1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 34 /* 35 * Test patch to inline a certain number of bi_io_vec's inside the bio 36 * itself, to shrink a bio data allocation from two mempool calls to one 37 */ 38 #define BIO_INLINE_VECS 4 39 40 /* 41 * if you change this list, also change bvec_alloc or things will 42 * break badly! cannot be bigger than what you can fit into an 43 * unsigned short 44 */ 45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 48 }; 49 #undef BV 50 51 /* 52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 53 * IO code that does not need private memory pools. 54 */ 55 struct bio_set *fs_bio_set; 56 EXPORT_SYMBOL(fs_bio_set); 57 58 /* 59 * Our slab pool management 60 */ 61 struct bio_slab { 62 struct kmem_cache *slab; 63 unsigned int slab_ref; 64 unsigned int slab_size; 65 char name[8]; 66 }; 67 static DEFINE_MUTEX(bio_slab_lock); 68 static struct bio_slab *bio_slabs; 69 static unsigned int bio_slab_nr, bio_slab_max; 70 71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 72 { 73 unsigned int sz = sizeof(struct bio) + extra_size; 74 struct kmem_cache *slab = NULL; 75 struct bio_slab *bslab, *new_bio_slabs; 76 unsigned int new_bio_slab_max; 77 unsigned int i, entry = -1; 78 79 mutex_lock(&bio_slab_lock); 80 81 i = 0; 82 while (i < bio_slab_nr) { 83 bslab = &bio_slabs[i]; 84 85 if (!bslab->slab && entry == -1) 86 entry = i; 87 else if (bslab->slab_size == sz) { 88 slab = bslab->slab; 89 bslab->slab_ref++; 90 break; 91 } 92 i++; 93 } 94 95 if (slab) 96 goto out_unlock; 97 98 if (bio_slab_nr == bio_slab_max && entry == -1) { 99 new_bio_slab_max = bio_slab_max << 1; 100 new_bio_slabs = krealloc(bio_slabs, 101 new_bio_slab_max * sizeof(struct bio_slab), 102 GFP_KERNEL); 103 if (!new_bio_slabs) 104 goto out_unlock; 105 bio_slab_max = new_bio_slab_max; 106 bio_slabs = new_bio_slabs; 107 } 108 if (entry == -1) 109 entry = bio_slab_nr++; 110 111 bslab = &bio_slabs[entry]; 112 113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 115 SLAB_HWCACHE_ALIGN, NULL); 116 if (!slab) 117 goto out_unlock; 118 119 bslab->slab = slab; 120 bslab->slab_ref = 1; 121 bslab->slab_size = sz; 122 out_unlock: 123 mutex_unlock(&bio_slab_lock); 124 return slab; 125 } 126 127 static void bio_put_slab(struct bio_set *bs) 128 { 129 struct bio_slab *bslab = NULL; 130 unsigned int i; 131 132 mutex_lock(&bio_slab_lock); 133 134 for (i = 0; i < bio_slab_nr; i++) { 135 if (bs->bio_slab == bio_slabs[i].slab) { 136 bslab = &bio_slabs[i]; 137 break; 138 } 139 } 140 141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 142 goto out; 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 kmem_cache_destroy(bslab->slab); 150 bslab->slab = NULL; 151 152 out: 153 mutex_unlock(&bio_slab_lock); 154 } 155 156 unsigned int bvec_nr_vecs(unsigned short idx) 157 { 158 return bvec_slabs[idx].nr_vecs; 159 } 160 161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 162 { 163 if (!idx) 164 return; 165 idx--; 166 167 BIO_BUG_ON(idx >= BVEC_POOL_NR); 168 169 if (idx == BVEC_POOL_MAX) { 170 mempool_free(bv, pool); 171 } else { 172 struct biovec_slab *bvs = bvec_slabs + idx; 173 174 kmem_cache_free(bvs->slab, bv); 175 } 176 } 177 178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 179 mempool_t *pool) 180 { 181 struct bio_vec *bvl; 182 183 /* 184 * see comment near bvec_array define! 185 */ 186 switch (nr) { 187 case 1: 188 *idx = 0; 189 break; 190 case 2 ... 4: 191 *idx = 1; 192 break; 193 case 5 ... 16: 194 *idx = 2; 195 break; 196 case 17 ... 64: 197 *idx = 3; 198 break; 199 case 65 ... 128: 200 *idx = 4; 201 break; 202 case 129 ... BIO_MAX_PAGES: 203 *idx = 5; 204 break; 205 default: 206 return NULL; 207 } 208 209 /* 210 * idx now points to the pool we want to allocate from. only the 211 * 1-vec entry pool is mempool backed. 212 */ 213 if (*idx == BVEC_POOL_MAX) { 214 fallback: 215 bvl = mempool_alloc(pool, gfp_mask); 216 } else { 217 struct biovec_slab *bvs = bvec_slabs + *idx; 218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 219 220 /* 221 * Make this allocation restricted and don't dump info on 222 * allocation failures, since we'll fallback to the mempool 223 * in case of failure. 