xref: /linux/block/bio.c (revision aa23aa55166c2865ac430168c4b9d405cf8c6980)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 
20 #include <trace/events/block.h>
21 #include "blk.h"
22 #include "blk-rq-qos.h"
23 
24 /*
25  * Test patch to inline a certain number of bi_io_vec's inside the bio
26  * itself, to shrink a bio data allocation from two mempool calls to one
27  */
28 #define BIO_INLINE_VECS		4
29 
30 /*
31  * if you change this list, also change bvec_alloc or things will
32  * break badly! cannot be bigger than what you can fit into an
33  * unsigned short
34  */
35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
36 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
37 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
38 };
39 #undef BV
40 
41 /*
42  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43  * IO code that does not need private memory pools.
44  */
45 struct bio_set fs_bio_set;
46 EXPORT_SYMBOL(fs_bio_set);
47 
48 /*
49  * Our slab pool management
50  */
51 struct bio_slab {
52 	struct kmem_cache *slab;
53 	unsigned int slab_ref;
54 	unsigned int slab_size;
55 	char name[8];
56 };
57 static DEFINE_MUTEX(bio_slab_lock);
58 static struct bio_slab *bio_slabs;
59 static unsigned int bio_slab_nr, bio_slab_max;
60 
61 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
62 {
63 	unsigned int sz = sizeof(struct bio) + extra_size;
64 	struct kmem_cache *slab = NULL;
65 	struct bio_slab *bslab, *new_bio_slabs;
66 	unsigned int new_bio_slab_max;
67 	unsigned int i, entry = -1;
68 
69 	mutex_lock(&bio_slab_lock);
70 
71 	i = 0;
72 	while (i < bio_slab_nr) {
73 		bslab = &bio_slabs[i];
74 
75 		if (!bslab->slab && entry == -1)
76 			entry = i;
77 		else if (bslab->slab_size == sz) {
78 			slab = bslab->slab;
79 			bslab->slab_ref++;
80 			break;
81 		}
82 		i++;
83 	}
84 
85 	if (slab)
86 		goto out_unlock;
87 
88 	if (bio_slab_nr == bio_slab_max && entry == -1) {
89 		new_bio_slab_max = bio_slab_max << 1;
90 		new_bio_slabs = krealloc(bio_slabs,
91 					 new_bio_slab_max * sizeof(struct bio_slab),
92 					 GFP_KERNEL);
93 		if (!new_bio_slabs)
94 			goto out_unlock;
95 		bio_slab_max = new_bio_slab_max;
96 		bio_slabs = new_bio_slabs;
97 	}
98 	if (entry == -1)
99 		entry = bio_slab_nr++;
100 
101 	bslab = &bio_slabs[entry];
102 
103 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
104 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
105 				 SLAB_HWCACHE_ALIGN, NULL);
106 	if (!slab)
107 		goto out_unlock;
108 
109 	bslab->slab = slab;
110 	bslab->slab_ref = 1;
111 	bslab->slab_size = sz;
112 out_unlock:
113 	mutex_unlock(&bio_slab_lock);
114 	return slab;
115 }
116 
117 static void bio_put_slab(struct bio_set *bs)
118 {
119 	struct bio_slab *bslab = NULL;
120 	unsigned int i;
121 
122 	mutex_lock(&bio_slab_lock);
123 
124 	for (i = 0; i < bio_slab_nr; i++) {
125 		if (bs->bio_slab == bio_slabs[i].slab) {
126 			bslab = &bio_slabs[i];
127 			break;
128 		}
129 	}
130 
131 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
132 		goto out;
133 
134 	WARN_ON(!bslab->slab_ref);
135 
136 	if (--bslab->slab_ref)
137 		goto out;
138 
139 	kmem_cache_destroy(bslab->slab);
140 	bslab->slab = NULL;
141 
142 out:
143 	mutex_unlock(&bio_slab_lock);
144 }
145 
146 unsigned int bvec_nr_vecs(unsigned short idx)
147 {
148 	return bvec_slabs[--idx].nr_vecs;
149 }
150 
151 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
152 {
153 	if (!idx)
154 		return;
155 	idx--;
156 
157 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
158 
159 	if (idx == BVEC_POOL_MAX) {
160 		mempool_free(bv, pool);
161 	} else {
162 		struct biovec_slab *bvs = bvec_slabs + idx;
163 
164 		kmem_cache_free(bvs->slab, bv);
165 	}
166 }
167 
168 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
169 			   mempool_t *pool)
170 {
171 	struct bio_vec *bvl;
172 
173 	/*
174 	 * see comment near bvec_array define!
175 	 */
176 	switch (nr) {
177 	case 1:
178 		*idx = 0;
179 		break;
180 	case 2 ... 4:
181 		*idx = 1;
182 		break;
183 	case 5 ... 16:
184 		*idx = 2;
185 		break;
186 	case 17 ... 64:
187 		*idx = 3;
188 		break;
189 	case 65 ... 128:
190 		*idx = 4;
191 		break;
192 	case 129 ... BIO_MAX_PAGES:
193 		*idx = 5;
194 		break;
195 	default:
196 		return NULL;
197 	}
198 
199 	/*
200 	 * idx now points to the pool we want to allocate from. only the
201 	 * 1-vec entry pool is mempool backed.
202 	 */
203 	if (*idx == BVEC_POOL_MAX) {
204 fallback:
205 		bvl = mempool_alloc(pool, gfp_mask);
206 	} else {
207 		struct biovec_slab *bvs = bvec_slabs + *idx;
208 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
209 
210 		/*
211 		 * Make this allocation restricted and don't dump info on
212 		 * allocation failures, since we'll fallback to the mempool
213 		 * in case of failure.
214 		 */
215 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
216 
217 		/*
218 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
219 		 * is set, retry with the 1-entry mempool
220 		 */
221 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
222 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
223 			*idx = BVEC_POOL_MAX;
224 			goto fallback;
225 		}
226 	}
227 
228 	(*idx)++;
229 	return bvl;
230 }
231 
232 void bio_uninit(struct bio *bio)
233 {
234 	bio_disassociate_blkg(bio);
235 }
236 EXPORT_SYMBOL(bio_uninit);
237 
238 static void bio_free(struct bio *bio)
239 {
240 	struct bio_set *bs = bio->bi_pool;
241 	void *p;
242 
243 	bio_uninit(bio);
244 
245 	if (bs) {
246 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
247 
248 		/*
249 		 * If we have front padding, adjust the bio pointer before freeing
250 		 */
251 		p = bio;
252 		p -= bs->front_pad;
253 
254 		mempool_free(p, &bs->bio_pool);
255 	} else {
256 		/* Bio was allocated by bio_kmalloc() */
257 		kfree(bio);
258 	}
259 }
260 
261 /*
262  * Users of this function have their own bio allocation. Subsequently,
263  * they must remember to pair any call to bio_init() with bio_uninit()
264  * when IO has completed, or when the bio is released.
265  */
266 void bio_init(struct bio *bio, struct bio_vec *table,
267 	      unsigned short max_vecs)
268 {
269 	memset(bio, 0, sizeof(*bio));
270 	atomic_set(&bio->__bi_remaining, 1);
271 	atomic_set(&bio->__bi_cnt, 1);
272 
273 	bio->bi_io_vec = table;
274 	bio->bi_max_vecs = max_vecs;
275 }
276 EXPORT_SYMBOL(bio_init);
277 
278 /**
279  * bio_reset - reinitialize a bio
280  * @bio:	bio to reset
281  *
282  * Description:
283  *   After calling bio_reset(), @bio will be in the same state as a freshly
284  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
285  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
286  *   comment in struct bio.
287  */
288 void bio_reset(struct bio *bio)
289 {
290 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291 
292 	bio_uninit(bio);
293 
294 	memset(bio, 0, BIO_RESET_BYTES);
295 	bio->bi_flags = flags;
296 	atomic_set(&bio->__bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299 
300 static struct bio *__bio_chain_endio(struct bio *bio)
301 {
302 	struct bio *parent = bio->bi_private;
303 
304 	if (!parent->bi_status)
305 		parent->bi_status = bio->bi_status;
306 	bio_put(bio);
307 	return parent;
308 }
309 
310 static void bio_chain_endio(struct bio *bio)
311 {
312 	bio_endio(__bio_chain_endio(bio));
313 }
314 
315 /**
316  * bio_chain - chain bio completions
317  * @bio: the target bio
318  * @parent: the @bio's parent bio
319  *
320  * The caller won't have a bi_end_io called when @bio completes - instead,
321  * @parent's bi_end_io won't be called until both @parent and @bio have
322  * completed; the chained bio will also be freed when it completes.
