xref: /linux/block/bio.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164 
165 	if (idx == BIOVEC_MAX_IDX)
166 		mempool_free(bv, pool);
167 	else {
168 		struct biovec_slab *bvs = bvec_slabs + idx;
169 
170 		kmem_cache_free(bvs->slab, bv);
171 	}
172 }
173 
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 			   mempool_t *pool)
176 {
177 	struct bio_vec *bvl;
178 
179 	/*
180 	 * see comment near bvec_array define!
181 	 */
182 	switch (nr) {
183 	case 1:
184 		*idx = 0;
185 		break;
186 	case 2 ... 4:
187 		*idx = 1;
188 		break;
189 	case 5 ... 16:
190 		*idx = 2;
191 		break;
192 	case 17 ... 64:
193 		*idx = 3;
194 		break;
195 	case 65 ... 128:
196 		*idx = 4;
197 		break;
198 	case 129 ... BIO_MAX_PAGES:
199 		*idx = 5;
200 		break;
201 	default:
202 		return NULL;
203 	}
204 
205 	/*
206 	 * idx now points to the pool we want to allocate from. only the
207 	 * 1-vec entry pool is mempool backed.
208 	 */
209 	if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 		bvl = mempool_alloc(pool, gfp_mask);
212 	} else {
213 		struct biovec_slab *bvs = bvec_slabs + *idx;
214 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215 
216 		/*
217 		 * Make this allocation restricted and don't dump info on
218 		 * allocation failures, since we'll fallback to the mempool
219 		 * in case of failure.
220 		 */
221 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222 
223 		/*
224 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 		 * is set, retry with the 1-entry mempool
226 		 */
227 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 			*idx = BIOVEC_MAX_IDX;
230 			goto fallback;
231 		}
232 	}
233 
234 	return bvl;
235 }
236 
237 static void __bio_free(struct bio *bio)
238 {
239 	bio_disassociate_task(bio);
240 
241 	if (bio_integrity(bio))
242 		bio_integrity_free(bio);
243 }
244 
245 static void bio_free(struct bio *bio)
246 {
247 	struct bio_set *bs = bio->bi_pool;
248 	void *p;
249 
250 	__bio_free(bio);
251 
252 	if (bs) {
253 		if (bio_flagged(bio, BIO_OWNS_VEC))
254 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255 
256 		/*
257 		 * If we have front padding, adjust the bio pointer before freeing
258 		 */
259 		p = bio;
260 		p -= bs->front_pad;
261 
262 		mempool_free(p, bs->bio_pool);
263 	} else {
264 		/* Bio was allocated by bio_kmalloc() */
265 		kfree(bio);
266 	}
267 }
268 
269 void bio_init(struct bio *bio)
270 {
271 	memset(bio, 0, sizeof(*bio));
272 	atomic_set(&bio->__bi_remaining, 1);
273 	atomic_set(&bio->__bi_cnt, 1);
274 }
275 EXPORT_SYMBOL(bio_init);
276 
277 /**
278  * bio_reset - reinitialize a bio
279  * @bio:	bio to reset
280  *
281  * Description:
282  *   After calling bio_reset(), @bio will be in the same state as a freshly
283  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
284  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
285  *   comment in struct bio.
286  */
287 void bio_reset(struct bio *bio)
288 {
289 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290 
291 	__bio_free(bio);
292 
293 	memset(bio, 0, BIO_RESET_BYTES);
294 	bio->bi_flags = flags;
295 	atomic_set(&bio->__bi_remaining, 1);
296 }
297 EXPORT_SYMBOL(bio_reset);
298 
299 static void bio_chain_endio(struct bio *bio)
300 {
301 	struct bio *parent = bio->bi_private;
302 
303 	parent->bi_error = bio->bi_error;
304 	bio_endio(parent);
305 	bio_put(bio);
306 }
307 
308 /*
309  * Increment chain count for the bio. Make sure the CHAIN flag update
310  * is visible before the raised count.
311  */
312 static inline void bio_inc_remaining(struct bio *bio)
313 {
314 	bio_set_flag(bio, BIO_CHAIN);
315 	smp_mb__before_atomic();
316 	atomic_inc(&bio->__bi_remaining);
317 }
318 
319 /**
320  * bio_chain - chain bio completions
321  * @bio: the target bio
322  * @parent: the @bio's parent bio
323  *
324  * The caller won't have a bi_end_io called when @bio completes - instead,
325  * @parent's bi_end_io won't be called until both @parent and @bio have
326  * completed; the chained bio will also be freed when it completes.
327  *
328  * The caller must not set bi_private or bi_end_io in @bio.
329  */
330 void bio_chain(struct bio *bio, struct bio *parent)
331 {
332 	BUG_ON(bio->bi_private || bio->bi_end_io);
333 
334 	bio->bi_private = parent;
335 	bio->bi_end_io	= bio_chain_endio;
336 	bio_inc_remaining(parent);
337 }
338 EXPORT_SYMBOL(bio_chain);
339 
340 static void bio_alloc_rescue(struct work_struct *work)
341 {
342 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 	struct bio *bio;
344 
345 	while (1) {
346 		spin_lock(&bs->rescue_lock);
347 		bio = bio_list_pop(&bs->rescue_list);
348 		spin_unlock(&bs->rescue_lock);
349 
350 		if (!bio)
351 			break;
352 
353 		generic_make_request(bio);
354 	}
355 }
356 
357 static void punt_bios_to_rescuer(struct bio_set *bs)
358 {
359 	struct bio_list punt, nopunt;
360 	struct bio *bio;
361 
362 	/*
363 	 * In order to guarantee forward progress we must punt only bios that
364 	 * were allocated from this bio_set; otherwise, if there was a bio on
365 	 * there for a stacking driver higher up in the stack, processing it
366 	 * could require allocating bios from this bio_set, and doing that from
367 	 * our own rescuer would be bad.
368 	 *
369 	 * Since bio lists are singly linked, pop them all instead of trying to
370 	 * remove from the middle of the list:
371 	 */
372 
373 	bio_list_init(&punt);
374 	bio_list_init(&nopunt);
375 
376 	while ((bio = bio_list_pop(current->bio_list)))
377 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
378 
379 	*current->bio_list = nopunt;
380 
381 	spin_lock(&bs->rescue_lock);
382 	bio_list_merge(&bs->rescue_list, &punt);
383 	spin_unlock(&bs->rescue_lock);
384 
385 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
386 }
387 
388 /**
389  * bio_alloc_bioset - allocate a bio for I/O
390  * @gfp_mask:   the GFP_ mask given to the slab allocator
391  * @nr_iovecs:	number of iovecs to pre-allocate
392  * @bs:		the bio_set to allocate from.
393  *
394  * Description:
395  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
396  *   backed by the @bs's mempool.
397  *
398  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
399  *   always be able to allocate a bio. This is due to the mempool guarantees.
400  *   To make this work, callers must never allocate more than 1 bio at a time
401  *   from this pool. Callers that need to allocate more than 1 bio must always
402  *   submit the previously allocated bio for IO before attempting to allocate
403  *   a new one. Failure to do so can cause deadlocks under memory pressure.
404  *
405  *   Note that when running under generic_make_request() (i.e. any block
406  *   driver), bios are not submitted until after you return - see the code in
407  *   generic_make_request() that converts recursion into iteration, to prevent
408  *   stack overflows.
