1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/blk-crypto.h> 21 #include <linux/xarray.h> 22 23 #include <trace/events/block.h> 24 #include "blk.h" 25 #include "blk-rq-qos.h" 26 #include "blk-cgroup.h" 27 28 #define ALLOC_CACHE_THRESHOLD 16 29 #define ALLOC_CACHE_MAX 256 30 31 struct bio_alloc_cache { 32 struct bio *free_list; 33 struct bio *free_list_irq; 34 unsigned int nr; 35 unsigned int nr_irq; 36 }; 37 38 static struct biovec_slab { 39 int nr_vecs; 40 char *name; 41 struct kmem_cache *slab; 42 } bvec_slabs[] __read_mostly = { 43 { .nr_vecs = 16, .name = "biovec-16" }, 44 { .nr_vecs = 64, .name = "biovec-64" }, 45 { .nr_vecs = 128, .name = "biovec-128" }, 46 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 47 }; 48 49 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 50 { 51 switch (nr_vecs) { 52 /* smaller bios use inline vecs */ 53 case 5 ... 16: 54 return &bvec_slabs[0]; 55 case 17 ... 64: 56 return &bvec_slabs[1]; 57 case 65 ... 128: 58 return &bvec_slabs[2]; 59 case 129 ... BIO_MAX_VECS: 60 return &bvec_slabs[3]; 61 default: 62 BUG(); 63 return NULL; 64 } 65 } 66 67 /* 68 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 69 * IO code that does not need private memory pools. 70 */ 71 struct bio_set fs_bio_set; 72 EXPORT_SYMBOL(fs_bio_set); 73 74 /* 75 * Our slab pool management 76 */ 77 struct bio_slab { 78 struct kmem_cache *slab; 79 unsigned int slab_ref; 80 unsigned int slab_size; 81 char name[8]; 82 }; 83 static DEFINE_MUTEX(bio_slab_lock); 84 static DEFINE_XARRAY(bio_slabs); 85 86 static struct bio_slab *create_bio_slab(unsigned int size) 87 { 88 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 89 90 if (!bslab) 91 return NULL; 92 93 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 94 bslab->slab = kmem_cache_create(bslab->name, size, 95 ARCH_KMALLOC_MINALIGN, 96 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 97 if (!bslab->slab) 98 goto fail_alloc_slab; 99 100 bslab->slab_ref = 1; 101 bslab->slab_size = size; 102 103 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 104 return bslab; 105 106 kmem_cache_destroy(bslab->slab); 107 108 fail_alloc_slab: 109 kfree(bslab); 110 return NULL; 111 } 112 113 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 114 { 115 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 116 } 117 118 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 119 { 120 unsigned int size = bs_bio_slab_size(bs); 121 struct bio_slab *bslab; 122 123 mutex_lock(&bio_slab_lock); 124 bslab = xa_load(&bio_slabs, size); 125 if (bslab) 126 bslab->slab_ref++; 127 else 128 bslab = create_bio_slab(size); 129 mutex_unlock(&bio_slab_lock); 130 131 if (bslab) 132 return bslab->slab; 133 return NULL; 134 } 135 136 static void bio_put_slab(struct bio_set *bs) 137 { 138 struct bio_slab *bslab = NULL; 139 unsigned int slab_size = bs_bio_slab_size(bs); 140 141 mutex_lock(&bio_slab_lock); 142 143 bslab = xa_load(&bio_slabs, slab_size); 144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 145 goto out; 146 147 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 148 149 WARN_ON(!bslab->slab_ref); 150 151 if (--bslab->slab_ref) 152 goto out; 153 154 xa_erase(&bio_slabs, slab_size); 155 156 kmem_cache_destroy(bslab->slab); 157 kfree(bslab); 158 159 out: 160 mutex_unlock(&bio_slab_lock); 161 } 162 163 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 164 { 165 BUG_ON(nr_vecs > BIO_MAX_VECS); 166 167 if (nr_vecs == BIO_MAX_VECS) 168 mempool_free(bv, pool); 169 else if (nr_vecs > BIO_INLINE_VECS) 170 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 171 } 172 173 /* 174 * Make the first allocation restricted and don't dump info on allocation 175 * failures, since we'll fall back to the mempool in case of failure. 176 */ 177 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 178 { 179 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 180 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 181 } 182 183 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 184 gfp_t gfp_mask) 185 { 186 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 187 188 if (WARN_ON_ONCE(!bvs)) 189 return NULL; 190 191 /* 192 * Upgrade the nr_vecs request to take full advantage of the allocation. 193 * We also rely on this in the bvec_free path. 194 */ 195 *nr_vecs = bvs->nr_vecs; 196 197 /* 198 * Try a slab allocation first for all smaller allocations. If that 199 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 200 * The mempool is sized to handle up to BIO_MAX_VECS entries. 201 */ 202 if (*nr_vecs < BIO_MAX_VECS) { 203 struct bio_vec *bvl; 204 205 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 206 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 207 return bvl; 208 *nr_vecs = BIO_MAX_VECS; 209 } 210 211 return mempool_alloc(pool, gfp_mask); 212 } 213 214 void bio_uninit(struct bio *bio) 215 { 216 #ifdef CONFIG_BLK_CGROUP 217 if (bio->bi_blkg) { 218 blkg_put(bio->bi_blkg); 219 bio->bi_blkg = NULL; 220 } 221 #endif 222 if (bio_integrity(bio)) 223 bio_integrity_free(bio); 224 225 bio_crypt_free_ctx(bio); 226 } 227 EXPORT_SYMBOL(bio_uninit); 228 229 static void bio_free(struct bio *bio) 230 { 231 struct bio_set *bs = bio->bi_pool; 232 void *p = bio; 233 234 WARN_ON_ONCE(!bs); 235 236 bio_uninit(bio); 237 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 238 mempool_free(p - bs->front_pad, &bs->bio_pool); 239 } 240 241 /* 242 * Users of this function have their own bio allocation. Subsequently, 243 * they must remember to pair any call to bio_init() with bio_uninit() 244 * when IO has completed, or when the bio is released. 245 */ 246 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 247 unsigned short max_vecs, blk_opf_t opf) 248 { 249 bio->bi_next = NULL; 250 bio->bi_bdev = bdev; 251 bio->bi_opf = opf; 252 bio->bi_flags = 0; 253 bio->bi_ioprio = 0; 254 bio->bi_status = 0; 255 bio->bi_iter.bi_sector = 0; 256 bio->bi_iter.bi_size = 0; 257 bio->bi_iter.bi_idx = 0; 258 bio->bi_iter.bi_bvec_done = 0; 259 bio->bi_end_io = NULL; 260 bio->bi_private = NULL; 261 #ifdef CONFIG_BLK_CGROUP 262 bio->bi_blkg = NULL; 263 bio->bi_issue.value = 0; 264 if (bdev) 265 bio_associate_blkg(bio); 266 #ifdef CONFIG_BLK_CGROUP_IOCOST 267 bio->bi_iocost_cost = 0; 268 #endif 269 #endif 270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 271 bio->bi_crypt_context = NULL; 272 #endif 273 #ifdef CONFIG_BLK_DEV_INTEGRITY 274 bio->bi_integrity = NULL; 275 #endif 276 bio->bi_vcnt = 0; 277 278 atomic_set(&bio->__bi_remaining, 1); 279 atomic_set(&bio->__bi_cnt, 1); 280 bio->bi_cookie = BLK_QC_T_NONE; 281 282 bio->bi_max_vecs = max_vecs; 283 bio->bi_io_vec = table; 284 bio->bi_pool = NULL; 285 } 286 