224 */ 225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 226 227 /* 228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 229 * is set, retry with the 1-entry mempool 230 */ 231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 233 *idx = BVEC_POOL_MAX; 234 goto fallback; 235 } 236 } 237 238 (*idx)++; 239 return bvl; 240 } 241 242 static void __bio_free(struct bio *bio) 243 { 244 bio_disassociate_task(bio); 245 246 if (bio_integrity(bio)) 247 bio_integrity_free(bio); 248 } 249 250 static void bio_free(struct bio *bio) 251 { 252 struct bio_set *bs = bio->bi_pool; 253 void *p; 254 255 __bio_free(bio); 256 257 if (bs) { 258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 259 260 /* 261 * If we have front padding, adjust the bio pointer before freeing 262 */ 263 p = bio; 264 p -= bs->front_pad; 265 266 mempool_free(p, bs->bio_pool); 267 } else { 268 /* Bio was allocated by bio_kmalloc() */ 269 kfree(bio); 270 } 271 } 272 273 void bio_init(struct bio *bio, struct bio_vec *table, 274 unsigned short max_vecs) 275 { 276 memset(bio, 0, sizeof(*bio)); 277 atomic_set(&bio->__bi_remaining, 1); 278 atomic_set(&bio->__bi_cnt, 1); 279 280 bio->bi_io_vec = table; 281 bio->bi_max_vecs = max_vecs; 282 } 283 EXPORT_SYMBOL(bio_init); 284 285 /** 286 * bio_reset - reinitialize a bio 287 * @bio: bio to reset 288 * 289 * Description: 290 * After calling bio_reset(), @bio will be in the same state as a freshly 291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 292 * preserved are the ones that are initialized by bio_alloc_bioset(). See 293 * comment in struct bio. 294 */ 295 void bio_reset(struct bio *bio) 296 { 297 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 298 299 __bio_free(bio); 300 301 memset(bio, 0, BIO_RESET_BYTES); 302 bio->bi_flags = flags; 303 atomic_set(&bio->__bi_remaining, 1); 304 } 305 EXPORT_SYMBOL(bio_reset); 306 307 static struct bio *__bio_chain_endio(struct bio *bio) 308 { 309 struct bio *parent = bio->bi_private; 310 311 if (!parent->bi_error) 312 parent->bi_error = bio->bi_error; 313 bio_put(bio); 314 return parent; 315 } 316 317 static void bio_chain_endio(struct bio *bio) 318 { 319 bio_endio(__bio_chain_endio(bio)); 320 } 321 322 /** 323 * bio_chain - chain bio completions 324 * @bio: the target bio 325 * @parent: the @bio's parent bio 326 * 327 * The caller won't have a bi_end_io called when @bio completes - instead, 328 * @parent's bi_end_io won't be called until both @parent and @bio have 329 * completed; the chained bio will also be freed when it completes. 330 * 331 * The caller must not set bi_private or bi_end_io in @bio. 332 */ 333 void bio_chain(struct bio *bio, struct bio *parent) 334 { 335 BUG_ON(bio->bi_private || bio->bi_end_io); 336 337 bio->bi_private = parent; 338 bio->bi_end_io = bio_chain_endio; 339 bio_inc_remaining(parent); 340 } 341 EXPORT_SYMBOL(bio_chain); 342 343 static void bio_alloc_rescue(struct work_struct *work) 344 { 345 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 346 struct bio *bio; 347 348 while (1) { 349 spin_lock(&bs->rescue_lock); 350 bio = bio_list_pop(&bs->rescue_list); 351 spin_unlock(&bs->rescue_lock); 352 353 if (!bio) 354 break; 355 356 generic_make_request(bio); 357 } 358 } 359 360 static void punt_bios_to_rescuer(struct bio_set *bs) 361 { 362 struct bio_list punt, nopunt; 363 struct bio *bio; 364 365 /* 366 * In order to guarantee forward progress we must punt only bios that 367 * were allocated from this bio_set; otherwise, if there was a bio on 368 * there for a stacking driver higher up in the stack, processing it 369 * could require allocating bios from this bio_set, and doing that from 370 * our own rescuer would be bad. 371 * 372 * Since bio lists are singly linked, pop them all instead of trying to 373 * remove from the middle of the list: 374 */ 375 376 bio_list_init(&punt); 377 bio_list_init(&nopunt); 378 379 