409  *
410  *   This would normally mean allocating multiple bios under
411  *   generic_make_request() would be susceptible to deadlocks, but we have
412  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
413  *   thread.
414  *
415  *   However, we do not guarantee forward progress for allocations from other
416  *   mempools. Doing multiple allocations from the same mempool under
417  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
418  *   for per bio allocations.
419  *
420  *   RETURNS:
421  *   Pointer to new bio on success, NULL on failure.
422  */
423 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
424 {
425 	gfp_t saved_gfp = gfp_mask;
426 	unsigned front_pad;
427 	unsigned inline_vecs;
428 	unsigned long idx = BIO_POOL_NONE;
429 	struct bio_vec *bvl = NULL;
430 	struct bio *bio;
431 	void *p;
432 
433 	if (!bs) {
434 		if (nr_iovecs > UIO_MAXIOV)
435 			return NULL;
436 
437 		p = kmalloc(sizeof(struct bio) +
438 			    nr_iovecs * sizeof(struct bio_vec),
439 			    gfp_mask);
440 		front_pad = 0;
441 		inline_vecs = nr_iovecs;
442 	} else {
443 		/* should not use nobvec bioset for nr_iovecs > 0 */
444 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
445 			return NULL;
446 		/*
447 		 * generic_make_request() converts recursion to iteration; this
448 		 * means if we're running beneath it, any bios we allocate and
449 		 * submit will not be submitted (and thus freed) until after we
450 		 * return.
451 		 *
452 		 * This exposes us to a potential deadlock if we allocate
453 		 * multiple bios from the same bio_set() while running
454 		 * underneath generic_make_request(). If we were to allocate
455 		 * multiple bios (say a stacking block driver that was splitting
456 		 * bios), we would deadlock if we exhausted the mempool's
457 		 * reserve.
458 		 *
459 		 * We solve this, and guarantee forward progress, with a rescuer
460 		 * workqueue per bio_set. If we go to allocate and there are
461 		 * bios on current->bio_list, we first try the allocation
462 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
463 		 * bios we would be blocking to the rescuer workqueue before
464 		 * we retry with the original gfp_flags.
465 		 */
466 
467 		if (current->bio_list && !bio_list_empty(current->bio_list))
468 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
469 
470 		p = mempool_alloc(bs->bio_pool, gfp_mask);
471 		if (!p && gfp_mask != saved_gfp) {
472 			punt_bios_to_rescuer(bs);
473 			gfp_mask = saved_gfp;
474 			p = mempool_alloc(bs->bio_pool, gfp_mask);
475 		}
476 
477 		front_pad = bs->front_pad;
478 		inline_vecs = BIO_INLINE_VECS;
479 	}
480 
481 	if (unlikely(!p))
482 		return NULL;
483 
484 	bio = p + front_pad;
485 	bio_init(bio);
486 
487 	if (nr_iovecs > inline_vecs) {
488 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
489 		if (!bvl && gfp_mask != saved_gfp) {
490 			punt_bios_to_rescuer(bs);
491 			gfp_mask = saved_gfp;
492 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
493 		}
494 
495 		if (unlikely(!bvl))
496 			goto err_free;
497 
498 		bio_set_flag(bio, BIO_OWNS_VEC);
499 	} else if (nr_iovecs) {
500 		bvl = bio->bi_inline_vecs;
501 	}
502 
503 	bio->bi_pool = bs;
504 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
505 	bio->bi_max_vecs = nr_iovecs;
506 	bio->bi_io_vec = bvl;
507 	return bio;
508 
509 err_free:
510 	mempool_free(p, bs->bio_pool);
511 	return NULL;
512 }
513 EXPORT_SYMBOL(bio_alloc_bioset);
514 
515 void zero_fill_bio(struct bio *bio)
516 {
517 	unsigned long flags;
518 	struct bio_vec bv;
519 	struct bvec_iter iter;
520 
521 	bio_for_each_segment(bv, bio, iter) {
522 		char *data = bvec_kmap_irq(&bv, &flags);
523 		memset(data, 0, bv.bv_len);
524 		flush_dcache_page(bv.bv_page);
525 		bvec_kunmap_irq(data, &flags);
526 	}
527 }
528 EXPORT_SYMBOL(zero_fill_bio);
529 
530 /**
531  * bio_put - release a reference to a bio
532  * @bio:   bio to release reference to
533  *
534  * Description:
535  *   Put a reference to a &struct bio, either one you have gotten with
536  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
537  **/
538 void bio_put(struct bio *bio)
539 {
540 	if (!bio_flagged(bio, BIO_REFFED))
541 		bio_free(bio);
542 	else {
543 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
544 
545 		/*
546 		 * last put frees it
547 		 */
548 		if (atomic_dec_and_test(&bio->__bi_cnt))
549 			bio_free(bio);
550 	}
551 }
552 EXPORT_SYMBOL(bio_put);
553 
554 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
555 {
556 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
557 		blk_recount_segments(q, bio);
558 
559 	return bio->bi_phys_segments;
560 }
561 EXPORT_SYMBOL(bio_phys_segments);
562 
563 /**
564  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
565  * 	@bio: destination bio
566  * 	@bio_src: bio to clone
567  *
568  *	Clone a &bio. Caller will own the returned bio, but not
569  *	the actual data it points to. Reference count of returned
570  * 	bio will be one.
571  *
572  * 	Caller must ensure that @bio_src is not freed before @bio.
573  */
574 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
575 {
576 	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
577 
578 	/*
579 	 * most users will be overriding ->bi_bdev with a new target,
580 	 * so we don't set nor calculate new physical/hw segment counts here
581 	 */
582 	bio->bi_bdev = bio_src->bi_bdev;
583 	bio_set_flag(bio, BIO_CLONED);
584 	bio->bi_rw = bio_src->bi_rw;
585 	bio->bi_iter = bio_src->bi_iter;
586 	bio->bi_io_vec = bio_src->bi_io_vec;
587 }
588 EXPORT_SYMBOL(__bio_clone_fast);
589 
590 /**
591  *	bio_clone_fast - clone a bio that shares the original bio's biovec
592  *	@bio: bio to clone
593  *	@gfp_mask: allocation priority
594  *	@bs: bio_set to allocate from
595  *
596  * 	Like __bio_clone_fast, only also allocates the returned bio
597  */
598 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
599 {
600 	struct bio *b;
601 
602 	b = bio_alloc_bioset(gfp_mask, 0, bs);
603 	if (!b)
604 		return NULL;
605 
606 	__bio_clone_fast(b, bio);
607 
608 	if (bio_integrity(bio)) {
609 		int ret;
610 
611 		ret = bio_integrity_clone(b, bio, gfp_mask);
612 
613 		if (ret < 0) {
614 			bio_put(b);
615 			return NULL;
616 		}
617 	}
618 
619 	return b;
620 }
621 EXPORT_SYMBOL(bio_clone_fast);
622 
623 /**
624  * 	bio_clone_bioset - clone a bio
625  * 	@bio_src: bio to clone
626  *	@gfp_mask: allocation priority
627  *	@bs: bio_set to allocate from
628  *
629  *	Clone bio. Caller will own the returned bio, but not the actual data it
630  *	points to. Reference count of returned bio will be one.
