xref: /linux/block/bio.c (revision 9fb29c734f9e98adc1f2f3c4629fe487cb93f2dd)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <linux/blk-cgroup.h>
32 
33 #include <trace/events/block.h>
34 #include "blk.h"
35 #include "blk-rq-qos.h"
36 
37 /*
38  * Test patch to inline a certain number of bi_io_vec's inside the bio
39  * itself, to shrink a bio data allocation from two mempool calls to one
40  */
41 #define BIO_INLINE_VECS		4
42 
43 /*
44  * if you change this list, also change bvec_alloc or things will
45  * break badly! cannot be bigger than what you can fit into an
46  * unsigned short
47  */
48 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
49 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
50 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
51 };
52 #undef BV
53 
54 /*
55  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56  * IO code that does not need private memory pools.
57  */
58 struct bio_set fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60 
61 /*
62  * Our slab pool management
63  */
64 struct bio_slab {
65 	struct kmem_cache *slab;
66 	unsigned int slab_ref;
67 	unsigned int slab_size;
68 	char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73 
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 	unsigned int sz = sizeof(struct bio) + extra_size;
77 	struct kmem_cache *slab = NULL;
78 	struct bio_slab *bslab, *new_bio_slabs;
79 	unsigned int new_bio_slab_max;
80 	unsigned int i, entry = -1;
81 
82 	mutex_lock(&bio_slab_lock);
83 
84 	i = 0;
85 	while (i < bio_slab_nr) {
86 		bslab = &bio_slabs[i];
87 
88 		if (!bslab->slab && entry == -1)
89 			entry = i;
90 		else if (bslab->slab_size == sz) {
91 			slab = bslab->slab;
92 			bslab->slab_ref++;
93 			break;
94 		}
95 		i++;
96 	}
97 
98 	if (slab)
99 		goto out_unlock;
100 
101 	if (bio_slab_nr == bio_slab_max && entry == -1) {
102 		new_bio_slab_max = bio_slab_max << 1;
103 		new_bio_slabs = krealloc(bio_slabs,
104 					 new_bio_slab_max * sizeof(struct bio_slab),
105 					 GFP_KERNEL);
106 		if (!new_bio_slabs)
107 			goto out_unlock;
108 		bio_slab_max = new_bio_slab_max;
109 		bio_slabs = new_bio_slabs;
110 	}
111 	if (entry == -1)
112 		entry = bio_slab_nr++;
113 
114 	bslab = &bio_slabs[entry];
115 
116 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 				 SLAB_HWCACHE_ALIGN, NULL);
119 	if (!slab)
120 		goto out_unlock;
121 
122 	bslab->slab = slab;
123 	bslab->slab_ref = 1;
124 	bslab->slab_size = sz;
125 out_unlock:
126 	mutex_unlock(&bio_slab_lock);
127 	return slab;
128 }
129 
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 	struct bio_slab *bslab = NULL;
133 	unsigned int i;
134 
135 	mutex_lock(&bio_slab_lock);
136 
137 	for (i = 0; i < bio_slab_nr; i++) {
138 		if (bs->bio_slab == bio_slabs[i].slab) {
139 			bslab = &bio_slabs[i];
140 			break;
141 		}
142 	}
143 
144 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 		goto out;
146 
147 	WARN_ON(!bslab->slab_ref);
148 
149 	if (--bslab->slab_ref)
150 		goto out;
151 
152 	kmem_cache_destroy(bslab->slab);
153 	bslab->slab = NULL;
154 
155 out:
156 	mutex_unlock(&bio_slab_lock);
157 }
158 
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 	return bvec_slabs[--idx].nr_vecs;
162 }
163 
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 	if (!idx)
167 		return;
168 	idx--;
169 
170 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
171 
172 	if (idx == BVEC_POOL_MAX) {
173 		mempool_free(bv, pool);
174 	} else {
175 		struct biovec_slab *bvs = bvec_slabs + idx;
176 
177 		kmem_cache_free(bvs->slab, bv);
178 	}
179 }
180 
181 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 			   mempool_t *pool)
183 {
184 	struct bio_vec *bvl;
185 
186 	/*
187 	 * see comment near bvec_array define!
188 	 */
189 	switch (nr) {
190 	case 1:
191 		*idx = 0;
192 		break;
193 	case 2 ... 4:
194 		*idx = 1;
195 		break;
196 	case 5 ... 16:
197 		*idx = 2;
198 		break;
199 	case 17 ... 64:
200 		*idx = 3;
201 		break;
202 	case 65 ... 128:
203 		*idx = 4;
204 		break;
205 	case 129 ... BIO_MAX_PAGES:
206 		*idx = 5;
207 		break;
208 	default:
209 		return NULL;
210 	}
211 
212 	/*
213 	 * idx now points to the pool we want to allocate from. only the
214 	 * 1-vec entry pool is mempool backed.
215 	 */
216 	if (*idx == BVEC_POOL_MAX) {
217 fallback:
218 		bvl = mempool_alloc(pool, gfp_mask);
219 	} else {
220 		struct biovec_slab *bvs = bvec_slabs + *idx;
221 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
222 
223 		/*
224 		 * Make this allocation restricted and don't dump info on
225 		 * allocation failures, since we'll fallback to the mempool
226 		 * in case of failure.
227 		 */
228 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
229 
230 		/*
231 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
232 		 * is set, retry with the 1-entry mempool
233 		 */
234 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
235 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
236 			*idx = BVEC_POOL_MAX;
237 			goto fallback;
238 		}
239 	}
240 
241 	(*idx)++;
242 	return bvl;
243 }
244 
245 void bio_uninit(struct bio *bio)
246 {
247 	bio_disassociate_blkg(bio);
248 }
249 EXPORT_SYMBOL(bio_uninit);
250 
251 static void bio_free(struct bio *bio)
252 {
253 	struct bio_set *bs = bio->bi_pool;
254 	void *p;
255 
256 	bio_uninit(bio);
257 
258 	if (bs) {
259 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260 
261 		/*
262 		 * If we have front padding, adjust the bio pointer before freeing
263 		 */
264 		p = bio;
265 		p -= bs->front_pad;
266 
267 		mempool_free(p, &bs->bio_pool);
268 	} else {
269 		/* Bio was allocated by bio_kmalloc() */
270 		kfree(bio);
271 	}
272 }
273 
274 /*
275  * Users of this function have their own bio allocation. Subsequently,
276  * they must remember to pair any call to bio_init() with bio_uninit()
277  * when IO has completed, or when the bio is released.
278  */
279 void bio_init(struct bio *bio, struct bio_vec *table,
280 	      unsigned short max_vecs)
281 {
282 	memset(bio, 0, sizeof(*bio));
283 	atomic_set(&bio->__bi_remaining, 1);
284 	atomic_set(&bio->__bi_cnt, 1);
285 
286 	bio->bi_io_vec = table;
287 	bio->bi_max_vecs = max_vecs;
288 }
289 EXPORT_SYMBOL(bio_init);
290 
291 /**
292  * bio_reset - reinitialize a bio
293  * @bio:	bio to reset
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
301 void bio_reset(struct bio *bio)
302 {
303 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304 
305 	bio_uninit(bio);
306 
307 	memset(bio, 0, BIO_RESET_BYTES);
308 	bio->bi_flags = flags;
309 	atomic_set(&bio->__bi_remaining, 1);
310 }
311 EXPORT_SYMBOL(bio_reset);
312 
313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 	struct bio *parent = bio->bi_private;
316 
317 	if (!parent->bi_status)
318 		parent->bi_status = bio->bi_status;
319 	bio_put(bio);
320 	return parent;
321 }
322 
323 static void bio_chain_endio(struct bio *bio)
324 {
325 	bio_endio(__bio_chain_endio(bio));
326 }
327 
328 /**
329  * bio_chain - chain bio completions
330  * @bio: the target bio
331  * @parent: the @bio's parent bio
332  *
333  * The caller won't have a bi_end_io called when @bio completes - instead,
334  * @parent's bi_end_io won't be called until both @parent and @bio have
335  * completed; the chained bio will also be freed when it completes.