323  *
324  * The caller must not set bi_private or bi_end_io in @bio.
325  */
326 void bio_chain(struct bio *bio, struct bio *parent)
327 {
328 	BUG_ON(bio->bi_private || bio->bi_end_io);
329 
330 	bio->bi_private = parent;
331 	bio->bi_end_io	= bio_chain_endio;
332 	bio_inc_remaining(parent);
333 }
334 EXPORT_SYMBOL(bio_chain);
335 
336 static void bio_alloc_rescue(struct work_struct *work)
337 {
338 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
339 	struct bio *bio;
340 
341 	while (1) {
342 		spin_lock(&bs->rescue_lock);
343 		bio = bio_list_pop(&bs->rescue_list);
344 		spin_unlock(&bs->rescue_lock);
345 
346 		if (!bio)
347 			break;
348 
349 		generic_make_request(bio);
350 	}
351 }
352 
353 static void punt_bios_to_rescuer(struct bio_set *bs)
354 {
355 	struct bio_list punt, nopunt;
356 	struct bio *bio;
357 
358 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
359 		return;
360 	/*
361 	 * In order to guarantee forward progress we must punt only bios that
362 	 * were allocated from this bio_set; otherwise, if there was a bio on
363 	 * there for a stacking driver higher up in the stack, processing it
364 	 * could require allocating bios from this bio_set, and doing that from
365 	 * our own rescuer would be bad.
366 	 *
367 	 * Since bio lists are singly linked, pop them all instead of trying to
368 	 * remove from the middle of the list:
369 	 */
370 
371 	bio_list_init(&punt);
372 	bio_list_init(&nopunt);
373 
374 	while ((bio = bio_list_pop(&current->bio_list[0])))
375 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
376 	current->bio_list[0] = nopunt;
377 
378 	bio_list_init(&nopunt);
379 	while ((bio = bio_list_pop(&current->bio_list[1])))
380 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 	current->bio_list[1] = nopunt;
382 
383 	spin_lock(&bs->rescue_lock);
384 	bio_list_merge(&bs->rescue_list, &punt);
385 	spin_unlock(&bs->rescue_lock);
386 
387 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
388 }
389 
390 /**
391  * bio_alloc_bioset - allocate a bio for I/O
392  * @gfp_mask:   the GFP_* mask given to the slab allocator
393  * @nr_iovecs:	number of iovecs to pre-allocate
394  * @bs:		the bio_set to allocate from.
395  *
396  * Description:
397  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398  *   backed by the @bs's mempool.
399  *
400  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401  *   always be able to allocate a bio. This is due to the mempool guarantees.
402  *   To make this work, callers must never allocate more than 1 bio at a time
403  *   from this pool. Callers that need to allocate more than 1 bio must always
404  *   submit the previously allocated bio for IO before attempting to allocate
405  *   a new one. Failure to do so can cause deadlocks under memory pressure.
406  *
407  *   Note that when running under generic_make_request() (i.e. any block
408  *   driver), bios are not submitted until after you return - see the code in
409  *   generic_make_request() that converts recursion into iteration, to prevent
410  *   stack overflows.
411  *
412  *   This would normally mean allocating multiple bios under
413  *   generic_make_request() would be susceptible to deadlocks, but we have
414  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
415  *   thread.
416  *
417  *   However, we do not guarantee forward progress for allocations from other
418  *   mempools. Doing multiple allocations from the same mempool under
419  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
420  *   for per bio allocations.
421  *
422  *   RETURNS:
423  *   Pointer to new bio on success, NULL on failure.
424  */
425 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
426 			     struct bio_set *bs)
427 {
428 	gfp_t saved_gfp = gfp_mask;
429 	unsigned front_pad;
430 	unsigned inline_vecs;
431 	struct bio_vec *bvl = NULL;
432 	struct bio *bio;
433 	void *p;
434 
435 	if (!bs) {
436 		if (nr_iovecs > UIO_MAXIOV)
437 			return NULL;
438 
439 		p = kmalloc(sizeof(struct bio) +
440 			    nr_iovecs * sizeof(struct bio_vec),
441 			    gfp_mask);
442 		front_pad = 0;
443 		inline_vecs = nr_iovecs;
444 	} else {
445 		/* should not use nobvec bioset for nr_iovecs > 0 */
446 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
447 				 nr_iovecs > 0))
448 			return NULL;
449 		/*
450 		 * generic_make_request() converts recursion to iteration; this
451 		 * means if we're running beneath it, any bios we allocate and
452 		 * submit will not be submitted (and thus freed) until after we
453 		 * return.
454 		 *
455 		 * This exposes us to a potential deadlock if we allocate
456 		 * multiple bios from the same bio_set() while running
457 		 * underneath generic_make_request(). If we were to allocate
458 		 * multiple bios (say a stacking block driver that was splitting
459 		 * bios), we would deadlock if we exhausted the mempool's
460 		 * reserve.
461 		 *
462 		 * We solve this, and guarantee forward progress, with a rescuer
463 		 * workqueue per bio_set. If we go to allocate and there are
464 		 * bios on current->bio_list, we first try the allocation
465 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 		 * bios we would be blocking to the rescuer workqueue before
467 		 * we retry with the original gfp_flags.
468 		 */
469 
470 		if (current->bio_list &&
471 		    (!bio_list_empty(&current->bio_list[0]) ||
472 		     !bio_list_empty(&current->bio_list[1])) &&
473 		    bs->rescue_workqueue)
474 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475 
476 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
477 		if (!p && gfp_mask != saved_gfp) {
478 			punt_bios_to_rescuer(bs);
479 			gfp_mask = saved_gfp;
480 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 		}
482 
483 		front_pad = bs->front_pad;
484 		inline_vecs = BIO_INLINE_VECS;
485 	}
486 
487 	if (unlikely(!p))
488 		return NULL;
489 
490 	bio = p + front_pad;
491 	bio_init(bio, NULL, 0);
492 
493 	if (nr_iovecs > inline_vecs) {
494 		unsigned long idx = 0;
495 
496 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
497 		if (!bvl && gfp_mask != saved_gfp) {
498 			punt_bios_to_rescuer(bs);
499 			gfp_mask = saved_gfp;
500 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 		}
502 
503 		if (unlikely(!bvl))
504 			goto err_free;
505 
506 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
507 	} else if (nr_iovecs) {
508 		bvl = bio->bi_inline_vecs;
509 	}
510 
511 	bio->bi_pool = bs;
512 	bio->bi_max_vecs = nr_iovecs;
513 	bio->bi_io_vec = bvl;
514 	return bio;
515 
516 err_free:
517 	mempool_free(p, &bs->bio_pool);
518 	return NULL;
519 }
520 EXPORT_SYMBOL(bio_alloc_bioset);
521 
522 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
523 {
524 	unsigned long flags;
525 	struct bio_vec bv;
526 	struct bvec_iter iter;
527 
528 	__bio_for_each_segment(bv, bio, iter, start) {
529 		char *data = bvec_kmap_irq(&bv, &flags);
530 		memset(data, 0, bv.bv_len);
531 		flush_dcache_page(bv.bv_page);
532 		bvec_kunmap_irq(data, &flags);
533 	}
534 }
535 EXPORT_SYMBOL(zero_fill_bio_iter);
536 
537 /**
538  * bio_put - release a reference to a bio
539  * @bio:   bio to release reference to
540  *
541  * Description:
542  *   Put a reference to a &struct bio, either one you have gotten with
543  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
544  **/
545 void bio_put(struct bio *bio)
546 {
547 	if (!bio_flagged(bio, BIO_REFFED))
548 		bio_free(bio);
549 	else {
550 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
551 
552 		/*
553 		 * last put frees it
554 		 */
555 		if (atomic_dec_and_test(&bio->__bi_cnt))
556 			bio_free(bio);
557 	}
558 }
559 EXPORT_SYMBOL(bio_put);
560 
561 int bio_phys_segments(struct request_queue *q, struct bio *bio)
562 {
563 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
564 		blk_recount_segments(q, bio);
565 
566 	return bio->bi_phys_segments;
567 }
568 
569 /**
570  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
571  * 	@bio: destination bio
572  * 	@bio_src: bio to clone
573  *
574  *	Clone a &bio. Caller will own the returned bio, but not
575  *	the actual data it points to. Reference count of returned
576  * 	bio will be one.