631  */
632 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
633 			     struct bio_set *bs)
634 {
635 	struct bvec_iter iter;
636 	struct bio_vec bv;
637 	struct bio *bio;
638 
639 	/*
640 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
641 	 * bio_src->bi_io_vec to bio->bi_io_vec.
642 	 *
643 	 * We can't do that anymore, because:
644 	 *
645 	 *  - The point of cloning the biovec is to produce a bio with a biovec
646 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
647 	 *
648 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
649 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
650 	 *    But the clone should succeed as long as the number of biovecs we
651 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
652 	 *
653 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
654 	 *    that does not own the bio - reason being drivers don't use it for
655 	 *    iterating over the biovec anymore, so expecting it to be kept up
656 	 *    to date (i.e. for clones that share the parent biovec) is just
657 	 *    asking for trouble and would force extra work on
658 	 *    __bio_clone_fast() anyways.
659 	 */
660 
661 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
662 	if (!bio)
663 		return NULL;
664 
665 	bio->bi_bdev		= bio_src->bi_bdev;
666 	bio->bi_rw		= bio_src->bi_rw;
667 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
668 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
669 
670 	if (bio->bi_rw & REQ_DISCARD)
671 		goto integrity_clone;
672 
673 	if (bio->bi_rw & REQ_WRITE_SAME) {
674 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
675 		goto integrity_clone;
676 	}
677 
678 	bio_for_each_segment(bv, bio_src, iter)
679 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
680 
681 integrity_clone:
682 	if (bio_integrity(bio_src)) {
683 		int ret;
684 
685 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
686 		if (ret < 0) {
687 			bio_put(bio);
688 			return NULL;
689 		}
690 	}
691 
692 	return bio;
693 }
694 EXPORT_SYMBOL(bio_clone_bioset);
695 
696 /**
697  *	bio_add_pc_page	-	attempt to add page to bio
698  *	@q: the target queue
699  *	@bio: destination bio
700  *	@page: page to add
701  *	@len: vec entry length
702  *	@offset: vec entry offset
703  *
704  *	Attempt to add a page to the bio_vec maplist. This can fail for a
705  *	number of reasons, such as the bio being full or target block device
706  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
707  *	so it is always possible to add a single page to an empty bio.
708  *
709  *	This should only be used by REQ_PC bios.
710  */
711 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
712 		    *page, unsigned int len, unsigned int offset)
713 {
714 	int retried_segments = 0;
715 	struct bio_vec *bvec;
716 
717 	/*
718 	 * cloned bio must not modify vec list
719 	 */
720 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
721 		return 0;
722 
723 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
724 		return 0;
725 
726 	/*
727 	 * For filesystems with a blocksize smaller than the pagesize
728 	 * we will often be called with the same page as last time and
729 	 * a consecutive offset.  Optimize this special case.
730 	 */
731 	if (bio->bi_vcnt > 0) {
732 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
733 
734 		if (page == prev->bv_page &&
735 		    offset == prev->bv_offset + prev->bv_len) {
736 			prev->bv_len += len;
737 			bio->bi_iter.bi_size += len;
738 			goto done;
739 		}
740 
741 		/*
742 		 * If the queue doesn't support SG gaps and adding this
743 		 * offset would create a gap, disallow it.
744 		 */
745 		if (bvec_gap_to_prev(q, prev, offset))
746 			return 0;
747 	}
748 
749 	if (bio->bi_vcnt >= bio->bi_max_vecs)
750 		return 0;
751 
752 	/*
753 	 * setup the new entry, we might clear it again later if we
754 	 * cannot add the page
755 	 */
756 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
757 	bvec->bv_page = page;
758 	bvec->bv_len = len;
759 	bvec->bv_offset = offset;
760 	bio->bi_vcnt++;
761 	bio->bi_phys_segments++;
762 	bio->bi_iter.bi_size += len;
763 
764 	/*
765 	 * Perform a recount if the number of segments is greater
766 	 * than queue_max_segments(q).
767 	 */
768 
769 	while (bio->bi_phys_segments > queue_max_segments(q)) {
770 
771 		if (retried_segments)
772 			goto failed;
773 
774 		retried_segments = 1;
775 		blk_recount_segments(q, bio);
776 	}
777 
778 	/* If we may be able to merge these biovecs, force a recount */
779 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
780 		bio_clear_flag(bio, BIO_SEG_VALID);
781 
782  done:
783 	return len;
784 
785  failed:
786 	bvec->bv_page = NULL;
787 	bvec->bv_len = 0;
788 	bvec->bv_offset = 0;
789 	bio->bi_vcnt--;
790 	bio->bi_iter.bi_size -= len;
791 	blk_recount_segments(q, bio);
792 	return 0;
793 }
794 EXPORT_SYMBOL(bio_add_pc_page);
795 
796 /**
797  *	bio_add_page	-	attempt to add page to bio
798  *	@bio: destination bio
799  *	@page: page to add
800  *	@len: vec entry length
801  *	@offset: vec entry offset
802  *
803  *	Attempt to add a page to the bio_vec maplist. This will only fail
804  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
805  */
806 int bio_add_page(struct bio *bio, struct page *page,
807 		 unsigned int len, unsigned int offset)
808 {
809 	struct bio_vec *bv;
810 
811 	/*
812 	 * cloned bio must not modify vec list
813 	 */
814 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
815 		return 0;
816 
817 	/*
818 	 * For filesystems with a blocksize smaller than the pagesize
819 	 * we will often be called with the same page as last time and
820 	 * a consecutive offset.  Optimize this special case.
821 	 */
822 	if (bio->bi_vcnt > 0) {
823 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
824 
825 		if (page == bv->bv_page &&
826 		    offset == bv->bv_offset + bv->bv_len) {
827 			bv->bv_len += len;
828 			goto done;
829 		}
830 	}
831 
832 	if (bio->bi_vcnt >= bio->bi_max_vecs)
833 		return 0;
834 
835 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
836 	bv->bv_page	= page;
837 	bv->bv_len	= len;
838 	bv->bv_offset	= offset;
839 
840 	bio->bi_vcnt++;
841 done:
842 	bio->bi_iter.bi_size += len;
843 	return len;
844 }
845 EXPORT_SYMBOL(bio_add_page);
846 
847 struct submit_bio_ret {
848 	struct completion event;
849 	int error;
850 };
851 
852 static void submit_bio_wait_endio(struct bio *bio)
853 {
854 	struct submit_bio_ret *ret = bio->bi_private;
855 
856 	ret->error = bio->bi_error;
857 	complete(&ret->event);
858 }
859 
860 /**
861  * submit_bio_wait - submit a bio, and wait until it completes
862  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
863  * @bio: The &struct bio which describes the I/O
864  *
865  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
866  * bio_endio() on failure.
867  */
868 int submit_bio_wait(int rw, struct bio *bio)
869 {
870 	struct submit_bio_ret ret;
871 
872 	rw |= REQ_SYNC;
873 	init_completion(&ret.event);
874 	bio->bi_private = &ret;
875 	bio->bi_end_io = submit_bio_wait_endio;
876 	submit_bio(rw, bio);
877 	wait_for_completion(&ret.event);
878 
879 	return ret.error;
880 }
881 EXPORT_SYMBOL(submit_bio_wait);
882 
883 /**
884  * bio_advance - increment/complete a bio by some number of bytes
885  * @bio:	bio to advance
886  * @bytes:	number of bytes to complete
887  *
888  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
889  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
890  * be updated on the last bvec as well.
