1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 #include "blk.h" 34 35 /* 36 * Test patch to inline a certain number of bi_io_vec's inside the bio 37 * itself, to shrink a bio data allocation from two mempool calls to one 38 */ 39 #define BIO_INLINE_VECS 4 40 41 /* 42 * if you change this list, also change bvec_alloc or things will 43 * break badly! cannot be bigger than what you can fit into an 44 * unsigned short 45 */ 46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 49 }; 50 #undef BV 51 52 /* 53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 54 * IO code that does not need private memory pools. 55 */ 56 struct bio_set *fs_bio_set; 57 EXPORT_SYMBOL(fs_bio_set); 58 59 /* 60 * Our slab pool management 61 */ 62 struct bio_slab { 63 struct kmem_cache *slab; 64 unsigned int slab_ref; 65 unsigned int slab_size; 66 char name[8]; 67 }; 68 static DEFINE_MUTEX(bio_slab_lock); 69 static struct bio_slab *bio_slabs; 70 static unsigned int bio_slab_nr, bio_slab_max; 71 72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 73 { 74 unsigned int sz = sizeof(struct bio) + extra_size; 75 struct kmem_cache *slab = NULL; 76 struct bio_slab *bslab, *new_bio_slabs; 77 unsigned int new_bio_slab_max; 78 unsigned int i, entry = -1; 79 80 mutex_lock(&bio_slab_lock); 81 82 i = 0; 83 while (i < bio_slab_nr) { 84 bslab = &bio_slabs[i]; 85 86 if (!bslab->slab && entry == -1) 87 entry = i; 88 else if (bslab->slab_size == sz) { 89 slab = bslab->slab; 90 bslab->slab_ref++; 91 break; 92 } 93 i++; 94 } 95 96 if (slab) 97 goto out_unlock; 98 99 if (bio_slab_nr == bio_slab_max && entry == -1) { 100 new_bio_slab_max = bio_slab_max << 1; 101 new_bio_slabs = krealloc(bio_slabs, 102 new_bio_slab_max * sizeof(struct bio_slab), 103 GFP_KERNEL); 104 if (!new_bio_slabs) 105 goto out_unlock; 106 bio_slab_max = new_bio_slab_max; 107 bio_slabs = new_bio_slabs; 108 } 109 if (entry == -1) 110 entry = bio_slab_nr++; 111 112 bslab = &bio_slabs[entry]; 113 114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 116 SLAB_HWCACHE_ALIGN, NULL); 117 if (!slab) 118 goto out_unlock; 119 120 bslab->slab = slab; 121 bslab->slab_ref = 1; 122 bslab->slab_size = sz; 123 out_unlock: 124 mutex_unlock(&bio_slab_lock); 125 return slab; 126 } 127 128 static void bio_put_slab(struct bio_set *bs) 129 { 130 struct bio_slab *bslab = NULL; 131 unsigned int i; 132 133 mutex_lock(&bio_slab_lock); 134 135 for (i = 0; i < bio_slab_nr; i++) { 136 if (bs->bio_slab == bio_slabs[i].slab) { 137 bslab = &bio_slabs[i]; 138 break; 139 } 140 } 141 142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 143 goto out; 144 145 WARN_ON(!bslab->slab_ref); 146 147 if (--bslab->slab_ref) 148 goto out; 149 150 kmem_cache_destroy(bslab->slab); 151 bslab->slab = NULL; 152 153 out: 154 mutex_unlock(&bio_slab_lock); 155 } 156 157 unsigned int bvec_nr_vecs(unsigned short idx) 158 { 159 return bvec_slabs[idx].nr_vecs; 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 163 { 164 if (!idx) 165 return; 166 idx--; 167 168 BIO_BUG_ON(idx >= BVEC_POOL_NR); 169 170 if (idx == BVEC_POOL_MAX) { 171 mempool_free(bv, pool); 172 } else { 173 struct biovec_slab *bvs = bvec_slabs + idx; 174 175 kmem_cache_free(bvs->slab, bv); 176 } 177 } 178 179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 180 mempool_t *pool) 181 { 182 struct bio_vec *bvl; 183 184 /* 185 * see comment near bvec_array define! 186 */ 187 switch (nr) { 188 case 1: 189 *idx = 0; 190 break; 191 case 2 ... 4: 192 *idx = 1; 193 break; 194 case 5 ... 16: 195 *idx = 2; 196 break; 197 case 17 ... 64: 198 *idx = 3; 199 break; 200 case 65 ... 128: 201 *idx = 4; 202 break; 203 case 129 ... BIO_MAX_PAGES: 204 *idx = 5; 205 break; 206 default: 207 return NULL; 208 } 209 210 /* 211 * idx now points to the pool we want to allocate from. only the 212 * 1-vec entry pool is mempool backed. 213 */ 214 if (*idx == BVEC_POOL_MAX) { 215 fallback: 216 bvl = mempool_alloc(pool, gfp_mask); 217 } else { 218 struct biovec_slab *bvs = bvec_slabs + *idx; 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 220 221 /* 222 * Make this allocation restricted and don't dump info on 223 * allocation failures, since we'll fallback to the mempool 224 * in case of failure. 225 */ 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 227 228 /* 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 230 * is set, retry with the 1-entry mempool 231 */ 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 234 *idx = BVEC_POOL_MAX; 235 goto fallback; 236 } 237 } 238 239 (*idx)++; 240 return bvl; 241 } 242 243 void bio_uninit(struct bio *bio) 244 { 245 bio_disassociate_task(bio); 246 } 247 EXPORT_SYMBOL(bio_uninit); 248 249 static void bio_free(struct bio *bio) 250 { 251 struct bio_set *bs = bio->bi_pool; 252 void *p; 253 254 bio_uninit(bio); 255 256 if (bs) { 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 258 259 /* 260 * If we have front padding, adjust the bio pointer before freeing 261 */ 262 p = bio; 263 p -= bs->front_pad; 264 265 mempool_free(p, bs->bio_pool); 266 } else { 267 /* Bio was allocated by bio_kmalloc() */ 268 kfree(bio); 269 } 270 } 271 272 /* 273 * Users of this function have their own bio allocation. Subsequently, 274 * they must remember to pair any call to bio_init() with bio_uninit() 275 * when IO has completed, or when the bio is released. 276 */ 277 void bio_init(struct bio *bio, struct bio_vec *table, 278 unsigned short max_vecs) 279 { 280 memset(bio, 0, sizeof(*bio)); 281 atomic_set(&bio->__bi_remaining, 1); 282 atomic_set(&bio->__bi_cnt, 1); 283 284 bio->bi_io_vec = table; 285 bio->bi_max_vecs = max_vecs; 286 } 287 EXPORT_SYMBOL(bio_init); 288 289 /** 290 * bio_reset - reinitialize a bio 291 * @bio: bio to reset 292 * 293 * Description: 294 * After calling bio_reset(), @bio will be in the same state as a freshly 295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 296 * preserved are the ones that are initialized by bio_alloc_bioset(). See 297 * comment in struct bio. 298 */ 299 void bio_reset(struct bio *bio) 300 { 301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 302 303 bio_uninit(bio); 304 305 memset(bio, 0, BIO_RESET_BYTES); 306 bio->bi_flags = flags; 307 atomic_set(&bio->__bi_remaining, 1); 308 } 309 EXPORT_SYMBOL(bio_reset); 310 311 static struct bio *__bio_chain_endio(struct bio *bio) 312 { 313 struct bio *parent = bio->bi_private; 314 315 if (!parent->bi_status) 316 parent->bi_status = bio->bi_status; 317 bio_put(bio); 318 return parent; 319 } 320 321 static void bio_chain_endio(struct bio *bio) 322 { 323 bio_endio(__bio_chain_endio(bio)); 324 } 325 326 /** 327 * bio_chain - chain bio completions 328 * @bio: the target bio 329 * @parent: the @bio's parent bio 330 * 331 * The caller won't have a bi_end_io called when @bio completes - instead, 332 * @parent's bi_end_io won't be called until both @parent and @bio have 333 * completed; the chained bio will also be freed when it completes. 