577  *
578  * 	Caller must ensure that @bio_src is not freed before @bio.
579  */
580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581 {
582 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
583 
584 	/*
585 	 * most users will be overriding ->bi_disk with a new target,
586 	 * so we don't set nor calculate new physical/hw segment counts here
587 	 */
588 	bio->bi_disk = bio_src->bi_disk;
589 	bio->bi_partno = bio_src->bi_partno;
590 	bio_set_flag(bio, BIO_CLONED);
591 	if (bio_flagged(bio_src, BIO_THROTTLED))
592 		bio_set_flag(bio, BIO_THROTTLED);
593 	bio->bi_opf = bio_src->bi_opf;
594 	bio->bi_ioprio = bio_src->bi_ioprio;
595 	bio->bi_write_hint = bio_src->bi_write_hint;
596 	bio->bi_iter = bio_src->bi_iter;
597 	bio->bi_io_vec = bio_src->bi_io_vec;
598 
599 	bio_clone_blkg_association(bio, bio_src);
600 	blkcg_bio_issue_init(bio);
601 }
602 EXPORT_SYMBOL(__bio_clone_fast);
603 
604 /**
605  *	bio_clone_fast - clone a bio that shares the original bio's biovec
606  *	@bio: bio to clone
607  *	@gfp_mask: allocation priority
608  *	@bs: bio_set to allocate from
609  *
610  * 	Like __bio_clone_fast, only also allocates the returned bio
611  */
612 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
613 {
614 	struct bio *b;
615 
616 	b = bio_alloc_bioset(gfp_mask, 0, bs);
617 	if (!b)
618 		return NULL;
619 
620 	__bio_clone_fast(b, bio);
621 
622 	if (bio_integrity(bio)) {
623 		int ret;
624 
625 		ret = bio_integrity_clone(b, bio, gfp_mask);
626 
627 		if (ret < 0) {
628 			bio_put(b);
629 			return NULL;
630 		}
631 	}
632 
633 	return b;
634 }
635 EXPORT_SYMBOL(bio_clone_fast);
636 
637 static inline bool page_is_mergeable(const struct bio_vec *bv,
638 		struct page *page, unsigned int len, unsigned int off,
639 		bool *same_page)
640 {
641 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
642 		bv->bv_offset + bv->bv_len - 1;
643 	phys_addr_t page_addr = page_to_phys(page);
644 
645 	if (vec_end_addr + 1 != page_addr + off)
646 		return false;
647 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
648 		return false;
649 
650 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
651 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
652 		return false;
653 	return true;
654 }
655 
656 /*
657  * Check if the @page can be added to the current segment(@bv), and make
658  * sure to call it only if page_is_mergeable(@bv, @page) is true
659  */
660 static bool can_add_page_to_seg(struct request_queue *q,
661 		struct bio_vec *bv, struct page *page, unsigned len,
662 		unsigned offset)
663 {
664 	unsigned long mask = queue_segment_boundary(q);
665 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
666 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
667 
668 	if ((addr1 | mask) != (addr2 | mask))
669 		return false;
670 
671 	if (bv->bv_len + len > queue_max_segment_size(q))
672 		return false;
673 
674 	return true;
675 }
676 
677 /**
678  *	__bio_add_pc_page	- attempt to add page to passthrough bio
679  *	@q: the target queue
680  *	@bio: destination bio
681  *	@page: page to add
682  *	@len: vec entry length
683  *	@offset: vec entry offset
684  *	@put_same_page: put the page if it is same with last added page
685  *
686  *	Attempt to add a page to the bio_vec maplist. This can fail for a
687  *	number of reasons, such as the bio being full or target block device
688  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
689  *	so it is always possible to add a single page to an empty bio.
690  *
691  *	This should only be used by passthrough bios.
692  */
693 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
694 		struct page *page, unsigned int len, unsigned int offset,
695 		bool put_same_page)
696 {
697 	struct bio_vec *bvec;
698 	bool same_page = false;
699 
700 	/*
701 	 * cloned bio must not modify vec list
702 	 */
703 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
704 		return 0;
705 
706 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
707 		return 0;
708 
709 	if (bio->bi_vcnt > 0) {
710 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
711 
712 		if (page == bvec->bv_page &&
713 		    offset == bvec->bv_offset + bvec->bv_len) {
714 			if (put_same_page)
715 				put_page(page);
716 			bvec->bv_len += len;
717 			goto done;
718 		}
719 
720 		/*
721 		 * If the queue doesn't support SG gaps and adding this
722 		 * offset would create a gap, disallow it.
723 		 */
724 		if (bvec_gap_to_prev(q, bvec, offset))
725 			return 0;
726 
727 		if (page_is_mergeable(bvec, page, len, offset, &same_page) &&
728 		    can_add_page_to_seg(q, bvec, page, len, offset)) {
729 			bvec->bv_len += len;
730 			goto done;
731 		}
732 	}
733 
734 	if (bio_full(bio))
735 		return 0;
736 
737 	if (bio->bi_phys_segments >= queue_max_segments(q))
738 		return 0;
739 
740 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
741 	bvec->bv_page = page;
742 	bvec->bv_len = len;
743 	bvec->bv_offset = offset;
744 	bio->bi_vcnt++;
745  done:
746 	bio->bi_iter.bi_size += len;
747 	bio->bi_phys_segments = bio->bi_vcnt;
748 	bio_set_flag(bio, BIO_SEG_VALID);
749 	return len;
750 }
751 
752 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
753 		struct page *page, unsigned int len, unsigned int offset)
754 {
755 	return __bio_add_pc_page(q, bio, page, len, offset, false);
756 }
757 EXPORT_SYMBOL(bio_add_pc_page);
758 
759 /**
760  * __bio_try_merge_page - try appending data to an existing bvec.
761  * @bio: destination bio
762  * @page: start page to add
763  * @len: length of the data to add
764  * @off: offset of the data relative to @page
765  * @same_page: return if the segment has been merged inside the same page
766  *
767  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
768  * a useful optimisation for file systems with a block size smaller than the
769  * page size.
770  *
771  * Warn if (@len, @off) crosses pages in case that @same_page is true.
772  *
773  * Return %true on success or %false on failure.
774  */
775 bool __bio_try_merge_page(struct bio *bio, struct page *page,
776 		unsigned int len, unsigned int off, bool *same_page)
777 {
778 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
779 		return false;
780 
781 	if (bio->bi_vcnt > 0) {
782 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
783 
784 		if (page_is_mergeable(bv, page, len, off, same_page)) {
785 			bv->bv_len += len;
786 			bio->bi_iter.bi_size += len;
787 			return true;
788 		}
789 	}
790 	return false;
791 }
792 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
793 
794 /**
795  * __bio_add_page - add page(s) to a bio in a new segment
796  * @bio: destination bio
797  * @page: start page to add
798  * @len: length of the data to add, may cross pages
799  * @off: offset of the data relative to @page, may cross pages
800  *
801  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
802  * that @bio has space for another bvec.
803  */
804 void __bio_add_page(struct bio *bio, struct page *page,
805 		unsigned int len, unsigned int off)
806 {
807 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
808 
809 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
810 	WARN_ON_ONCE(bio_full(bio));
811 
812 	bv->bv_page = page;
813 	bv->bv_offset = off;
814 	bv->bv_len = len;
815 
816 	bio->bi_iter.bi_size += len;
817 	bio->bi_vcnt++;
818 }
819 EXPORT_SYMBOL_GPL(__bio_add_page);
820 
821 /**
822  *	bio_add_page	-	attempt to add page(s) to bio
823  *	@bio: destination bio
824  *	@page: start page to add
825  *	@len: vec entry length, may cross pages
826  *	@offset: vec entry offset relative to @page, may cross pages
827  *
828  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
829  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
830  */
831 int bio_add_page(struct bio *bio, struct page *page,
832 		 unsigned int len, unsigned int offset)
833 {
834 	bool same_page = false;
835 
836 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
837 		if (bio_full(bio))
838 			return 0;
839 		__bio_add_page(bio, page, len, offset);
840 	}
841 	return len;
842 }
843 EXPORT_SYMBOL(bio_add_page);
844 
845 static void bio_get_pages(struct bio *bio)
846 {
847 	struct bvec_iter_all iter_all;
848 	struct bio_vec *bvec;
849 
850 	bio_for_each_segment_all(bvec, bio, iter_all)
851 		get_page(bvec->bv_page);
852 }
853 
854 static void bio_release_pages(struct bio *bio)
855 {
856 	struct bvec_iter_all iter_all;
857 	struct bio_vec *bvec;
858 
859 	bio_for_each_segment_all(bvec, bio, iter_all)
860 		put_page(bvec->bv_page);
861 }
862 
863 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
864 {
865 	const struct bio_vec *bv = iter->bvec;
866 	unsigned int len;
867 	size_t size;
868 
869 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
870 		return -EINVAL;
871 
872 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
873 	size = bio_add_page(bio, bv->bv_page, len,
874 				bv->bv_offset + iter->iov_offset);
875 	if (unlikely(size != len))
876 		return -EINVAL;
877 	iov_iter_advance(iter, size);
878 	return 0;
879 }
880 
881 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
882 
883 /**
884  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
885  * @bio: bio to add pages to
886  * @iter: iov iterator describing the region to be mapped
887  *
888  * Pins pages from *iter and appends them to @bio's bvec array. The
889  * pages will have to be released using put_page() when done.