336  *
337  * The caller must not set bi_private or bi_end_io in @bio.
338  */
339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 	BUG_ON(bio->bi_private || bio->bi_end_io);
342 
343 	bio->bi_private = parent;
344 	bio->bi_end_io	= bio_chain_endio;
345 	bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348 
349 static void bio_alloc_rescue(struct work_struct *work)
350 {
351 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 	struct bio *bio;
353 
354 	while (1) {
355 		spin_lock(&bs->rescue_lock);
356 		bio = bio_list_pop(&bs->rescue_list);
357 		spin_unlock(&bs->rescue_lock);
358 
359 		if (!bio)
360 			break;
361 
362 		generic_make_request(bio);
363 	}
364 }
365 
366 static void punt_bios_to_rescuer(struct bio_set *bs)
367 {
368 	struct bio_list punt, nopunt;
369 	struct bio *bio;
370 
371 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 		return;
373 	/*
374 	 * In order to guarantee forward progress we must punt only bios that
375 	 * were allocated from this bio_set; otherwise, if there was a bio on
376 	 * there for a stacking driver higher up in the stack, processing it
377 	 * could require allocating bios from this bio_set, and doing that from
378 	 * our own rescuer would be bad.
379 	 *
380 	 * Since bio lists are singly linked, pop them all instead of trying to
381 	 * remove from the middle of the list:
382 	 */
383 
384 	bio_list_init(&punt);
385 	bio_list_init(&nopunt);
386 
387 	while ((bio = bio_list_pop(&current->bio_list[0])))
388 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 	current->bio_list[0] = nopunt;
390 
391 	bio_list_init(&nopunt);
392 	while ((bio = bio_list_pop(&current->bio_list[1])))
393 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 	current->bio_list[1] = nopunt;
395 
396 	spin_lock(&bs->rescue_lock);
397 	bio_list_merge(&bs->rescue_list, &punt);
398 	spin_unlock(&bs->rescue_lock);
399 
400 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
401 }
402 
403 /**
404  * bio_alloc_bioset - allocate a bio for I/O
405  * @gfp_mask:   the GFP_* mask given to the slab allocator
406  * @nr_iovecs:	number of iovecs to pre-allocate
407  * @bs:		the bio_set to allocate from.
408  *
409  * Description:
410  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411  *   backed by the @bs's mempool.
412  *
413  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414  *   always be able to allocate a bio. This is due to the mempool guarantees.
415  *   To make this work, callers must never allocate more than 1 bio at a time
416  *   from this pool. Callers that need to allocate more than 1 bio must always
417  *   submit the previously allocated bio for IO before attempting to allocate
418  *   a new one. Failure to do so can cause deadlocks under memory pressure.
419  *
420  *   Note that when running under generic_make_request() (i.e. any block
421  *   driver), bios are not submitted until after you return - see the code in
422  *   generic_make_request() that converts recursion into iteration, to prevent
423  *   stack overflows.
424  *
425  *   This would normally mean allocating multiple bios under
426  *   generic_make_request() would be susceptible to deadlocks, but we have
427  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
428  *   thread.
429  *
430  *   However, we do not guarantee forward progress for allocations from other
431  *   mempools. Doing multiple allocations from the same mempool under
432  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
433  *   for per bio allocations.
434  *
435  *   RETURNS:
436  *   Pointer to new bio on success, NULL on failure.
437  */
438 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 			     struct bio_set *bs)
440 {
441 	gfp_t saved_gfp = gfp_mask;
442 	unsigned front_pad;
443 	unsigned inline_vecs;
444 	struct bio_vec *bvl = NULL;
445 	struct bio *bio;
446 	void *p;
447 
448 	if (!bs) {
449 		if (nr_iovecs > UIO_MAXIOV)
450 			return NULL;
451 
452 		p = kmalloc(sizeof(struct bio) +
453 			    nr_iovecs * sizeof(struct bio_vec),
454 			    gfp_mask);
455 		front_pad = 0;
456 		inline_vecs = nr_iovecs;
457 	} else {
458 		/* should not use nobvec bioset for nr_iovecs > 0 */
459 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 				 nr_iovecs > 0))
461 			return NULL;
462 		/*
463 		 * generic_make_request() converts recursion to iteration; this
464 		 * means if we're running beneath it, any bios we allocate and
465 		 * submit will not be submitted (and thus freed) until after we
466 		 * return.
467 		 *
468 		 * This exposes us to a potential deadlock if we allocate
469 		 * multiple bios from the same bio_set() while running
470 		 * underneath generic_make_request(). If we were to allocate
471 		 * multiple bios (say a stacking block driver that was splitting
472 		 * bios), we would deadlock if we exhausted the mempool's
473 		 * reserve.
474 		 *
475 		 * We solve this, and guarantee forward progress, with a rescuer
476 		 * workqueue per bio_set. If we go to allocate and there are
477 		 * bios on current->bio_list, we first try the allocation
478 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 		 * bios we would be blocking to the rescuer workqueue before
480 		 * we retry with the original gfp_flags.
481 		 */
482 
483 		if (current->bio_list &&
484 		    (!bio_list_empty(&current->bio_list[0]) ||
485 		     !bio_list_empty(&current->bio_list[1])) &&
486 		    bs->rescue_workqueue)
487 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
488 
489 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
490 		if (!p && gfp_mask != saved_gfp) {
491 			punt_bios_to_rescuer(bs);
492 			gfp_mask = saved_gfp;
493 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
494 		}
495 
496 		front_pad = bs->front_pad;
497 		inline_vecs = BIO_INLINE_VECS;
498 	}
499 
500 	if (unlikely(!p))
501 		return NULL;
502 
503 	bio = p + front_pad;
504 	bio_init(bio, NULL, 0);
505 
506 	if (nr_iovecs > inline_vecs) {
507 		unsigned long idx = 0;
508 
509 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
510 		if (!bvl && gfp_mask != saved_gfp) {
511 			punt_bios_to_rescuer(bs);
512 			gfp_mask = saved_gfp;
513 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
514 		}
515 
516 		if (unlikely(!bvl))
517 			goto err_free;
518 
519 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520 	} else if (nr_iovecs) {
521 		bvl = bio->bi_inline_vecs;
522 	}
523 
524 	bio->bi_pool = bs;
525 	bio->bi_max_vecs = nr_iovecs;
526 	bio->bi_io_vec = bvl;
527 	return bio;
528 
529 err_free:
530 	mempool_free(p, &bs->bio_pool);
531 	return NULL;
532 }
533 EXPORT_SYMBOL(bio_alloc_bioset);
534 
535 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
536 {
537 	unsigned long flags;
538 	struct bio_vec bv;
539 	struct bvec_iter iter;
540 
541 	__bio_for_each_segment(bv, bio, iter, start) {
542 		char *data = bvec_kmap_irq(&bv, &flags);
543 		memset(data, 0, bv.bv_len);
544 		flush_dcache_page(bv.bv_page);
545 		bvec_kunmap_irq(data, &flags);
546 	}
547 }
548 EXPORT_SYMBOL(zero_fill_bio_iter);
549 
550 /**
551  * bio_put - release a reference to a bio
552  * @bio:   bio to release reference to
553  *
554  * Description:
555  *   Put a reference to a &struct bio, either one you have gotten with
556  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
557  **/
558 void bio_put(struct bio *bio)
559 {
560 	if (!bio_flagged(bio, BIO_REFFED))
561 		bio_free(bio);
562 	else {
563 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564 
565 		/*
566 		 * last put frees it
567 		 */
568 		if (atomic_dec_and_test(&bio->__bi_cnt))
569 			bio_free(bio);
570 	}
571 }
572 EXPORT_SYMBOL(bio_put);
573 
574 int bio_phys_segments(struct request_queue *q, struct bio *bio)
575 {
576 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 		blk_recount_segments(q, bio);
578 
579 	return bio->bi_phys_segments;
580 }
581 
582 /**
583  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
584  * 	@bio: destination bio
585  * 	@bio_src: bio to clone
586  *
587  *	Clone a &bio. Caller will own the returned bio, but not
588  *	the actual data it points to. Reference count of returned
589  * 	bio will be one.