334 * 335 * The caller must not set bi_private or bi_end_io in @bio. 336 */ 337 void bio_chain(struct bio *bio, struct bio *parent) 338 { 339 BUG_ON(bio->bi_private || bio->bi_end_io); 340 341 bio->bi_private = parent; 342 bio->bi_end_io = bio_chain_endio; 343 bio_inc_remaining(parent); 344 } 345 EXPORT_SYMBOL(bio_chain); 346 347 static void bio_alloc_rescue(struct work_struct *work) 348 { 349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 350 struct bio *bio; 351 352 while (1) { 353 spin_lock(&bs->rescue_lock); 354 bio = bio_list_pop(&bs->rescue_list); 355 spin_unlock(&bs->rescue_lock); 356 357 if (!bio) 358 break; 359 360 generic_make_request(bio); 361 } 362 } 363 364 static void punt_bios_to_rescuer(struct bio_set *bs) 365 { 366 struct bio_list punt, nopunt; 367 struct bio *bio; 368 369 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 370 return; 371 /* 372 * In order to guarantee forward progress we must punt only bios that 373 * were allocated from this bio_set; otherwise, if there was a bio on 374 * there for a stacking driver higher up in the stack, processing it 375 * could require allocating bios from this bio_set, and doing that from 376 * our own rescuer would be bad. 377 * 378 * Since bio lists are singly linked, pop them all instead of trying to 379 * remove from the middle of the list: 380 */ 381 382 bio_list_init(&punt); 383 bio_list_init(&nopunt); 384 385 while ((bio = bio_list_pop(¤t->bio_list[0]))) 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 387 current->bio_list[0] = nopunt; 388 389 bio_list_init(&nopunt); 390 while ((bio = bio_list_pop(¤t->bio_list[1]))) 391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 392 current->bio_list[1] = nopunt; 393 394 spin_lock(&bs->rescue_lock); 395 bio_list_merge(&bs->rescue_list, &punt); 396 spin_unlock(&bs->rescue_lock); 397 398 queue_work(bs->rescue_workqueue, &bs->rescue_work); 399 } 400 401 /** 402 * bio_alloc_bioset - allocate a bio for I/O 403 * @gfp_mask: the GFP_* mask given to the slab allocator 404 * @nr_iovecs: number of iovecs to pre-allocate 405 * @bs: the bio_set to allocate from. 406 * 407 * Description: 408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 409 * backed by the @bs's mempool. 410 * 411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 412 * always be able to allocate a bio. This is due to the mempool guarantees. 413 * To make this work, callers must never allocate more than 1 bio at a time 414 * from this pool. Callers that need to allocate more than 1 bio must always 415 * submit the previously allocated bio for IO before attempting to allocate 416 * a new one. Failure to do so can cause deadlocks under memory pressure. 417 * 418 * Note that when running under generic_make_request() (i.e. any block 419 * driver), bios are not submitted until after you return - see the code in 420 * generic_make_request() that converts recursion into iteration, to prevent 421 * stack overflows. 422 * 423 * This would normally mean allocating multiple bios under 424 * generic_make_request() would be susceptible to deadlocks, but we have 425 * deadlock avoidance code that resubmits any blocked bios from a rescuer 426 * thread. 427 * 428 * However, we do not guarantee forward progress for allocations from other 429 * mempools. Doing multiple allocations from the same mempool under 430 * generic_make_request() should be avoided - instead, use bio_set's front_pad 431 * for per bio allocations. 432 * 433 * RETURNS: 434 * Pointer to new bio on success, NULL on failure. 435 */ 436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 437 struct bio_set *bs) 438 { 439 gfp_t saved_gfp = gfp_mask; 440 unsigned front_pad; 441 unsigned inline_vecs; 442 struct bio_vec *bvl = NULL; 443 struct bio *bio; 444 void *p; 445 446 if (!bs) { 447 if (nr_iovecs > UIO_MAXIOV) 448 return NULL; 449 450 p = kmalloc(sizeof(struct bio) + 451 nr_iovecs * sizeof(struct bio_vec), 452 gfp_mask); 453 front_pad = 0; 454 inline_vecs = nr_iovecs; 455 } else { 456 /* should not use nobvec bioset for nr_iovecs > 0 */ 457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 458 return NULL; 459 /* 460 * generic_make_request() converts recursion to iteration; this 461 * means if we're running beneath it, any bios we allocate and 462 * submit will not be submitted (and thus freed) until after we 463 * return. 464 * 465 * This exposes us to a potential deadlock if we allocate 466 * multiple bios from the same bio_set() while running 467 * underneath generic_make_request(). If we were to allocate 468 * multiple bios (say a stacking block driver that was splitting 469 * bios), we would deadlock if we exhausted the mempool's 470 * reserve. 471 * 472 * We solve this, and guarantee forward progress, with a rescuer 473 * workqueue per bio_set. If we go to allocate and there are 474 * bios on current->bio_list, we first try the allocation 475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 476 * bios we would be blocking to the rescuer workqueue before 477 * we retry with the original gfp_flags. 478 */ 479 480 if (current->bio_list && 481 (!bio_list_empty(¤t->bio_list[0]) || 482 !bio_list_empty(¤t->bio_list[1])) && 483 bs->rescue_workqueue) 484 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 485 486 p = mempool_alloc(bs->bio_pool, gfp_mask); 487 if (!p && gfp_mask != saved_gfp) { 488 punt_bios_to_rescuer(bs); 489 gfp_mask = saved_gfp; 490 p = mempool_alloc(bs->bio_pool, gfp_mask); 491 } 492 493 front_pad = bs->front_pad; 494 inline_vecs = BIO_INLINE_VECS; 495 } 496 497 if (unlikely(!p)) 498 return NULL; 499 500 bio = p + front_pad; 501 bio_init(bio, NULL, 0); 502 503 if (nr_iovecs > inline_vecs) { 504 unsigned long idx = 0; 505 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 507 if (!bvl && gfp_mask != saved_gfp) { 508 punt_bios_to_rescuer(bs); 509 gfp_mask = saved_gfp; 510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 511 } 512 513 if (unlikely(!bvl)) 514 goto err_free; 515 516 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 517 } else if (nr_iovecs) { 518 bvl = bio->bi_inline_vecs; 519 } 520 521 bio->bi_pool = bs; 522 bio->bi_max_vecs = nr_iovecs; 523 bio->bi_io_vec = bvl; 524 return bio; 525 526 err_free: 527 mempool_free(p, bs->bio_pool); 528 return NULL; 529 } 530 EXPORT_SYMBOL(bio_alloc_bioset); 531 532 void zero_fill_bio(struct bio *bio) 533 { 534 unsigned long flags; 535 struct bio_vec bv; 536 struct bvec_iter iter; 537 538 bio_for_each_segment(bv, bio, iter) { 539 char *data = bvec_kmap_irq(&bv, &flags); 540 memset(data, 0, bv.bv_len); 541 