890  * For multi-segment *iter, this function only adds pages from the
891  * the next non-empty segment of the iov iterator.
892  */
893 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
894 {
895 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
896 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
897 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
898 	struct page **pages = (struct page **)bv;
899 	bool same_page = false;
900 	ssize_t size, left;
901 	unsigned len, i;
902 	size_t offset;
903 
904 	/*
905 	 * Move page array up in the allocated memory for the bio vecs as far as
906 	 * possible so that we can start filling biovecs from the beginning
907 	 * without overwriting the temporary page array.
908 	*/
909 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
910 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
911 
912 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
913 	if (unlikely(size <= 0))
914 		return size ? size : -EFAULT;
915 
916 	for (left = size, i = 0; left > 0; left -= len, i++) {
917 		struct page *page = pages[i];
918 
919 		len = min_t(size_t, PAGE_SIZE - offset, left);
920 
921 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
922 			if (same_page)
923 				put_page(page);
924 		} else {
925 			if (WARN_ON_ONCE(bio_full(bio)))
926                                 return -EINVAL;
927 			__bio_add_page(bio, page, len, offset);
928 		}
929 		offset = 0;
930 	}
931 
932 	iov_iter_advance(iter, size);
933 	return 0;
934 }
935 
936 /**
937  * bio_iov_iter_get_pages - add user or kernel pages to a bio
938  * @bio: bio to add pages to
939  * @iter: iov iterator describing the region to be added
940  *
941  * This takes either an iterator pointing to user memory, or one pointing to
942  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
943  * map them into the kernel. On IO completion, the caller should put those
944  * pages. If we're adding kernel pages, and the caller told us it's safe to
945  * do so, we just have to add the pages to the bio directly. We don't grab an
946  * extra reference to those pages (the user should already have that), and we
947  * don't put the page on IO completion. The caller needs to check if the bio is
948  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
949  * released.
950  *
951  * The function tries, but does not guarantee, to pin as many pages as
952  * fit into the bio, or are requested in *iter, whatever is smaller. If
953  * MM encounters an error pinning the requested pages, it stops. Error
954  * is returned only if 0 pages could be pinned.
955  */
956 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
957 {
958 	const bool is_bvec = iov_iter_is_bvec(iter);
959 	int ret;
960 
961 	if (WARN_ON_ONCE(bio->bi_vcnt))
962 		return -EINVAL;
963 
964 	do {
965 		if (is_bvec)
966 			ret = __bio_iov_bvec_add_pages(bio, iter);
967 		else
968 			ret = __bio_iov_iter_get_pages(bio, iter);
969 	} while (!ret && iov_iter_count(iter) && !bio_full(bio));
970 
971 	if (iov_iter_bvec_no_ref(iter))
972 		bio_set_flag(bio, BIO_NO_PAGE_REF);
973 	else if (is_bvec)
974 		bio_get_pages(bio);
975 
976 	return bio->bi_vcnt ? 0 : ret;
977 }
978 
979 static void submit_bio_wait_endio(struct bio *bio)
980 {
981 	complete(bio->bi_private);
982 }
983 
984 /**
985  * submit_bio_wait - submit a bio, and wait until it completes
986  * @bio: The &struct bio which describes the I/O
987  *
988  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
989  * bio_endio() on failure.
990  *
991  * WARNING: Unlike to how submit_bio() is usually used, this function does not
992  * result in bio reference to be consumed. The caller must drop the reference
993  * on his own.
994  */
995 int submit_bio_wait(struct bio *bio)
996 {
997 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
998 
999 	bio->bi_private = &done;
1000 	bio->bi_end_io = submit_bio_wait_endio;
1001 	bio->bi_opf |= REQ_SYNC;
1002 	submit_bio(bio);
1003 	wait_for_completion_io(&done);
1004 
1005 	return blk_status_to_errno(bio->bi_status);
1006 }
1007 EXPORT_SYMBOL(submit_bio_wait);
1008 
1009 /**
1010  * bio_advance - increment/complete a bio by some number of bytes
1011  * @bio:	bio to advance
1012  * @bytes:	number of bytes to complete
1013  *
1014  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1015  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1016  * be updated on the last bvec as well.
1017  *
1018  * @bio will then represent the remaining, uncompleted portion of the io.
1019  */
1020 void bio_advance(struct bio *bio, unsigned bytes)
1021 {
1022 	if (bio_integrity(bio))
1023 		bio_integrity_advance(bio, bytes);
1024 
1025 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1026 }
1027 EXPORT_SYMBOL(bio_advance);
1028 
1029 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1030 			struct bio *src, struct bvec_iter *src_iter)
1031 {
1032 	struct bio_vec src_bv, dst_bv;
1033 	void *src_p, *dst_p;
1034 	unsigned bytes;
1035 
1036 	while (src_iter->bi_size && dst_iter->bi_size) {
1037 		src_bv = bio_iter_iovec(src, *src_iter);
1038 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1039 
1040 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1041 
1042 		src_p = kmap_atomic(src_bv.bv_page);
1043 		dst_p = kmap_atomic(dst_bv.bv_page);
1044 
1045 		memcpy(dst_p + dst_bv.bv_offset,
1046 		       src_p + src_bv.bv_offset,
1047 		       bytes);
1048 
1049 		kunmap_atomic(dst_p);
1050 		kunmap_atomic(src_p);
1051 
1052 		flush_dcache_page(dst_bv.bv_page);
1053 
1054 		bio_advance_iter(src, src_iter, bytes);
1055 		bio_advance_iter(dst, dst_iter, bytes);
1056 	}
1057 }
1058 EXPORT_SYMBOL(bio_copy_data_iter);
1059 
1060 /**
1061  * bio_copy_data - copy contents of data buffers from one bio to another
1062  * @src: source bio
1063  * @dst: destination bio
1064  *
1065  * Stops when it reaches the end of either @src or @dst - that is, copies
1066  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1067  */
1068 void bio_copy_data(struct bio *dst, struct bio *src)
1069 {
1070 	struct bvec_iter src_iter = src->bi_iter;
1071 	struct bvec_iter dst_iter = dst->bi_iter;
1072 
1073 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1074 }
1075 EXPORT_SYMBOL(bio_copy_data);
1076 
1077 /**
1078  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1079  * another
1080  * @src: source bio list
1081  * @dst: destination bio list
1082  *
1083  * Stops when it reaches the end of either the @src list or @dst list - that is,
1084  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1085  * bios).
1086  */
1087 void bio_list_copy_data(struct bio *dst, struct bio *src)
1088 {
1089 	struct bvec_iter src_iter = src->bi_iter;
1090 	struct bvec_iter dst_iter = dst->bi_iter;
1091 
1092 	while (1) {
1093 		if (!src_iter.bi_size) {
1094 			src = src->bi_next;
1095 			if (!src)
1096 				break;
1097 
1098 			src_iter = src->bi_iter;
1099 		}
1100 
1101 		if (!dst_iter.bi_size) {
1102 			dst = dst->bi_next;
1103 			if (!dst)
1104 				break;
1105 
1106 			dst_iter = dst->bi_iter;
1107 		}
1108 
1109 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1110 	}
1111 }
1112 EXPORT_SYMBOL(bio_list_copy_data);
1113 
1114 struct bio_map_data {
1115 	int is_our_pages;
1116 	struct iov_iter iter;
1117 	struct iovec iov[];
1118 };
1119 
1120 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1121 					       gfp_t gfp_mask)
1122 {
1123 	struct bio_map_data *bmd;
1124 	if (data->nr_segs > UIO_MAXIOV)
1125 		return NULL;
1126 
1127 	bmd = kmalloc(sizeof(struct bio_map_data) +
1128 		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1129 	if (!bmd)
1130 		return NULL;
1131 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1132 	bmd->iter = *data;
1133 	bmd->iter.iov = bmd->iov;
1134 	return bmd;
1135 }
1136 
1137 /**
1138  * bio_copy_from_iter - copy all pages from iov_iter to bio
1139  * @bio: The &struct bio which describes the I/O as destination
1140  * @iter: iov_iter as source
1141  *
1142  * Copy all pages from iov_iter to bio.
