; 1116 struct iov_iter iter; 1117 struct iovec iov[]; 1118 }; 1119 1120 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1121 gfp_t gfp_mask) 1122 { 1123 struct bio_map_data *bmd; 1124 if (data->nr_segs > UIO_MAXIOV) 1125 return NULL; 1126 1127 bmd = kmalloc(sizeof(struct bio_map_data) + 1128 sizeof(struct iovec) * data->nr_segs, gfp_mask); 1129 if (!bmd) 1130 return NULL; 1131 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1132 bmd->iter = *data; 1133 bmd->iter.iov = bmd->iov; 1134 return bmd; 1135 } 1136 1137 /** 1138 * bio_copy_from_iter - copy all pages from iov_iter to bio 1139 * @bio: The &struct bio which describes the I/O as destination 1140 * @iter: iov_iter as source 1141 * 1142 * Copy all pages from iov_iter to bio. 1143 * Returns 0 on success, or error on failure. 1144 */ 1145 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1146 { 1147 struct bio_vec *bvec; 1148 struct bvec_iter_all iter_all; 1149 1150 bio_for_each_segment_all(bvec, bio, iter_all) { 1151 ssize_t ret; 1152 1153 ret = copy_page_from_iter(bvec->bv_page, 1154 bvec->bv_offset, 1155 bvec->bv_len, 1156 iter); 1157 1158 if (!iov_iter_count(iter)) 1159 break; 1160 1161 if (ret < bvec->bv_len) 1162 return -EFAULT; 1163 } 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * bio_copy_to_iter - copy all pages from bio to iov_iter 1170 * @bio: The &struct bio which describes the I/O as source 1171 * @iter: iov_iter as destination 1172 * 1173 * Copy all pages from bio to iov_iter. 1174 * Returns 0 on success, or error on failure. 1175 */ 1176 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1177 { 1178 struct bio_vec *bvec; 1179 struct bvec_iter_all iter_all; 1180 1181 bio_for_each_segment_all(bvec, bio, iter_all) { 1182 ssize_t ret; 1183 1184 ret = copy_page_to_iter(bvec->bv_page, 1185 bvec->bv_offset, 1186 bvec->bv_len, 1187 &iter); 1188 1189 if (!iov_iter_count(&iter)) 1190 break; 1191 1192 if (ret < bvec->bv_len) 1193 return -EFAULT; 1194 } 1195 1196 return 0; 1197 } 1198 1199 void bio_free_pages(struct bio *bio) 1200 { 1201 struct bio_vec *bvec; 1202 struct bvec_iter_all iter_all; 1203 1204 bio_for_each_segment_all(bvec, bio, iter_all) 1205 __free_page(bvec->bv_page); 1206 } 1207 EXPORT_SYMBOL(bio_free_pages); 1208 1209 /** 1210 * bio_uncopy_user - finish previously mapped bio 1211 * @bio: bio being terminated 1212 * 1213 * Free pages allocated from bio_copy_user_iov() and write back data 1214 * to user space in case of a read. 1215 */ 1216 int bio_uncopy_user(struct bio *bio) 1217 { 1218 struct bio_map_data *bmd = bio->bi_private; 1219 int ret = 0; 1220 1221 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1222 /* 1223 * if we're in a workqueue, the request is orphaned, so 1224 * don't copy into a random user address space, just free 1225 * and return -EINTR so user space doesn't expect any data. 1226 */ 1227 if (!current->mm) 1228 ret = -EINTR; 1229 else if (bio_data_dir(bio) == READ) 1230 ret = bio_copy_to_iter(bio, bmd->iter); 1231 if (bmd->is_our_pages) 1232 bio_free_pages(bio); 1233 } 1234 kfree(bmd); 1235 bio_put(bio); 1236 return ret; 1237 } 1238 1239 /** 1240 * bio_copy_user_iov - copy user data to bio 1241 * @q: destination block queue 1242 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1243 * @iter: iovec iterator 1244 * @gfp_mask: memory allocation flags 1245 * 1246 * Prepares and returns a bio for indirect user io, bouncing data 1247 * to/from kernel pages as necessary. Must be paired with 1248 * call bio_uncopy_user() on io completion. 