while ((bio = bio_list_pop(¤t->bio_list[0]))) 380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 381 current->bio_list[0] = nopunt; 382 383 bio_list_init(&nopunt); 384 while ((bio = bio_list_pop(¤t->bio_list[1]))) 385 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 386 current->bio_list[1] = nopunt; 387 388 spin_lock(&bs->rescue_lock); 389 bio_list_merge(&bs->rescue_list, &punt); 390 spin_unlock(&bs->rescue_lock); 391 392 queue_work(bs->rescue_workqueue, &bs->rescue_work); 393 } 394 395 /** 396 * bio_alloc_bioset - allocate a bio for I/O 397 * @gfp_mask: the GFP_ mask given to the slab allocator 398 * @nr_iovecs: number of iovecs to pre-allocate 399 * @bs: the bio_set to allocate from. 400 * 401 * Description: 402 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 403 * backed by the @bs's mempool. 404 * 405 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 406 * always be able to allocate a bio. This is due to the mempool guarantees. 407 * To make this work, callers must never allocate more than 1 bio at a time 408 * from this pool. Callers that need to allocate more than 1 bio must always 409 * submit the previously allocated bio for IO before attempting to allocate 410 * a new one. Failure to do so can cause deadlocks under memory pressure. 411 * 412 * Note that when running under generic_make_request() (i.e. any block 413 * driver), bios are not submitted until after you return - see the code in 414 * generic_make_request() that converts recursion into iteration, to prevent 415 * stack overflows. 416 * 417 * This would normally mean allocating multiple bios under 418 * generic_make_request() would be susceptible to deadlocks, but we have 419 * deadlock avoidance code that resubmits any blocked bios from a rescuer 420 * thread. 421 * 422 * However, we do not guarantee forward progress for allocations from other 423 * mempools. Doing multiple allocations from the same mempool under 424 * generic_make_request() should be avoided - instead, use bio_set's front_pad 425 * for per bio allocations. 426 * 427 * RETURNS: 428 * Pointer to new bio on success, NULL on failure. 429 */ 430 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 431 { 432 gfp_t saved_gfp = gfp_mask; 433 unsigned front_pad; 434 unsigned inline_vecs; 435 struct bio_vec *bvl = NULL; 436 struct bio *bio; 437 void *p; 438 439 if (!bs) { 440 if (nr_iovecs > UIO_MAXIOV) 441 return NULL; 442 443 p = kmalloc(sizeof(struct bio) + 444 nr_iovecs * sizeof(struct bio_vec), 445 gfp_mask); 446 front_pad = 0; 447 inline_vecs = nr_iovecs; 448 } else { 449 /* should not use nobvec bioset for nr_iovecs > 0 */ 450 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 451 return NULL; 452 /* 453 * generic_make_request() converts recursion to iteration; this 454 * means if we're running beneath it, any bios we allocate and 455 * submit will not be submitted (and thus freed) until after we 456 * return. 457 * 458 * This exposes us to a potential deadlock if we allocate 459 * multiple bios from the same bio_set() while running 460 * underneath generic_make_request(). If we were to allocate 461 * multiple bios (say a stacking block driver that was splitting 462 * bios), we would deadlock if we exhausted the mempool's 463 * reserve. 464 * 465 * We solve this, and guarantee forward progress, with a rescuer 466 * workqueue per bio_set. If we go to allocate and there are 467 * bios on current->bio_list, we first try the allocation 468 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 469 * bios we would be blocking to the rescuer workqueue before 470 * we retry with the original gfp_flags. 