flush_dcache_page(bv.bv_page); 542 bvec_kunmap_irq(data, &flags); 543 } 544 } 545 EXPORT_SYMBOL(zero_fill_bio); 546 547 /** 548 * bio_put - release a reference to a bio 549 * @bio: bio to release reference to 550 * 551 * Description: 552 * Put a reference to a &struct bio, either one you have gotten with 553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 554 **/ 555 void bio_put(struct bio *bio) 556 { 557 if (!bio_flagged(bio, BIO_REFFED)) 558 bio_free(bio); 559 else { 560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 561 562 /* 563 * last put frees it 564 */ 565 if (atomic_dec_and_test(&bio->__bi_cnt)) 566 bio_free(bio); 567 } 568 } 569 EXPORT_SYMBOL(bio_put); 570 571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 572 { 573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 574 blk_recount_segments(q, bio); 575 576 return bio->bi_phys_segments; 577 } 578 EXPORT_SYMBOL(bio_phys_segments); 579 580 /** 581 * __bio_clone_fast - clone a bio that shares the original bio's biovec 582 * @bio: destination bio 583 * @bio_src: bio to clone 584 * 585 * Clone a &bio. Caller will own the returned bio, but not 586 * the actual data it points to. Reference count of returned 587 * bio will be one. 588 * 589 * Caller must ensure that @bio_src is not freed before @bio. 590 */ 591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 592 { 593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 594 595 /* 596 * most users will be overriding ->bi_disk with a new target, 597 * so we don't set nor calculate new physical/hw segment counts here 598 */ 599 bio->bi_disk = bio_src->bi_disk; 600 bio->bi_partno = bio_src->bi_partno; 601 bio_set_flag(bio, BIO_CLONED); 602 if (bio_flagged(bio_src, BIO_THROTTLED)) 603 bio_set_flag(bio, BIO_THROTTLED); 604 bio->bi_opf = bio_src->bi_opf; 605 bio->bi_write_hint = bio_src->bi_write_hint; 606 bio->bi_iter = bio_src->bi_iter; 607 bio->bi_io_vec = bio_src->bi_io_vec; 608 609 bio_clone_blkcg_association(bio, bio_src); 610 } 611 EXPORT_SYMBOL(__bio_clone_fast); 612 613 /** 614 * bio_clone_fast - clone a bio that shares the original bio's biovec 615 * @bio: bio to clone 616 * @gfp_mask: allocation priority 617 * @bs: bio_set to allocate from 618 * 619 * Like __bio_clone_fast, only also allocates the returned bio 620 */ 621 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 622 { 623 struct bio *b; 624 625 b = bio_alloc_bioset(gfp_mask, 0, bs); 626 if (!b) 627 return NULL; 628 629 __bio_clone_fast(b, bio); 630 631 if (bio_integrity(bio)) { 632 int ret; 633 634 ret = bio_integrity_clone(b, bio, gfp_mask); 635 636 if (ret < 0) { 637 bio_put(b); 638 return NULL; 639 } 640 } 641 642 return b; 643 } 644 EXPORT_SYMBOL(bio_clone_fast); 645 646 /** 647 * bio_clone_bioset - clone a bio 648 * @bio_src: bio to clone 649 * @gfp_mask: allocation priority 650 * @bs: bio_set to allocate from 651 * 652 * Clone bio. Caller will own the returned bio, but not the actual data it 653 * points to. Reference count of returned bio will be one. 654 */ 655 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 656 struct bio_set *bs) 657 { 658 struct bvec_iter iter; 659 struct bio_vec bv; 660 struct bio *bio; 661 662 /* 663 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 664 * bio_src->bi_io_vec to bio->bi_io_vec. 665 * 666 * We can't do that anymore, because: 667 * 668 * - The point of cloning the biovec is to produce a bio with a biovec 669 * the caller can modify: bi_idx and bi_bvec_done should be 0. 670 * 671 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 672 * we tried to clone the whole thing bio_alloc_bioset() would fail. 673 * But the clone should succeed as long as the number of biovecs we 674 * actually need to allocate is fewer than BIO_MAX_PAGES. 675 * 676 * - Lastly, bi_vcnt should not be looked at or relied upon by code 677 * that does not own the bio - reason being drivers don't use it for 678 * iterating over the biovec anymore, so expecting it to be kept up 679 * to date (i.e. for clones that share the parent biovec) is just 680 * asking for trouble and would force extra work on 681 * __bio_clone_fast() anyways. 682 */ 683 684 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 685 if (!bio) 686 return NULL; 687 bio->bi_disk = bio_src->bi_disk; 688 bio->bi_opf = bio_src->bi_opf; 689 bio->bi_write_hint = bio_src->bi_write_hint; 690 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 691 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 692 693 switch (bio_op(bio)) { 694 case REQ_OP_DISCARD: 695 case REQ_OP_SECURE_ERASE: 696 case REQ_OP_WRITE_ZEROES: 697 break; 698 case REQ_OP_WRITE_SAME: 699 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 700 break; 701 default: 702 bio_for_each_segment(bv, bio_src, iter) 703 bio->bi_io_vec[bio->bi_vcnt++] = bv; 704 break; 705 } 706 707 if (bio_integrity(bio_src)) { 708 int ret; 709 710 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 711 if (ret < 0) { 712 bio_put(bio); 713 return NULL; 714 } 715 } 716 717 bio_clone_blkcg_association(bio, bio_src); 718 719 return bio; 720 } 721 EXPORT_SYMBOL(bio_clone_bioset); 722 723 /** 724 * bio_add_pc_page - attempt to add page to bio 725 * @q: the target queue 726 * @bio: destination bio 727 * @page: page to add 728 * @len: vec entry length 729 * @offset: vec entry offset 730 * 731 * Attempt to add a page to the bio_vec maplist. This can fail for a 732 * number of reasons, such as the bio being full or target block device 733 * limitations. The target block device must allow bio's up to PAGE_SIZE, 734 * so it is always possible to add a single page to an empty bio. 735 * 736 * This should only be used by REQ_PC bios. 737 */ 738 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 739 *page, unsigned int len, unsigned int offset) 740 { 741 int retried_segments = 0; 742 struct bio_vec *bvec; 743 744 /* 745 * cloned bio must not modify vec list 746 */ 747 if (unlikely(bio_flagged(bio, BIO_CLONED))) 748 return 0; 749 750 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 751 return 0; 752 753 /* 754 * For filesystems with a blocksize smaller than the pagesize 755 * we will often be called with the same page as last time and 756 * a consecutive offset. Optimize this special case. 757 */ 758 if (bio->bi_vcnt > 0) { 759 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 760 761 if (page == prev->bv_page && 762 offset == prev->bv_offset + prev->bv_len) { 763 prev->bv_len += len; 764 bio->bi_iter.bi_size += len; 765 goto done; 766 } 767 768 /* 769 * If the queue doesn't support SG gaps and adding this 770 * offset would create a gap, disallow it. 771 */ 772 if (bvec_gap_to_prev(q, prev, offset)) 773 return 0; 774 } 775 776 if (bio->bi_vcnt >= bio->bi_max_vecs) 777 return 0; 778 779 /* 780 * setup the new entry, we might clear it again later if we 781 * cannot add the page 782 */ 783 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 784 bvec->bv_page = page; 785 bvec->bv_len = len; 786 bvec->bv_offset = offset; 787 bio->bi_vcnt++; 788 bio->bi_phys_segments++; 789 bio->bi_iter.bi_size += len; 790 791 /* 792 * Perform a recount if the number of segments is greater 793 * than queue_max_segments(q). 