891  *
892  * @bio will then represent the remaining, uncompleted portion of the io.
893  */
894 void bio_advance(struct bio *bio, unsigned bytes)
895 {
896 	if (bio_integrity(bio))
897 		bio_integrity_advance(bio, bytes);
898 
899 	bio_advance_iter(bio, &bio->bi_iter, bytes);
900 }
901 EXPORT_SYMBOL(bio_advance);
902 
903 /**
904  * bio_alloc_pages - allocates a single page for each bvec in a bio
905  * @bio: bio to allocate pages for
906  * @gfp_mask: flags for allocation
907  *
908  * Allocates pages up to @bio->bi_vcnt.
909  *
910  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
911  * freed.
912  */
913 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
914 {
915 	int i;
916 	struct bio_vec *bv;
917 
918 	bio_for_each_segment_all(bv, bio, i) {
919 		bv->bv_page = alloc_page(gfp_mask);
920 		if (!bv->bv_page) {
921 			while (--bv >= bio->bi_io_vec)
922 				__free_page(bv->bv_page);
923 			return -ENOMEM;
924 		}
925 	}
926 
927 	return 0;
928 }
929 EXPORT_SYMBOL(bio_alloc_pages);
930 
931 /**
932  * bio_copy_data - copy contents of data buffers from one chain of bios to
933  * another
934  * @src: source bio list
935  * @dst: destination bio list
936  *
937  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
938  * @src and @dst as linked lists of bios.
939  *
940  * Stops when it reaches the end of either @src or @dst - that is, copies
941  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
942  */
943 void bio_copy_data(struct bio *dst, struct bio *src)
944 {
945 	struct bvec_iter src_iter, dst_iter;
946 	struct bio_vec src_bv, dst_bv;
947 	void *src_p, *dst_p;
948 	unsigned bytes;
949 
950 	src_iter = src->bi_iter;
951 	dst_iter = dst->bi_iter;
952 
953 	while (1) {
954 		if (!src_iter.bi_size) {
955 			src = src->bi_next;
956 			if (!src)
957 				break;
958 
959 			src_iter = src->bi_iter;
960 		}
961 
962 		if (!dst_iter.bi_size) {
963 			dst = dst->bi_next;
964 			if (!dst)
965 				break;
966 
967 			dst_iter = dst->bi_iter;
968 		}
969 
970 		src_bv = bio_iter_iovec(src, src_iter);
971 		dst_bv = bio_iter_iovec(dst, dst_iter);
972 
973 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
974 
975 		src_p = kmap_atomic(src_bv.bv_page);
976 		dst_p = kmap_atomic(dst_bv.bv_page);
977 
978 		memcpy(dst_p + dst_bv.bv_offset,
979 		       src_p + src_bv.bv_offset,
980 		       bytes);
981 
982 		kunmap_atomic(dst_p);
983 		kunmap_atomic(src_p);
984 
985 		bio_advance_iter(src, &src_iter, bytes);
986 		bio_advance_iter(dst, &dst_iter, bytes);
987 	}
988 }
989 EXPORT_SYMBOL(bio_copy_data);
990 
991 struct bio_map_data {
992 	int is_our_pages;
993 	struct iov_iter iter;
994 	struct iovec iov[];
995 };
996 
997 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
998 					       gfp_t gfp_mask)
999 {
1000 	if (iov_count > UIO_MAXIOV)
1001 		return NULL;
1002 
1003 	return kmalloc(sizeof(struct bio_map_data) +
1004 		       sizeof(struct iovec) * iov_count, gfp_mask);
1005 }
1006 
1007 /**
1008  * bio_copy_from_iter - copy all pages from iov_iter to bio
1009  * @bio: The &struct bio which describes the I/O as destination
1010  * @iter: iov_iter as source
1011  *
1012  * Copy all pages from iov_iter to bio.
1013  * Returns 0 on success, or error on failure.
1014  */
1015 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1016 {
1017 	int i;
1018 	struct bio_vec *bvec;
1019 
1020 	bio_for_each_segment_all(bvec, bio, i) {
1021 		ssize_t ret;
1022 
1023 		ret = copy_page_from_iter(bvec->bv_page,
1024 					  bvec->bv_offset,
1025 					  bvec->bv_len,
1026 					  &iter);
1027 
1028 		if (!iov_iter_count(&iter))
1029 			break;
1030 
1031 		if (ret < bvec->bv_len)
1032 			return -EFAULT;
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 /**
1039  * bio_copy_to_iter - copy all pages from bio to iov_iter
1040  * @bio: The &struct bio which describes the I/O as source
1041  * @iter: iov_iter as destination
1042  *
1043  * Copy all pages from bio to iov_iter.
1044  * Returns 0 on success, or error on failure.
1045  */
1046 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1047 {
1048 	int i;
1049 	struct bio_vec *bvec;
1050 
1051 	bio_for_each_segment_all(bvec, bio, i) {
1052 		ssize_t ret;
1053 
1054 		ret = copy_page_to_iter(bvec->bv_page,
1055 					bvec->bv_offset,
1056 					bvec->bv_len,
1057 					&iter);
1058 
1059 		if (!iov_iter_count(&iter))
1060 			break;
1061 
1062 		if (ret < bvec->bv_len)
1063 			return -EFAULT;
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 static void bio_free_pages(struct bio *bio)
1070 {
1071 	struct bio_vec *bvec;
1072 	int i;
1073 
1074 	bio_for_each_segment_all(bvec, bio, i)
1075 		__free_page(bvec->bv_page);
1076 }
1077 
1078 /**
1079  *	bio_uncopy_user	-	finish previously mapped bio
1080  *	@bio: bio being terminated
1081  *
1082  *	Free pages allocated from bio_copy_user_iov() and write back data
1083  *	to user space in case of a read.
1084  */
1085 int bio_uncopy_user(struct bio *bio)
1086 {
1087 	struct bio_map_data *bmd = bio->bi_private;
1088 	int ret = 0;
1089 
1090 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1091 		/*
1092 		 * if we're in a workqueue, the request is orphaned, so
1093 		 * don't copy into a random user address space, just free.
1094 		 */
1095 		if (current->mm && bio_data_dir(bio) == READ)
1096 			ret = bio_copy_to_iter(bio, bmd->iter);
1097 		if (bmd->is_our_pages)
1098 			bio_free_pages(bio);
1099 	}
1100 	kfree(bmd);
1101 	bio_put(bio);
1102 	return ret;
1103 }
1104 EXPORT_SYMBOL(bio_uncopy_user);
1105 
1106 /**
1107  *	bio_copy_user_iov	-	copy user data to bio
1108  *	@q:		destination block queue
1109  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1110  *	@iter:		iovec iterator
1111  *	@gfp_mask:	memory allocation flags
1112  *
1113  *	Prepares and returns a bio for indirect user io, bouncing data
1114  *	to/from kernel pages as necessary. Must be paired with
1115  *	call bio_uncopy_user() on io completion.