1249 */ 1250 struct bio *bio_copy_user_iov(struct request_queue *q, 1251 struct rq_map_data *map_data, 1252 struct iov_iter *iter, 1253 gfp_t gfp_mask) 1254 { 1255 struct bio_map_data *bmd; 1256 struct page *page; 1257 struct bio *bio; 1258 int i = 0, ret; 1259 int nr_pages; 1260 unsigned int len = iter->count; 1261 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1262 1263 bmd = bio_alloc_map_data(iter, gfp_mask); 1264 if (!bmd) 1265 return ERR_PTR(-ENOMEM); 1266 1267 /* 1268 * We need to do a deep copy of the iov_iter including the iovecs. 1269 * The caller provided iov might point to an on-stack or otherwise 1270 * shortlived one. 1271 */ 1272 bmd->is_our_pages = map_data ? 0 : 1; 1273 1274 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1275 if (nr_pages > BIO_MAX_PAGES) 1276 nr_pages = BIO_MAX_PAGES; 1277 1278 ret = -ENOMEM; 1279 bio = bio_kmalloc(gfp_mask, nr_pages); 1280 if (!bio) 1281 goto out_bmd; 1282 1283 ret = 0; 1284 1285 if (map_data) { 1286 nr_pages = 1 << map_data->page_order; 1287 i = map_data->offset / PAGE_SIZE; 1288 } 1289 while (len) { 1290 unsigned int bytes = PAGE_SIZE; 1291 1292 bytes -= offset; 1293 1294 if (bytes > len) 1295 bytes = len; 1296 1297 if (map_data) { 1298 if (i == map_data->nr_entries * nr_pages) { 1299 ret = -ENOMEM; 1300 break; 1301 } 1302 1303 page = map_data->pages[i / nr_pages]; 1304 page += (i % nr_pages); 1305 1306 i++; 1307 } else { 1308 page = alloc_page(q->bounce_gfp | gfp_mask); 1309 if (!page) { 1310 ret = -ENOMEM; 1311 break; 1312 } 1313 } 1314 1315 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) { 1316 if (!map_data) 1317 __free_page(page); 1318 break; 1319 } 1320 1321 len -= bytes; 1322 offset = 0; 1323 } 1324 1325 if (ret) 1326 goto cleanup; 1327 1328 if (map_data) 1329 map_data->offset += bio->bi_iter.bi_size; 1330 1331 /* 1332 * success 1333 */ 1334 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) || 1335 (map_data && map_data->from_user)) { 1336 ret = bio_copy_from_iter(bio, iter); 1337 if (ret) 1338 goto cleanup; 1339 } else { 1340 if (bmd->is_our_pages) 1341 zero_fill_bio(bio); 1342 iov_iter_advance(iter, bio->bi_iter.bi_size); 1343 } 1344 1345 bio->bi_private = bmd; 1346 if (map_data && map_data->null_mapped) 1347 bio_set_flag(bio, BIO_NULL_MAPPED); 1348 return bio; 1349 cleanup: 1350 if (!map_data) 1351 bio_free_pages(bio); 1352 bio_put(bio); 1353 out_bmd: 1354 kfree(bmd); 1355 return ERR_PTR(ret); 1356 } 1357 1358 /** 1359 * bio_map_user_iov - map user iovec into bio 1360 * @q: the struct request_queue for the bio 1361 * @iter: iovec iterator 1362 * @gfp_mask: memory allocation flags 1363 * 1364 * Map the user space address into a bio suitable for io to a block 1365 * device. Returns an error pointer in case of error. 1366 */ 1367 struct bio *bio_map_user_iov(struct request_queue *q, 1368 struct iov_iter *iter, 1369 gfp_t gfp_mask) 1370 { 1371 int j; 1372 struct bio *bio; 1373 int ret; 1374 struct bio_vec *bvec; 1375 struct bvec_iter_all iter_all; 1376 1377 if (!iov_iter_count(iter)) 1378 return ERR_PTR(-EINVAL); 1379 1380 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1381 if (!bio) 1382 return ERR_PTR(-ENOMEM); 1383 1384 while (iov_iter_count(iter)) { 1385 struct page **pages; 1386 ssize_t bytes; 1387 size_t offs, added = 0; 1388 int npages; 1389 1390 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1391 if (unlikely(bytes <= 0)) { 1392 ret = bytes ? bytes : -EFAULT; 1393 goto out_unmap; 1394 } 1395 1396 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1397 1398 if (unlikely(offs & queue_dma_alignment(q))) { 1399 ret = -EINVAL; 1400 j = 0; 1401 } else { 1402 for (j = 0; j < npages; j++) { 1403 struct page *page = pages[j]; 1404 unsigned int n = PAGE_SIZE - offs; 1405 1406 if (n > bytes) 1407 n = bytes; 1408 1409 if (!