EXPORT_SYMBOL(bio_init); 287 288 /** 289 * bio_reset - reinitialize a bio 290 * @bio: bio to reset 291 * @bdev: block device to use the bio for 292 * @opf: operation and flags for bio 293 * 294 * Description: 295 * After calling bio_reset(), @bio will be in the same state as a freshly 296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 297 * preserved are the ones that are initialized by bio_alloc_bioset(). See 298 * comment in struct bio. 299 */ 300 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) 301 { 302 bio_uninit(bio); 303 memset(bio, 0, BIO_RESET_BYTES); 304 atomic_set(&bio->__bi_remaining, 1); 305 bio->bi_bdev = bdev; 306 if (bio->bi_bdev) 307 bio_associate_blkg(bio); 308 bio->bi_opf = opf; 309 } 310 EXPORT_SYMBOL(bio_reset); 311 312 static struct bio *__bio_chain_endio(struct bio *bio) 313 { 314 struct bio *parent = bio->bi_private; 315 316 if (bio->bi_status && !parent->bi_status) 317 parent->bi_status = bio->bi_status; 318 bio_put(bio); 319 return parent; 320 } 321 322 static void bio_chain_endio(struct bio *bio) 323 { 324 bio_endio(__bio_chain_endio(bio)); 325 } 326 327 /** 328 * bio_chain - chain bio completions 329 * @bio: the target bio 330 * @parent: the parent bio of @bio 331 * 332 * The caller won't have a bi_end_io called when @bio completes - instead, 333 * @parent's bi_end_io won't be called until both @parent and @bio have 334 * completed; the chained bio will also be freed when it completes. 335 * 336 * The caller must not set bi_private or bi_end_io in @bio. 337 */ 338 void bio_chain(struct bio *bio, struct bio *parent) 339 { 340 BUG_ON(bio->bi_private || bio->bi_end_io); 341 342 bio->bi_private = parent; 343 bio->bi_end_io = bio_chain_endio; 344 bio_inc_remaining(parent); 345 } 346 EXPORT_SYMBOL(bio_chain); 347 348 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 349 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) 350 { 351 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp); 352 353 if (bio) { 354 bio_chain(bio, new); 355 submit_bio(bio); 356 } 357 358 return new; 359 } 360 EXPORT_SYMBOL_GPL(blk_next_bio); 361 362 static void bio_alloc_rescue(struct work_struct *work) 363 { 364 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 365 struct bio *bio; 366 367 while (1) { 368 spin_lock(&bs->rescue_lock); 369 bio = bio_list_pop(&bs->rescue_list); 370 spin_unlock(&bs->rescue_lock); 371 372 if (!bio) 373 break; 374 375 submit_bio_noacct(bio); 376 } 377 } 378 379 static void punt_bios_to_rescuer(struct bio_set *bs) 380 { 381 struct bio_list punt, nopunt; 382 struct bio *bio; 383 384 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 385 return; 386 /* 387 * In order to guarantee forward progress we must punt only bios that 388 * were allocated from this bio_set; otherwise, if there was a bio on 389 * there for a stacking driver higher up in the stack, processing it 390 * could require allocating bios from this bio_set, and doing that from 391 * our own rescuer would be bad. 392 * 393 * Since bio lists are singly linked, pop them all instead of trying to 394 * remove from the middle of the list: 395 */ 396 397 bio_list_init(&punt); 398 bio_list_init(&nopunt); 399 400 while ((bio = bio_list_pop(¤t->bio_list[0]))) 401 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 402 current->bio_list[0] = nopunt; 403 404 bio_list_init(&nopunt); 405 while ((bio = bio_list_pop(¤t->bio_list[1]))) 406 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 407 current->bio_list[1] = nopunt; 408 409 spin_lock(&bs->rescue_lock); 410 bio_list_merge(&bs->rescue_list, &punt); 411 spin_unlock(&bs->rescue_lock); 412 413 queue_work(bs->rescue_workqueue, &bs->rescue_work); 414 } 415 416 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache) 417 { 418 unsigned long flags; 419 420 /* cache->free_list must be empty */ 421 if (WARN_ON_ONCE(cache->free_list)) 422 return; 423 424 local_irq_save(flags); 425 cache->free_list = cache->free_list_irq; 426 cache->free_list_irq = NULL; 427 cache->nr += cache->nr_irq; 428 cache->nr_irq = 0; 429 local_irq_restore(flags); 430 } 431 432 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 433 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, 434 struct bio_set *bs) 435 { 436 struct bio_alloc_cache *cache; 437 struct bio *bio; 438 439 cache = per_cpu_ptr(bs->cache, get_cpu()); 440 if (!cache->free_list) { 441 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD) 442 bio_alloc_irq_cache_splice(cache); 443 if (!cache->free_list) { 444 put_cpu(); 445 return NULL; 446 } 447 } 448 bio = cache->free_list; 449 cache->free_list = bio->bi_next; 450 cache->nr--; 451 put_cpu(); 452 453 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); 454 bio->bi_pool = bs; 455 return bio; 456 } 457 458 /** 459 * bio_alloc_bioset - allocate a bio for I/O 460 * @bdev: block device to allocate the bio for (can be %NULL) 461 * @nr_vecs: number of bvecs to pre-allocate 462 * @opf: operation and flags for bio 463 * @gfp_mask: the GFP_* mask given to the slab allocator 464 * @bs: the bio_set to allocate from. 465 * 466 * Allocate a bio from the mempools in @bs. 467 * 468 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 469 * allocate a bio. This is due to the mempool guarantees. To make this work, 470 * callers must never allocate more than 1 bio at a time from the general pool. 471 * Callers that need to allocate more than 1 bio must always submit the 472 * previously allocated bio for IO before attempting to allocate a new one. 473 * Failure to do so can cause deadlocks under memory pressure. 474 * 475 * Note that when running under submit_bio_noacct() (i.e. any block driver), 476 * bios are not submitted until after you return - see the code in 477 * submit_bio_noacct() that converts recursion into iteration, to prevent 478 * stack overflows. 479 * 480 * This would normally mean allocating multiple bios under submit_bio_noacct() 481 * would be susceptible to deadlocks, but we have 482 * deadlock avoidance code that resubmits any blocked bios from a rescuer 483 * thread. 484 * 485 * However, we do not guarantee forward progress for allocations from other 486 * mempools. Doing multiple allocations from the same mempool under 487 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 488 * for per bio allocations. 489 * 490 * Returns: Pointer to new bio on success, NULL on failure. 