1143  * Returns 0 on success, or error on failure.
1144  */
1145 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1146 {
1147 	struct bio_vec *bvec;
1148 	struct bvec_iter_all iter_all;
1149 
1150 	bio_for_each_segment_all(bvec, bio, iter_all) {
1151 		ssize_t ret;
1152 
1153 		ret = copy_page_from_iter(bvec->bv_page,
1154 					  bvec->bv_offset,
1155 					  bvec->bv_len,
1156 					  iter);
1157 
1158 		if (!iov_iter_count(iter))
1159 			break;
1160 
1161 		if (ret < bvec->bv_len)
1162 			return -EFAULT;
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 /**
1169  * bio_copy_to_iter - copy all pages from bio to iov_iter
1170  * @bio: The &struct bio which describes the I/O as source
1171  * @iter: iov_iter as destination
1172  *
1173  * Copy all pages from bio to iov_iter.
1174  * Returns 0 on success, or error on failure.
1175  */
1176 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1177 {
1178 	struct bio_vec *bvec;
1179 	struct bvec_iter_all iter_all;
1180 
1181 	bio_for_each_segment_all(bvec, bio, iter_all) {
1182 		ssize_t ret;
1183 
1184 		ret = copy_page_to_iter(bvec->bv_page,
1185 					bvec->bv_offset,
1186 					bvec->bv_len,
1187 					&iter);
1188 
1189 		if (!iov_iter_count(&iter))
1190 			break;
1191 
1192 		if (ret < bvec->bv_len)
1193 			return -EFAULT;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 void bio_free_pages(struct bio *bio)
1200 {
1201 	struct bio_vec *bvec;
1202 	struct bvec_iter_all iter_all;
1203 
1204 	bio_for_each_segment_all(bvec, bio, iter_all)
1205 		__free_page(bvec->bv_page);
1206 }
1207 EXPORT_SYMBOL(bio_free_pages);
1208 
1209 /**
1210  *	bio_uncopy_user	-	finish previously mapped bio
1211  *	@bio: bio being terminated
1212  *
1213  *	Free pages allocated from bio_copy_user_iov() and write back data
1214  *	to user space in case of a read.
1215  */
1216 int bio_uncopy_user(struct bio *bio)
1217 {
1218 	struct bio_map_data *bmd = bio->bi_private;
1219 	int ret = 0;
1220 
1221 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1222 		/*
1223 		 * if we're in a workqueue, the request is orphaned, so
1224 		 * don't copy into a random user address space, just free
1225 		 * and return -EINTR so user space doesn't expect any data.
1226 		 */
1227 		if (!current->mm)
1228 			ret = -EINTR;
1229 		else if (bio_data_dir(bio) == READ)
1230 			ret = bio_copy_to_iter(bio, bmd->iter);
1231 		if (bmd->is_our_pages)
1232 			bio_free_pages(bio);
1233 	}
1234 	kfree(bmd);
1235 	bio_put(bio);
1236 	return ret;
1237 }
1238 
1239 /**
1240  *	bio_copy_user_iov	-	copy user data to bio
1241  *	@q:		destination block queue
1242  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1243  *	@iter:		iovec iterator
1244  *	@gfp_mask:	memory allocation flags
1245  *
1246  *	Prepares and returns a bio for indirect user io, bouncing data
1247  *	to/from kernel pages as necessary. Must be paired with
1248  *	call bio_uncopy_user() on io completion.
1249  */
1250 struct bio *bio_copy_user_iov(struct request_queue *q,
1251 			      struct rq_map_data *map_data,
1252 			      struct iov_iter *iter,
1253 			      gfp_t gfp_mask)
1254 {
1255 	struct bio_map_data *bmd;
1256 	struct page *page;
1257 	struct bio *bio;
1258 	int i = 0, ret;
1259 	int nr_pages;
1260 	unsigned int len = iter->count;
1261 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1262 
1263 	bmd = bio_alloc_map_data(iter, gfp_mask);
1264 	if (!bmd)
1265 		return ERR_PTR(-ENOMEM);
1266 
1267 	/*
1268 	 * We need to do a deep copy of the iov_iter including the iovecs.
1269 	 * The caller provided iov might point to an on-stack or otherwise
1270 	 * shortlived one.
1271 	 */
1272 	bmd->is_our_pages = map_data ? 0 : 1;
1273 
1274 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1275 	if (nr_pages > BIO_MAX_PAGES)
1276 		nr_pages = BIO_MAX_PAGES;
1277 
1278 	ret = -ENOMEM;
1279 	bio = bio_kmalloc(gfp_mask, nr_pages);
1280 	if (!bio)
1281 		goto out_bmd;
1282 
1283 	ret = 0;
1284 
1285 	if (map_data) {
1286 		nr_pages = 1 << map_data->page_order;
1287 		i = map_data->offset / PAGE_SIZE;
1288 	}
1289 	while (len) {
1290 		unsigned int bytes = PAGE_SIZE;
1291 
1292 		bytes -= offset;
1293 
1294 		if (bytes > len)
1295 			bytes = len;
1296 
1297 		if (map_data) {
1298 			if (i == map_data->nr_entries * nr_pages) {
1299 				ret = -ENOMEM;
1300 				break;
1301 			}
1302 
1303 			page = map_data->pages[i / nr_pages];
1304 			page += (i % nr_pages);
1305 
1306 			i++;
1307 		} else {
1308 			page = alloc_page(q->bounce_gfp | gfp_mask);
1309 			if (!page) {
1310 				ret = -ENOMEM;
1311 				break;
1312 			}
1313 		}
1314 
1315 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1316 			if (!map_data)
1317 				__free_page(page);
1318 			break;
1319 		}
1320 
1321 		len -= bytes;
1322 		offset = 0;
1323 	}
1324 
1325 	if (ret)
1326 		goto cleanup;
1327 
1328 	if (map_data)
1329 		map_data->offset += bio->bi_iter.bi_size;
1330 
1331 	/*
1332 	 * success
1333 	 */
1334 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1335 	    (map_data && map_data->from_user)) {
1336 		ret = bio_copy_from_iter(bio, iter);
1337 		if (ret)
1338 			goto cleanup;
1339 	} else {
1340 		if (bmd->is_our_pages)
1341 			zero_fill_bio(bio);
1342 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1343 	}
1344 
1345 	bio->bi_private = bmd;
1346 	if (map_data && map_data->null_mapped)
1347 		bio_set_flag(bio, BIO_NULL_MAPPED);
1348 	return bio;
1349 cleanup:
1350 	if (!map_data)
1351 		bio_free_pages(bio);
1352 	bio_put(bio);
1353 out_bmd:
1354 	kfree(bmd);
1355 	return ERR_PTR(ret);
1356 }
1357 
1358 /**
1359  *	bio_map_user_iov - map user iovec into bio
1360  *	@q:		the struct request_queue for the bio
1361  *	@iter:		iovec iterator
1362  *	@gfp_mask:	memory allocation flags
1363  *
1364  *	Map the user space address into a bio suitable for io to a block
1365  *	device. Returns an error pointer in case of error.