__bio_add_pc_page(q, bio, page, n, offs, 1410 true)) 1411 break; 1412 1413 added += n; 1414 bytes -= n; 1415 offs = 0; 1416 } 1417 iov_iter_advance(iter, added); 1418 } 1419 /* 1420 * release the pages we didn't map into the bio, if any 1421 */ 1422 while (j < npages) 1423 put_page(pages[j++]); 1424 kvfree(pages); 1425 /* couldn't stuff something into bio? */ 1426 if (bytes) 1427 break; 1428 } 1429 1430 bio_set_flag(bio, BIO_USER_MAPPED); 1431 1432 /* 1433 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1434 * it would normally disappear when its bi_end_io is run. 1435 * however, we need it for the unmap, so grab an extra 1436 * reference to it 1437 */ 1438 bio_get(bio); 1439 return bio; 1440 1441 out_unmap: 1442 bio_for_each_segment_all(bvec, bio, iter_all) { 1443 put_page(bvec->bv_page); 1444 } 1445 bio_put(bio); 1446 return ERR_PTR(ret); 1447 } 1448 1449 static void __bio_unmap_user(struct bio *bio) 1450 { 1451 struct bio_vec *bvec; 1452 struct bvec_iter_all iter_all; 1453 1454 /* 1455 * make sure we dirty pages we wrote to 1456 */ 1457 bio_for_each_segment_all(bvec, bio, iter_all) { 1458 if (bio_data_dir(bio) == READ) 1459 set_page_dirty_lock(bvec->bv_page); 1460 1461 put_page(bvec->bv_page); 1462 } 1463 1464 bio_put(bio); 1465 } 1466 1467 /** 1468 * bio_unmap_user - unmap a bio 1469 * @bio: the bio being unmapped 1470 * 1471 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1472 * process context. 1473 * 1474 * bio_unmap_user() may sleep. 1475 */ 1476 void bio_unmap_user(struct bio *bio) 1477 { 1478 __bio_unmap_user(bio); 1479 bio_put(bio); 1480 } 1481 1482 static void bio_map_kern_endio(struct bio *bio) 1483 { 1484 bio_put(bio); 1485 } 1486 1487 /** 1488 * bio_map_kern - map kernel address into bio 1489 * @q: the struct request_queue for the bio 1490 * @data: pointer to buffer to map 1491 * @len: length in bytes 1492 * @gfp_mask: allocation flags for bio allocation 1493 * 1494 * Map the kernel address into a bio suitable for io to a block 1495 * device. Returns an error pointer in case of error. 1496 */ 1497 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1498 gfp_t gfp_mask) 1499 { 1500 unsigned long kaddr = (unsigned long)data; 1501 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1502 unsigned long start = kaddr >> PAGE_SHIFT; 1503 const int nr_pages = end - start; 1504 int offset, i; 1505 struct bio *bio; 1506 1507 bio = bio_kmalloc(gfp_mask, nr_pages); 1508 if (!bio) 1509 return ERR_PTR(-ENOMEM); 1510 1511 offset = offset_in_page(kaddr); 1512 for (i = 0; i < nr_pages; i++) { 1513 unsigned int bytes = PAGE_SIZE - offset; 1514 1515 if (len <= 0) 1516 break; 1517 1518 if (bytes > len) 1519 bytes = len; 1520 1521 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1522 offset) < bytes) { 1523 /* we don't support partial mappings */ 1524 bio_put(bio); 1525 return ERR_PTR(-EINVAL); 1526 } 1527 1528 data += bytes; 1529 len -= bytes; 1530 offset = 0; 1531 } 1532 1533 bio->bi_end_io = bio_map_kern_endio; 1534 return bio; 1535 } 1536 EXPORT_SYMBOL(bio_map_kern); 1537 1538 static void bio_copy_kern_endio(struct bio *bio) 1539 { 1540 bio_free_pages(bio); 1541 bio_put(bio); 1542 } 1543 1544 static void bio_copy_kern_endio_read(struct bio *bio) 1545 { 1546 char *p = bio->bi_private; 1547 struct bio_vec *bvec; 1548 struct bvec_iter_all iter_all; 1549 1550 bio_for_each_segment_all(bvec, bio, iter_all) { 1551 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1552 p += bvec->bv_len; 1553 } 1554 1555 bio_copy_kern_endio(bio); 1556 } 1557 1558 /** 1559 * bio_copy_kern - copy kernel address into bio 1560 * @q: the struct request_queue for the bio 1561 * @data: pointer to buffer to copy 1562 * @len: length in bytes 1563 * @gfp_mask: allocation flags for bio and page allocation 1564 * @reading: data direction is READ 1565 * 1566 * copy the kernel address into a bio suitable for io to a block 1567 * device. Returns an error pointer in case of error. 