1116  */
1117 struct bio *bio_copy_user_iov(struct request_queue *q,
1118 			      struct rq_map_data *map_data,
1119 			      const struct iov_iter *iter,
1120 			      gfp_t gfp_mask)
1121 {
1122 	struct bio_map_data *bmd;
1123 	struct page *page;
1124 	struct bio *bio;
1125 	int i, ret;
1126 	int nr_pages = 0;
1127 	unsigned int len = iter->count;
1128 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1129 
1130 	for (i = 0; i < iter->nr_segs; i++) {
1131 		unsigned long uaddr;
1132 		unsigned long end;
1133 		unsigned long start;
1134 
1135 		uaddr = (unsigned long) iter->iov[i].iov_base;
1136 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1137 			>> PAGE_SHIFT;
1138 		start = uaddr >> PAGE_SHIFT;
1139 
1140 		/*
1141 		 * Overflow, abort
1142 		 */
1143 		if (end < start)
1144 			return ERR_PTR(-EINVAL);
1145 
1146 		nr_pages += end - start;
1147 	}
1148 
1149 	if (offset)
1150 		nr_pages++;
1151 
1152 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1153 	if (!bmd)
1154 		return ERR_PTR(-ENOMEM);
1155 
1156 	/*
1157 	 * We need to do a deep copy of the iov_iter including the iovecs.
1158 	 * The caller provided iov might point to an on-stack or otherwise
1159 	 * shortlived one.
1160 	 */
1161 	bmd->is_our_pages = map_data ? 0 : 1;
1162 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1163 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1164 			iter->nr_segs, iter->count);
1165 
1166 	ret = -ENOMEM;
1167 	bio = bio_kmalloc(gfp_mask, nr_pages);
1168 	if (!bio)
1169 		goto out_bmd;
1170 
1171 	if (iter->type & WRITE)
1172 		bio->bi_rw |= REQ_WRITE;
1173 
1174 	ret = 0;
1175 
1176 	if (map_data) {
1177 		nr_pages = 1 << map_data->page_order;
1178 		i = map_data->offset / PAGE_SIZE;
1179 	}
1180 	while (len) {
1181 		unsigned int bytes = PAGE_SIZE;
1182 
1183 		bytes -= offset;
1184 
1185 		if (bytes > len)
1186 			bytes = len;
1187 
1188 		if (map_data) {
1189 			if (i == map_data->nr_entries * nr_pages) {
1190 				ret = -ENOMEM;
1191 				break;
1192 			}
1193 
1194 			page = map_data->pages[i / nr_pages];
1195 			page += (i % nr_pages);
1196 
1197 			i++;
1198 		} else {
1199 			page = alloc_page(q->bounce_gfp | gfp_mask);
1200 			if (!page) {
1201 				ret = -ENOMEM;
1202 				break;
1203 			}
1204 		}
1205 
1206 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1207 			break;
1208 
1209 		len -= bytes;
1210 		offset = 0;
1211 	}
1212 
1213 	if (ret)
1214 		goto cleanup;
1215 
1216 	/*
1217 	 * success
1218 	 */
1219 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1220 	    (map_data && map_data->from_user)) {
1221 		ret = bio_copy_from_iter(bio, *iter);
1222 		if (ret)
1223 			goto cleanup;
1224 	}
1225 
1226 	bio->bi_private = bmd;
1227 	return bio;
1228 cleanup:
1229 	if (!map_data)
1230 		bio_free_pages(bio);
1231 	bio_put(bio);
1232 out_bmd:
1233 	kfree(bmd);
1234 	return ERR_PTR(ret);
1235 }
1236 
1237 /**
1238  *	bio_map_user_iov - map user iovec into bio
1239  *	@q:		the struct request_queue for the bio
1240  *	@iter:		iovec iterator
1241  *	@gfp_mask:	memory allocation flags
1242  *
1243  *	Map the user space address into a bio suitable for io to a block
1244  *	device. Returns an error pointer in case of error.
1245  */
1246 struct bio *bio_map_user_iov(struct request_queue *q,
1247 			     const struct iov_iter *iter,
1248 			     gfp_t gfp_mask)
1249 {
1250 	int j;
1251 	int nr_pages = 0;
1252 	struct page **pages;
1253 	struct bio *bio;
1254 	int cur_page = 0;
1255 	int ret, offset;
1256 	struct iov_iter i;
1257 	struct iovec iov;
1258 
1259 	iov_for_each(iov, i, *iter) {
1260 		unsigned long uaddr = (unsigned long) iov.iov_base;
1261 		unsigned long len = iov.iov_len;
1262 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1263 		unsigned long start = uaddr >> PAGE_SHIFT;
1264 
1265 		/*
1266 		 * Overflow, abort
1267 		 */
1268 		if (end < start)
1269 			return ERR_PTR(-EINVAL);
1270 
1271 		nr_pages += end - start;
1272 		/*
1273 		 * buffer must be aligned to at least hardsector size for now
1274 		 */
1275 		if (uaddr & queue_dma_alignment(q))
1276 			return ERR_PTR(-EINVAL);
1277 	}
1278 
1279 	if (!nr_pages)
1280 		return ERR_PTR(-EINVAL);
1281 
1282 	bio = bio_kmalloc(gfp_mask, nr_pages);
1283 	if (!bio)
1284 		return ERR_PTR(-ENOMEM);
1285 
1286 	ret = -ENOMEM;
1287 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1288 	if (!pages)
1289 		goto out;
1290 
1291 	iov_for_each(iov, i, *iter) {
1292 		unsigned long uaddr = (unsigned long) iov.iov_base;
1293 		unsigned long len = iov.iov_len;
1294 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1295 		unsigned long start = uaddr >> PAGE_SHIFT;
1296 		const int local_nr_pages = end - start;
1297 		const int page_limit = cur_page + local_nr_pages;
1298 
1299 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1300 				(iter->type & WRITE) != WRITE,
1301 				&pages[cur_page]);
1302 		if (ret < local_nr_pages) {
1303 			ret = -EFAULT;
1304 			goto out_unmap;
1305 		}
1306 
1307 		offset = offset_in_page(uaddr);
1308 		for (j = cur_page; j < page_limit; j++) {
1309 			unsigned int bytes = PAGE_SIZE - offset;
1310 
1311 			if (len <= 0)
1312 				break;
1313 
1314 			if (bytes > len)
1315 				bytes = len;
1316 
1317 			/*
1318 			 * sorry...
1319 			 */
1320 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1321 					    bytes)
1322 				break;
1323 
1324 			len -= bytes;
1325 			offset = 0;
1326 		}
1327 
1328 		cur_page = j;
1329 		/*
1330 		 * release the pages we didn't map into the bio, if any
1331 		 */
1332 		while (j < page_limit)
1333 			page_cache_release(pages[j++]);
1334 	}
1335 
1336 	kfree(pages);
1337 
1338 	/*
1339 	 * set data direction, and check if mapped pages need bouncing
1340 	 */
1341 	if (iter->type & WRITE)
1342 		bio->bi_rw |= REQ_WRITE;
1343 
1344 	bio_set_flag(bio, BIO_USER_MAPPED);
1345 
1346 	/*
1347 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1348 	 * it would normally disappear when its bi_end_io is run.