590  *
591  * 	Caller must ensure that @bio_src is not freed before @bio.
592  */
593 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
594 {
595 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
596 
597 	/*
598 	 * most users will be overriding ->bi_disk with a new target,
599 	 * so we don't set nor calculate new physical/hw segment counts here
600 	 */
601 	bio->bi_disk = bio_src->bi_disk;
602 	bio->bi_partno = bio_src->bi_partno;
603 	bio_set_flag(bio, BIO_CLONED);
604 	if (bio_flagged(bio_src, BIO_THROTTLED))
605 		bio_set_flag(bio, BIO_THROTTLED);
606 	bio->bi_opf = bio_src->bi_opf;
607 	bio->bi_ioprio = bio_src->bi_ioprio;
608 	bio->bi_write_hint = bio_src->bi_write_hint;
609 	bio->bi_iter = bio_src->bi_iter;
610 	bio->bi_io_vec = bio_src->bi_io_vec;
611 
612 	bio_clone_blkg_association(bio, bio_src);
613 	blkcg_bio_issue_init(bio);
614 }
615 EXPORT_SYMBOL(__bio_clone_fast);
616 
617 /**
618  *	bio_clone_fast - clone a bio that shares the original bio's biovec
619  *	@bio: bio to clone
620  *	@gfp_mask: allocation priority
621  *	@bs: bio_set to allocate from
622  *
623  * 	Like __bio_clone_fast, only also allocates the returned bio
624  */
625 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626 {
627 	struct bio *b;
628 
629 	b = bio_alloc_bioset(gfp_mask, 0, bs);
630 	if (!b)
631 		return NULL;
632 
633 	__bio_clone_fast(b, bio);
634 
635 	if (bio_integrity(bio)) {
636 		int ret;
637 
638 		ret = bio_integrity_clone(b, bio, gfp_mask);
639 
640 		if (ret < 0) {
641 			bio_put(b);
642 			return NULL;
643 		}
644 	}
645 
646 	return b;
647 }
648 EXPORT_SYMBOL(bio_clone_fast);
649 
650 /**
651  *	bio_add_pc_page	-	attempt to add page to bio
652  *	@q: the target queue
653  *	@bio: destination bio
654  *	@page: page to add
655  *	@len: vec entry length
656  *	@offset: vec entry offset
657  *
658  *	Attempt to add a page to the bio_vec maplist. This can fail for a
659  *	number of reasons, such as the bio being full or target block device
660  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
661  *	so it is always possible to add a single page to an empty bio.
662  *
663  *	This should only be used by REQ_PC bios.
664  */
665 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
666 		    *page, unsigned int len, unsigned int offset)
667 {
668 	int retried_segments = 0;
669 	struct bio_vec *bvec;
670 
671 	/*
672 	 * cloned bio must not modify vec list
673 	 */
674 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
675 		return 0;
676 
677 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
678 		return 0;
679 
680 	/*
681 	 * For filesystems with a blocksize smaller than the pagesize
682 	 * we will often be called with the same page as last time and
683 	 * a consecutive offset.  Optimize this special case.
684 	 */
685 	if (bio->bi_vcnt > 0) {
686 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
687 
688 		if (page == prev->bv_page &&
689 		    offset == prev->bv_offset + prev->bv_len) {
690 			prev->bv_len += len;
691 			bio->bi_iter.bi_size += len;
692 			goto done;
693 		}
694 
695 		/*
696 		 * If the queue doesn't support SG gaps and adding this
697 		 * offset would create a gap, disallow it.
698 		 */
699 		if (bvec_gap_to_prev(q, prev, offset))
700 			return 0;
701 	}
702 
703 	if (bio_full(bio))
704 		return 0;
705 
706 	/*
707 	 * setup the new entry, we might clear it again later if we
708 	 * cannot add the page
709 	 */
710 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
711 	bvec->bv_page = page;
712 	bvec->bv_len = len;
713 	bvec->bv_offset = offset;
714 	bio->bi_vcnt++;
715 	bio->bi_phys_segments++;
716 	bio->bi_iter.bi_size += len;
717 
718 	/*
719 	 * Perform a recount if the number of segments is greater
720 	 * than queue_max_segments(q).
721 	 */
722 
723 	while (bio->bi_phys_segments > queue_max_segments(q)) {
724 
725 		if (retried_segments)
726 			goto failed;
727 
728 		retried_segments = 1;
729 		blk_recount_segments(q, bio);
730 	}
731 
732 	/* If we may be able to merge these biovecs, force a recount */
733 	if (bio->bi_vcnt > 1 && biovec_phys_mergeable(q, bvec - 1, bvec))
734 		bio_clear_flag(bio, BIO_SEG_VALID);
735 
736  done:
737 	return len;
738 
739  failed:
740 	bvec->bv_page = NULL;
741 	bvec->bv_len = 0;
742 	bvec->bv_offset = 0;
743 	bio->bi_vcnt--;
744 	bio->bi_iter.bi_size -= len;
745 	blk_recount_segments(q, bio);
746 	return 0;
747 }
748 EXPORT_SYMBOL(bio_add_pc_page);
749 
750 /**
751  * __bio_try_merge_page - try appending data to an existing bvec.
752  * @bio: destination bio
753  * @page: page to add
754  * @len: length of the data to add
755  * @off: offset of the data in @page
756  *
757  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
758  * a useful optimisation for file systems with a block size smaller than the
759  * page size.
760  *
761  * Return %true on success or %false on failure.
762  */
763 bool __bio_try_merge_page(struct bio *bio, struct page *page,
764 		unsigned int len, unsigned int off)
765 {
766 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
767 		return false;
768 
769 	if (bio->bi_vcnt > 0) {
770 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
771 
772 		if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
773 			bv->bv_len += len;
774 			bio->bi_iter.bi_size += len;
775 			return true;
776 		}
777 	}
778 	return false;
779 }
780 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
781 
782 /**
783  * __bio_add_page - add page to a bio in a new segment
784  * @bio: destination bio
785  * @page: page to add
786  * @len: length of the data to add
787  * @off: offset of the data in @page
788  *
789  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
790  * that @bio has space for another bvec.
791  */
792 void __bio_add_page(struct bio *bio, struct page *page,
793 		unsigned int len, unsigned int off)
794 {
795 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
796 
797 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
798 	WARN_ON_ONCE(bio_full(bio));
799 
800 	bv->bv_page = page;
801 	bv->bv_offset = off;
802 	bv->bv_len = len;
803 
804 	bio->bi_iter.bi_size += len;
805 	bio->bi_vcnt++;
806 }
807 EXPORT_SYMBOL_GPL(__bio_add_page);
808 
809 /**
810  *	bio_add_page	-	attempt to add page to bio
811  *	@bio: destination bio
812  *	@page: page to add
813  *	@len: vec entry length
814  *	@offset: vec entry offset
815  *
816  *	Attempt to add a page to the bio_vec maplist. This will only fail
817  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
818  */
819 int bio_add_page(struct bio *bio, struct page *page,
820 		 unsigned int len, unsigned int offset)
821 {
822 	if (!__bio_try_merge_page(bio, page, len, offset)) {
823 		if (bio_full(bio))
824 			return 0;
825 		__bio_add_page(bio, page, len, offset);
826 	}
827 	return len;
828 }
829 EXPORT_SYMBOL(bio_add_page);
830 
831 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
832 
833 /**
834  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
835  * @bio: bio to add pages to
836  * @iter: iov iterator describing the region to be mapped
837  *
838  * Pins pages from *iter and appends them to @bio's bvec array. The
839  * pages will have to be released using put_page() when done.
840  * For multi-segment *iter, this function only adds pages from the
841  * the next non-empty segment of the iov iterator.
842  */
843 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
844 {
845 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
846 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
847 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
848 	struct page **pages = (struct page **)bv;
849 	ssize_t size, left;
850 	unsigned len, i;
851 	size_t offset;
852 
853 	/*
854 	 * Move page array up in the allocated memory for the bio vecs as far as
855 	 * possible so that we can start filling biovecs from the beginning
856 	 * without overwriting the temporary page array.