491 */ 492 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 493 blk_opf_t opf, gfp_t gfp_mask, 494 struct bio_set *bs) 495 { 496 gfp_t saved_gfp = gfp_mask; 497 struct bio *bio; 498 void *p; 499 500 /* should not use nobvec bioset for nr_vecs > 0 */ 501 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 502 return NULL; 503 504 if (opf & REQ_ALLOC_CACHE) { 505 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 506 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 507 gfp_mask, bs); 508 if (bio) 509 return bio; 510 /* 511 * No cached bio available, bio returned below marked with 512 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. 513 */ 514 } else { 515 opf &= ~REQ_ALLOC_CACHE; 516 } 517 } 518 519 /* 520 * submit_bio_noacct() converts recursion to iteration; this means if 521 * we're running beneath it, any bios we allocate and submit will not be 522 * submitted (and thus freed) until after we return. 523 * 524 * This exposes us to a potential deadlock if we allocate multiple bios 525 * from the same bio_set() while running underneath submit_bio_noacct(). 526 * If we were to allocate multiple bios (say a stacking block driver 527 * that was splitting bios), we would deadlock if we exhausted the 528 * mempool's reserve. 529 * 530 * We solve this, and guarantee forward progress, with a rescuer 531 * workqueue per bio_set. If we go to allocate and there are bios on 532 * current->bio_list, we first try the allocation without 533 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 534 * blocking to the rescuer workqueue before we retry with the original 535 * gfp_flags. 536 */ 537 if (current->bio_list && 538 (!bio_list_empty(¤t->bio_list[0]) || 539 !bio_list_empty(¤t->bio_list[1])) && 540 bs->rescue_workqueue) 541 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 542 543 p = mempool_alloc(&bs->bio_pool, gfp_mask); 544 if (!p && gfp_mask != saved_gfp) { 545 punt_bios_to_rescuer(bs); 546 gfp_mask = saved_gfp; 547 p = mempool_alloc(&bs->bio_pool, gfp_mask); 548 } 549 if (unlikely(!p)) 550 return NULL; 551 if (!mempool_is_saturated(&bs->bio_pool)) 552 opf &= ~REQ_ALLOC_CACHE; 553 554 bio = p + bs->front_pad; 555 if (nr_vecs > BIO_INLINE_VECS) { 556 struct bio_vec *bvl = NULL; 557 558 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 559 if (!bvl && gfp_mask != saved_gfp) { 560 punt_bios_to_rescuer(bs); 561 gfp_mask = saved_gfp; 562 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 563 } 564 if (unlikely(!bvl)) 565 goto err_free; 566 567 bio_init(bio, bdev, bvl, nr_vecs, opf); 568 } else if (nr_vecs) { 569 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 570 } else { 571 bio_init(bio, bdev, NULL, 0, opf); 572 } 573 574 bio->bi_pool = bs; 575 return bio; 576 577 err_free: 578 mempool_free(p, &bs->bio_pool); 579 return NULL; 580 } 581 EXPORT_SYMBOL(bio_alloc_bioset); 582 583 /** 584 * bio_kmalloc - kmalloc a bio 585 * @nr_vecs: number of bio_vecs to allocate 586 * @gfp_mask: the GFP_* mask given to the slab allocator 587 * 588 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 589 * using bio_init() before use. To free a bio returned from this function use 590 * kfree() after calling bio_uninit(). A bio returned from this function can 591 * be reused by calling bio_uninit() before calling bio_init() again. 592 * 593 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 594 * function are not backed by a mempool can fail. Do not use this function 595 * for allocations in the file system I/O path. 596 * 597 * Returns: Pointer to new bio on success, NULL on failure. 598 */ 599 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 600 { 601 struct bio *bio; 602 603 if (nr_vecs > UIO_MAXIOV) 604 return NULL; 605 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); 606 } 607 EXPORT_SYMBOL(bio_kmalloc); 608 609 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 610 { 611 struct bio_vec bv; 612 struct bvec_iter iter; 613 614 __bio_for_each_segment(bv, bio, iter, start) 615 memzero_bvec(&bv); 616 } 617 EXPORT_SYMBOL(zero_fill_bio_iter); 618 619 /** 620 * bio_truncate - truncate the bio to small size of @new_size 621 * @bio: the bio to be truncated 622 * @new_size: new size for truncating the bio 623 * 624 * Description: 625 * Truncate the bio to new size of @new_size. If bio_op(bio) is 626 * REQ_OP_READ, zero the truncated part. This function should only 627 * be used for handling corner cases, such as bio eod. 628 */ 629 static void bio_truncate(struct bio *bio, unsigned new_size) 630 { 631 struct bio_vec bv; 632 struct bvec_iter iter; 633 unsigned int done = 0; 634 bool truncated = false; 635 636 if (new_size >= bio->bi_iter.bi_size) 637 return; 638 639 if (bio_op(bio) != REQ_OP_READ) 640 goto exit; 641 642 bio_for_each_segment(bv, bio, iter) { 643 if (done + bv.bv_len > new_size) { 644 unsigned offset; 645 646 if (!truncated) 647 offset = new_size - done; 648 else 649 offset = 0; 650 zero_user(bv.bv_page, bv.bv_offset + offset, 651 bv.bv_len - offset); 652 truncated = true; 653 } 654 done += bv.bv_len; 655 } 656 657 exit: 658 /* 659 * Don't touch bvec table here and make it really immutable, since 660 * fs bio user has to retrieve all pages via bio_for_each_segment_all 661 * in its .end_bio() callback. 662 * 663 * It is enough to truncate bio by updating .bi_size since we can make 664 * correct bvec with the updated .bi_size for drivers. 665 */ 666 bio->bi_iter.bi_size = new_size; 667 } 668 669 /** 670 * guard_bio_eod - truncate a BIO to fit the block device 671 * @bio: bio to truncate 672 * 673 * This allows us to do IO even on the odd last sectors of a device, even if the 674 * block size is some multiple of the physical sector size. 675 * 676 * We'll just truncate the bio to the size of the device, and clear the end of 677 * the buffer head manually. Truly out-of-range accesses will turn into actual 678 * I/O errors, this only handles the "we need to be able to do I/O at the final 679 * sector" case. 680 */ 681 void guard_bio_eod(struct bio *bio) 682 { 683 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 684 685 if (!maxsector) 686 return; 687 688 /* 689 * If the *whole* IO is past the end of the device, 690 * let it through, and the IO layer will turn it into 691 * an EIO. 692 */ 693 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 694 return; 695 696 maxsector -= bio->bi_iter.bi_sector; 697 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 698 return; 699 700 bio_truncate(bio, maxsector << 9); 701 } 702 703 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache, 704 unsigned int nr) 705 { 706 unsigned int i = 0; 707 struct bio *bio; 708 709 while ((bio = cache->free_list) != NULL) { 710 cache->free_list = bio->bi_next; 711 cache->nr--; 712 bio_free(bio); 713 if (++i == nr) 714 break; 715 } 716 return i; 717 } 718 719 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 720 unsigned int nr) 721 { 722 nr -= __bio_alloc_cache_prune(cache, nr); 723 if (!READ_ONCE(cache->free_list)) { 724 bio_alloc_irq_cache_splice(cache); 