1349 	 * however, we need it for the unmap, so grab an extra
1350 	 * reference to it
1351 	 */
1352 	bio_get(bio);
1353 	return bio;
1354 
1355  out_unmap:
1356 	for (j = 0; j < nr_pages; j++) {
1357 		if (!pages[j])
1358 			break;
1359 		page_cache_release(pages[j]);
1360 	}
1361  out:
1362 	kfree(pages);
1363 	bio_put(bio);
1364 	return ERR_PTR(ret);
1365 }
1366 
1367 static void __bio_unmap_user(struct bio *bio)
1368 {
1369 	struct bio_vec *bvec;
1370 	int i;
1371 
1372 	/*
1373 	 * make sure we dirty pages we wrote to
1374 	 */
1375 	bio_for_each_segment_all(bvec, bio, i) {
1376 		if (bio_data_dir(bio) == READ)
1377 			set_page_dirty_lock(bvec->bv_page);
1378 
1379 		page_cache_release(bvec->bv_page);
1380 	}
1381 
1382 	bio_put(bio);
1383 }
1384 
1385 /**
1386  *	bio_unmap_user	-	unmap a bio
1387  *	@bio:		the bio being unmapped
1388  *
1389  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1390  *	a process context.
1391  *
1392  *	bio_unmap_user() may sleep.
1393  */
1394 void bio_unmap_user(struct bio *bio)
1395 {
1396 	__bio_unmap_user(bio);
1397 	bio_put(bio);
1398 }
1399 EXPORT_SYMBOL(bio_unmap_user);
1400 
1401 static void bio_map_kern_endio(struct bio *bio)
1402 {
1403 	bio_put(bio);
1404 }
1405 
1406 /**
1407  *	bio_map_kern	-	map kernel address into bio
1408  *	@q: the struct request_queue for the bio
1409  *	@data: pointer to buffer to map
1410  *	@len: length in bytes
1411  *	@gfp_mask: allocation flags for bio allocation
1412  *
1413  *	Map the kernel address into a bio suitable for io to a block
1414  *	device. Returns an error pointer in case of error.
1415  */
1416 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1417 			 gfp_t gfp_mask)
1418 {
1419 	unsigned long kaddr = (unsigned long)data;
1420 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1421 	unsigned long start = kaddr >> PAGE_SHIFT;
1422 	const int nr_pages = end - start;
1423 	int offset, i;
1424 	struct bio *bio;
1425 
1426 	bio = bio_kmalloc(gfp_mask, nr_pages);
1427 	if (!bio)
1428 		return ERR_PTR(-ENOMEM);
1429 
1430 	offset = offset_in_page(kaddr);
1431 	for (i = 0; i < nr_pages; i++) {
1432 		unsigned int bytes = PAGE_SIZE - offset;
1433 
1434 		if (len <= 0)
1435 			break;
1436 
1437 		if (bytes > len)
1438 			bytes = len;
1439 
1440 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1441 				    offset) < bytes) {
1442 			/* we don't support partial mappings */
1443 			bio_put(bio);
1444 			return ERR_PTR(-EINVAL);
1445 		}
1446 
1447 		data += bytes;
1448 		len -= bytes;
1449 		offset = 0;
1450 	}
1451 
1452 	bio->bi_end_io = bio_map_kern_endio;
1453 	return bio;
1454 }
1455 EXPORT_SYMBOL(bio_map_kern);
1456 
1457 static void bio_copy_kern_endio(struct bio *bio)
1458 {
1459 	bio_free_pages(bio);
1460 	bio_put(bio);
1461 }
1462 
1463 static void bio_copy_kern_endio_read(struct bio *bio)
1464 {
1465 	char *p = bio->bi_private;
1466 	struct bio_vec *bvec;
1467 	int i;
1468 
1469 	bio_for_each_segment_all(bvec, bio, i) {
1470 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1471 		p += bvec->bv_len;
1472 	}
1473 
1474 	bio_copy_kern_endio(bio);
1475 }
1476 
1477 /**
1478  *	bio_copy_kern	-	copy kernel address into bio
1479  *	@q: the struct request_queue for the bio
1480  *	@data: pointer to buffer to copy
1481  *	@len: length in bytes
1482  *	@gfp_mask: allocation flags for bio and page allocation
1483  *	@reading: data direction is READ
1484  *
1485  *	copy the kernel address into a bio suitable for io to a block
1486  *	device. Returns an error pointer in case of error.
1487  */
1488 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1489 			  gfp_t gfp_mask, int reading)
1490 {
1491 	unsigned long kaddr = (unsigned long)data;
1492 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1493 	unsigned long start = kaddr >> PAGE_SHIFT;
1494 	struct bio *bio;
1495 	void *p = data;
1496 	int nr_pages = 0;
1497 
1498 	/*
1499 	 * Overflow, abort
1500 	 */
1501 	if (end < start)
1502 		return ERR_PTR(-EINVAL);
1503 
1504 	nr_pages = end - start;
1505 	bio = bio_kmalloc(gfp_mask, nr_pages);
1506 	if (!bio)
1507 		return ERR_PTR(-ENOMEM);
1508 
1509 	while (len) {
1510 		struct page *page;
1511 		unsigned int bytes = PAGE_SIZE;
1512 
1513 		if (bytes > len)
1514 			bytes = len;
1515 
1516 		page = alloc_page(q->bounce_gfp | gfp_mask);
1517 		if (!page)
1518 			goto cleanup;
1519 
1520 		if (!reading)
1521 			memcpy(page_address(page), p, bytes);
1522 
1523 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1524 			break;
1525 
1526 		len -= bytes;
1527 		p += bytes;
1528 	}
1529 
1530 	if (reading) {
1531 		bio->bi_end_io = bio_copy_kern_endio_read;
1532 		bio->bi_private = data;
1533 	} else {
1534 		bio->bi_end_io = bio_copy_kern_endio;
1535 		bio->bi_rw |= REQ_WRITE;
1536 	}
1537 
1538 	return bio;
1539 
1540 cleanup:
1541 	bio_free_pages(bio);
1542 	bio_put(bio);
1543 	return ERR_PTR(-ENOMEM);
1544 }
1545 EXPORT_SYMBOL(bio_copy_kern);
1546 
1547 /*
1548  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1549  * for performing direct-IO in BIOs.
1550  *
1551  * The problem is that we cannot run set_page_dirty() from interrupt context
1552  * because the required locks are not interrupt-safe.  So what we can do is to
1553  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1554  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1555  * in process context.
1556  *
1557  * We special-case compound pages here: normally this means reads into hugetlb
1558  * pages.  The logic in here doesn't really work right for compound pages
1559  * because the VM does not uniformly chase down the head page in all cases.
1560  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1561  * handle them at all.  So we skip compound pages here at an early stage.
1562  *
1563  * Note that this code is very hard to test under normal circumstances because
1564  * direct-io pins the pages with get_user_pages().  This makes
1565  * is_page_cache_freeable return false, and the VM will not clean the pages.
1566  * But other code (eg, flusher threads) could clean the pages if they are mapped
1567  * pagecache.
1568  *
1569  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1570  * deferred bio dirtying paths.
1571  */
1572 
1573 /*
1574  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1575  */
1576 void bio_set_pages_dirty(struct bio *bio)
1577 {
1578 	struct bio_vec *bvec;
1579 	int i;
1580 
1581 	bio_for_each_segment_all(bvec, bio, i) {
1582 		struct page *page = bvec->bv_page;
1583 
1584 		if (page && !PageCompound(page))
1585 			set_page_dirty_lock(page);
1586 	}
1587 }
1588 
1589 static void bio_release_pages(struct bio *bio)
1590 {
1591 	struct bio_vec *bvec;
1592 	int i;
1593 
1594 	bio_for_each_segment_all(bvec, bio, i) {
1595 		struct page *page = bvec->bv_page;
1596 
1597 		if (page)
1598 			put_page(page);
1599 	}
1600 }
1601 
1602 /*
1603  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1604  * If they are, then fine.  If, however, some pages are clean then they must
1605  * have been written out during the direct-IO read.  So we take another ref on
1606  * the BIO and the offending pages and re-dirty the pages in process context.