794 */ 795 796 while (bio->bi_phys_segments > queue_max_segments(q)) { 797 798 if (retried_segments) 799 goto failed; 800 801 retried_segments = 1; 802 blk_recount_segments(q, bio); 803 } 804 805 /* If we may be able to merge these biovecs, force a recount */ 806 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 807 bio_clear_flag(bio, BIO_SEG_VALID); 808 809 done: 810 return len; 811 812 failed: 813 bvec->bv_page = NULL; 814 bvec->bv_len = 0; 815 bvec->bv_offset = 0; 816 bio->bi_vcnt--; 817 bio->bi_iter.bi_size -= len; 818 blk_recount_segments(q, bio); 819 return 0; 820 } 821 EXPORT_SYMBOL(bio_add_pc_page); 822 823 /** 824 * bio_add_page - attempt to add page to bio 825 * @bio: destination bio 826 * @page: page to add 827 * @len: vec entry length 828 * @offset: vec entry offset 829 * 830 * Attempt to add a page to the bio_vec maplist. This will only fail 831 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 832 */ 833 int bio_add_page(struct bio *bio, struct page *page, 834 unsigned int len, unsigned int offset) 835 { 836 struct bio_vec *bv; 837 838 /* 839 * cloned bio must not modify vec list 840 */ 841 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 842 return 0; 843 844 /* 845 * For filesystems with a blocksize smaller than the pagesize 846 * we will often be called with the same page as last time and 847 * a consecutive offset. Optimize this special case. 848 */ 849 if (bio->bi_vcnt > 0) { 850 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 851 852 if (page == bv->bv_page && 853 offset == bv->bv_offset + bv->bv_len) { 854 bv->bv_len += len; 855 goto done; 856 } 857 } 858 859 if (bio->bi_vcnt >= bio->bi_max_vecs) 860 return 0; 861 862 bv = &bio->bi_io_vec[bio->bi_vcnt]; 863 bv->bv_page = page; 864 bv->bv_len = len; 865 bv->bv_offset = offset; 866 867 bio->bi_vcnt++; 868 done: 869 bio->bi_iter.bi_size += len; 870 return len; 871 } 872 EXPORT_SYMBOL(bio_add_page); 873 874 /** 875 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 876 * @bio: bio to add pages to 877 * @iter: iov iterator describing the region to be mapped 878 * 879 * Pins as many pages from *iter and appends them to @bio's bvec array. The 880 * pages will have to be released using put_page() when done. 881 */ 882 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 883 { 884 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 885 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 886 struct page **pages = (struct page **)bv; 887 size_t offset, diff; 888 ssize_t size; 889 890 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 891 if (unlikely(size <= 0)) 892 return size ? size : -EFAULT; 893 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; 894 895 /* 896 * Deep magic below: We need to walk the pinned pages backwards 897 * because we are abusing the space allocated for the bio_vecs 898 * for the page array. Because the bio_vecs are larger than the 899 * page pointers by definition this will always work. But it also 900 * means we can't use bio_add_page, so any changes to it's semantics 901 * need to be reflected here as well. 902 */ 903 bio->bi_iter.bi_size += size; 904 bio->bi_vcnt += nr_pages; 905 906 diff = (nr_pages * PAGE_SIZE - offset) - size; 907 while (nr_pages--) { 908 bv[nr_pages].bv_page = pages[nr_pages]; 909 bv[nr_pages].bv_len = PAGE_SIZE; 910 bv[nr_pages].bv_offset = 0; 911 } 912 913 bv[0].bv_offset += offset; 914 bv[0].bv_len -= offset; 915 if (diff) 916 bv[bio->bi_vcnt - 1].bv_len -= diff; 917 918 iov_iter_advance(iter, size); 919 return 0; 920 } 921 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 922 923 static void submit_bio_wait_endio(struct bio *bio) 924 { 925 complete(bio->bi_private); 926 } 927 928 /** 929 * submit_bio_wait - submit a bio, and wait until it completes 930 * @bio: The &struct bio which describes the I/O 931 * 932 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 933 * bio_endio() on failure. 934 * 935 * WARNING: Unlike to how submit_bio() is usually used, this function does not 936 * result in bio reference to be consumed. The caller must drop the reference 937 * on his own. 938 */ 939 int submit_bio_wait(struct bio *bio) 940 { 941 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 942 943 bio->bi_private = &done; 944 bio->bi_end_io = submit_bio_wait_endio; 945 bio->bi_opf |= REQ_SYNC; 946 submit_bio(bio); 947 wait_for_completion_io(&done); 948 949 return blk_status_to_errno(bio->bi_status); 950 } 951 EXPORT_SYMBOL(submit_bio_wait); 952 953 /** 954 * bio_advance - increment/complete a bio by some number of bytes 955 * @bio: bio to advance 956 * @bytes: number of bytes to complete 957 * 958 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 959 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 960 * be updated on the last bvec as well. 961 * 962 * @bio will then represent the remaining, uncompleted portion of the io. 963 */ 964 void bio_advance(struct bio *bio, unsigned bytes) 965 { 966 if (bio_integrity(bio)) 967 bio_integrity_advance(bio, bytes); 968 969 bio_advance_iter(bio, &bio->bi_iter, bytes); 970 } 971 EXPORT_SYMBOL(bio_advance); 972 973 /** 974 * bio_copy_data - copy contents of data buffers from one chain of bios to 975 * another 976 * @src: source bio list 977 * @dst: destination bio list 978 * 979 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 980 * @src and @dst as linked lists of bios. 981 * 982 * Stops when it reaches the end of either @src or @dst - that is, copies 983 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 984 */ 985 void bio_copy_data(struct bio *dst, struct bio *src) 986 { 987 struct bvec_iter src_iter, dst_iter; 988 struct bio_vec src_bv, dst_bv; 989 void *src_p, *dst_p; 990 unsigned bytes; 991 992 src_iter = src->bi_iter; 993 dst_iter = dst->bi_iter; 994 995 while (1) { 996 if (!src_iter.bi_size) { 997 src = src->bi_next; 998 if (!src) 999 break; 1000 1001 src_iter = src->bi_iter; 1002 } 1003 1004 if (!dst_iter.bi_size) { 1005 dst = dst->bi_next; 1006 if (!dst) 1007 break; 1008 1009 dst_iter = dst->bi_iter; 1010 } 1011 1012 src_bv = bio_iter_iovec(src, src_iter); 1013 dst_bv = bio_iter_iovec(dst, dst_iter); 1014 1015 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1016 1017 src_p = kmap_atomic(src_bv.bv_page); 1018 dst_p = kmap_atomic(dst_bv.bv_page); 1019 1020 memcpy(dst_p + dst_bv.bv_offset, 1021 src_p + src_bv.bv_offset, 1022 bytes); 1023 1024 kunmap_atomic(dst_p); 1025 kunmap_atomic(src_p); 1026 1027 bio_advance_iter(src, &src_iter, bytes); 1028 bio_advance_iter(dst, &dst_iter, bytes); 1029 } 1030 } 1031 EXPORT_SYMBOL(bio_copy_data); 1032 1033 struct bio_map_data { 1034 int is_our_pages; 1035 struct iov_iter iter; 1036 struct iovec iov[]; 1037 }; 1038 1039 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1040 gfp_t gfp_mask) 1041 { 1042 struct bio_map_data *bmd; 1043 if (data->nr_segs > UIO_MAXIOV) 1044 return NULL; 1045 1046 bmd = kmalloc(sizeof(struct bio_map_data) + 1047 sizeof(struct iovec) * data->nr_segs, gfp_mask); 1048 if (!bmd) 1049 return NULL; 1050 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1051 bmd->iter = *data; 1052 bmd->iter.iov = bmd->iov; 1053 return bmd; 1054 } 1055 1056 /** 1057 * bio_copy_from_iter - copy all pages from iov_iter to bio 1058 * @bio: The &struct bio which describes the I/O as destination 1059 * @iter: iov_iter as source 1060 * 1061 * Copy all pages from iov_iter to bio. 1062 * Returns 0 on success, or error on failure. 1063 */ 1064 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1065 { 1066 int i; 1067 struct bio_vec *bvec; 1068 1069 bio_for_each_segment_all(bvec, bio, i) { 1070 ssize_t ret; 1071 1072 ret = copy_page_from_iter(bvec->bv_page, 1073 bvec->bv_offset, 1074 bvec->bv_len, 1075 iter); 1076 1077 if (!iov_iter_count(iter)) 1078 break; 1079 1080 if (ret < bvec->bv_len) 1081 return -EFAULT; 1082 } 1083 1084 return 0; 1085 } 1086 1087 /** 1088 * bio_copy_to_iter - copy all pages from bio to iov_iter 1089 * @bio: The &struct bio which describes the I/O as source 1090 * @iter: iov_iter as destination 1091 * 1092 * Copy all pages from bio to iov_iter. 1093 * Returns 0 on success, or error on failure. 1094 */ 1095 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1096 { 1097 int i; 1098 struct bio_vec *bvec; 1099 1100 bio_for_each_segment_all(bvec, bio, i) { 1101 ssize_t ret; 1102 1103 ret = copy_page_to_iter(bvec->bv_page, 1104 bvec->bv_offset, 1105 bvec->bv_len, 1106 &iter); 1107 1108 if (!iov_iter_count(&iter)) 1109 break; 1110 1111 if (ret < bvec->bv_len) 1112 return -EFAULT; 1113 } 1114 1115 return 0; 1116 } 1117 1118 void bio_free_pages(struct bio *bio) 1119 { 1120 struct bio_vec *bvec; 1121 int i; 1122 1123 bio_for_each_segment_all(bvec, bio, i) 1124 __free_page(bvec->bv_page); 1125 } 1126 EXPORT_SYMBOL(bio_free_pages); 1127 1128 /** 1129 * bio_uncopy_user - finish previously mapped bio 1130 * @bio: bio being terminated 1131 * 1132 * Free pages allocated from bio_copy_user_iov() and write back data 1133 * to user space in case of a read. 1134 */ 1135 int bio_uncopy_user(struct bio *bio) 1136 { 1137 struct bio_map_data *bmd = bio->bi_private; 1138 int ret = 0; 1139 1140 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1141 /* 1142 * if we're in a workqueue, the request is orphaned, so 1143 * don't copy into a random user address space, just free 1144 * and return -EINTR so user space doesn't expect any data. 1145 */ 1146 if (!current->mm) 1147 ret = -EINTR; 1148 else if (bio_data_dir(bio) == READ) 1149 ret = bio_copy_to_iter(bio, bmd->iter); 1150 if (bmd->is_our_pages) 1151 bio_free_pages(bio); 1152 } 1153 kfree(bmd); 1154 bio_put(bio); 1155 return ret; 1156 } 1157 1158 /** 1159 * bio_copy_user_iov - copy user data to bio 1160 * @q: destination block queue 1161 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1162 * @iter: iovec iterator 1163 * @gfp_mask: memory allocation flags 1164 * 1165 * Prepares and returns a bio for indirect user io, bouncing data 1166 * to/from kernel pages as necessary. Must be paired with 1167 * call bio_uncopy_user() on io completion. 1168 */ 1169 struct bio *bio_copy_user_iov(struct request_queue *q, 1170 struct rq_map_data *map_data, 1171 struct iov_iter *iter, 1172 gfp_t gfp_mask) 1173 { 1174 struct bio_map_data *bmd; 1175 struct page *page; 1176 struct bio *bio; 1177 int i = 0, ret; 1178 int nr_pages; 1179 unsigned int len = iter->count; 1180 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1181 1182 bmd = bio_alloc_map_data(iter, gfp_mask); 1183 if (!bmd) 1184 return ERR_PTR(-ENOMEM); 1185 1186 /* 1187 * We need to do a deep copy of the iov_iter including the iovecs. 1188 * The caller provided iov might point to an on-stack or otherwise 1189 * shortlived one. 1190 */ 1191 bmd->is_our_pages = map_data ? 0 : 1; 1192 1193 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1194 if (nr_pages > BIO_MAX_PAGES) 1195 nr_pages = BIO_MAX_PAGES; 1196 1197 ret = -ENOMEM; 1198 bio = bio_kmalloc(gfp_mask, nr_pages); 1199 if (!bio) 1200 goto out_bmd; 1201 1202 ret = 0; 1203 1204 if (map_data) { 1205 nr_pages = 1 << map_data->page_order; 1206 i = map_data->offset / PAGE_SIZE; 1207 } 1208 while (len) { 1209 unsigned int bytes = PAGE_SIZE; 1210 1211 bytes -= offset; 1212 1213 if (bytes > len) 1214 bytes = len; 1215 1216 if (map_data) { 1217 if (i == map_data->nr_entries * nr_pages) { 1218 ret = -ENOMEM; 1219 break; 1220 } 1221 1222 page = map_data->pages[i / nr_pages]; 1223 page += (i % nr_pages); 1224 1225 i++; 1226 } else { 1227 page = alloc_page(q->bounce_gfp | gfp_mask); 1228 if (!page) { 1229 ret = -ENOMEM; 1230 break; 1231 } 1232 } 1233 1234 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1235 break; 1236 1237 len -= bytes; 1238 offset = 0; 1239 } 1240 1241 if (ret) 1242 goto cleanup; 1243 1244 if (map_data) 1245 map_data->offset += bio->bi_iter.bi_size; 1246 1247 /* 1248 * success 1249 */ 1250 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1251 (map_data && map_data->from_user)) { 1252 ret = bio_copy_from_iter(bio, iter); 1253 if (ret) 1254 goto cleanup; 1255 } else { 1256 iov_iter_advance(iter, bio->bi_iter.bi_size); 1257 } 1258 1259 bio->bi_private = bmd; 1260 if (map_data && map_data->null_mapped) 1261 bio_set_flag(bio, BIO_NULL_MAPPED); 1262 return bio; 1263 cleanup: 1264 if (!map_data) 1265 bio_free_pages(bio); 1266 bio_put(bio); 1267 out_bmd: 1268 kfree(bmd); 1269 return ERR_PTR(ret); 1270 } 1271 1272 /** 1273 * bio_map_user_iov - map user iovec into bio 1274 * @q: the struct request_queue for the bio 1275 * @iter: iovec iterator 1276 * @gfp_mask: memory allocation flags 1277 * 1278 * Map the user space address into a bio suitable for io to a block 1279 * device. Returns an error pointer in case of error. 