1568 */ 1569 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1570 gfp_t gfp_mask, int reading) 1571 { 1572 unsigned long kaddr = (unsigned long)data; 1573 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1574 unsigned long start = kaddr >> PAGE_SHIFT; 1575 struct bio *bio; 1576 void *p = data; 1577 int nr_pages = 0; 1578 1579 /* 1580 * Overflow, abort 1581 */ 1582 if (end < start) 1583 return ERR_PTR(-EINVAL); 1584 1585 nr_pages = end - start; 1586 bio = bio_kmalloc(gfp_mask, nr_pages); 1587 if (!bio) 1588 return ERR_PTR(-ENOMEM); 1589 1590 while (len) { 1591 struct page *page; 1592 unsigned int bytes = PAGE_SIZE; 1593 1594 if (bytes > len) 1595 bytes = len; 1596 1597 page = alloc_page(q->bounce_gfp | gfp_mask); 1598 if (!page) 1599 goto cleanup; 1600 1601 if (!reading) 1602 memcpy(page_address(page), p, bytes); 1603 1604 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1605 break; 1606 1607 len -= bytes; 1608 p += bytes; 1609 } 1610 1611 if (reading) { 1612 bio->bi_end_io = bio_copy_kern_endio_read; 1613 bio->bi_private = data; 1614 } else { 1615 bio->bi_end_io = bio_copy_kern_endio; 1616 } 1617 1618 return bio; 1619 1620 cleanup: 1621 bio_free_pages(bio); 1622 bio_put(bio); 1623 return ERR_PTR(-ENOMEM); 1624 } 1625 1626 /* 1627 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1628 * for performing direct-IO in BIOs. 1629 * 1630 * The problem is that we cannot run set_page_dirty() from interrupt context 1631 * because the required locks are not interrupt-safe. So what we can do is to 1632 * mark the pages dirty _before_ performing IO. And in interrupt context, 1633 * check that the pages are still dirty. If so, fine. If not, redirty them 1634 * in process context. 1635 * 1636 * We special-case compound pages here: normally this means reads into hugetlb 1637 * pages. The logic in here doesn't really work right for compound pages 1638 * because the VM does not uniformly chase down the head page in all cases. 1639 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1640 * handle them at all. So we skip compound pages here at an early stage. 1641 * 1642 * Note that this code is very hard to test under normal circumstances because 1643 * direct-io pins the pages with get_user_pages(). This makes 1644 * is_page_cache_freeable return false, and the VM will not clean the pages. 1645 * But other code (eg, flusher threads) could clean the pages if they are mapped 1646 * pagecache. 1647 * 1648 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1649 * deferred bio dirtying paths. 1650 */ 1651 1652 /* 1653 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1654 */ 1655 void bio_set_pages_dirty(struct bio *bio) 1656 { 1657 struct bio_vec *bvec; 1658 struct bvec_iter_all iter_all; 1659 1660 bio_for_each_segment_all(bvec, bio, iter_all) { 1661 if (!PageCompound(bvec->bv_page)) 1662 set_page_dirty_lock(bvec->bv_page); 1663 } 1664 } 1665 1666 /* 1667 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1668 * If they are, then fine. If, however, some pages are clean then they must 1669 * have been written out during the direct-IO read. So we take another ref on 1670 * the BIO and re-dirty the pages in process context. 1671 * 1672 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1673 * here on. It will run one put_page() against each page and will run one 1674 * bio_put() against the BIO. 1675 */ 1676 1677 static void bio_dirty_fn(struct work_struct *work); 1678 1679 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1680 static DEFINE_SPINLOCK(bio_dirty_lock); 1681 static struct bio *bio_dirty_list; 1682 1683 /* 1684 * This runs in process context 1685 */ 1686 static void bio_dirty_fn(struct work_struct *work) 1687 { 1688 struct bio *bio, *next; 1689 1690 spin_lock_irq(&bio_dirty_lock); 1691 next = bio_dirty_list; 