725 __bio_alloc_cache_prune(cache, nr); 726 } 727 } 728 729 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 730 { 731 struct bio_set *bs; 732 733 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 734 if (bs->cache) { 735 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 736 737 bio_alloc_cache_prune(cache, -1U); 738 } 739 return 0; 740 } 741 742 static void bio_alloc_cache_destroy(struct bio_set *bs) 743 { 744 int cpu; 745 746 if (!bs->cache) 747 return; 748 749 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 750 for_each_possible_cpu(cpu) { 751 struct bio_alloc_cache *cache; 752 753 cache = per_cpu_ptr(bs->cache, cpu); 754 bio_alloc_cache_prune(cache, -1U); 755 } 756 free_percpu(bs->cache); 757 bs->cache = NULL; 758 } 759 760 static inline void bio_put_percpu_cache(struct bio *bio) 761 { 762 struct bio_alloc_cache *cache; 763 764 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 765 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) { 766 put_cpu(); 767 bio_free(bio); 768 return; 769 } 770 771 bio_uninit(bio); 772 773 if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) { 774 bio->bi_next = cache->free_list; 775 bio->bi_bdev = NULL; 776 cache->free_list = bio; 777 cache->nr++; 778 } else { 779 unsigned long flags; 780 781 local_irq_save(flags); 782 bio->bi_next = cache->free_list_irq; 783 cache->free_list_irq = bio; 784 cache->nr_irq++; 785 local_irq_restore(flags); 786 } 787 put_cpu(); 788 } 789 790 /** 791 * bio_put - release a reference to a bio 792 * @bio: bio to release reference to 793 * 794 * Description: 795 * Put a reference to a &struct bio, either one you have gotten with 796 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 797 **/ 798 void bio_put(struct bio *bio) 799 { 800 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 801 BUG_ON(!atomic_read(&bio->__bi_cnt)); 802 if (!atomic_dec_and_test(&bio->__bi_cnt)) 803 return; 804 } 805 if (bio->bi_opf & REQ_ALLOC_CACHE) 806 bio_put_percpu_cache(bio); 807 else 808 bio_free(bio); 809 } 810 EXPORT_SYMBOL(bio_put); 811 812 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 813 { 814 bio_set_flag(bio, BIO_CLONED); 815 bio->bi_ioprio = bio_src->bi_ioprio; 816 bio->bi_iter = bio_src->bi_iter; 817 818 if (bio->bi_bdev) { 819 if (bio->bi_bdev == bio_src->bi_bdev && 820 bio_flagged(bio_src, BIO_REMAPPED)) 821 bio_set_flag(bio, BIO_REMAPPED); 822 bio_clone_blkg_association(bio, bio_src); 823 } 824 825 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 826 return -ENOMEM; 827 if (bio_integrity(bio_src) && 828 bio_integrity_clone(bio, bio_src, gfp) < 0) 829 return -ENOMEM; 830 return 0; 831 } 832 833 /** 834 * bio_alloc_clone - clone a bio that shares the original bio's biovec 835 * @bdev: block_device to clone onto 836 * @bio_src: bio to clone from 837 * @gfp: allocation priority 838 * @bs: bio_set to allocate from 839 * 840 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 841 * bio, but not the actual data it points to. 842 * 843 * The caller must ensure that the return bio is not freed before @bio_src. 844 */ 845 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 846 gfp_t gfp, struct bio_set *bs) 847 { 848 struct bio *bio; 849 850 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 851 if (!bio) 852 return NULL; 853 854 if (__bio_clone(bio, bio_src, gfp) < 0) { 855 bio_put(bio); 856 return NULL; 857 } 858 bio->bi_io_vec = bio_src->bi_io_vec; 859 860 return bio; 861 } 862 EXPORT_SYMBOL(bio_alloc_clone); 863 864 /** 865 * bio_init_clone - clone a bio that shares the original bio's biovec 866 * @bdev: block_device to clone onto 867 * @bio: bio to clone into 868 * @bio_src: bio to clone from 869 * @gfp: allocation priority 870 * 871 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 872 * The caller owns the returned bio, but not the actual data it points to. 873 * 874 * The caller must ensure that @bio_src is not freed before @bio. 875 */ 876 int bio_init_clone(struct block_device *bdev, struct bio *bio, 877 struct bio *bio_src, gfp_t gfp) 878 { 879 int ret; 880 881 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 882 ret = __bio_clone(bio, bio_src, gfp); 883 if (ret) 884 bio_uninit(bio); 885 return ret; 886 } 887 EXPORT_SYMBOL(bio_init_clone); 888 889 /** 890 * bio_full - check if the bio is full 891 * @bio: bio to check 892 * @len: length of one segment to be added 893 * 894 * Return true if @bio is full and one segment with @len bytes can't be 895 * added to the bio, otherwise return false 896 */ 897 static inline bool bio_full(struct bio *bio, unsigned len) 898 { 899 if (bio->bi_vcnt >= bio->bi_max_vecs) 900 return true; 901 if (bio->bi_iter.bi_size > UINT_MAX - len) 902 return true; 903 return false; 904 } 905 906 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page, 907 unsigned int len, unsigned int off, bool *same_page) 908 { 909 size_t bv_end = bv->bv_offset + bv->bv_len; 910 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 911 phys_addr_t page_addr = page_to_phys(page); 912 913 if (vec_end_addr + 1 != page_addr + off) 914 return false; 915 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 916 return false; 917 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page)) 918 return false; 919 920 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 921 if (!*same_page) { 922 if (IS_ENABLED(CONFIG_KMSAN)) 923 return false; 924 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE) 925 return false; 926 } 927 928 bv->bv_len += len; 929 return true; 930 } 931 932 /* 933 * Try to merge a page into a segment, while obeying the hardware segment 934 * size limit. This is not for normal read/write bios, but for passthrough 935 * or Zone Append operations that we can't split. 936 */ 937 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 938 struct page *page, unsigned len, unsigned offset, 939 bool *same_page) 940 { 941 unsigned long mask = queue_segment_boundary(q); 942 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 943 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 944 945 if ((addr1 | mask) != (addr2 | mask)) 946 return false; 947 if (len > queue_max_segment_size(q) - bv->bv_len) 948 return false; 949 return bvec_try_merge_page(bv, page, len, offset, same_page); 950 } 951 952 /** 953 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 954 * @q: the target queue 955 * @bio: destination bio 956 * @page: page to add 957 * @len: vec entry length 958 * @offset: vec entry offset 959 * @max_sectors: maximum number of sectors that can be added 960 * @same_page: return if the segment has been merged inside the same page 961 * 962 * Add a page to a bio while respecting the hardware max_sectors, max_segment 963 * and gap limitations. 