857 	*/
858 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
859 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
860 
861 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
862 	if (unlikely(size <= 0))
863 		return size ? size : -EFAULT;
864 
865 	for (left = size, i = 0; left > 0; left -= len, i++) {
866 		struct page *page = pages[i];
867 
868 		len = min_t(size_t, PAGE_SIZE - offset, left);
869 		if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
870 			return -EINVAL;
871 		offset = 0;
872 	}
873 
874 	iov_iter_advance(iter, size);
875 	return 0;
876 }
877 
878 /**
879  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
880  * @bio: bio to add pages to
881  * @iter: iov iterator describing the region to be mapped
882  *
883  * Pins pages from *iter and appends them to @bio's bvec array. The
884  * pages will have to be released using put_page() when done.
885  * The function tries, but does not guarantee, to pin as many pages as
886  * fit into the bio, or are requested in *iter, whatever is smaller.
887  * If MM encounters an error pinning the requested pages, it stops.
888  * Error is returned only if 0 pages could be pinned.
889  */
890 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
891 {
892 	unsigned short orig_vcnt = bio->bi_vcnt;
893 
894 	do {
895 		int ret = __bio_iov_iter_get_pages(bio, iter);
896 
897 		if (unlikely(ret))
898 			return bio->bi_vcnt > orig_vcnt ? 0 : ret;
899 
900 	} while (iov_iter_count(iter) && !bio_full(bio));
901 
902 	return 0;
903 }
904 
905 static void submit_bio_wait_endio(struct bio *bio)
906 {
907 	complete(bio->bi_private);
908 }
909 
910 /**
911  * submit_bio_wait - submit a bio, and wait until it completes
912  * @bio: The &struct bio which describes the I/O
913  *
914  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
915  * bio_endio() on failure.
916  *
917  * WARNING: Unlike to how submit_bio() is usually used, this function does not
918  * result in bio reference to be consumed. The caller must drop the reference
919  * on his own.
920  */
921 int submit_bio_wait(struct bio *bio)
922 {
923 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
924 
925 	bio->bi_private = &done;
926 	bio->bi_end_io = submit_bio_wait_endio;
927 	bio->bi_opf |= REQ_SYNC;
928 	submit_bio(bio);
929 	wait_for_completion_io(&done);
930 
931 	return blk_status_to_errno(bio->bi_status);
932 }
933 EXPORT_SYMBOL(submit_bio_wait);
934 
935 /**
936  * bio_advance - increment/complete a bio by some number of bytes
937  * @bio:	bio to advance
938  * @bytes:	number of bytes to complete
939  *
940  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
941  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
942  * be updated on the last bvec as well.
943  *
944  * @bio will then represent the remaining, uncompleted portion of the io.
945  */
946 void bio_advance(struct bio *bio, unsigned bytes)
947 {
948 	if (bio_integrity(bio))
949 		bio_integrity_advance(bio, bytes);
950 
951 	bio_advance_iter(bio, &bio->bi_iter, bytes);
952 }
953 EXPORT_SYMBOL(bio_advance);
954 
955 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
956 			struct bio *src, struct bvec_iter *src_iter)
957 {
958 	struct bio_vec src_bv, dst_bv;
959 	void *src_p, *dst_p;
960 	unsigned bytes;
961 
962 	while (src_iter->bi_size && dst_iter->bi_size) {
963 		src_bv = bio_iter_iovec(src, *src_iter);
964 		dst_bv = bio_iter_iovec(dst, *dst_iter);
965 
966 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
967 
968 		src_p = kmap_atomic(src_bv.bv_page);
969 		dst_p = kmap_atomic(dst_bv.bv_page);
970 
971 		memcpy(dst_p + dst_bv.bv_offset,
972 		       src_p + src_bv.bv_offset,
973 		       bytes);
974 
975 		kunmap_atomic(dst_p);
976 		kunmap_atomic(src_p);
977 
978 		flush_dcache_page(dst_bv.bv_page);
979 
980 		bio_advance_iter(src, src_iter, bytes);
981 		bio_advance_iter(dst, dst_iter, bytes);
982 	}
983 }
984 EXPORT_SYMBOL(bio_copy_data_iter);
985 
986 /**
987  * bio_copy_data - copy contents of data buffers from one bio to another
988  * @src: source bio
989  * @dst: destination bio
990  *
991  * Stops when it reaches the end of either @src or @dst - that is, copies
992  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
993  */
994 void bio_copy_data(struct bio *dst, struct bio *src)
995 {
996 	struct bvec_iter src_iter = src->bi_iter;
997 	struct bvec_iter dst_iter = dst->bi_iter;
998 
999 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1000 }
1001 EXPORT_SYMBOL(bio_copy_data);
1002 
1003 /**
1004  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1005  * another
1006  * @src: source bio list
1007  * @dst: destination bio list
1008  *
1009  * Stops when it reaches the end of either the @src list or @dst list - that is,
1010  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1011  * bios).
1012  */
1013 void bio_list_copy_data(struct bio *dst, struct bio *src)
1014 {
1015 	struct bvec_iter src_iter = src->bi_iter;
1016 	struct bvec_iter dst_iter = dst->bi_iter;
1017 
1018 	while (1) {
1019 		if (!src_iter.bi_size) {
1020 			src = src->bi_next;
1021 			if (!src)
1022 				break;
1023 
1024 			src_iter = src->bi_iter;
1025 		}
1026 
1027 		if (!dst_iter.bi_size) {
1028 			dst = dst->bi_next;
1029 			if (!dst)
1030 				break;
1031 
1032 			dst_iter = dst->bi_iter;
1033 		}
1034 
1035 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1036 	}
1037 }
1038 EXPORT_SYMBOL(bio_list_copy_data);
1039 
1040 struct bio_map_data {
1041 	int is_our_pages;
1042 	struct iov_iter iter;
1043 	struct iovec iov[];
1044 };
1045 
1046 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1047 					       gfp_t gfp_mask)
1048 {
1049 	struct bio_map_data *bmd;
1050 	if (data->nr_segs > UIO_MAXIOV)
1051 		return NULL;
1052 
1053 	bmd = kmalloc(sizeof(struct bio_map_data) +
1054 		       sizeof(struct iovec) * data->nr_segs, gfp_mask);
1055 	if (!bmd)
1056 		return NULL;
1057 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1058 	bmd->iter = *data;
1059 	bmd->iter.iov = bmd->iov;
1060 	return bmd;
1061 }
1062 
1063 /**
1064  * bio_copy_from_iter - copy all pages from iov_iter to bio
1065  * @bio: The &struct bio which describes the I/O as destination
1066  * @iter: iov_iter as source
1067  *
1068  * Copy all pages from iov_iter to bio.
1069  * Returns 0 on success, or error on failure.
1070  */
1071 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1072 {
1073 	int i;
1074 	struct bio_vec *bvec;
1075 
1076 	bio_for_each_segment_all(bvec, bio, i) {
1077 		ssize_t ret;
1078 
1079 		ret = copy_page_from_iter(bvec->bv_page,
1080 					  bvec->bv_offset,
1081 					  bvec->bv_len,
1082 					  iter);
1083 
1084 		if (!iov_iter_count(iter))
1085 			break;
1086 
1087 		if (ret < bvec->bv_len)
1088 			return -EFAULT;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  * bio_copy_to_iter - copy all pages from bio to iov_iter
1096  * @bio: The &struct bio which describes the I/O as source
1097  * @iter: iov_iter as destination
1098  *
1099  * Copy all pages from bio to iov_iter.
1100  * Returns 0 on success, or error on failure.