1280 */ 1281 struct bio *bio_map_user_iov(struct request_queue *q, 1282 struct iov_iter *iter, 1283 gfp_t gfp_mask) 1284 { 1285 int j; 1286 struct bio *bio; 1287 int ret; 1288 struct bio_vec *bvec; 1289 1290 if (!iov_iter_count(iter)) 1291 return ERR_PTR(-EINVAL); 1292 1293 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1294 if (!bio) 1295 return ERR_PTR(-ENOMEM); 1296 1297 while (iov_iter_count(iter)) { 1298 struct page **pages; 1299 ssize_t bytes; 1300 size_t offs, added = 0; 1301 int npages; 1302 1303 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1304 if (unlikely(bytes <= 0)) { 1305 ret = bytes ? bytes : -EFAULT; 1306 goto out_unmap; 1307 } 1308 1309 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1310 1311 if (unlikely(offs & queue_dma_alignment(q))) { 1312 ret = -EINVAL; 1313 j = 0; 1314 } else { 1315 for (j = 0; j < npages; j++) { 1316 struct page *page = pages[j]; 1317 unsigned int n = PAGE_SIZE - offs; 1318 unsigned short prev_bi_vcnt = bio->bi_vcnt; 1319 1320 if (n > bytes) 1321 n = bytes; 1322 1323 if (!bio_add_pc_page(q, bio, page, n, offs)) 1324 break; 1325 1326 /* 1327 * check if vector was merged with previous 1328 * drop page reference if needed 1329 */ 1330 if (bio->bi_vcnt == prev_bi_vcnt) 1331 put_page(page); 1332 1333 added += n; 1334 bytes -= n; 1335 offs = 0; 1336 } 1337 iov_iter_advance(iter, added); 1338 } 1339 /* 1340 * release the pages we didn't map into the bio, if any 1341 */ 1342 while (j < npages) 1343 put_page(pages[j++]); 1344 kvfree(pages); 1345 /* couldn't stuff something into bio? */ 1346 if (bytes) 1347 break; 1348 } 1349 1350 bio_set_flag(bio, BIO_USER_MAPPED); 1351 1352 /* 1353 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1354 * it would normally disappear when its bi_end_io is run. 1355 * however, we need it for the unmap, so grab an extra 1356 * reference to it 1357 */ 1358 bio_get(bio); 1359 return bio; 1360 1361 out_unmap: 1362 bio_for_each_segment_all(bvec, bio, j) { 1363 put_page(bvec->bv_page); 1364 } 1365 bio_put(bio); 1366 return ERR_PTR(ret); 1367 } 1368 1369 static void __bio_unmap_user(struct bio *bio) 1370 { 1371 struct bio_vec *bvec; 1372 int i; 1373 1374 /* 1375 * make sure we dirty pages we wrote to 1376 */ 1377 bio_for_each_segment_all(bvec, bio, i) { 1378 if (bio_data_dir(bio) == READ) 1379 set_page_dirty_lock(bvec->bv_page); 1380 1381 put_page(bvec->bv_page); 1382 } 1383 1384 bio_put(bio); 1385 } 1386 1387 /** 1388 * bio_unmap_user - unmap a bio 1389 * @bio: the bio being unmapped 1390 * 1391 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1392 * process context. 1393 * 1394 * bio_unmap_user() may sleep. 1395 */ 1396 void bio_unmap_user(struct bio *bio) 1397 { 1398 __bio_unmap_user(bio); 1399 bio_put(bio); 1400 } 1401 1402 static void bio_map_kern_endio(struct bio *bio) 1403 { 1404 bio_put(bio); 1405 } 1406 1407 /** 1408 * bio_map_kern - map kernel address into bio 1409 * @q: the struct request_queue for the bio 1410 * @data: pointer to buffer to map 1411 * @len: length in bytes 1412 * @gfp_mask: allocation flags for bio allocation 1413 * 1414 * Map the kernel address into a bio suitable for io to a block 1415 * device. Returns an error pointer in case of error. 1416 */ 1417 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1418 gfp_t gfp_mask) 1419 { 1420 unsigned long kaddr = (unsigned long)data; 1421 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1422 unsigned long start = kaddr >> PAGE_SHIFT; 1423 const int nr_pages = end - start; 1424 int offset, i; 1425 struct bio *bio; 1426 1427 bio = bio_kmalloc(gfp_mask, nr_pages); 1428 if (!bio) 1429 return ERR_PTR(-ENOMEM); 1430 1431 offset = offset_in_page(kaddr); 1432 for (i = 0; i < nr_pages; i++) { 1433 unsigned int bytes = PAGE_SIZE - offset; 1434 1435 if (len <= 0) 1436 break; 1437 1438 if (bytes > len) 1439 bytes = len; 1440 1441 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1442 offset) < bytes) { 1443 /* we don't support partial mappings */ 1444 bio_put(bio); 1445 return ERR_PTR(-EINVAL); 1446 } 1447 1448 data += bytes; 1449 len -= bytes; 1450 offset = 0; 1451 } 1452 1453 bio->bi_end_io = bio_map_kern_endio; 1454 return bio; 1455 } 1456 EXPORT_SYMBOL(bio_map_kern); 1457 1458 static void bio_copy_kern_endio(struct bio *bio) 1459 { 1460 bio_free_pages(bio); 1461 bio_put(bio); 1462 } 1463 1464 static void bio_copy_kern_endio_read(struct bio *bio) 1465 { 1466 char *p = bio->bi_private; 1467 struct bio_vec *bvec; 1468 int i; 1469 1470 bio_for_each_segment_all(bvec, bio, i) { 1471 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1472 p += bvec->bv_len; 1473 } 1474 1475 bio_copy_kern_endio(bio); 1476 } 1477 1478 /** 1479 * bio_copy_kern - copy kernel address into bio 1480 * @q: the struct request_queue for the bio 1481 * @data: pointer to buffer to copy 1482 * @len: length in bytes 1483 * @gfp_mask: allocation flags for bio and page allocation 1484 * @reading: data direction is READ 1485 * 1486 * copy the kernel address into a bio suitable for io to a block 1487 * device. Returns an error pointer in case of error. 1488 */ 1489 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1490 gfp_t gfp_mask, int reading) 1491 { 1492 unsigned long kaddr = (unsigned long)data; 1493 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1494 unsigned long start = kaddr >> PAGE_SHIFT; 1495 struct bio *bio; 1496 void *p = data; 1497 int nr_pages = 0; 1498 1499 /* 1500 * Overflow, abort 1501 */ 1502 if (end < start) 1503 return ERR_PTR(-EINVAL); 1504 1505 nr_pages = end - start; 1506 bio = bio_kmalloc(gfp_mask, nr_pages); 1507 if (!bio) 1508 return ERR_PTR(-ENOMEM); 1509 1510 while (len) { 1511 struct page *page; 1512 unsigned int bytes = PAGE_SIZE; 1513 1514 if (bytes > len) 1515 bytes = len; 1516 1517 page = alloc_page(q->bounce_gfp | gfp_mask); 1518 if (!page) 1519 goto cleanup; 1520 1521 if (!reading) 1522 memcpy(page_address(page), p, bytes); 1523 1524 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1525 break; 1526 1527 len -= bytes; 1528 p += bytes; 1529 } 1530 1531 if (reading) { 1532 bio->bi_end_io = bio_copy_kern_endio_read; 1533 bio->bi_private = data; 1534 } else { 1535 bio->bi_end_io = bio_copy_kern_endio; 1536 } 1537 1538 return bio; 1539 1540 cleanup: 1541 bio_free_pages(bio); 1542 bio_put(bio); 1543 return ERR_PTR(-ENOMEM); 1544 } 1545 1546 /* 1547 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1548 * for performing direct-IO in BIOs. 1549 * 1550 * The problem is that we cannot run set_page_dirty() from interrupt context 1551 * because the required locks are not interrupt-safe. So what we can do is to 1552 * mark the pages dirty _before_ performing IO. And in interrupt context, 1553 * check that the pages are still dirty. If so, fine. If not, redirty them 1554 * in process context. 1555 * 1556 * We special-case compound pages here: normally this means reads into hugetlb 1557 * pages. The logic in here doesn't really work right for compound pages 1558 * because the VM does not uniformly chase down the head page in all cases. 1559 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1560 * handle them at all. So we skip compound pages here at an early stage. 