1692 bio_dirty_list = NULL; 1693 spin_unlock_irq(&bio_dirty_lock); 1694 1695 while ((bio = next) != NULL) { 1696 next = bio->bi_private; 1697 1698 bio_set_pages_dirty(bio); 1699 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) 1700 bio_release_pages(bio); 1701 bio_put(bio); 1702 } 1703 } 1704 1705 void bio_check_pages_dirty(struct bio *bio) 1706 { 1707 struct bio_vec *bvec; 1708 unsigned long flags; 1709 struct bvec_iter_all iter_all; 1710 1711 bio_for_each_segment_all(bvec, bio, iter_all) { 1712 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1713 goto defer; 1714 } 1715 1716 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) 1717 bio_release_pages(bio); 1718 bio_put(bio); 1719 return; 1720 defer: 1721 spin_lock_irqsave(&bio_dirty_lock, flags); 1722 bio->bi_private = bio_dirty_list; 1723 bio_dirty_list = bio; 1724 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1725 schedule_work(&bio_dirty_work); 1726 } 1727 1728 void update_io_ticks(struct hd_struct *part, unsigned long now) 1729 { 1730 unsigned long stamp; 1731 again: 1732 stamp = READ_ONCE(part->stamp); 1733 if (unlikely(stamp != now)) { 1734 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) { 1735 __part_stat_add(part, io_ticks, 1); 1736 } 1737 } 1738 if (part->partno) { 1739 part = &part_to_disk(part)->part0; 1740 goto again; 1741 } 1742 } 1743 1744 void generic_start_io_acct(struct request_queue *q, int op, 1745 unsigned long sectors, struct hd_struct *part) 1746 { 1747 const int sgrp = op_stat_group(op); 1748 1749 part_stat_lock(); 1750 1751 update_io_ticks(part, jiffies); 1752 part_stat_inc(part, ios[sgrp]); 1753 part_stat_add(part, sectors[sgrp], sectors); 1754 part_inc_in_flight(q, part, op_is_write(op)); 1755 1756 part_stat_unlock(); 1757 } 1758 EXPORT_SYMBOL(generic_start_io_acct); 1759 1760 void generic_end_io_acct(struct request_queue *q, int req_op, 1761 struct hd_struct *part, unsigned long start_time) 1762 { 1763 unsigned long now = jiffies; 1764 unsigned long duration = now - start_time; 1765 const int sgrp = op_stat_group(req_op); 1766 1767 part_stat_lock(); 1768 1769 update_io_ticks(part, now); 1770 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1771 part_stat_add(part, time_in_queue, duration); 1772 part_dec_in_flight(q, part, op_is_write(req_op)); 1773 1774 part_stat_unlock(); 1775 } 1776 EXPORT_SYMBOL(generic_end_io_acct); 1777 1778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1779 void bio_flush_dcache_pages(struct bio *bi) 1780 { 1781 struct bio_vec bvec; 1782 struct bvec_iter iter; 1783 1784 bio_for_each_segment(bvec, bi, iter) 1785 flush_dcache_page(bvec.bv_page); 1786 } 1787 EXPORT_SYMBOL(bio_flush_dcache_pages); 1788 #endif 1789 1790 static inline bool bio_remaining_done(struct bio *bio) 1791 { 1792 /* 1793 * If we're not chaining, then ->__bi_remaining is always 1 and 1794 * we always end io on the first invocation. 1795 */ 1796 if (!bio_flagged(bio, BIO_CHAIN)) 1797 return true; 1798 1799 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1800 1801 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1802 bio_clear_flag(bio, BIO_CHAIN); 1803 return true; 1804 } 1805 1806 return false; 1807 } 1808 1809 /** 1810 * bio_endio - end I/O on a bio 1811 * @bio: bio 1812 * 1813 * Description: 1814 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1815 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1816 * bio unless they own it and thus know that it has an end_io function. 