1101  */
1102 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1103 {
1104 	int i;
1105 	struct bio_vec *bvec;
1106 
1107 	bio_for_each_segment_all(bvec, bio, i) {
1108 		ssize_t ret;
1109 
1110 		ret = copy_page_to_iter(bvec->bv_page,
1111 					bvec->bv_offset,
1112 					bvec->bv_len,
1113 					&iter);
1114 
1115 		if (!iov_iter_count(&iter))
1116 			break;
1117 
1118 		if (ret < bvec->bv_len)
1119 			return -EFAULT;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 void bio_free_pages(struct bio *bio)
1126 {
1127 	struct bio_vec *bvec;
1128 	int i;
1129 
1130 	bio_for_each_segment_all(bvec, bio, i)
1131 		__free_page(bvec->bv_page);
1132 }
1133 EXPORT_SYMBOL(bio_free_pages);
1134 
1135 /**
1136  *	bio_uncopy_user	-	finish previously mapped bio
1137  *	@bio: bio being terminated
1138  *
1139  *	Free pages allocated from bio_copy_user_iov() and write back data
1140  *	to user space in case of a read.
1141  */
1142 int bio_uncopy_user(struct bio *bio)
1143 {
1144 	struct bio_map_data *bmd = bio->bi_private;
1145 	int ret = 0;
1146 
1147 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1148 		/*
1149 		 * if we're in a workqueue, the request is orphaned, so
1150 		 * don't copy into a random user address space, just free
1151 		 * and return -EINTR so user space doesn't expect any data.
1152 		 */
1153 		if (!current->mm)
1154 			ret = -EINTR;
1155 		else if (bio_data_dir(bio) == READ)
1156 			ret = bio_copy_to_iter(bio, bmd->iter);
1157 		if (bmd->is_our_pages)
1158 			bio_free_pages(bio);
1159 	}
1160 	kfree(bmd);
1161 	bio_put(bio);
1162 	return ret;
1163 }
1164 
1165 /**
1166  *	bio_copy_user_iov	-	copy user data to bio
1167  *	@q:		destination block queue
1168  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1169  *	@iter:		iovec iterator
1170  *	@gfp_mask:	memory allocation flags
1171  *
1172  *	Prepares and returns a bio for indirect user io, bouncing data
1173  *	to/from kernel pages as necessary. Must be paired with
1174  *	call bio_uncopy_user() on io completion.
1175  */
1176 struct bio *bio_copy_user_iov(struct request_queue *q,
1177 			      struct rq_map_data *map_data,
1178 			      struct iov_iter *iter,
1179 			      gfp_t gfp_mask)
1180 {
1181 	struct bio_map_data *bmd;
1182 	struct page *page;
1183 	struct bio *bio;
1184 	int i = 0, ret;
1185 	int nr_pages;
1186 	unsigned int len = iter->count;
1187 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1188 
1189 	bmd = bio_alloc_map_data(iter, gfp_mask);
1190 	if (!bmd)
1191 		return ERR_PTR(-ENOMEM);
1192 
1193 	/*
1194 	 * We need to do a deep copy of the iov_iter including the iovecs.
1195 	 * The caller provided iov might point to an on-stack or otherwise
1196 	 * shortlived one.
1197 	 */
1198 	bmd->is_our_pages = map_data ? 0 : 1;
1199 
1200 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1201 	if (nr_pages > BIO_MAX_PAGES)
1202 		nr_pages = BIO_MAX_PAGES;
1203 
1204 	ret = -ENOMEM;
1205 	bio = bio_kmalloc(gfp_mask, nr_pages);
1206 	if (!bio)
1207 		goto out_bmd;
1208 
1209 	ret = 0;
1210 
1211 	if (map_data) {
1212 		nr_pages = 1 << map_data->page_order;
1213 		i = map_data->offset / PAGE_SIZE;
1214 	}
1215 	while (len) {
1216 		unsigned int bytes = PAGE_SIZE;
1217 
1218 		bytes -= offset;
1219 
1220 		if (bytes > len)
1221 			bytes = len;
1222 
1223 		if (map_data) {
1224 			if (i == map_data->nr_entries * nr_pages) {
1225 				ret = -ENOMEM;
1226 				break;
1227 			}
1228 
1229 			page = map_data->pages[i / nr_pages];
1230 			page += (i % nr_pages);
1231 
1232 			i++;
1233 		} else {
1234 			page = alloc_page(q->bounce_gfp | gfp_mask);
1235 			if (!page) {
1236 				ret = -ENOMEM;
1237 				break;
1238 			}
1239 		}
1240 
1241 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1242 			break;
1243 
1244 		len -= bytes;
1245 		offset = 0;
1246 	}
1247 
1248 	if (ret)
1249 		goto cleanup;
1250 
1251 	if (map_data)
1252 		map_data->offset += bio->bi_iter.bi_size;
1253 
1254 	/*
1255 	 * success
1256 	 */
1257 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1258 	    (map_data && map_data->from_user)) {
1259 		ret = bio_copy_from_iter(bio, iter);
1260 		if (ret)
1261 			goto cleanup;
1262 	} else {
1263 		if (bmd->is_our_pages)
1264 			zero_fill_bio(bio);
1265 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1266 	}
1267 
1268 	bio->bi_private = bmd;
1269 	if (map_data && map_data->null_mapped)
1270 		bio_set_flag(bio, BIO_NULL_MAPPED);
1271 	return bio;
1272 cleanup:
1273 	if (!map_data)
1274 		bio_free_pages(bio);
1275 	bio_put(bio);
1276 out_bmd:
1277 	kfree(bmd);
1278 	return ERR_PTR(ret);
1279 }
1280 
1281 /**
1282  *	bio_map_user_iov - map user iovec into bio
1283  *	@q:		the struct request_queue for the bio
1284  *	@iter:		iovec iterator
1285  *	@gfp_mask:	memory allocation flags
1286  *
1287  *	Map the user space address into a bio suitable for io to a block
1288  *	device. Returns an error pointer in case of error.
1289  */
1290 struct bio *bio_map_user_iov(struct request_queue *q,
1291 			     struct iov_iter *iter,
1292 			     gfp_t gfp_mask)
1293 {
1294 	int j;
1295 	struct bio *bio;
1296 	int ret;
1297 	struct bio_vec *bvec;
1298 
1299 	if (!iov_iter_count(iter))
1300 		return ERR_PTR(-EINVAL);
1301 
1302 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1303 	if (!bio)
1304 		return ERR_PTR(-ENOMEM);
1305 
1306 	while (iov_iter_count(iter)) {
1307 		struct page **pages;
1308 		ssize_t bytes;
1309 		size_t offs, added = 0;
1310 		int npages;
1311 
1312 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1313 		if (unlikely(bytes <= 0)) {
1314 			ret = bytes ? bytes : -EFAULT;
1315 			goto out_unmap;
1316 		}
1317 
1318 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1319 
1320 		if (unlikely(offs & queue_dma_alignment(q))) {
1321 			ret = -EINVAL;
1322 			j = 0;
1323 		} else {
1324 			for (j = 0; j < npages; j++) {
1325 				struct page *page = pages[j];
1326 				unsigned int n = PAGE_SIZE - offs;
1327 				unsigned short prev_bi_vcnt = bio->bi_vcnt;
1328 
1329 				if (n > bytes)
1330 					n = bytes;
1331 
1332 				if (!bio_add_pc_page(q, bio, page, n, offs))
1333 					break;
1334 
1335 				/*
1336 				 * check if vector was merged with previous
1337 				 * drop page reference if needed
1338 				 */
1339 				if (bio->bi_vcnt == prev_bi_vcnt)
1340 					put_page(page);
1341 
1342 				added += n;
1343 				bytes -= n;
1344 				offs = 0;
1345 			}
1346 			iov_iter_advance(iter, added);
1347 		}
1348 		/*
1349 		 * release the pages we didn't map into the bio, if any
1350 		 */
1351 		while (j < npages)
1352 			put_page(pages[j++]);
1353 		kvfree(pages);
1354 		/* couldn't stuff something into bio? */
1355 		if (bytes)
1356 			break;
1357 	}
1358 
1359 	bio_set_flag(bio, BIO_USER_MAPPED);
1360 
1361 	/*
1362 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1363 	 * it would normally disappear when its bi_end_io is run.