1366  */
1367 struct bio *bio_map_user_iov(struct request_queue *q,
1368 			     struct iov_iter *iter,
1369 			     gfp_t gfp_mask)
1370 {
1371 	int j;
1372 	struct bio *bio;
1373 	int ret;
1374 	struct bio_vec *bvec;
1375 	struct bvec_iter_all iter_all;
1376 
1377 	if (!iov_iter_count(iter))
1378 		return ERR_PTR(-EINVAL);
1379 
1380 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1381 	if (!bio)
1382 		return ERR_PTR(-ENOMEM);
1383 
1384 	while (iov_iter_count(iter)) {
1385 		struct page **pages;
1386 		ssize_t bytes;
1387 		size_t offs, added = 0;
1388 		int npages;
1389 
1390 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1391 		if (unlikely(bytes <= 0)) {
1392 			ret = bytes ? bytes : -EFAULT;
1393 			goto out_unmap;
1394 		}
1395 
1396 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1397 
1398 		if (unlikely(offs & queue_dma_alignment(q))) {
1399 			ret = -EINVAL;
1400 			j = 0;
1401 		} else {
1402 			for (j = 0; j < npages; j++) {
1403 				struct page *page = pages[j];
1404 				unsigned int n = PAGE_SIZE - offs;
1405 
1406 				if (n > bytes)
1407 					n = bytes;
1408 
1409 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1410 							true))
1411 					break;
1412 
1413 				added += n;
1414 				bytes -= n;
1415 				offs = 0;
1416 			}
1417 			iov_iter_advance(iter, added);
1418 		}
1419 		/*
1420 		 * release the pages we didn't map into the bio, if any
1421 		 */
1422 		while (j < npages)
1423 			put_page(pages[j++]);
1424 		kvfree(pages);
1425 		/* couldn't stuff something into bio? */
1426 		if (bytes)
1427 			break;
1428 	}
1429 
1430 	bio_set_flag(bio, BIO_USER_MAPPED);
1431 
1432 	/*
1433 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1434 	 * it would normally disappear when its bi_end_io is run.
1435 	 * however, we need it for the unmap, so grab an extra
1436 	 * reference to it
1437 	 */
1438 	bio_get(bio);
1439 	return bio;
1440 
1441  out_unmap:
1442 	bio_for_each_segment_all(bvec, bio, iter_all) {
1443 		put_page(bvec->bv_page);
1444 	}
1445 	bio_put(bio);
1446 	return ERR_PTR(ret);
1447 }
1448 
1449 static void __bio_unmap_user(struct bio *bio)
1450 {
1451 	struct bio_vec *bvec;
1452 	struct bvec_iter_all iter_all;
1453 
1454 	/*
1455 	 * make sure we dirty pages we wrote to
1456 	 */
1457 	bio_for_each_segment_all(bvec, bio, iter_all) {
1458 		if (bio_data_dir(bio) == READ)
1459 			set_page_dirty_lock(bvec->bv_page);
1460 
1461 		put_page(bvec->bv_page);
1462 	}
1463 
1464 	bio_put(bio);
1465 }
1466 
1467 /**
1468  *	bio_unmap_user	-	unmap a bio
1469  *	@bio:		the bio being unmapped
1470  *
1471  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1472  *	process context.
1473  *
1474  *	bio_unmap_user() may sleep.
1475  */
1476 void bio_unmap_user(struct bio *bio)
1477 {
1478 	__bio_unmap_user(bio);
1479 	bio_put(bio);
1480 }
1481 
1482 static void bio_map_kern_endio(struct bio *bio)
1483 {
1484 	bio_put(bio);
1485 }
1486 
1487 /**
1488  *	bio_map_kern	-	map kernel address into bio
1489  *	@q: the struct request_queue for the bio
1490  *	@data: pointer to buffer to map
1491  *	@len: length in bytes
1492  *	@gfp_mask: allocation flags for bio allocation
1493  *
1494  *	Map the kernel address into a bio suitable for io to a block
1495  *	device. Returns an error pointer in case of error.
1496  */
1497 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1498 			 gfp_t gfp_mask)
1499 {
1500 	unsigned long kaddr = (unsigned long)data;
1501 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 	unsigned long start = kaddr >> PAGE_SHIFT;
1503 	const int nr_pages = end - start;
1504 	int offset, i;
1505 	struct bio *bio;
1506 
1507 	bio = bio_kmalloc(gfp_mask, nr_pages);
1508 	if (!bio)
1509 		return ERR_PTR(-ENOMEM);
1510 
1511 	offset = offset_in_page(kaddr);
1512 	for (i = 0; i < nr_pages; i++) {
1513 		unsigned int bytes = PAGE_SIZE - offset;
1514 
1515 		if (len <= 0)
1516 			break;
1517 
1518 		if (bytes > len)
1519 			bytes = len;
1520 
1521 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1522 				    offset) < bytes) {
1523 			/* we don't support partial mappings */
1524 			bio_put(bio);
1525 			return ERR_PTR(-EINVAL);
1526 		}
1527 
1528 		data += bytes;
1529 		len -= bytes;
1530 		offset = 0;
1531 	}
1532 
1533 	bio->bi_end_io = bio_map_kern_endio;
1534 	return bio;
1535 }
1536 EXPORT_SYMBOL(bio_map_kern);
1537 
1538 static void bio_copy_kern_endio(struct bio *bio)
1539 {
1540 	bio_free_pages(bio);
1541 	bio_put(bio);
1542 }
1543 
1544 static void bio_copy_kern_endio_read(struct bio *bio)
1545 {
1546 	char *p = bio->bi_private;
1547 	struct bio_vec *bvec;
1548 	struct bvec_iter_all iter_all;
1549 
1550 	bio_for_each_segment_all(bvec, bio, iter_all) {
1551 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1552 		p += bvec->bv_len;
1553 	}
1554 
1555 	bio_copy_kern_endio(bio);
1556 }
1557 
1558 /**
1559  *	bio_copy_kern	-	copy kernel address into bio
1560  *	@q: the struct request_queue for the bio
1561  *	@data: pointer to buffer to copy
1562  *	@len: length in bytes
1563  *	@gfp_mask: allocation flags for bio and page allocation
1564  *	@reading: data direction is READ
1565  *
1566  *	copy the kernel address into a bio suitable for io to a block
1567  *	device. Returns an error pointer in case of error.
1568  */
1569 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1570 			  gfp_t gfp_mask, int reading)
1571 {
1572 	unsigned long kaddr = (unsigned long)data;
1573 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1574 	unsigned long start = kaddr >> PAGE_SHIFT;
1575 	struct bio *bio;
1576 	void *p = data;
1577 	int nr_pages = 0;
1578 
1579 	/*
1580 	 * Overflow, abort
1581 	 */
1582 	if (end < start)
1583 		return ERR_PTR(-EINVAL);
1584 
1585 	nr_pages = end - start;
1586 	bio = bio_kmalloc(gfp_mask, nr_pages);
1587 	if (!bio)
1588 		return ERR_PTR(-ENOMEM);
1589 
1590 	while (len) {
1591 		struct page *page;
1592 		unsigned int bytes = PAGE_SIZE;
1593 
1594 		if (bytes > len)
1595 			bytes = len;
1596 
1597 		page = alloc_page(q->bounce_gfp | gfp_mask);
1598 		if (!page)
1599 			goto cleanup;
1600 
1601 		if (!reading)
1602 			memcpy(page_address(page), p, bytes);
1603 
1604 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1605 			break;
1606 
1607 		len -= bytes;
1608 		p += bytes;
1609 	}
1610 
1611 	if (reading) {
1612 		bio->bi_end_io = bio_copy_kern_endio_read;
1613 		bio->bi_private = data;
1614 	} else {
1615 		bio->bi_end_io = bio_copy_kern_endio;
1616 	}
1617 
1618 	return bio;
1619 
1620 cleanup:
1621 	bio_free_pages(bio);
1622 	bio_put(bio);
1623 	return ERR_PTR(-ENOMEM);
1624 }
1625 
1626 /*
1627  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1628  * for performing direct-IO in BIOs.
1629  *
1630  * The problem is that we cannot run set_page_dirty() from interrupt context
1631  * because the required locks are not interrupt-safe.  So what we can do is to
1632  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1633  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1634  * in process context.
1635  *
1636  * We special-case compound pages here: normally this means reads into hugetlb
1637  * pages.  The logic in here doesn't really work right for compound pages
1638  * because the VM does not uniformly chase down the head page in all cases.
1639  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1640  * handle them at all.  So we skip compound pages here at an early stage.
1641  *
1642  * Note that this code is very hard to test under normal circumstances because
1643  * direct-io pins the pages with get_user_pages().  This makes
1644  * is_page_cache_freeable return false, and the VM will not clean the pages.
1645  * But other code (eg, flusher threads) could clean the pages if they are mapped
1646  * pagecache.
1647  *
1648  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1649  * deferred bio dirtying paths.
1650  */
1651 
1652 /*
1653  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1654  */
1655 void bio_set_pages_dirty(struct bio *bio)
1656 {
1657 	struct bio_vec *bvec;
1658 	struct bvec_iter_all iter_all;
1659 
1660 	bio_for_each_segment_all(bvec, bio, iter_all) {
1661 		if (!PageCompound(bvec->bv_page))
1662 			set_page_dirty_lock(bvec->bv_page);
1663 	}
1664 }
1665 
1666 /*
1667  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1668  * If they are, then fine.  If, however, some pages are clean then they must
1669  * have been written out during the direct-IO read.  So we take another ref on
1670  * the BIO and re-dirty the pages in process context.