471 */ 472 473 if (current->bio_list && 474 (!bio_list_empty(¤t->bio_list[0]) || 475 !bio_list_empty(¤t->bio_list[1]))) 476 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 477 478 p = mempool_alloc(bs->bio_pool, gfp_mask); 479 if (!p && gfp_mask != saved_gfp) { 480 punt_bios_to_rescuer(bs); 481 gfp_mask = saved_gfp; 482 p = mempool_alloc(bs->bio_pool, gfp_mask); 483 } 484 485 front_pad = bs->front_pad; 486 inline_vecs = BIO_INLINE_VECS; 487 } 488 489 if (unlikely(!p)) 490 return NULL; 491 492 bio = p + front_pad; 493 bio_init(bio, NULL, 0); 494 495 if (nr_iovecs > inline_vecs) { 496 unsigned long idx = 0; 497 498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 499 if (!bvl && gfp_mask != saved_gfp) { 500 punt_bios_to_rescuer(bs); 501 gfp_mask = saved_gfp; 502 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 503 } 504 505 if (unlikely(!bvl)) 506 goto err_free; 507 508 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 509 } else if (nr_iovecs) { 510 bvl = bio->bi_inline_vecs; 511 } 512 513 bio->bi_pool = bs; 514 bio->bi_max_vecs = nr_iovecs; 515 bio->bi_io_vec = bvl; 516 return bio; 517 518 err_free: 519 mempool_free(p, bs->bio_pool); 520 return NULL; 521 } 522 EXPORT_SYMBOL(bio_alloc_bioset); 523 524 void zero_fill_bio(struct bio *bio) 525 { 526 unsigned long flags; 527 struct bio_vec bv; 528 struct bvec_iter iter; 529 530 bio_for_each_segment(bv, bio, iter) { 531 char *data = bvec_kmap_irq(&bv, &flags); 532 memset(data, 0, bv.bv_len); 533 flush_dcache_page(bv.bv_page); 534 bvec_kunmap_irq(data, &flags); 535 } 536 } 537 EXPORT_SYMBOL(zero_fill_bio); 538 539 /** 540 * bio_put - release a reference to a bio 541 * @bio: bio to release reference to 542 * 543 * Description: 544 * Put a reference to a &struct bio, either one you have gotten with 545 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 546 **/ 547 void bio_put(struct bio *bio) 548 { 549 if (!bio_flagged(bio, BIO_REFFED)) 550 bio_free(bio); 551 else { 552 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 553 554 /* 555 * last put frees it 556 */ 557 if (atomic_dec_and_test(&bio->__bi_cnt)) 558 bio_free(bio); 559 } 560 } 561 EXPORT_SYMBOL(bio_put); 562 563 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 564 { 565 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 566 blk_recount_segments(q, bio); 567 568 return bio->bi_phys_segments; 569 } 570 EXPORT_SYMBOL(bio_phys_segments); 571 572 /** 573 * __bio_clone_fast - clone a bio that shares the original bio's biovec 574 * @bio: destination bio 575 * @bio_src: bio to clone 576 * 577 * Clone a &bio. Caller will own the returned bio, but not 578 * the actual data it points to. Reference count of returned 579 * bio will be one. 580 * 581 * Caller must ensure that @bio_src is not freed before @bio. 582 */ 583 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 584 { 585 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 586 587 /* 588 * most users will be overriding ->bi_bdev with a new target, 589 * so we don't set nor calculate new physical/hw segment counts here 590 */ 591 bio->bi_bdev = bio_src->bi_bdev; 592 bio_set_flag(bio, BIO_CLONED); 593 bio->bi_opf = bio_src->bi_opf; 594 bio->bi_iter = bio_src->bi_iter; 595 bio->bi_io_vec = bio_src->bi_io_vec; 596 597 bio_clone_blkcg_association(bio, bio_src); 598 } 599 EXPORT_SYMBOL(__bio_clone_fast); 600 601 /** 602 * bio_clone_fast - clone a bio that shares the original bio's biovec 603 * @bio: bio to clone 604 * @gfp_mask: allocation priority 605 * @bs: bio_set to allocate from 606 * 607 * Like __bio_clone_fast, only also allocates the returned bio 608 */ 609 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 610 { 611 struct bio *b; 612 613 b = bio_alloc_bioset(gfp_mask, 0, bs); 614 if (!b) 615 return NULL; 616 617 __bio_clone_fast(b, bio); 618 619 if (bio_integrity(bio)) { 620 int ret; 621 622 ret = bio_integrity_clone(b, bio, gfp_mask); 623 624 if (ret < 0) { 625 bio_put(b); 626 return NULL; 627 } 628 } 629 630 return b; 631 } 632 EXPORT_SYMBOL(bio_clone_fast); 633 634 static struct bio *__bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 635 struct bio_set *bs, int offset, 636 int size) 637 { 638 struct bvec_iter iter; 639 struct bio_vec bv; 640 struct bio *bio; 641 struct bvec_iter iter_src = bio_src->bi_iter; 642 643 /* for supporting partial clone */ 644 if (offset || size != bio_src->bi_iter.bi_size) { 645 bio_advance_iter(bio_src, &iter_src, offset); 646 iter_src.bi_size = size; 647 } 648 649 /* 650 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 651 * bio_src->bi_io_vec to bio->bi_io_vec. 652 * 653 * We can't do that anymore, because: 654 * 655 * - The point of cloning the biovec is to produce a bio with a biovec 656 * the caller can modify: bi_idx and bi_bvec_done should be 0. 