1364 	 * however, we need it for the unmap, so grab an extra
1365 	 * reference to it
1366 	 */
1367 	bio_get(bio);
1368 	return bio;
1369 
1370  out_unmap:
1371 	bio_for_each_segment_all(bvec, bio, j) {
1372 		put_page(bvec->bv_page);
1373 	}
1374 	bio_put(bio);
1375 	return ERR_PTR(ret);
1376 }
1377 
1378 static void __bio_unmap_user(struct bio *bio)
1379 {
1380 	struct bio_vec *bvec;
1381 	int i;
1382 
1383 	/*
1384 	 * make sure we dirty pages we wrote to
1385 	 */
1386 	bio_for_each_segment_all(bvec, bio, i) {
1387 		if (bio_data_dir(bio) == READ)
1388 			set_page_dirty_lock(bvec->bv_page);
1389 
1390 		put_page(bvec->bv_page);
1391 	}
1392 
1393 	bio_put(bio);
1394 }
1395 
1396 /**
1397  *	bio_unmap_user	-	unmap a bio
1398  *	@bio:		the bio being unmapped
1399  *
1400  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1401  *	process context.
1402  *
1403  *	bio_unmap_user() may sleep.
1404  */
1405 void bio_unmap_user(struct bio *bio)
1406 {
1407 	__bio_unmap_user(bio);
1408 	bio_put(bio);
1409 }
1410 
1411 static void bio_map_kern_endio(struct bio *bio)
1412 {
1413 	bio_put(bio);
1414 }
1415 
1416 /**
1417  *	bio_map_kern	-	map kernel address into bio
1418  *	@q: the struct request_queue for the bio
1419  *	@data: pointer to buffer to map
1420  *	@len: length in bytes
1421  *	@gfp_mask: allocation flags for bio allocation
1422  *
1423  *	Map the kernel address into a bio suitable for io to a block
1424  *	device. Returns an error pointer in case of error.
1425  */
1426 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1427 			 gfp_t gfp_mask)
1428 {
1429 	unsigned long kaddr = (unsigned long)data;
1430 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1431 	unsigned long start = kaddr >> PAGE_SHIFT;
1432 	const int nr_pages = end - start;
1433 	int offset, i;
1434 	struct bio *bio;
1435 
1436 	bio = bio_kmalloc(gfp_mask, nr_pages);
1437 	if (!bio)
1438 		return ERR_PTR(-ENOMEM);
1439 
1440 	offset = offset_in_page(kaddr);
1441 	for (i = 0; i < nr_pages; i++) {
1442 		unsigned int bytes = PAGE_SIZE - offset;
1443 
1444 		if (len <= 0)
1445 			break;
1446 
1447 		if (bytes > len)
1448 			bytes = len;
1449 
1450 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1451 				    offset) < bytes) {
1452 			/* we don't support partial mappings */
1453 			bio_put(bio);
1454 			return ERR_PTR(-EINVAL);
1455 		}
1456 
1457 		data += bytes;
1458 		len -= bytes;
1459 		offset = 0;
1460 	}
1461 
1462 	bio->bi_end_io = bio_map_kern_endio;
1463 	return bio;
1464 }
1465 EXPORT_SYMBOL(bio_map_kern);
1466 
1467 static void bio_copy_kern_endio(struct bio *bio)
1468 {
1469 	bio_free_pages(bio);
1470 	bio_put(bio);
1471 }
1472 
1473 static void bio_copy_kern_endio_read(struct bio *bio)
1474 {
1475 	char *p = bio->bi_private;
1476 	struct bio_vec *bvec;
1477 	int i;
1478 
1479 	bio_for_each_segment_all(bvec, bio, i) {
1480 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1481 		p += bvec->bv_len;
1482 	}
1483 
1484 	bio_copy_kern_endio(bio);
1485 }
1486 
1487 /**
1488  *	bio_copy_kern	-	copy kernel address into bio
1489  *	@q: the struct request_queue for the bio
1490  *	@data: pointer to buffer to copy
1491  *	@len: length in bytes
1492  *	@gfp_mask: allocation flags for bio and page allocation
1493  *	@reading: data direction is READ
1494  *
1495  *	copy the kernel address into a bio suitable for io to a block
1496  *	device. Returns an error pointer in case of error.
1497  */
1498 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1499 			  gfp_t gfp_mask, int reading)
1500 {
1501 	unsigned long kaddr = (unsigned long)data;
1502 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1503 	unsigned long start = kaddr >> PAGE_SHIFT;
1504 	struct bio *bio;
1505 	void *p = data;
1506 	int nr_pages = 0;
1507 
1508 	/*
1509 	 * Overflow, abort
1510 	 */
1511 	if (end < start)
1512 		return ERR_PTR(-EINVAL);
1513 
1514 	nr_pages = end - start;
1515 	bio = bio_kmalloc(gfp_mask, nr_pages);
1516 	if (!bio)
1517 		return ERR_PTR(-ENOMEM);
1518 
1519 	while (len) {
1520 		struct page *page;
1521 		unsigned int bytes = PAGE_SIZE;
1522 
1523 		if (bytes > len)
1524 			bytes = len;
1525 
1526 		page = alloc_page(q->bounce_gfp | gfp_mask);
1527 		if (!page)
1528 			goto cleanup;
1529 
1530 		if (!reading)
1531 			memcpy(page_address(page), p, bytes);
1532 
1533 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1534 			break;
1535 
1536 		len -= bytes;
1537 		p += bytes;
1538 	}
1539 
1540 	if (reading) {
1541 		bio->bi_end_io = bio_copy_kern_endio_read;
1542 		bio->bi_private = data;
1543 	} else {
1544 		bio->bi_end_io = bio_copy_kern_endio;
1545 	}
1546 
1547 	return bio;
1548 
1549 cleanup:
1550 	bio_free_pages(bio);
1551 	bio_put(bio);
1552 	return ERR_PTR(-ENOMEM);
1553 }
1554 
1555 /*
1556  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1557  * for performing direct-IO in BIOs.
1558  *
1559  * The problem is that we cannot run set_page_dirty() from interrupt context
1560  * because the required locks are not interrupt-safe.  So what we can do is to
1561  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1562  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1563  * in process context.
1564  *
1565  * We special-case compound pages here: normally this means reads into hugetlb
1566  * pages.  The logic in here doesn't really work right for compound pages
1567  * because the VM does not uniformly chase down the head page in all cases.
1568  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1569  * handle them at all.  So we skip compound pages here at an early stage.
1570  *
1571  * Note that this code is very hard to test under normal circumstances because
1572  * direct-io pins the pages with get_user_pages().  This makes
1573  * is_page_cache_freeable return false, and the VM will not clean the pages.
1574  * But other code (eg, flusher threads) could clean the pages if they are mapped
1575  * pagecache.
1576  *
1577  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1578  * deferred bio dirtying paths.
1579  */
1580 
1581 /*
1582  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1583  */
1584 void bio_set_pages_dirty(struct bio *bio)
1585 {
1586 	struct bio_vec *bvec;
1587 	int i;
1588 
1589 	bio_for_each_segment_all(bvec, bio, i) {
1590 		if (!PageCompound(bvec->bv_page))
1591 			set_page_dirty_lock(bvec->bv_page);
1592 	}
1593 }
1594 
1595 static void bio_release_pages(struct bio *bio)
1596 {
1597 	struct bio_vec *bvec;
1598 	int i;
1599 
1600 	bio_for_each_segment_all(bvec, bio, i)
1601 		put_page(bvec->bv_page);
1602 }
1603 
1604 /*
1605  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1606  * If they are, then fine.  If, however, some pages are clean then they must
1607  * have been written out during the direct-IO read.  So we take another ref on
1608  * the BIO and re-dirty the pages in process context.
1609  *
1610  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1611  * here on.  It will run one put_page() against each page and will run one
1612  * bio_put() against the BIO.