964 */ 965 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 966 struct page *page, unsigned int len, unsigned int offset, 967 unsigned int max_sectors, bool *same_page) 968 { 969 unsigned int max_size = max_sectors << SECTOR_SHIFT; 970 971 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 972 return 0; 973 974 len = min3(len, max_size, queue_max_segment_size(q)); 975 if (len > max_size - bio->bi_iter.bi_size) 976 return 0; 977 978 if (bio->bi_vcnt > 0) { 979 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 980 981 if (bvec_try_merge_hw_page(q, bv, page, len, offset, 982 same_page)) { 983 bio->bi_iter.bi_size += len; 984 return len; 985 } 986 987 if (bio->bi_vcnt >= 988 min(bio->bi_max_vecs, queue_max_segments(q))) 989 return 0; 990 991 /* 992 * If the queue doesn't support SG gaps and adding this segment 993 * would create a gap, disallow it. 994 */ 995 if (bvec_gap_to_prev(&q->limits, bv, offset)) 996 return 0; 997 } 998 999 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset); 1000 bio->bi_vcnt++; 1001 bio->bi_iter.bi_size += len; 1002 return len; 1003 } 1004 1005 /** 1006 * bio_add_pc_page - attempt to add page to passthrough bio 1007 * @q: the target queue 1008 * @bio: destination bio 1009 * @page: page to add 1010 * @len: vec entry length 1011 * @offset: vec entry offset 1012 * 1013 * Attempt to add a page to the bio_vec maplist. This can fail for a 1014 * number of reasons, such as the bio being full or target block device 1015 * limitations. The target block device must allow bio's up to PAGE_SIZE, 1016 * so it is always possible to add a single page to an empty bio. 1017 * 1018 * This should only be used by passthrough bios. 1019 */ 1020 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 1021 struct page *page, unsigned int len, unsigned int offset) 1022 { 1023 bool same_page = false; 1024 return bio_add_hw_page(q, bio, page, len, offset, 1025 queue_max_hw_sectors(q), &same_page); 1026 } 1027 EXPORT_SYMBOL(bio_add_pc_page); 1028 1029 /** 1030 * bio_add_zone_append_page - attempt to add page to zone-append bio 1031 * @bio: destination bio 1032 * @page: page to add 1033 * @len: vec entry length 1034 * @offset: vec entry offset 1035 * 1036 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 1037 * for a zone-append request. This can fail for a number of reasons, such as the 1038 * bio being full or the target block device is not a zoned block device or 1039 * other limitations of the target block device. The target block device must 1040 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 1041 * to an empty bio. 1042 * 1043 * Returns: number of bytes added to the bio, or 0 in case of a failure. 1044 */ 1045 int bio_add_zone_append_page(struct bio *bio, struct page *page, 1046 unsigned int len, unsigned int offset) 1047 { 1048 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1049 bool same_page = false; 1050 1051 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 1052 return 0; 1053 1054 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev))) 1055 return 0; 1056 1057 return bio_add_hw_page(q, bio, page, len, offset, 1058 queue_max_zone_append_sectors(q), &same_page); 1059 } 1060 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 1061 1062 /** 1063 * __bio_add_page - add page(s) to a bio in a new segment 1064 * @bio: destination bio 1065 * @page: start page to add 1066 * @len: length of the data to add, may cross pages 1067 * @off: offset of the data relative to @page, may cross pages 1068 * 1069 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 1070 * that @bio has space for another bvec. 1071 */ 1072 void __bio_add_page(struct bio *bio, struct page *page, 1073 unsigned int len, unsigned int off) 1074 { 1075 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 1076 WARN_ON_ONCE(bio_full(bio, len)); 1077 1078 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off); 1079 bio->bi_iter.bi_size += len; 1080 bio->bi_vcnt++; 1081 } 1082 EXPORT_SYMBOL_GPL(__bio_add_page); 1083 1084 /** 1085 * bio_add_page - attempt to add page(s) to bio 1086 * @bio: destination bio 1087 * @page: start page to add 1088 * @len: vec entry length, may cross pages 1089 * @offset: vec entry offset relative to @page, may cross pages 1090 * 1091 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1092 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1093 */ 1094 int bio_add_page(struct bio *bio, struct page *page, 1095 unsigned int len, unsigned int offset) 1096 { 1097 bool same_page = false; 1098 1099 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1100 return 0; 1101 if (bio->bi_iter.bi_size > UINT_MAX - len) 1102 return 0; 1103 1104 if (bio->bi_vcnt > 0 && 1105 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 1106 page, len, offset, &same_page)) { 1107 bio->bi_iter.bi_size += len; 1108 return len; 1109 } 1110 1111 if (bio->bi_vcnt >= bio->bi_max_vecs) 1112 return 0; 1113 __bio_add_page(bio, page, len, offset); 1114 return len; 1115 } 1116 EXPORT_SYMBOL(bio_add_page); 1117 1118 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 1119 size_t off) 1120 { 1121 WARN_ON_ONCE(len > UINT_MAX); 1122 WARN_ON_ONCE(off > UINT_MAX); 1123 __bio_add_page(bio, &folio->page, len, off); 1124 } 1125 1126 /** 1127 * bio_add_folio - Attempt to add part of a folio to a bio. 1128 * @bio: BIO to add to. 1129 * @folio: Folio to add. 1130 * @len: How many bytes from the folio to add. 1131 * @off: First byte in this folio to add. 1132 * 1133 * Filesystems that use folios can call this function instead of calling 1134 * bio_add_page() for each page in the folio. If @off is bigger than 1135 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1136 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1137 * 1138 * Return: Whether the addition was successful. 