657 * 658 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 659 * we tried to clone the whole thing bio_alloc_bioset() would fail. 660 * But the clone should succeed as long as the number of biovecs we 661 * actually need to allocate is fewer than BIO_MAX_PAGES. 662 * 663 * - Lastly, bi_vcnt should not be looked at or relied upon by code 664 * that does not own the bio - reason being drivers don't use it for 665 * iterating over the biovec anymore, so expecting it to be kept up 666 * to date (i.e. for clones that share the parent biovec) is just 667 * asking for trouble and would force extra work on 668 * __bio_clone_fast() anyways. 669 */ 670 671 bio = bio_alloc_bioset(gfp_mask, __bio_segments(bio_src, 672 &iter_src), bs); 673 if (!bio) 674 return NULL; 675 bio->bi_bdev = bio_src->bi_bdev; 676 bio->bi_opf = bio_src->bi_opf; 677 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 678 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 679 680 switch (bio_op(bio)) { 681 case REQ_OP_DISCARD: 682 case REQ_OP_SECURE_ERASE: 683 case REQ_OP_WRITE_ZEROES: 684 break; 685 case REQ_OP_WRITE_SAME: 686 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 687 break; 688 default: 689 __bio_for_each_segment(bv, bio_src, iter, iter_src) 690 bio->bi_io_vec[bio->bi_vcnt++] = bv; 691 break; 692 } 693 694 if (bio_integrity(bio_src)) { 695 int ret; 696 697 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 698 if (ret < 0) { 699 bio_put(bio); 700 return NULL; 701 } 702 } 703 704 bio_clone_blkcg_association(bio, bio_src); 705 706 return bio; 707 } 708 709 /** 710 * bio_clone_bioset - clone a bio 711 * @bio_src: bio to clone 712 * @gfp_mask: allocation priority 713 * @bs: bio_set to allocate from 714 * 715 * Clone bio. Caller will own the returned bio, but not the actual data it 716 * points to. Reference count of returned bio will be one. 717 */ 718 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 719 struct bio_set *bs) 720 { 721 return __bio_clone_bioset(bio_src, gfp_mask, bs, 0, 722 bio_src->bi_iter.bi_size); 723 } 724 EXPORT_SYMBOL(bio_clone_bioset); 725 726 /** 727 * bio_clone_bioset_partial - clone a partial bio 728 * @bio_src: bio to clone 729 * @gfp_mask: allocation priority 730 * @bs: bio_set to allocate from 731 * @offset: cloned starting from the offset 732 * @size: size for the cloned bio 733 * 734 * Clone bio. Caller will own the returned bio, but not the actual data it 735 * points to. Reference count of returned bio will be one. 736 */ 737 struct bio *bio_clone_bioset_partial(struct bio *bio_src, gfp_t gfp_mask, 738 struct bio_set *bs, int offset, 739 int size) 740 { 741 return __bio_clone_bioset(bio_src, gfp_mask, bs, offset, size); 742 } 743 EXPORT_SYMBOL(bio_clone_bioset_partial); 744 745 /** 746 * bio_add_pc_page - attempt to add page to bio 747 * @q: the target queue 748 * @bio: destination bio 749 * @page: page to add 750 * @len: vec entry length 751 * @offset: vec entry offset 752 * 753 * Attempt to add a page to the bio_vec maplist. This can fail for a 754 * number of reasons, such as the bio being full or target block device 755 * limitations. The target block device must allow bio's up to PAGE_SIZE, 756 * so it is always possible to add a single page to an empty bio. 757 * 758 * This should only be used by REQ_PC bios. 759 */ 760 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 761 *page, unsigned int len, unsigned int offset) 762 { 763 int retried_segments = 0; 764 struct bio_vec *bvec; 765 766 /* 767 * cloned bio must not modify vec list 768 */ 769 if (unlikely(bio_flagged(bio, BIO_CLONED))) 770 return 0; 771 772 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 773 return 