1613  */
1614 
1615 static void bio_dirty_fn(struct work_struct *work);
1616 
1617 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1618 static DEFINE_SPINLOCK(bio_dirty_lock);
1619 static struct bio *bio_dirty_list;
1620 
1621 /*
1622  * This runs in process context
1623  */
1624 static void bio_dirty_fn(struct work_struct *work)
1625 {
1626 	struct bio *bio, *next;
1627 
1628 	spin_lock_irq(&bio_dirty_lock);
1629 	next = bio_dirty_list;
1630 	bio_dirty_list = NULL;
1631 	spin_unlock_irq(&bio_dirty_lock);
1632 
1633 	while ((bio = next) != NULL) {
1634 		next = bio->bi_private;
1635 
1636 		bio_set_pages_dirty(bio);
1637 		bio_release_pages(bio);
1638 		bio_put(bio);
1639 	}
1640 }
1641 
1642 void bio_check_pages_dirty(struct bio *bio)
1643 {
1644 	struct bio_vec *bvec;
1645 	unsigned long flags;
1646 	int i;
1647 
1648 	bio_for_each_segment_all(bvec, bio, i) {
1649 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1650 			goto defer;
1651 	}
1652 
1653 	bio_release_pages(bio);
1654 	bio_put(bio);
1655 	return;
1656 defer:
1657 	spin_lock_irqsave(&bio_dirty_lock, flags);
1658 	bio->bi_private = bio_dirty_list;
1659 	bio_dirty_list = bio;
1660 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1661 	schedule_work(&bio_dirty_work);
1662 }
1663 
1664 void update_io_ticks(struct hd_struct *part, unsigned long now)
1665 {
1666 	unsigned long stamp;
1667 again:
1668 	stamp = READ_ONCE(part->stamp);
1669 	if (unlikely(stamp != now)) {
1670 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1671 			__part_stat_add(part, io_ticks, 1);
1672 		}
1673 	}
1674 	if (part->partno) {
1675 		part = &part_to_disk(part)->part0;
1676 		goto again;
1677 	}
1678 }
1679 
1680 void generic_start_io_acct(struct request_queue *q, int op,
1681 			   unsigned long sectors, struct hd_struct *part)
1682 {
1683 	const int sgrp = op_stat_group(op);
1684 
1685 	part_stat_lock();
1686 
1687 	update_io_ticks(part, jiffies);
1688 	part_stat_inc(part, ios[sgrp]);
1689 	part_stat_add(part, sectors[sgrp], sectors);
1690 	part_inc_in_flight(q, part, op_is_write(op));
1691 
1692 	part_stat_unlock();
1693 }
1694 EXPORT_SYMBOL(generic_start_io_acct);
1695 
1696 void generic_end_io_acct(struct request_queue *q, int req_op,
1697 			 struct hd_struct *part, unsigned long start_time)
1698 {
1699 	unsigned long now = jiffies;
1700 	unsigned long duration = now - start_time;
1701 	const int sgrp = op_stat_group(req_op);
1702 
1703 	part_stat_lock();
1704 
1705 	update_io_ticks(part, now);
1706 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1707 	part_stat_add(part, time_in_queue, duration);
1708 	part_dec_in_flight(q, part, op_is_write(req_op));
1709 
1710 	part_stat_unlock();
1711 }
1712 EXPORT_SYMBOL(generic_end_io_acct);
1713 
1714 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1715 void bio_flush_dcache_pages(struct bio *bi)
1716 {
1717 	struct bio_vec bvec;
1718 	struct bvec_iter iter;
1719 
1720 	bio_for_each_segment(bvec, bi, iter)
1721 		flush_dcache_page(bvec.bv_page);
1722 }
1723 EXPORT_SYMBOL(bio_flush_dcache_pages);
1724 #endif
1725 
1726 static inline bool bio_remaining_done(struct bio *bio)
1727 {
1728 	/*
1729 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1730 	 * we always end io on the first invocation.
1731 	 */
1732 	if (!bio_flagged(bio, BIO_CHAIN))
1733 		return true;
1734 
1735 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1736 
1737 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1738 		bio_clear_flag(bio, BIO_CHAIN);
1739 		return true;
1740 	}
1741 
1742 	return false;
1743 }
1744 
1745 /**
1746  * bio_endio - end I/O on a bio
1747  * @bio:	bio
1748  *
1749  * Description:
1750  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1751  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1752  *   bio unless they own it and thus know that it has an end_io function.
1753  *
1754  *   bio_endio() can be called several times on a bio that has been chained
1755  *   using bio_chain().  The ->bi_end_io() function will only be called the
1756  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1757  *   generated if BIO_TRACE_COMPLETION is set.
1758  **/
1759 void bio_endio(struct bio *bio)
1760 {
1761 again:
1762 	if (!bio_remaining_done(bio))
1763 		return;
1764 	if (!bio_integrity_endio(bio))
1765 		return;
1766 
1767 	if (bio->bi_disk)
1768 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1769 
1770 	/*
1771 	 * Need to have a real endio function for chained bios, otherwise
1772 	 * various corner cases will break (like stacking block devices that
1773 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1774 	 * recursion and blowing the stack. Tail call optimization would
1775 	 * handle this, but compiling with frame pointers also disables
1776 	 * gcc's sibling call optimization.
1777 	 */
1778 	if (bio->bi_end_io == bio_chain_endio) {
1779 		bio = __bio_chain_endio(bio);
1780 		goto again;
1781 	}
1782 
1783 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1784 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1785 					 blk_status_to_errno(bio->bi_status));
1786 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1787 	}
1788 
1789 	blk_throtl_bio_endio(bio);
1790 	/* release cgroup info */
1791 	bio_uninit(bio);
1792 	if (bio->bi_end_io)
1793 		bio->bi_end_io(bio);
1794 }
1795 EXPORT_SYMBOL(bio_endio);
1796 
1797 /**
1798  * bio_split - split a bio
1799  * @bio:	bio to split
1800  * @sectors:	number of sectors to split from the front of @bio
1801  * @gfp:	gfp mask
1802  * @bs:		bio set to allocate from
1803  *
1804  * Allocates and returns a new bio which represents @sectors from the start of
1805  * @bio, and updates @bio to represent the remaining sectors.
1806  *
1807  * Unless this is a discard request the newly allocated bio will point
1808  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1809  * @bio is not freed before the split.
1810  */
1811 struct bio *bio_split(struct bio *bio, int sectors,
1812 		      gfp_t gfp, struct bio_set *bs)
1813 {
1814 	struct bio *split;
1815 
1816 	BUG_ON(sectors <= 0);
1817 	BUG_ON(sectors >= bio_sectors(bio));
1818 
1819 	split = bio_clone_fast(bio, gfp, bs);
1820 	if (!split)
1821 		return NULL;
1822 
1823 	split->bi_iter.bi_size = sectors << 9;
1824 
1825 	if (bio_integrity(split))
1826 		bio_integrity_trim(split);
1827 
1828 	bio_advance(bio, split->bi_iter.bi_size);
1829 
1830 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1831 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1832 
1833 	return split;
1834 }
1835 EXPORT_SYMBOL(bio_split);
1836 
1837 /**
1838  * bio_trim - trim a bio
1839  * @bio:	bio to trim
1840  * @offset:	number of sectors to trim from the front of @bio
1841  * @size:	size we want to trim @bio to, in sectors
1842  */
1843 void bio_trim(struct bio *bio, int offset, int size)
1844 {
1845 	/* 'bio' is a cloned bio which we need to trim to match
1846 	 * the given offset and size.
1847 	 */
1848 
1849 	size <<= 9;
1850 	if (offset == 0 && size == bio->bi_iter.bi_size)
1851 		return;
1852 
1853 	bio_clear_flag(bio, BIO_SEG_VALID);
1854 
1855 	bio_advance(bio, offset << 9);
1856 
1857 	bio->bi_iter.bi_size = size;
1858 
1859 	if (bio_integrity(bio))
1860 		bio_integrity_trim(bio);
1861 
1862 }
1863 EXPORT_SYMBOL_GPL(bio_trim);
1864 
1865 /*
1866  * create memory pools for biovec's in a bio_set.
1867  * use the global biovec slabs created for general use.