1671  *
1672  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1673  * here on.  It will run one put_page() against each page and will run one
1674  * bio_put() against the BIO.
1675  */
1676 
1677 static void bio_dirty_fn(struct work_struct *work);
1678 
1679 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1680 static DEFINE_SPINLOCK(bio_dirty_lock);
1681 static struct bio *bio_dirty_list;
1682 
1683 /*
1684  * This runs in process context
1685  */
1686 static void bio_dirty_fn(struct work_struct *work)
1687 {
1688 	struct bio *bio, *next;
1689 
1690 	spin_lock_irq(&bio_dirty_lock);
1691 	next = bio_dirty_list;
1692 	bio_dirty_list = NULL;
1693 	spin_unlock_irq(&bio_dirty_lock);
1694 
1695 	while ((bio = next) != NULL) {
1696 		next = bio->bi_private;
1697 
1698 		bio_set_pages_dirty(bio);
1699 		if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1700 			bio_release_pages(bio);
1701 		bio_put(bio);
1702 	}
1703 }
1704 
1705 void bio_check_pages_dirty(struct bio *bio)
1706 {
1707 	struct bio_vec *bvec;
1708 	unsigned long flags;
1709 	struct bvec_iter_all iter_all;
1710 
1711 	bio_for_each_segment_all(bvec, bio, iter_all) {
1712 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1713 			goto defer;
1714 	}
1715 
1716 	if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1717 		bio_release_pages(bio);
1718 	bio_put(bio);
1719 	return;
1720 defer:
1721 	spin_lock_irqsave(&bio_dirty_lock, flags);
1722 	bio->bi_private = bio_dirty_list;
1723 	bio_dirty_list = bio;
1724 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1725 	schedule_work(&bio_dirty_work);
1726 }
1727 
1728 void update_io_ticks(struct hd_struct *part, unsigned long now)
1729 {
1730 	unsigned long stamp;
1731 again:
1732 	stamp = READ_ONCE(part->stamp);
1733 	if (unlikely(stamp != now)) {
1734 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1735 			__part_stat_add(part, io_ticks, 1);
1736 		}
1737 	}
1738 	if (part->partno) {
1739 		part = &part_to_disk(part)->part0;
1740 		goto again;
1741 	}
1742 }
1743 
1744 void generic_start_io_acct(struct request_queue *q, int op,
1745 			   unsigned long sectors, struct hd_struct *part)
1746 {
1747 	const int sgrp = op_stat_group(op);
1748 
1749 	part_stat_lock();
1750 
1751 	update_io_ticks(part, jiffies);
1752 	part_stat_inc(part, ios[sgrp]);
1753 	part_stat_add(part, sectors[sgrp], sectors);
1754 	part_inc_in_flight(q, part, op_is_write(op));
1755 
1756 	part_stat_unlock();
1757 }
1758 EXPORT_SYMBOL(generic_start_io_acct);
1759 
1760 void generic_end_io_acct(struct request_queue *q, int req_op,
1761 			 struct hd_struct *part, unsigned long start_time)
1762 {
1763 	unsigned long now = jiffies;
1764 	unsigned long duration = now - start_time;
1765 	const int sgrp = op_stat_group(req_op);
1766 
1767 	part_stat_lock();
1768 
1769 	update_io_ticks(part, now);
1770 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1771 	part_stat_add(part, time_in_queue, duration);
1772 	part_dec_in_flight(q, part, op_is_write(req_op));
1773 
1774 	part_stat_unlock();
1775 }
1776 EXPORT_SYMBOL(generic_end_io_acct);
1777 
1778 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1779 void bio_flush_dcache_pages(struct bio *bi)
1780 {
1781 	struct bio_vec bvec;
1782 	struct bvec_iter iter;
1783 
1784 	bio_for_each_segment(bvec, bi, iter)
1785 		flush_dcache_page(bvec.bv_page);
1786 }
1787 EXPORT_SYMBOL(bio_flush_dcache_pages);
1788 #endif
1789 
1790 static inline bool bio_remaining_done(struct bio *bio)
1791 {
1792 	/*
1793 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1794 	 * we always end io on the first invocation.
1795 	 */
1796 	if (!bio_flagged(bio, BIO_CHAIN))
1797 		return true;
1798 
1799 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1800 
1801 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1802 		bio_clear_flag(bio, BIO_CHAIN);
1803 		return true;
1804 	}
1805 
1806 	return false;
1807 }
1808 
1809 /**
1810  * bio_endio - end I/O on a bio
1811  * @bio:	bio
1812  *
1813  * Description:
1814  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1815  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1816  *   bio unless they own it and thus know that it has an end_io function.
1817  *
1818  *   bio_endio() can be called several times on a bio that has been chained
1819  *   using bio_chain().  The ->bi_end_io() function will only be called the
1820  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1821  *   generated if BIO_TRACE_COMPLETION is set.
1822  **/
1823 void bio_endio(struct bio *bio)
1824 {
1825 again:
1826 	if (!bio_remaining_done(bio))
1827 		return;
1828 	if (!bio_integrity_endio(bio))
1829 		return;
1830 
1831 	if (bio->bi_disk)
1832 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1833 
1834 	/*
1835 	 * Need to have a real endio function for chained bios, otherwise
1836 	 * various corner cases will break (like stacking block devices that
1837 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1838 	 * recursion and blowing the stack. Tail call optimization would
1839 	 * handle this, but compiling with frame pointers also disables
1840 	 * gcc's sibling call optimization.
1841 	 */
1842 	if (bio->bi_end_io == bio_chain_endio) {
1843 		bio = __bio_chain_endio(bio);
1844 		goto again;
1845 	}
1846 
1847 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1848 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1849 					 blk_status_to_errno(bio->bi_status));
1850 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1851 	}
1852 
1853 	blk_throtl_bio_endio(bio);
1854 	/* release cgroup info */
1855 	bio_uninit(bio);
1856 	if (bio->bi_end_io)
1857 		bio->bi_end_io(bio);
1858 }
1859 EXPORT_SYMBOL(bio_endio);
1860 
1861 /**
1862  * bio_split - split a bio
1863  * @bio:	bio to split
1864  * @sectors:	number of sectors to split from the front of @bio
1865  * @gfp:	gfp mask
1866  * @bs:		bio set to allocate from
1867  *
1868  * Allocates and returns a new bio which represents @sectors from the start of
1869  * @bio, and updates @bio to represent the remaining sectors.
1870  *
1871  * Unless this is a discard request the newly allocated bio will point
1872  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1873  * @bio is not freed before the split.
1874  */
1875 struct bio *bio_split(struct bio *bio, int sectors,
1876 		      gfp_t gfp, struct bio_set *bs)
1877 {
1878 	struct bio *split;
1879 
1880 	BUG_ON(sectors <= 0);
1881 	BUG_ON(sectors >= bio_sectors(bio));
1882 
1883 	split = bio_clone_fast(bio, gfp, bs);
1884 	if (!split)
1885 		return NULL;
1886 
1887 	split->bi_iter.bi_size = sectors << 9;
1888 
1889 	if (bio_integrity(split))
1890 		bio_integrity_trim(split);
1891 
1892 	bio_advance(bio, split->bi_iter.bi_size);
1893 
1894 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1895 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1896 
1897 	return split;
1898 }
1899 EXPORT_SYMBOL(bio_split);
1900 
1901 /**
1902  * bio_trim - trim a bio
1903  * @bio:	bio to trim
1904  * @offset:	number of sectors to trim from the front of @bio
1905  * @size:	size we want to trim @bio to, in sectors
1906  */
1907 void bio_trim(struct bio *bio, int offset, int size)
1908 {
1909 	/* 'bio' is a cloned bio which we need to trim to match
1910 	 * the given offset and size.
1911 	 */
1912 
1913 	size <<= 9;
1914 	if (offset == 0 && size == bio->bi_iter.bi_size)
1915 		return;
1916 
1917 	bio_clear_flag(bio, BIO_SEG_VALID);
1918 
1919 	bio_advance(bio, offset << 9);
1920 
1921 	bio->bi_iter.bi_size = size;
1922 
1923 	if (bio_integrity(bio))
1924 		bio_integrity_trim(bio);
1925 
1926 }
1927 EXPORT_SYMBOL_GPL(bio_trim);
1928 
1929 /*
1930  * create memory pools for biovec's in a bio_set.