1817 * 1818 * bio_endio() can be called several times on a bio that has been chained 1819 * using bio_chain(). The ->bi_end_io() function will only be called the 1820 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1821 * generated if BIO_TRACE_COMPLETION is set. 1822 **/ 1823 void bio_endio(struct bio *bio) 1824 { 1825 again: 1826 if (!bio_remaining_done(bio)) 1827 return; 1828 if (!bio_integrity_endio(bio)) 1829 return; 1830 1831 if (bio->bi_disk) 1832 rq_qos_done_bio(bio->bi_disk->queue, bio); 1833 1834 /* 1835 * Need to have a real endio function for chained bios, otherwise 1836 * various corner cases will break (like stacking block devices that 1837 * save/restore bi_end_io) - however, we want to avoid unbounded 1838 * recursion and blowing the stack. Tail call optimization would 1839 * handle this, but compiling with frame pointers also disables 1840 * gcc's sibling call optimization. 1841 */ 1842 if (bio->bi_end_io == bio_chain_endio) { 1843 bio = __bio_chain_endio(bio); 1844 goto again; 1845 } 1846 1847 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1848 trace_block_bio_complete(bio->bi_disk->queue, bio, 1849 blk_status_to_errno(bio->bi_status)); 1850 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1851 } 1852 1853 blk_throtl_bio_endio(bio); 1854 /* release cgroup info */ 1855 bio_uninit(bio); 1856 if (bio->bi_end_io) 1857 bio->bi_end_io(bio); 1858 } 1859 EXPORT_SYMBOL(bio_endio); 1860 1861 /** 1862 * bio_split - split a bio 1863 * @bio: bio to split 1864 * @sectors: number of sectors to split from the front of @bio 1865 * @gfp: gfp mask 1866 * @bs: bio set to allocate from 1867 * 1868 * Allocates and returns a new bio which represents @sectors from the start of 1869 * @bio, and updates @bio to represent the remaining sectors. 1870 * 1871 * Unless this is a discard request the newly allocated bio will point 1872 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1873 * @bio is not freed before the split. 1874 */ 1875 struct bio *bio_split(struct bio *bio, int sectors, 1876 gfp_t gfp, struct bio_set *bs) 1877 { 1878 struct bio *split; 1879 1880 BUG_ON(sectors <= 0); 1881 BUG_ON(sectors >= bio_sectors(bio)); 1882 1883 split = bio_clone_fast(bio, gfp, bs); 1884 if (!split) 1885 return NULL; 1886 1887 split->bi_iter.bi_size = sectors << 9; 1888 1889 if (bio_integrity(split)) 1890 bio_integrity_trim(split); 1891 1892 bio_advance(bio, split->bi_iter.bi_size); 1893 1894 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1895 bio_set_flag(split, BIO_TRACE_COMPLETION); 1896 1897 return split; 1898 } 1899 EXPORT_SYMBOL(bio_split); 1900 1901 /** 1902 * bio_trim - trim a bio 1903 * @bio: bio to trim 1904 * @offset: number of sectors to trim from the front of @bio 1905 * @size: size we want to trim @bio to, in sectors 1906 */ 1907 void bio_trim(struct bio *bio, int offset, int size) 1908 { 1909 /* 'bio' is a cloned bio which we need to trim to match 1910 * the given offset and size. 1911 */ 1912 1913 size <<= 9; 1914 if (offset == 0 && size == bio->bi_iter.bi_size) 1915 return; 1916 1917 bio_clear_flag(bio, BIO_SEG_VALID); 1918 1919 bio_advance(bio, offset << 9); 1920 1921 bio->bi_iter.bi_size = size; 1922 1923 if (bio_integrity(bio)) 1924 bio_integrity_trim(bio); 1925 1926 } 1927 EXPORT_SYMBOL_GPL(bio_trim); 1928 1929 /* 1930 * create memory pools for biovec's in a bio_set. 1931 * use the global biovec slabs created for general use. 1932 */ 1933 int biovec_init_pool(mempool_t *pool, int pool_entries) 1934 { 1935 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1936 1937 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1938 } 1939 1940 /* 1941 * bioset_exit - exit a bioset initialized with bioset_init() 1942 * 1943 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1944 * kzalloc()). 