1139 */ 1140 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1141 size_t off) 1142 { 1143 if (len > UINT_MAX || off > UINT_MAX) 1144 return false; 1145 return bio_add_page(bio, &folio->page, len, off) > 0; 1146 } 1147 EXPORT_SYMBOL(bio_add_folio); 1148 1149 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1150 { 1151 struct folio_iter fi; 1152 1153 bio_for_each_folio_all(fi, bio) { 1154 struct page *page; 1155 size_t done = 0; 1156 1157 if (mark_dirty) { 1158 folio_lock(fi.folio); 1159 folio_mark_dirty(fi.folio); 1160 folio_unlock(fi.folio); 1161 } 1162 page = folio_page(fi.folio, fi.offset / PAGE_SIZE); 1163 do { 1164 bio_release_page(bio, page++); 1165 done += PAGE_SIZE; 1166 } while (done < fi.length); 1167 } 1168 } 1169 EXPORT_SYMBOL_GPL(__bio_release_pages); 1170 1171 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 1172 { 1173 size_t size = iov_iter_count(iter); 1174 1175 WARN_ON_ONCE(bio->bi_max_vecs); 1176 1177 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1178 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1179 size_t max_sectors = queue_max_zone_append_sectors(q); 1180 1181 size = min(size, max_sectors << SECTOR_SHIFT); 1182 } 1183 1184 bio->bi_vcnt = iter->nr_segs; 1185 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1186 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1187 bio->bi_iter.bi_size = size; 1188 bio_set_flag(bio, BIO_CLONED); 1189 } 1190 1191 static int bio_iov_add_page(struct bio *bio, struct page *page, 1192 unsigned int len, unsigned int offset) 1193 { 1194 bool same_page = false; 1195 1196 if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len)) 1197 return -EIO; 1198 1199 if (bio->bi_vcnt > 0 && 1200 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 1201 page, len, offset, &same_page)) { 1202 bio->bi_iter.bi_size += len; 1203 if (same_page) 1204 bio_release_page(bio, page); 1205 return 0; 1206 } 1207 __bio_add_page(bio, page, len, offset); 1208 return 0; 1209 } 1210 1211 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page, 1212 unsigned int len, unsigned int offset) 1213 { 1214 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1215 bool same_page = false; 1216 1217 if (bio_add_hw_page(q, bio, page, len, offset, 1218 queue_max_zone_append_sectors(q), &same_page) != len) 1219 return -EINVAL; 1220 if (same_page) 1221 bio_release_page(bio, page); 1222 return 0; 1223 } 1224 1225 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1226 1227 /** 1228 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1229 * @bio: bio to add pages to 1230 * @iter: iov iterator describing the region to be mapped 1231 * 1232 * Extracts pages from *iter and appends them to @bio's bvec array. The pages 1233 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag. 1234 * For a multi-segment *iter, this function only adds pages from the next 1235 * non-empty segment of the iov iterator. 1236 */ 1237 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1238 { 1239 iov_iter_extraction_t extraction_flags = 0; 1240 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1241 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1242 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1243 struct page **pages = (struct page **)bv; 1244 ssize_t size, left; 1245 unsigned len, i = 0; 1246 size_t offset; 1247 int ret = 0; 1248 1249 /* 1250 * Move page array up in the allocated memory for the bio vecs as far as 1251 * possible so that we can start filling biovecs from the beginning 1252 * without overwriting the temporary page array. 1253 */ 1254 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1255 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1256 1257 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue)) 1258 extraction_flags |= ITER_ALLOW_P2PDMA; 1259 1260 /* 1261 * Each segment in the iov is required to be a block size multiple. 1262 * However, we may not be able to get the entire segment if it spans 1263 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the 1264 * result to ensure the bio's total size is correct. The remainder of 1265 * the iov data will be picked up in the next bio iteration. 1266 */ 1267 size = iov_iter_extract_pages(iter, &pages, 1268 UINT_MAX - bio->bi_iter.bi_size, 1269 nr_pages, extraction_flags, &offset); 1270 if (unlikely(size <= 0)) 1271 return size ? size : -EFAULT; 1272 1273 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); 1274 1275 if (bio->bi_bdev) { 1276 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1); 1277 iov_iter_revert(iter, trim); 1278 size -= trim; 1279 } 1280 1281 if (unlikely(!size)) { 1282 ret = -EFAULT; 1283 goto out; 1284 } 1285 1286 for (left = size, i = 0; left > 0; left -= len, i++) { 1287 struct page *page = pages[i]; 1288 1289 len = min_t(size_t, PAGE_SIZE - offset, left); 1290 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1291 ret = bio_iov_add_zone_append_page(bio, page, len, 1292 offset); 1293 if (ret) 1294 break; 1295 } else 1296 bio_iov_add_page(bio, page, len, offset); 1297 1298 offset = 0; 1299 } 1300 1301 iov_iter_revert(iter, left); 1302 out: 1303 while (i < nr_pages) 1304 bio_release_page(bio, pages[i++]); 1305 1306 return ret; 1307 } 1308 1309 /** 1310 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1311 * @bio: bio to add pages to 1312 * @iter: iov iterator describing the region to be added 1313 * 1314 * This takes either an iterator pointing to user memory, or one pointing to 1315 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1316 * map them into the kernel. On IO completion, the caller should put those 1317 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1318 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1319 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1320 * completed by a call to ->ki_complete() or returns with an error other than 1321 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1322 * on IO completion. If it isn't, then pages should be released. 1323 * 1324 * The function tries, but does not guarantee, to pin as many pages as 1325 * fit into the bio, or are requested in @iter, whatever is smaller. If 1326 * MM encounters an error pinning the requested pages, it stops. Error 1327 * is returned only if 0 pages could be pinned. 1328 */ 1329 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1330 { 1331 int ret = 0; 1332 1333 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1334 return -EIO; 1335 1336 if (iov_iter_is_bvec(iter)) { 1337 bio_iov_bvec_set(bio, iter); 1338 iov_iter_advance(iter, bio->bi_iter.bi_size); 1339 return 0; 1340 } 1341 1342 if (iov_iter_extract_will_pin(iter)) 1343 bio_set_flag(bio, BIO_PAGE_PINNED); 1344 do { 1345 ret = __bio_iov_iter_get_pages(bio, iter); 1346 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1347 1348 return bio->bi_vcnt ? 0 : ret; 1349 } 1350 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1351 1352 static void submit_bio_wait_endio(struct bio *bio) 1353 { 1354 complete(bio->bi_private); 1355 } 1356 1357 /** 1358 * submit_bio_wait - submit a bio, and wait until it completes 1359 * @bio: The &struct bio which describes the I/O 1360 * 1361 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1362 * bio_endio() on failure. 