1561 * 1562 * Note that this code is very hard to test under normal circumstances because 1563 * direct-io pins the pages with get_user_pages(). This makes 1564 * is_page_cache_freeable return false, and the VM will not clean the pages. 1565 * But other code (eg, flusher threads) could clean the pages if they are mapped 1566 * pagecache. 1567 * 1568 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1569 * deferred bio dirtying paths. 1570 */ 1571 1572 /* 1573 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1574 */ 1575 void bio_set_pages_dirty(struct bio *bio) 1576 { 1577 struct bio_vec *bvec; 1578 int i; 1579 1580 bio_for_each_segment_all(bvec, bio, i) { 1581 struct page *page = bvec->bv_page; 1582 1583 if (page && !PageCompound(page)) 1584 set_page_dirty_lock(page); 1585 } 1586 } 1587 1588 static void bio_release_pages(struct bio *bio) 1589 { 1590 struct bio_vec *bvec; 1591 int i; 1592 1593 bio_for_each_segment_all(bvec, bio, i) { 1594 struct page *page = bvec->bv_page; 1595 1596 if (page) 1597 put_page(page); 1598 } 1599 } 1600 1601 /* 1602 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1603 * If they are, then fine. If, however, some pages are clean then they must 1604 * have been written out during the direct-IO read. So we take another ref on 1605 * the BIO and the offending pages and re-dirty the pages in process context. 1606 * 1607 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1608 * here on. It will run one put_page() against each page and will run one 1609 * bio_put() against the BIO. 1610 */ 1611 1612 static void bio_dirty_fn(struct work_struct *work); 1613 1614 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1615 static DEFINE_SPINLOCK(bio_dirty_lock); 1616 static struct bio *bio_dirty_list; 1617 1618 /* 1619 * This runs in process context 1620 */ 1621 static void bio_dirty_fn(struct work_struct *work) 1622 { 1623 unsigned long flags; 1624 struct bio *bio; 1625 1626 spin_lock_irqsave(&bio_dirty_lock, flags); 1627 bio = bio_dirty_list; 1628 bio_dirty_list = NULL; 1629 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1630 1631 while (bio) { 1632 struct bio *next = bio->bi_private; 1633 1634 bio_set_pages_dirty(bio); 1635 bio_release_pages(bio); 1636 bio_put(bio); 1637 bio = next; 1638 } 1639 } 1640 1641 void bio_check_pages_dirty(struct bio *bio) 1642 { 1643 struct bio_vec *bvec; 1644 int nr_clean_pages = 0; 1645 int i; 1646 1647 bio_for_each_segment_all(bvec, bio, i) { 1648 struct page *page = bvec->bv_page; 1649 1650 if (PageDirty(page) || PageCompound(page)) { 1651 put_page(page); 1652 bvec->bv_page = NULL; 1653 } else { 1654 nr_clean_pages++; 1655 } 1656 } 1657 1658 if (nr_clean_pages) { 1659 unsigned long flags; 1660 1661 spin_lock_irqsave(&bio_dirty_lock, flags); 1662 bio->bi_private = bio_dirty_list; 1663 bio_dirty_list = bio; 1664 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1665 schedule_work(&bio_dirty_work); 1666 } else { 1667 bio_put(bio); 1668 } 1669 } 1670 1671 void generic_start_io_acct(struct request_queue *q, int rw, 1672 unsigned long sectors, struct hd_struct *part) 1673 { 1674 int cpu = part_stat_lock(); 1675 1676 part_round_stats(q, cpu, part); 1677 part_stat_inc(cpu, part, ios[rw]); 1678 part_stat_add(cpu, part, sectors[rw], sectors); 1679 part_inc_in_flight(q, part, rw); 1680 1681 part_stat_unlock(); 1682 } 1683 EXPORT_SYMBOL(generic_start_io_acct); 1684 1685 void generic_end_io_acct(struct request_queue *q, int rw, 1686 struct hd_struct *part, unsigned long start_time) 1687 { 1688 unsigned long duration = jiffies - start_time; 1689 int cpu = part_stat_lock(); 1690 1691 part_stat_add(cpu, part, ticks[rw], duration); 1692 part_round_stats(q, cpu, part); 1693 part_dec_in_flight(q, part, rw); 1694 1695 part_stat_unlock(); 1696 } 1697 EXPORT_SYMBOL(generic_end_io_acct); 1698 1699 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1700 void bio_flush_dcache_pages(struct bio *bi) 1701 { 1702 struct bio_vec bvec; 1703 struct bvec_iter iter; 1704 1705 bio_for_each_segment(bvec, bi, iter) 1706 flush_dcache_page(bvec.bv_page); 1707 } 1708 EXPORT_SYMBOL(bio_flush_dcache_pages); 1709 #endif 1710 1711 static inline bool bio_remaining_done(struct bio *bio) 1712 { 1713 /* 1714 * If we're not chaining, then ->__bi_remaining is always 1 and 1715 * we always end io on the first invocation. 1716 */ 1717 if (!bio_flagged(bio, BIO_CHAIN)) 1718 return true; 1719 1720 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1721 1722 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1723 bio_clear_flag(bio, BIO_CHAIN); 1724 return true; 1725 } 1726 1727 return false; 1728 } 1729 1730 /** 1731 * bio_endio - end I/O on a bio 1732 * @bio: bio 1733 * 1734 * Description: 1735 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1736 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1737 * bio unless they own it and thus know that it has an end_io function. 1738 * 1739 * bio_endio() can be called several times on a bio that has been chained 1740 * using bio_chain(). The ->bi_end_io() function will only be called the 1741 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1742 * generated if BIO_TRACE_COMPLETION is set. 1743 **/ 1744 void bio_endio(struct bio *bio) 1745 { 1746 again: 1747 if (!bio_remaining_done(bio)) 1748 return; 1749 if (!bio_integrity_endio(bio)) 1750 return; 1751 1752 /* 1753 * Need to have a real endio function for chained bios, otherwise 1754 * various corner cases will break (like stacking block devices that 1755 * save/restore bi_end_io) - however, we want to avoid unbounded 1756 * recursion and blowing the stack. Tail call optimization would 1757 * handle this, but compiling with frame pointers also disables 1758 * gcc's sibling call optimization. 1759 */ 1760 if (bio->bi_end_io == bio_chain_endio) { 1761 bio = __bio_chain_endio(bio); 1762 goto again; 1763 } 1764 1765 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1766 trace_block_bio_complete(bio->bi_disk->queue, bio, 1767 blk_status_to_errno(bio->bi_status)); 1768 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1769 } 1770 1771 blk_throtl_bio_endio(bio); 1772 /* release cgroup info */ 1773 bio_uninit(bio); 1774 if (bio->bi_end_io) 1775 bio->bi_end_io(bio); 1776 } 1777 EXPORT_SYMBOL(bio_endio); 1778 1779 /** 1780 * bio_split - split a bio 1781 * @bio: bio to split 1782 * @sectors: number of sectors to split from the front of @bio 1783 * @gfp: gfp mask 1784 * @bs: bio set to allocate from 1785 * 1786 * Allocates and returns a new bio which represents @sectors from the start of 1787 * @bio, and updates @bio to represent the remaining sectors. 1788 * 1789 * Unless this is a discard request the newly allocated bio will point 1790 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1791 * @bio is not freed before the split. 