1945 */ 1946 void bioset_exit(struct bio_set *bs) 1947 { 1948 if (bs->rescue_workqueue) 1949 destroy_workqueue(bs->rescue_workqueue); 1950 bs->rescue_workqueue = NULL; 1951 1952 mempool_exit(&bs->bio_pool); 1953 mempool_exit(&bs->bvec_pool); 1954 1955 bioset_integrity_free(bs); 1956 if (bs->bio_slab) 1957 bio_put_slab(bs); 1958 bs->bio_slab = NULL; 1959 } 1960 EXPORT_SYMBOL(bioset_exit); 1961 1962 /** 1963 * bioset_init - Initialize a bio_set 1964 * @bs: pool to initialize 1965 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1966 * @front_pad: Number of bytes to allocate in front of the returned bio 1967 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1968 * and %BIOSET_NEED_RESCUER 1969 * 1970 * Description: 1971 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1972 * to ask for a number of bytes to be allocated in front of the bio. 1973 * Front pad allocation is useful for embedding the bio inside 1974 * another structure, to avoid allocating extra data to go with the bio. 1975 * Note that the bio must be embedded at the END of that structure always, 1976 * or things will break badly. 1977 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1978 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1979 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1980 * dispatch queued requests when the mempool runs out of space. 1981 * 1982 */ 1983 int bioset_init(struct bio_set *bs, 1984 unsigned int pool_size, 1985 unsigned int front_pad, 1986 int flags) 1987 { 1988 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1989 1990 bs->front_pad = front_pad; 1991 1992 spin_lock_init(&bs->rescue_lock); 1993 bio_list_init(&bs->rescue_list); 1994 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1995 1996 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1997 if (!bs->bio_slab) 1998 return -ENOMEM; 1999 2000 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 2001 goto bad; 2002 2003 if ((flags & BIOSET_NEED_BVECS) && 2004 biovec_init_pool(&bs->bvec_pool, pool_size)) 2005 goto bad; 2006 2007 if (!(flags & BIOSET_NEED_RESCUER)) 2008 return 0; 2009 2010 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 2011 if (!bs->rescue_workqueue) 2012 goto bad; 2013 2014 return 0; 2015 bad: 2016 bioset_exit(bs); 2017 return -ENOMEM; 2018 } 2019 EXPORT_SYMBOL(bioset_init); 2020 2021 /* 2022 * Initialize and setup a new bio_set, based on the settings from 2023 * another bio_set. 2024 */ 2025 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 2026 { 2027 int flags; 2028 2029 flags = 0; 2030 if (src->bvec_pool.min_nr) 2031 flags |= BIOSET_NEED_BVECS; 2032 if (src->rescue_workqueue) 2033 flags |= BIOSET_NEED_RESCUER; 2034 2035 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 2036 } 2037 EXPORT_SYMBOL(bioset_init_from_src); 2038 2039 #ifdef CONFIG_BLK_CGROUP 2040 2041 /** 2042 * bio_disassociate_blkg - puts back the blkg reference if associated 2043 * @bio: target bio 2044 * 2045 * Helper to disassociate the blkg from @bio if a blkg is associated. 2046 */ 2047 void bio_disassociate_blkg(struct bio *bio) 2048 { 2049 if (bio->bi_blkg) { 2050 blkg_put(bio->bi_blkg); 2051 bio->bi_blkg = NULL; 2052 } 2053 } 2054 EXPORT_SYMBOL_GPL(bio_disassociate_blkg); 2055 2056 /** 2057 * __bio_associate_blkg - associate a bio with the a blkg 2058 * @bio: target bio 2059 * @blkg: the blkg to associate 2060 * 2061 * This tries to associate @bio with the specified @blkg. Association failure 2062 * is handled by walking up the blkg tree. Therefore, the blkg associated can 2063 * be anything between @blkg and the root_blkg. This situation only happens 2064 * when a cgroup is dying and then the remaining bios will spill to the closest 2065 * alive blkg. 2066 * 2067 * A reference will be taken on the @blkg and will be released when @bio is 2068 * freed. 