1363 * 1364 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1365 * result in bio reference to be consumed. The caller must drop the reference 1366 * on his own. 1367 */ 1368 int submit_bio_wait(struct bio *bio) 1369 { 1370 DECLARE_COMPLETION_ONSTACK_MAP(done, 1371 bio->bi_bdev->bd_disk->lockdep_map); 1372 unsigned long hang_check; 1373 1374 bio->bi_private = &done; 1375 bio->bi_end_io = submit_bio_wait_endio; 1376 bio->bi_opf |= REQ_SYNC; 1377 submit_bio(bio); 1378 1379 /* Prevent hang_check timer from firing at us during very long I/O */ 1380 hang_check = sysctl_hung_task_timeout_secs; 1381 if (hang_check) 1382 while (!wait_for_completion_io_timeout(&done, 1383 hang_check * (HZ/2))) 1384 ; 1385 else 1386 wait_for_completion_io(&done); 1387 1388 return blk_status_to_errno(bio->bi_status); 1389 } 1390 EXPORT_SYMBOL(submit_bio_wait); 1391 1392 void __bio_advance(struct bio *bio, unsigned bytes) 1393 { 1394 if (bio_integrity(bio)) 1395 bio_integrity_advance(bio, bytes); 1396 1397 bio_crypt_advance(bio, bytes); 1398 bio_advance_iter(bio, &bio->bi_iter, bytes); 1399 } 1400 EXPORT_SYMBOL(__bio_advance); 1401 1402 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1403 struct bio *src, struct bvec_iter *src_iter) 1404 { 1405 while (src_iter->bi_size && dst_iter->bi_size) { 1406 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1407 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1408 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1409 void *src_buf = bvec_kmap_local(&src_bv); 1410 void *dst_buf = bvec_kmap_local(&dst_bv); 1411 1412 memcpy(dst_buf, src_buf, bytes); 1413 1414 kunmap_local(dst_buf); 1415 kunmap_local(src_buf); 1416 1417 bio_advance_iter_single(src, src_iter, bytes); 1418 bio_advance_iter_single(dst, dst_iter, bytes); 1419 } 1420 } 1421 EXPORT_SYMBOL(bio_copy_data_iter); 1422 1423 /** 1424 * bio_copy_data - copy contents of data buffers from one bio to another 1425 * @src: source bio 1426 * @dst: destination bio 1427 * 1428 * Stops when it reaches the end of either @src or @dst - that is, copies 1429 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1430 */ 1431 void bio_copy_data(struct bio *dst, struct bio *src) 1432 { 1433 struct bvec_iter src_iter = src->bi_iter; 1434 struct bvec_iter dst_iter = dst->bi_iter; 1435 1436 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1437 } 1438 EXPORT_SYMBOL(bio_copy_data); 1439 1440 void bio_free_pages(struct bio *bio) 1441 { 1442 struct bio_vec *bvec; 1443 struct bvec_iter_all iter_all; 1444 1445 bio_for_each_segment_all(bvec, bio, iter_all) 1446 __free_page(bvec->bv_page); 1447 } 1448 EXPORT_SYMBOL(bio_free_pages); 1449 1450 /* 1451 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1452 * for performing direct-IO in BIOs. 1453 * 1454 * The problem is that we cannot run folio_mark_dirty() from interrupt context 1455 * because the required locks are not interrupt-safe. So what we can do is to 1456 * mark the pages dirty _before_ performing IO. And in interrupt context, 1457 * check that the pages are still dirty. If so, fine. If not, redirty them 1458 * in process context. 1459 * 1460 * Note that this code is very hard to test under normal circumstances because 1461 * direct-io pins the pages with get_user_pages(). This makes 1462 * is_page_cache_freeable return false, and the VM will not clean the pages. 1463 * But other code (eg, flusher threads) could clean the pages if they are mapped 1464 * pagecache. 1465 * 1466 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1467 * deferred bio dirtying paths. 1468 */ 1469 1470 /* 1471 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1472 */ 1473 void bio_set_pages_dirty(struct bio *bio) 1474 { 1475 struct folio_iter fi; 1476 1477 bio_for_each_folio_all(fi, bio) { 1478 folio_lock(fi.folio); 1479 folio_mark_dirty(fi.folio); 1480 folio_unlock(fi.folio); 1481 } 1482 } 1483 EXPORT_SYMBOL_GPL(bio_set_pages_dirty); 1484 1485 /* 1486 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1487 * If they are, then fine. If, however, some pages are clean then they must 1488 * have been written out during the direct-IO read. So we take another ref on 1489 * the BIO and re-dirty the pages in process context. 1490 * 1491 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1492 * here on. It will unpin each page and will run one bio_put() against the 1493 * BIO. 1494 */ 1495 1496 static void bio_dirty_fn(struct work_struct *work); 1497 1498 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1499 static DEFINE_SPINLOCK(bio_dirty_lock); 1500 static struct bio *bio_dirty_list; 1501 1502 /* 1503 * This runs in process context 1504 */ 1505 static void bio_dirty_fn(struct work_struct *work) 1506 { 1507 struct bio *bio, *next; 1508 1509 spin_lock_irq(&bio_dirty_lock); 1510 next = bio_dirty_list; 1511 bio_dirty_list = NULL; 1512 spin_unlock_irq(&bio_dirty_lock); 1513 1514 while ((bio = next) != NULL) { 1515 next = bio->bi_private; 1516 1517 bio_release_pages(bio, true); 1518 bio_put(bio); 1519 } 1520 } 1521 1522 void bio_check_pages_dirty(struct bio *bio) 1523 { 1524 struct folio_iter fi; 1525 unsigned long flags; 1526 1527 bio_for_each_folio_all(fi, bio) { 1528 if (!folio_test_dirty(fi.folio)) 1529 goto defer; 1530 } 1531 1532 bio_release_pages(bio, false); 1533 bio_put(bio); 1534 return; 1535 defer: 1536 spin_lock_irqsave(&bio_dirty_lock, flags); 1537 bio->bi_private = bio_dirty_list; 1538 bio_dirty_list = bio; 1539 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1540 schedule_work(&bio_dirty_work); 1541 } 1542 EXPORT_SYMBOL_GPL(bio_check_pages_dirty); 1543 1544 static inline bool bio_remaining_done(struct bio *bio) 1545 { 1546 /* 1547 * If we're not chaining, then ->__bi_remaining is always 1 and 1548 * we always end io on the first invocation. 1549 */ 1550 if (!bio_flagged(bio, BIO_CHAIN)) 1551 return true; 1552 1553 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1554 1555 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1556 bio_clear_flag(bio, BIO_CHAIN); 1557 return true; 1558 } 1559 1560 return false; 1561 } 1562 1563 /** 1564 * bio_endio - end I/O on a bio 1565 * @bio: bio 1566 * 1567 * Description: 1568 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1569 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1570 * bio unless they own it and thus know that it has an end_io function. 1571 * 1572 * bio_endio() can be called several times on a bio that has been chained 1573 * using bio_chain(). The ->bi_end_io() function will only be called the 1574 * last time. 1575 **/ 1576 void bio_endio(struct bio *bio) 1577 { 1578 again: 1579 if (!bio_remaining_done(bio)) 1580 return; 1581 if (!bio_integrity_endio(bio)) 1582 return; 1583 1584 rq_qos_done_bio(bio); 1585 1586 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1587 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1588 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1589 } 1590 1591 /* 1592 * Need to have a real endio function for chained bios, otherwise 1593 * various corner cases will break (like stacking block devices that 1594 * save/restore bi_end_io) - however, we want to avoid unbounded 1595 * recursion and blowing the stack. Tail call optimization would 1596 * handle this, but compiling with frame pointers also disables 1597 * gcc's sibling call optimization. 