1931  * use the global biovec slabs created for general use.
1932  */
1933 int biovec_init_pool(mempool_t *pool, int pool_entries)
1934 {
1935 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1936 
1937 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1938 }
1939 
1940 /*
1941  * bioset_exit - exit a bioset initialized with bioset_init()
1942  *
1943  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1944  * kzalloc()).
1945  */
1946 void bioset_exit(struct bio_set *bs)
1947 {
1948 	if (bs->rescue_workqueue)
1949 		destroy_workqueue(bs->rescue_workqueue);
1950 	bs->rescue_workqueue = NULL;
1951 
1952 	mempool_exit(&bs->bio_pool);
1953 	mempool_exit(&bs->bvec_pool);
1954 
1955 	bioset_integrity_free(bs);
1956 	if (bs->bio_slab)
1957 		bio_put_slab(bs);
1958 	bs->bio_slab = NULL;
1959 }
1960 EXPORT_SYMBOL(bioset_exit);
1961 
1962 /**
1963  * bioset_init - Initialize a bio_set
1964  * @bs:		pool to initialize
1965  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1966  * @front_pad:	Number of bytes to allocate in front of the returned bio
1967  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1968  *              and %BIOSET_NEED_RESCUER
1969  *
1970  * Description:
1971  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1972  *    to ask for a number of bytes to be allocated in front of the bio.
1973  *    Front pad allocation is useful for embedding the bio inside
1974  *    another structure, to avoid allocating extra data to go with the bio.
1975  *    Note that the bio must be embedded at the END of that structure always,
1976  *    or things will break badly.
1977  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1978  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1979  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1980  *    dispatch queued requests when the mempool runs out of space.
1981  *
1982  */
1983 int bioset_init(struct bio_set *bs,
1984 		unsigned int pool_size,
1985 		unsigned int front_pad,
1986 		int flags)
1987 {
1988 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1989 
1990 	bs->front_pad = front_pad;
1991 
1992 	spin_lock_init(&bs->rescue_lock);
1993 	bio_list_init(&bs->rescue_list);
1994 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1995 
1996 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1997 	if (!bs->bio_slab)
1998 		return -ENOMEM;
1999 
2000 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2001 		goto bad;
2002 
2003 	if ((flags & BIOSET_NEED_BVECS) &&
2004 	    biovec_init_pool(&bs->bvec_pool, pool_size))
2005 		goto bad;
2006 
2007 	if (!(flags & BIOSET_NEED_RESCUER))
2008 		return 0;
2009 
2010 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2011 	if (!bs->rescue_workqueue)
2012 		goto bad;
2013 
2014 	return 0;
2015 bad:
2016 	bioset_exit(bs);
2017 	return -ENOMEM;
2018 }
2019 EXPORT_SYMBOL(bioset_init);
2020 
2021 /*
2022  * Initialize and setup a new bio_set, based on the settings from
2023  * another bio_set.
2024  */
2025 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2026 {
2027 	int flags;
2028 
2029 	flags = 0;
2030 	if (src->bvec_pool.min_nr)
2031 		flags |= BIOSET_NEED_BVECS;
2032 	if (src->rescue_workqueue)
2033 		flags |= BIOSET_NEED_RESCUER;
2034 
2035 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2036 }
2037 EXPORT_SYMBOL(bioset_init_from_src);
2038 
2039 #ifdef CONFIG_BLK_CGROUP
2040 
2041 /**
2042  * bio_disassociate_blkg - puts back the blkg reference if associated
2043  * @bio: target bio
2044  *
2045  * Helper to disassociate the blkg from @bio if a blkg is associated.
2046  */
2047 void bio_disassociate_blkg(struct bio *bio)
2048 {
2049 	if (bio->bi_blkg) {
2050 		blkg_put(bio->bi_blkg);
2051 		bio->bi_blkg = NULL;
2052 	}
2053 }
2054 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2055 
2056 /**
2057  * __bio_associate_blkg - associate a bio with the a blkg
2058  * @bio: target bio
2059  * @blkg: the blkg to associate
2060  *
2061  * This tries to associate @bio with the specified @blkg.  Association failure
2062  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2063  * be anything between @blkg and the root_blkg.  This situation only happens
2064  * when a cgroup is dying and then the remaining bios will spill to the closest
2065  * alive blkg.
2066  *
2067  * A reference will be taken on the @blkg and will be released when @bio is
2068  * freed.
2069  */
2070 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2071 {
2072 	bio_disassociate_blkg(bio);
2073 
2074 	bio->bi_blkg = blkg_tryget_closest(blkg);
2075 }
2076 
2077 /**
2078  * bio_associate_blkg_from_css - associate a bio with a specified css
2079  * @bio: target bio
2080  * @css: target css
2081  *
2082  * Associate @bio with the blkg found by combining the css's blkg and the
2083  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2084  * the association fails with the css.
2085  */
2086 void bio_associate_blkg_from_css(struct bio *bio,
2087 				 struct cgroup_subsys_state *css)
2088 {
2089 	struct request_queue *q = bio->bi_disk->queue;
2090 	struct blkcg_gq *blkg;
2091 
2092 	rcu_read_lock();
2093 
2094 	if (!css || !css->parent)
2095 		blkg = q->root_blkg;
2096 	else
2097 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2098 
2099 	__bio_associate_blkg(bio, blkg);
2100 
2101 	rcu_read_unlock();
2102 }
2103 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2104 
2105 #ifdef CONFIG_MEMCG
2106 /**
2107  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2108  * @bio: target bio
2109  * @page: the page to lookup the blkcg from
2110  *
2111  * Associate @bio with the blkg from @page's owning memcg and the respective
2112  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2113  * root_blkg.
2114  */
2115 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2116 {
2117 	struct cgroup_subsys_state *css;
2118 
2119 	if (!page->mem_cgroup)
2120 		return;
2121 
2122 	rcu_read_lock();
2123 
2124 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2125 	bio_associate_blkg_from_css(bio, css);
2126 
2127 	rcu_read_unlock();
2128 }
2129 #endif /* CONFIG_MEMCG */
2130 
2131 /**
2132  * bio_associate_blkg - associate a bio with a blkg
2133  * @bio: target bio
2134  *
2135  * Associate @bio with the blkg found from the bio's css and request_queue.
2136  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2137  * already associated, the css is reused and association redone as the
2138  * request_queue may have changed.
2139  */
2140 void bio_associate_blkg(struct bio *bio)
2141 {
2142 	struct cgroup_subsys_state *css;
2143 
2144 	rcu_read_lock();
2145 
2146 	if (bio->bi_blkg)
2147 		css = &bio_blkcg(bio)->css;
2148 	else
2149 		css = blkcg_css();
2150 
2151 	bio_associate_blkg_from_css(bio, css);
2152 
2153 	rcu_read_unlock();
2154 }
2155 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2156 
2157 /**
2158  * bio_clone_blkg_association - clone blkg association from src to dst bio
2159  * @dst: destination bio
2160  * @src: source bio
2161  */
2162 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2163 {
2164 	rcu_read_lock();
2165 
2166 	if (src->bi_blkg)
2167 		__bio_associate_blkg(dst, src->bi_blkg);
2168 
2169 	rcu_read_unlock();
2170 }
2171 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2172 #endif /* CONFIG_BLK_CGROUP */
2173 
2174 static void __init biovec_init_slabs(void)
2175 {
2176 	int i;
2177 
2178 	for (i = 0; i < BVEC_POOL_NR; i++) {
2179 		int size;
2180 		struct biovec_slab *bvs = bvec_slabs + i;
2181 
2182 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2183 			bvs->slab = NULL;
2184 			continue;
2185 		}
2186 
2187 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2188 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2189                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2190 	}
2191 }
2192 
2193 static int __init init_bio(void)
2194 {
2195 	bio_slab_max = 2;
2196 	bio_slab_nr = 0;
2197 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2198 			    GFP_KERNEL);
2199 
2200 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2201 
2202 	if (!bio_slabs)
2203 		panic("bio: can't allocate bios\n");
2204 
2205 	bio_integrity_init();
2206 	biovec_init_slabs();
2207 
2208 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2209 		panic("bio: can't allocate bios\n");
2210 
2211 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2212 		panic("bio: can't create integrity pool\n");
2213 
2214 	return 0;
2215 }
2216 subsys_initcall(init_bio);
2217