2069 */ 2070 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) 2071 { 2072 bio_disassociate_blkg(bio); 2073 2074 bio->bi_blkg = blkg_tryget_closest(blkg); 2075 } 2076 2077 /** 2078 * bio_associate_blkg_from_css - associate a bio with a specified css 2079 * @bio: target bio 2080 * @css: target css 2081 * 2082 * Associate @bio with the blkg found by combining the css's blkg and the 2083 * request_queue of the @bio. This falls back to the queue's root_blkg if 2084 * the association fails with the css. 2085 */ 2086 void bio_associate_blkg_from_css(struct bio *bio, 2087 struct cgroup_subsys_state *css) 2088 { 2089 struct request_queue *q = bio->bi_disk->queue; 2090 struct blkcg_gq *blkg; 2091 2092 rcu_read_lock(); 2093 2094 if (!css || !css->parent) 2095 blkg = q->root_blkg; 2096 else 2097 blkg = blkg_lookup_create(css_to_blkcg(css), q); 2098 2099 __bio_associate_blkg(bio, blkg); 2100 2101 rcu_read_unlock(); 2102 } 2103 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2104 2105 #ifdef CONFIG_MEMCG 2106 /** 2107 * bio_associate_blkg_from_page - associate a bio with the page's blkg 2108 * @bio: target bio 2109 * @page: the page to lookup the blkcg from 2110 * 2111 * Associate @bio with the blkg from @page's owning memcg and the respective 2112 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's 2113 * root_blkg. 2114 */ 2115 void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 2116 { 2117 struct cgroup_subsys_state *css; 2118 2119 if (!page->mem_cgroup) 2120 return; 2121 2122 rcu_read_lock(); 2123 2124 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); 2125 bio_associate_blkg_from_css(bio, css); 2126 2127 rcu_read_unlock(); 2128 } 2129 #endif /* CONFIG_MEMCG */ 2130 2131 /** 2132 * bio_associate_blkg - associate a bio with a blkg 2133 * @bio: target bio 2134 * 2135 * Associate @bio with the blkg found from the bio's css and request_queue. 2136 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2137 * already associated, the css is reused and association redone as the 2138 * request_queue may have changed. 2139 */ 2140 void bio_associate_blkg(struct bio *bio) 2141 { 2142 struct cgroup_subsys_state *css; 2143 2144 rcu_read_lock(); 2145 2146 if (bio->bi_blkg) 2147 css = &bio_blkcg(bio)->css; 2148 else 2149 css = blkcg_css(); 2150 2151 bio_associate_blkg_from_css(bio, css); 2152 2153 rcu_read_unlock(); 2154 } 2155 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2156 2157 /** 2158 * bio_clone_blkg_association - clone blkg association from src to dst bio 2159 * @dst: destination bio 2160 * @src: source bio 2161 */ 2162 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2163 { 2164 rcu_read_lock(); 2165 2166 if (src->bi_blkg) 2167 __bio_associate_blkg(dst, src->bi_blkg); 2168 2169 rcu_read_unlock(); 2170 } 2171 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2172 #endif /* CONFIG_BLK_CGROUP */ 2173 2174 static void __init biovec_init_slabs(void) 2175 { 2176 int i; 2177 2178 for (i = 0; i < BVEC_POOL_NR; i++) { 2179 int size; 2180 struct biovec_slab *bvs = bvec_slabs + i; 2181 2182 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2183 bvs->slab = NULL; 2184 continue; 2185 } 2186 2187 size = bvs->nr_vecs * sizeof(struct bio_vec); 2188 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2189 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2190 } 2191 } 2192 2193 static int __init init_bio(void) 2194 { 2195 bio_slab_max = 2; 2196 bio_slab_nr = 0; 2197 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), 2198 GFP_KERNEL); 2199 2200 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); 2201 2202 if (!bio_slabs) 2203 panic("bio: can't allocate bios\n"); 2204 2205 bio_integrity_init(); 2206 biovec_init_slabs(); 2207 2208 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 2209 panic("bio: can't allocate bios\n"); 2210 2211 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 2212 panic("bio: can't create integrity pool\n"); 2213 2214 return 0; 2215 } 2216 subsys_initcall(init_bio); 2217