1598 */ 1599 if (bio->bi_end_io == bio_chain_endio) { 1600 bio = __bio_chain_endio(bio); 1601 goto again; 1602 } 1603 1604 blk_throtl_bio_endio(bio); 1605 /* release cgroup info */ 1606 bio_uninit(bio); 1607 if (bio->bi_end_io) 1608 bio->bi_end_io(bio); 1609 } 1610 EXPORT_SYMBOL(bio_endio); 1611 1612 /** 1613 * bio_split - split a bio 1614 * @bio: bio to split 1615 * @sectors: number of sectors to split from the front of @bio 1616 * @gfp: gfp mask 1617 * @bs: bio set to allocate from 1618 * 1619 * Allocates and returns a new bio which represents @sectors from the start of 1620 * @bio, and updates @bio to represent the remaining sectors. 1621 * 1622 * Unless this is a discard request the newly allocated bio will point 1623 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1624 * neither @bio nor @bs are freed before the split bio. 1625 */ 1626 struct bio *bio_split(struct bio *bio, int sectors, 1627 gfp_t gfp, struct bio_set *bs) 1628 { 1629 struct bio *split; 1630 1631 BUG_ON(sectors <= 0); 1632 BUG_ON(sectors >= bio_sectors(bio)); 1633 1634 /* Zone append commands cannot be split */ 1635 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1636 return NULL; 1637 1638 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1639 if (!split) 1640 return NULL; 1641 1642 split->bi_iter.bi_size = sectors << 9; 1643 1644 if (bio_integrity(split)) 1645 bio_integrity_trim(split); 1646 1647 bio_advance(bio, split->bi_iter.bi_size); 1648 1649 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1650 bio_set_flag(split, BIO_TRACE_COMPLETION); 1651 1652 return split; 1653 } 1654 EXPORT_SYMBOL(bio_split); 1655 1656 /** 1657 * bio_trim - trim a bio 1658 * @bio: bio to trim 1659 * @offset: number of sectors to trim from the front of @bio 1660 * @size: size we want to trim @bio to, in sectors 1661 * 1662 * This function is typically used for bios that are cloned and submitted 1663 * to the underlying device in parts. 1664 */ 1665 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1666 { 1667 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1668 offset + size > bio_sectors(bio))) 1669 return; 1670 1671 size <<= 9; 1672 if (offset == 0 && size == bio->bi_iter.bi_size) 1673 return; 1674 1675 bio_advance(bio, offset << 9); 1676 bio->bi_iter.bi_size = size; 1677 1678 if (bio_integrity(bio)) 1679 bio_integrity_trim(bio); 1680 } 1681 EXPORT_SYMBOL_GPL(bio_trim); 1682 1683 /* 1684 * create memory pools for biovec's in a bio_set. 1685 * use the global biovec slabs created for general use. 1686 */ 1687 int biovec_init_pool(mempool_t *pool, int pool_entries) 1688 { 1689 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1690 1691 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1692 } 1693 1694 /* 1695 * bioset_exit - exit a bioset initialized with bioset_init() 1696 * 1697 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1698 * kzalloc()). 1699 */ 1700 void bioset_exit(struct bio_set *bs) 1701 { 1702 bio_alloc_cache_destroy(bs); 1703 if (bs->rescue_workqueue) 1704 destroy_workqueue(bs->rescue_workqueue); 1705 bs->rescue_workqueue = NULL; 1706 1707 mempool_exit(&bs->bio_pool); 1708 mempool_exit(&bs->bvec_pool); 1709 1710 bioset_integrity_free(bs); 1711 if (bs->bio_slab) 1712 bio_put_slab(bs); 1713 bs->bio_slab = NULL; 1714 } 1715 EXPORT_SYMBOL(bioset_exit); 1716 1717 /** 1718 * bioset_init - Initialize a bio_set 1719 * @bs: pool to initialize 1720 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1721 * @front_pad: Number of bytes to allocate in front of the returned bio 1722 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1723 * and %BIOSET_NEED_RESCUER 1724 * 1725 * Description: 1726 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1727 * to ask for a number of bytes to be allocated in front of the bio. 1728 * Front pad allocation is useful for embedding the bio inside 1729 * another structure, to avoid allocating extra data to go with the bio. 1730 * Note that the bio must be embedded at the END of that structure always, 1731 * or things will break badly. 1732 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1733 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1734 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1735 * to dispatch queued requests when the mempool runs out of space. 1736 * 1737 */ 1738 int bioset_init(struct bio_set *bs, 1739 unsigned int pool_size, 1740 unsigned int front_pad, 1741 int flags) 1742 { 1743 bs->front_pad = front_pad; 1744 if (flags & BIOSET_NEED_BVECS) 1745 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1746 else 1747 bs->back_pad = 0; 1748 1749 spin_lock_init(&bs->rescue_lock); 1750 bio_list_init(&bs->rescue_list); 1751 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1752 1753 bs->bio_slab = bio_find_or_create_slab(bs); 1754 if (!bs->bio_slab) 1755 return -ENOMEM; 1756 1757 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1758 goto bad; 1759 1760 if ((flags & BIOSET_NEED_BVECS) && 1761 biovec_init_pool(&bs->bvec_pool, pool_size)) 1762 goto bad; 1763 1764 if (flags & BIOSET_NEED_RESCUER) { 1765 bs->rescue_workqueue = alloc_workqueue("bioset", 1766 WQ_MEM_RECLAIM, 0); 1767 if (!bs->rescue_workqueue) 1768 goto bad; 1769 } 1770 if (flags & BIOSET_PERCPU_CACHE) { 1771 bs->cache = alloc_percpu(struct bio_alloc_cache); 1772 if (!bs->cache) 1773 goto bad; 1774 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1775 } 1776 1777 return 0; 1778 bad: 1779 bioset_exit(bs); 1780 return -ENOMEM; 1781 } 1782 EXPORT_SYMBOL(bioset_init); 1783 1784 static int __init init_bio(void) 1785 { 1786 int i; 1787 1788 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags)); 1789 1790 bio_integrity_init(); 1791 1792 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1793 struct biovec_slab *bvs = bvec_slabs + i; 1794 1795 bvs->slab = kmem_cache_create(bvs->name, 1796 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1797 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1798 } 1799 1800 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1801 bio_cpu_dead); 1802 1803 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, 1804 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) 1805 panic("bio: can't allocate bios\n"); 1806 1807 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1808 panic("bio: can't create integrity pool\n"); 1809 1810 return 0; 1811 } 1812 subsys_initcall(init_bio); 1813