1792 */ 1793 struct bio *bio_split(struct bio *bio, int sectors, 1794 gfp_t gfp, struct bio_set *bs) 1795 { 1796 struct bio *split; 1797 1798 BUG_ON(sectors <= 0); 1799 BUG_ON(sectors >= bio_sectors(bio)); 1800 1801 split = bio_clone_fast(bio, gfp, bs); 1802 if (!split) 1803 return NULL; 1804 1805 split->bi_iter.bi_size = sectors << 9; 1806 1807 if (bio_integrity(split)) 1808 bio_integrity_trim(split); 1809 1810 bio_advance(bio, split->bi_iter.bi_size); 1811 1812 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1813 bio_set_flag(split, BIO_TRACE_COMPLETION); 1814 1815 return split; 1816 } 1817 EXPORT_SYMBOL(bio_split); 1818 1819 /** 1820 * bio_trim - trim a bio 1821 * @bio: bio to trim 1822 * @offset: number of sectors to trim from the front of @bio 1823 * @size: size we want to trim @bio to, in sectors 1824 */ 1825 void bio_trim(struct bio *bio, int offset, int size) 1826 { 1827 /* 'bio' is a cloned bio which we need to trim to match 1828 * the given offset and size. 1829 */ 1830 1831 size <<= 9; 1832 if (offset == 0 && size == bio->bi_iter.bi_size) 1833 return; 1834 1835 bio_clear_flag(bio, BIO_SEG_VALID); 1836 1837 bio_advance(bio, offset << 9); 1838 1839 bio->bi_iter.bi_size = size; 1840 1841 if (bio_integrity(bio)) 1842 bio_integrity_trim(bio); 1843 1844 } 1845 EXPORT_SYMBOL_GPL(bio_trim); 1846 1847 /* 1848 * create memory pools for biovec's in a bio_set. 1849 * use the global biovec slabs created for general use. 1850 */ 1851 mempool_t *biovec_create_pool(int pool_entries) 1852 { 1853 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1854 1855 return mempool_create_slab_pool(pool_entries, bp->slab); 1856 } 1857 1858 void bioset_free(struct bio_set *bs) 1859 { 1860 if (bs->rescue_workqueue) 1861 destroy_workqueue(bs->rescue_workqueue); 1862 1863 mempool_destroy(bs->bio_pool); 1864 mempool_destroy(bs->bvec_pool); 1865 1866 bioset_integrity_free(bs); 1867 bio_put_slab(bs); 1868 1869 kfree(bs); 1870 } 1871 EXPORT_SYMBOL(bioset_free); 1872 1873 /** 1874 * bioset_create - Create a bio_set 1875 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1876 * @front_pad: Number of bytes to allocate in front of the returned bio 1877 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1878 * and %BIOSET_NEED_RESCUER 1879 * 1880 * Description: 1881 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1882 * to ask for a number of bytes to be allocated in front of the bio. 1883 * Front pad allocation is useful for embedding the bio inside 1884 * another structure, to avoid allocating extra data to go with the bio. 1885 * Note that the bio must be embedded at the END of that structure always, 1886 * or things will break badly. 1887 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1888 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1889 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1890 * dispatch queued requests when the mempool runs out of space. 1891 * 1892 */ 1893 struct bio_set *bioset_create(unsigned int pool_size, 1894 unsigned int front_pad, 1895 int flags) 1896 { 1897 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1898 struct bio_set *bs; 1899 1900 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1901 if (!bs) 1902 return NULL; 1903 1904 bs->front_pad = front_pad; 1905 1906 spin_lock_init(&bs->rescue_lock); 1907 bio_list_init(&bs->rescue_list); 1908 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1909 1910 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1911 if (!bs->bio_slab) { 1912 kfree(bs); 1913 return NULL; 1914 } 1915 1916 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1917 if (!bs->bio_pool) 1918 goto bad; 1919 1920 if (flags & BIOSET_NEED_BVECS) { 1921 bs->bvec_pool = biovec_create_pool(pool_size); 1922 if (!bs->bvec_pool) 1923 goto bad; 1924 } 1925 1926 if (!(flags & BIOSET_NEED_RESCUER)) 1927 return bs; 1928 1929 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1930 if (!bs->rescue_workqueue) 1931 goto bad; 1932 1933 return bs; 1934 bad: 1935 bioset_free(bs); 1936 return NULL; 1937 } 1938 EXPORT_SYMBOL(bioset_create); 1939 1940 #ifdef CONFIG_BLK_CGROUP 1941 1942 /** 1943 * bio_associate_blkcg - associate a bio with the specified blkcg 1944 * @bio: target bio 1945 * @blkcg_css: css of the blkcg to associate 1946 * 1947 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 1948 * treat @bio as if it were issued by a task which belongs to the blkcg. 1949 * 1950 * This function takes an extra reference of @blkcg_css which will be put 1951 * when @bio is released. The caller must own @bio and is responsible for 1952 * synchronizing calls to this function. 1953 */ 1954 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 1955 { 1956 if (unlikely(bio->bi_css)) 1957 return -EBUSY; 1958 css_get(blkcg_css); 1959 bio->bi_css = blkcg_css; 1960 return 0; 1961 } 1962 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 1963 1964 /** 1965 * bio_disassociate_task - undo bio_associate_current() 1966 * @bio: target bio 1967 */ 1968 void bio_disassociate_task(struct bio *bio) 1969 { 1970 if (bio->bi_ioc) { 1971 put_io_context(bio->bi_ioc); 1972 bio->bi_ioc = NULL; 1973 } 1974 if (bio->bi_css) { 1975 css_put(bio->bi_css); 1976 bio->bi_css = NULL; 1977 } 1978 } 1979 1980 /** 1981 * bio_clone_blkcg_association - clone blkcg association from src to dst bio 1982 * @dst: destination bio 1983 * @src: source bio 1984 */ 1985 void bio_clone_blkcg_association(struct bio *dst, struct bio *src) 1986 { 1987 if (src->bi_css) 1988 WARN_ON(bio_associate_blkcg(dst, src->bi_css)); 1989 } 1990 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association); 1991 #endif /* CONFIG_BLK_CGROUP */ 1992 1993 static void __init biovec_init_slabs(void) 1994 { 1995 int i; 1996 1997 for (i = 0; i < BVEC_POOL_NR; i++) { 1998 int size; 1999 struct biovec_slab *bvs = bvec_slabs + i; 2000 2001 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2002 bvs->slab = NULL; 2003 continue; 2004 } 2005 2006 size = bvs->nr_vecs * sizeof(struct bio_vec); 2007 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2008 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2009 } 2010 } 2011 2012 static int __init init_bio(void) 2013 { 2014 bio_slab_max = 2; 2015 bio_slab_nr = 0; 2016 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2017 if (!bio_slabs) 2018 panic("bio: can't allocate bios\n"); 2019 2020 bio_integrity_init(); 2021 biovec_init_slabs(); 2022 2023 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 2024 if (!fs_bio_set) 2025 panic("bio: can't allocate bios\n"); 2026 2027 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2028 panic("bio: can't create integrity pool\n"); 2029 2030 return 0; 2031 } 2032 subsys_initcall(init_bio); 2033