1607  *
1608  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1609  * here on.  It will run one page_cache_release() against each page and will
1610  * run one bio_put() against the BIO.
1611  */
1612 
1613 static void bio_dirty_fn(struct work_struct *work);
1614 
1615 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1616 static DEFINE_SPINLOCK(bio_dirty_lock);
1617 static struct bio *bio_dirty_list;
1618 
1619 /*
1620  * This runs in process context
1621  */
1622 static void bio_dirty_fn(struct work_struct *work)
1623 {
1624 	unsigned long flags;
1625 	struct bio *bio;
1626 
1627 	spin_lock_irqsave(&bio_dirty_lock, flags);
1628 	bio = bio_dirty_list;
1629 	bio_dirty_list = NULL;
1630 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1631 
1632 	while (bio) {
1633 		struct bio *next = bio->bi_private;
1634 
1635 		bio_set_pages_dirty(bio);
1636 		bio_release_pages(bio);
1637 		bio_put(bio);
1638 		bio = next;
1639 	}
1640 }
1641 
1642 void bio_check_pages_dirty(struct bio *bio)
1643 {
1644 	struct bio_vec *bvec;
1645 	int nr_clean_pages = 0;
1646 	int i;
1647 
1648 	bio_for_each_segment_all(bvec, bio, i) {
1649 		struct page *page = bvec->bv_page;
1650 
1651 		if (PageDirty(page) || PageCompound(page)) {
1652 			page_cache_release(page);
1653 			bvec->bv_page = NULL;
1654 		} else {
1655 			nr_clean_pages++;
1656 		}
1657 	}
1658 
1659 	if (nr_clean_pages) {
1660 		unsigned long flags;
1661 
1662 		spin_lock_irqsave(&bio_dirty_lock, flags);
1663 		bio->bi_private = bio_dirty_list;
1664 		bio_dirty_list = bio;
1665 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1666 		schedule_work(&bio_dirty_work);
1667 	} else {
1668 		bio_put(bio);
1669 	}
1670 }
1671 
1672 void generic_start_io_acct(int rw, unsigned long sectors,
1673 			   struct hd_struct *part)
1674 {
1675 	int cpu = part_stat_lock();
1676 
1677 	part_round_stats(cpu, part);
1678 	part_stat_inc(cpu, part, ios[rw]);
1679 	part_stat_add(cpu, part, sectors[rw], sectors);
1680 	part_inc_in_flight(part, rw);
1681 
1682 	part_stat_unlock();
1683 }
1684 EXPORT_SYMBOL(generic_start_io_acct);
1685 
1686 void generic_end_io_acct(int rw, struct hd_struct *part,
1687 			 unsigned long start_time)
1688 {
1689 	unsigned long duration = jiffies - start_time;
1690 	int cpu = part_stat_lock();
1691 
1692 	part_stat_add(cpu, part, ticks[rw], duration);
1693 	part_round_stats(cpu, part);
1694 	part_dec_in_flight(part, rw);
1695 
1696 	part_stat_unlock();
1697 }
1698 EXPORT_SYMBOL(generic_end_io_acct);
1699 
1700 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1701 void bio_flush_dcache_pages(struct bio *bi)
1702 {
1703 	struct bio_vec bvec;
1704 	struct bvec_iter iter;
1705 
1706 	bio_for_each_segment(bvec, bi, iter)
1707 		flush_dcache_page(bvec.bv_page);
1708 }
1709 EXPORT_SYMBOL(bio_flush_dcache_pages);
1710 #endif
1711 
1712 static inline bool bio_remaining_done(struct bio *bio)
1713 {
1714 	/*
1715 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1716 	 * we always end io on the first invocation.
1717 	 */
1718 	if (!bio_flagged(bio, BIO_CHAIN))
1719 		return true;
1720 
1721 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1722 
1723 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1724 		bio_clear_flag(bio, BIO_CHAIN);
1725 		return true;
1726 	}
1727 
1728 	return false;
1729 }
1730 
1731 /**
1732  * bio_endio - end I/O on a bio
1733  * @bio:	bio
1734  *
1735  * Description:
1736  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1737  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1738  *   bio unless they own it and thus know that it has an end_io function.
1739  **/
1740 void bio_endio(struct bio *bio)
1741 {
1742 	while (bio) {
1743 		if (unlikely(!bio_remaining_done(bio)))
1744 			break;
1745 
1746 		/*
1747 		 * Need to have a real endio function for chained bios,
1748 		 * otherwise various corner cases will break (like stacking
1749 		 * block devices that save/restore bi_end_io) - however, we want
1750 		 * to avoid unbounded recursion and blowing the stack. Tail call
1751 		 * optimization would handle this, but compiling with frame
1752 		 * pointers also disables gcc's sibling call optimization.
1753 		 */
1754 		if (bio->bi_end_io == bio_chain_endio) {
1755 			struct bio *parent = bio->bi_private;
1756 			parent->bi_error = bio->bi_error;
1757 			bio_put(bio);
1758 			bio = parent;
1759 		} else {
1760 			if (bio->bi_end_io)
1761 				bio->bi_end_io(bio);
1762 			bio = NULL;
1763 		}
1764 	}
1765 }
1766 EXPORT_SYMBOL(bio_endio);
1767 
1768 /**
1769  * bio_split - split a bio
1770  * @bio:	bio to split
1771  * @sectors:	number of sectors to split from the front of @bio
1772  * @gfp:	gfp mask
1773  * @bs:		bio set to allocate from
1774  *
1775  * Allocates and returns a new bio which represents @sectors from the start of
1776  * @bio, and updates @bio to represent the remaining sectors.
1777  *
1778  * Unless this is a discard request the newly allocated bio will point
1779  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1780  * @bio is not freed before the split.
1781  */
1782 struct bio *bio_split(struct bio *bio, int sectors,
1783 		      gfp_t gfp, struct bio_set *bs)
1784 {
1785 	struct bio *split = NULL;
1786 
1787 	BUG_ON(sectors <= 0);
1788 	BUG_ON(sectors >= bio_sectors(bio));
1789 
1790 	/*
1791 	 * Discards need a mutable bio_vec to accommodate the payload
1792 	 * required by the DSM TRIM and UNMAP commands.
1793 	 */
1794 	if (bio->bi_rw & REQ_DISCARD)
1795 		split = bio_clone_bioset(bio, gfp, bs);
1796 	else
1797 		split = bio_clone_fast(bio, gfp, bs);
1798 
1799 	if (!split)
1800 		return NULL;
1801 
1802 	split->bi_iter.bi_size = sectors << 9;
1803 
1804 	if (bio_integrity(split))
1805 		bio_integrity_trim(split, 0, sectors);
1806 
1807 	bio_advance(bio, split->bi_iter.bi_size);
1808 
1809 	return split;
1810 }
1811 EXPORT_SYMBOL(bio_split);
1812 
1813 /**
1814  * bio_trim - trim a bio
1815  * @bio:	bio to trim
1816  * @offset:	number of sectors to trim from the front of @bio
1817  * @size:	size we want to trim @bio to, in sectors
1818  */
1819 void bio_trim(struct bio *bio, int offset, int size)
1820 {
1821 	/* 'bio' is a cloned bio which we need to trim to match
1822 	 * the given offset and size.