1868  */
1869 int biovec_init_pool(mempool_t *pool, int pool_entries)
1870 {
1871 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1872 
1873 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1874 }
1875 
1876 /*
1877  * bioset_exit - exit a bioset initialized with bioset_init()
1878  *
1879  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1880  * kzalloc()).
1881  */
1882 void bioset_exit(struct bio_set *bs)
1883 {
1884 	if (bs->rescue_workqueue)
1885 		destroy_workqueue(bs->rescue_workqueue);
1886 	bs->rescue_workqueue = NULL;
1887 
1888 	mempool_exit(&bs->bio_pool);
1889 	mempool_exit(&bs->bvec_pool);
1890 
1891 	bioset_integrity_free(bs);
1892 	if (bs->bio_slab)
1893 		bio_put_slab(bs);
1894 	bs->bio_slab = NULL;
1895 }
1896 EXPORT_SYMBOL(bioset_exit);
1897 
1898 /**
1899  * bioset_init - Initialize a bio_set
1900  * @bs:		pool to initialize
1901  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1902  * @front_pad:	Number of bytes to allocate in front of the returned bio
1903  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1904  *              and %BIOSET_NEED_RESCUER
1905  *
1906  * Description:
1907  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1908  *    to ask for a number of bytes to be allocated in front of the bio.
1909  *    Front pad allocation is useful for embedding the bio inside
1910  *    another structure, to avoid allocating extra data to go with the bio.
1911  *    Note that the bio must be embedded at the END of that structure always,
1912  *    or things will break badly.
1913  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1914  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1915  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1916  *    dispatch queued requests when the mempool runs out of space.
1917  *
1918  */
1919 int bioset_init(struct bio_set *bs,
1920 		unsigned int pool_size,
1921 		unsigned int front_pad,
1922 		int flags)
1923 {
1924 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1925 
1926 	bs->front_pad = front_pad;
1927 
1928 	spin_lock_init(&bs->rescue_lock);
1929 	bio_list_init(&bs->rescue_list);
1930 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1931 
1932 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1933 	if (!bs->bio_slab)
1934 		return -ENOMEM;
1935 
1936 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1937 		goto bad;
1938 
1939 	if ((flags & BIOSET_NEED_BVECS) &&
1940 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1941 		goto bad;
1942 
1943 	if (!(flags & BIOSET_NEED_RESCUER))
1944 		return 0;
1945 
1946 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1947 	if (!bs->rescue_workqueue)
1948 		goto bad;
1949 
1950 	return 0;
1951 bad:
1952 	bioset_exit(bs);
1953 	return -ENOMEM;
1954 }
1955 EXPORT_SYMBOL(bioset_init);
1956 
1957 /*
1958  * Initialize and setup a new bio_set, based on the settings from
1959  * another bio_set.
1960  */
1961 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1962 {
1963 	int flags;
1964 
1965 	flags = 0;
1966 	if (src->bvec_pool.min_nr)
1967 		flags |= BIOSET_NEED_BVECS;
1968 	if (src->rescue_workqueue)
1969 		flags |= BIOSET_NEED_RESCUER;
1970 
1971 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1972 }
1973 EXPORT_SYMBOL(bioset_init_from_src);
1974 
1975 #ifdef CONFIG_BLK_CGROUP
1976 
1977 /**
1978  * bio_disassociate_blkg - puts back the blkg reference if associated
1979  * @bio: target bio
1980  *
1981  * Helper to disassociate the blkg from @bio if a blkg is associated.
1982  */
1983 void bio_disassociate_blkg(struct bio *bio)
1984 {
1985 	if (bio->bi_blkg) {
1986 		blkg_put(bio->bi_blkg);
1987 		bio->bi_blkg = NULL;
1988 	}
1989 }
1990 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
1991 
1992 /**
1993  * __bio_associate_blkg - associate a bio with the a blkg
1994  * @bio: target bio
1995  * @blkg: the blkg to associate
1996  *
1997  * This tries to associate @bio with the specified @blkg.  Association failure
1998  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
1999  * be anything between @blkg and the root_blkg.  This situation only happens
2000  * when a cgroup is dying and then the remaining bios will spill to the closest
2001  * alive blkg.
2002  *
2003  * A reference will be taken on the @blkg and will be released when @bio is
2004  * freed.
2005  */
2006 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2007 {
2008 	bio_disassociate_blkg(bio);
2009 
2010 	bio->bi_blkg = blkg_tryget_closest(blkg);
2011 }
2012 
2013 /**
2014  * bio_associate_blkg_from_css - associate a bio with a specified css
2015  * @bio: target bio
2016  * @css: target css
2017  *
2018  * Associate @bio with the blkg found by combining the css's blkg and the
2019  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2020  * the association fails with the css.
2021  */
2022 void bio_associate_blkg_from_css(struct bio *bio,
2023 				 struct cgroup_subsys_state *css)
2024 {
2025 	struct request_queue *q = bio->bi_disk->queue;
2026 	struct blkcg_gq *blkg;
2027 
2028 	rcu_read_lock();
2029 
2030 	if (!css || !css->parent)
2031 		blkg = q->root_blkg;
2032 	else
2033 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2034 
2035 	__bio_associate_blkg(bio, blkg);
2036 
2037 	rcu_read_unlock();
2038 }
2039 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2040 
2041 #ifdef CONFIG_MEMCG
2042 /**
2043  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2044  * @bio: target bio
2045  * @page: the page to lookup the blkcg from
2046  *
2047  * Associate @bio with the blkg from @page's owning memcg and the respective
2048  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2049  * root_blkg.
2050  */
2051 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2052 {
2053 	struct cgroup_subsys_state *css;
2054 
2055 	if (!page->mem_cgroup)
2056 		return;
2057 
2058 	rcu_read_lock();
2059 
2060 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2061 	bio_associate_blkg_from_css(bio, css);
2062 
2063 	rcu_read_unlock();
2064 }
2065 #endif /* CONFIG_MEMCG */
2066 
2067 /**
2068  * bio_associate_blkg - associate a bio with a blkg
2069  * @bio: target bio
2070  *
2071  * Associate @bio with the blkg found from the bio's css and request_queue.
2072  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2073  * already associated, the css is reused and association redone as the
2074  * request_queue may have changed.
2075  */
2076 void bio_associate_blkg(struct bio *bio)
2077 {
2078 	struct cgroup_subsys_state *css;
2079 
2080 	rcu_read_lock();
2081 
2082 	if (bio->bi_blkg)
2083 		css = &bio_blkcg(bio)->css;
2084 	else
2085 		css = blkcg_css();
2086 
2087 	bio_associate_blkg_from_css(bio, css);
2088 
2089 	rcu_read_unlock();
2090 }
2091 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2092 
2093 /**
2094  * bio_clone_blkg_association - clone blkg association from src to dst bio
2095  * @dst: destination bio
2096  * @src: source bio
2097  */
2098 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2099 {
2100 	rcu_read_lock();
2101 
2102 	if (src->bi_blkg)
2103 		__bio_associate_blkg(dst, src->bi_blkg);
2104 
2105 	rcu_read_unlock();
2106 }
2107 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2108 #endif /* CONFIG_BLK_CGROUP */
2109 
2110 static void __init biovec_init_slabs(void)
2111 {
2112 	int i;
2113 
2114 	for (i = 0; i < BVEC_POOL_NR; i++) {
2115 		int size;
2116 		struct biovec_slab *bvs = bvec_slabs + i;
2117 
2118 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2119 			bvs->slab = NULL;
2120 			continue;
2121 		}
2122 
2123 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2124 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2125                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2126 	}
2127 }
2128 
2129 static int __init init_bio(void)
2130 {
2131 	bio_slab_max = 2;
2132 	bio_slab_nr = 0;
2133 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2134 			    GFP_KERNEL);
2135 	if (!bio_slabs)
2136 		panic("bio: can't allocate bios\n");
2137 
2138 	bio_integrity_init();
2139 	biovec_init_slabs();
2140 
2141 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2142 		panic("bio: can't allocate bios\n");
2143 
2144 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2145 		panic("bio: can't create integrity pool\n");
2146 
2147 	return 0;
2148 }
2149 subsys_initcall(init_bio);
2150