1823 	 */
1824 
1825 	size <<= 9;
1826 	if (offset == 0 && size == bio->bi_iter.bi_size)
1827 		return;
1828 
1829 	bio_clear_flag(bio, BIO_SEG_VALID);
1830 
1831 	bio_advance(bio, offset << 9);
1832 
1833 	bio->bi_iter.bi_size = size;
1834 }
1835 EXPORT_SYMBOL_GPL(bio_trim);
1836 
1837 /*
1838  * create memory pools for biovec's in a bio_set.
1839  * use the global biovec slabs created for general use.
1840  */
1841 mempool_t *biovec_create_pool(int pool_entries)
1842 {
1843 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1844 
1845 	return mempool_create_slab_pool(pool_entries, bp->slab);
1846 }
1847 
1848 void bioset_free(struct bio_set *bs)
1849 {
1850 	if (bs->rescue_workqueue)
1851 		destroy_workqueue(bs->rescue_workqueue);
1852 
1853 	if (bs->bio_pool)
1854 		mempool_destroy(bs->bio_pool);
1855 
1856 	if (bs->bvec_pool)
1857 		mempool_destroy(bs->bvec_pool);
1858 
1859 	bioset_integrity_free(bs);
1860 	bio_put_slab(bs);
1861 
1862 	kfree(bs);
1863 }
1864 EXPORT_SYMBOL(bioset_free);
1865 
1866 static struct bio_set *__bioset_create(unsigned int pool_size,
1867 				       unsigned int front_pad,
1868 				       bool create_bvec_pool)
1869 {
1870 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1871 	struct bio_set *bs;
1872 
1873 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1874 	if (!bs)
1875 		return NULL;
1876 
1877 	bs->front_pad = front_pad;
1878 
1879 	spin_lock_init(&bs->rescue_lock);
1880 	bio_list_init(&bs->rescue_list);
1881 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1882 
1883 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1884 	if (!bs->bio_slab) {
1885 		kfree(bs);
1886 		return NULL;
1887 	}
1888 
1889 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1890 	if (!bs->bio_pool)
1891 		goto bad;
1892 
1893 	if (create_bvec_pool) {
1894 		bs->bvec_pool = biovec_create_pool(pool_size);
1895 		if (!bs->bvec_pool)
1896 			goto bad;
1897 	}
1898 
1899 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1900 	if (!bs->rescue_workqueue)
1901 		goto bad;
1902 
1903 	return bs;
1904 bad:
1905 	bioset_free(bs);
1906 	return NULL;
1907 }
1908 
1909 /**
1910  * bioset_create  - Create a bio_set
1911  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1912  * @front_pad:	Number of bytes to allocate in front of the returned bio
1913  *
1914  * Description:
1915  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1916  *    to ask for a number of bytes to be allocated in front of the bio.
1917  *    Front pad allocation is useful for embedding the bio inside
1918  *    another structure, to avoid allocating extra data to go with the bio.
1919  *    Note that the bio must be embedded at the END of that structure always,
1920  *    or things will break badly.
1921  */
1922 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1923 {
1924 	return __bioset_create(pool_size, front_pad, true);
1925 }
1926 EXPORT_SYMBOL(bioset_create);
1927 
1928 /**
1929  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1930  * @pool_size:	Number of bio to cache in the mempool
1931  * @front_pad:	Number of bytes to allocate in front of the returned bio
1932  *
1933  * Description:
1934  *    Same functionality as bioset_create() except that mempool is not
1935  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1936  */
1937 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1938 {
1939 	return __bioset_create(pool_size, front_pad, false);
1940 }
1941 EXPORT_SYMBOL(bioset_create_nobvec);
1942 
1943 #ifdef CONFIG_BLK_CGROUP
1944 
1945 /**
1946  * bio_associate_blkcg - associate a bio with the specified blkcg
1947  * @bio: target bio
1948  * @blkcg_css: css of the blkcg to associate
1949  *
1950  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1951  * treat @bio as if it were issued by a task which belongs to the blkcg.
1952  *
1953  * This function takes an extra reference of @blkcg_css which will be put
1954  * when @bio is released.  The caller must own @bio and is responsible for
1955  * synchronizing calls to this function.
1956  */
1957 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1958 {
1959 	if (unlikely(bio->bi_css))
1960 		return -EBUSY;
1961 	css_get(blkcg_css);
1962 	bio->bi_css = blkcg_css;
1963 	return 0;
1964 }
1965 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1966 
1967 /**
1968  * bio_associate_current - associate a bio with %current
1969  * @bio: target bio
1970  *
1971  * Associate @bio with %current if it hasn't been associated yet.  Block
1972  * layer will treat @bio as if it were issued by %current no matter which
1973  * task actually issues it.
1974  *
1975  * This function takes an extra reference of @task's io_context and blkcg
1976  * which will be put when @bio is released.  The caller must own @bio,
1977  * ensure %current->io_context exists, and is responsible for synchronizing
1978  * calls to this function.
1979  */
1980 int bio_associate_current(struct bio *bio)
1981 {
1982 	struct io_context *ioc;
1983 
1984 	if (bio->bi_css)
1985 		return -EBUSY;
1986 
1987 	ioc = current->io_context;
1988 	if (!ioc)
1989 		return -ENOENT;
1990 
1991 	get_io_context_active(ioc);
1992 	bio->bi_ioc = ioc;
1993 	bio->bi_css = task_get_css(current, io_cgrp_id);
1994 	return 0;
1995 }
1996 EXPORT_SYMBOL_GPL(bio_associate_current);
1997 
1998 /**
1999  * bio_disassociate_task - undo bio_associate_current()
2000  * @bio: target bio
2001  */
2002 void bio_disassociate_task(struct bio *bio)
2003 {
2004 	if (bio->bi_ioc) {
2005 		put_io_context(bio->bi_ioc);
2006 		bio->bi_ioc = NULL;
2007 	}
2008 	if (bio->bi_css) {
2009 		css_put(bio->bi_css);
2010 		bio->bi_css = NULL;
2011 	}
2012 }
2013 
2014 #endif /* CONFIG_BLK_CGROUP */
2015 
2016 static void __init biovec_init_slabs(void)
2017 {
2018 	int i;
2019 
2020 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2021 		int size;
2022 		struct biovec_slab *bvs = bvec_slabs + i;
2023 
2024 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2025 			bvs->slab = NULL;
2026 			continue;
2027 		}
2028 
2029 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2030 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2031                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2032 	}
2033 }
2034 
2035 static int __init init_bio(void)
2036 {
2037 	bio_slab_max = 2;
2038 	bio_slab_nr = 0;
2039 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2040 	if (!bio_slabs)
2041 		panic("bio: can't allocate bios\n");
2042 
2043 	bio_integrity_init();
2044 	biovec_init_slabs();
2045 
2046 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2047 	if (!fs_bio_set)
2048 		panic("bio: can't allocate bios\n");
2049 
2050 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2051 		panic("bio: can't create integrity pool\n");
2052 
2053 	return 0;
2054 }
2055 subsys_initcall(init_bio);
2056