0; 774 775 /* 776 * For filesystems with a blocksize smaller than the pagesize 777 * we will often be called with the same page as last time and 778 * a consecutive offset. Optimize this special case. 779 */ 780 if (bio->bi_vcnt > 0) { 781 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 782 783 if (page == prev->bv_page && 784 offset == prev->bv_offset + prev->bv_len) { 785 prev->bv_len += len; 786 bio->bi_iter.bi_size += len; 787 goto done; 788 } 789 790 /* 791 * If the queue doesn't support SG gaps and adding this 792 * offset would create a gap, disallow it. 793 */ 794 if (bvec_gap_to_prev(q, prev, offset)) 795 return 0; 796 } 797 798 if (bio->bi_vcnt >= bio->bi_max_vecs) 799 return 0; 800 801 /* 802 * setup the new entry, we might clear it again later if we 803 * cannot add the page 804 */ 805 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 806 bvec->bv_page = page; 807 bvec->bv_len = len; 808 bvec->bv_offset = offset; 809 bio->bi_vcnt++; 810 bio->bi_phys_segments++; 811 bio->bi_iter.bi_size += len; 812 813 /* 814 * Perform a recount if the number of segments is greater 815 * than queue_max_segments(q). 816 */ 817 818 while (bio->bi_phys_segments > queue_max_segments(q)) { 819 820 if (retried_segments) 821 goto failed; 822 823 retried_segments = 1; 824 blk_recount_segments(q, bio); 825 } 826 827 /* If we may be able to merge these biovecs, force a recount */ 828 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 829 bio_clear_flag(bio, BIO_SEG_VALID); 830 831 done: 832 return len; 833 834 failed: 835 bvec->bv_page = NULL; 836 bvec->bv_len = 0; 837 bvec->bv_offset = 0; 838 bio->bi_vcnt--; 839 bio->bi_iter.bi_size -= len; 840 blk_recount_segments(q, bio); 841 return 0; 842 } 843 EXPORT_SYMBOL(bio_add_pc_page); 844 845 /** 846 * bio_add_page - attempt to add page to bio 847 * @bio: destination bio 848 * @page: page to add 849 * @len: vec entry length 850 * @offset: vec entry offset 851 * 852 * Attempt to add a page to the bio_vec maplist. This will only fail 853 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 854 */ 855 int bio_add_page(struct bio *bio, struct page *page, 856 unsigned int len, unsigned int offset) 857 { 858 struct bio_vec *bv; 859 860 /* 861 * cloned bio must not modify vec list 862 */ 863 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 864 return 0; 865 866 /* 867 * For filesystems with a blocksize smaller than the pagesize 868 * we will often be called with the same page as last time and 869 * a consecutive offset. Optimize this special case. 870 */ 871 if (bio->bi_vcnt > 0) { 872 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 873 874 if (page == bv->bv_page && 875 offset == bv->bv_offset + bv->bv_len) { 876 bv->bv_len += len; 877 goto done; 878 } 879 } 880 881 if (bio->bi_vcnt >= bio->bi_max_vecs) 882 return 0; 883 884 bv = &bio->bi_io_vec[bio->bi_vcnt]; 885 bv->bv_page = page; 886 bv->bv_len = len; 887 bv->bv_offset = offset; 888 889 bio->bi_vcnt++; 890 done: 891 bio->bi_iter.bi_size += len; 892 return len; 893 } 894 EXPORT_SYMBOL(bio_add_page); 895 896 /** 897 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 898 * @bio: bio to add pages to 899 * @iter: iov iterator describing the region to be mapped 900 * 901 * Pins as many pages from *iter and appends them to @bio's bvec array. The 902 * pages will have to be released using put_page() when done. 903 */ 904 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 905 { 906 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 907 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 908 struct page **pages = (struct page **)bv; 909 size_t offset, diff; 910 ssize_t size; 911 912 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 913 if (unlikely(size <= 0)) 914 return size ? size : -EFAULT; 915 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; 916 917 /* 918 * Deep magic below: We need to walk the pinned pages backwards 919 * because we are abusing the space allocated for the bio_vecs 920 * for the page array. Because the bio_vecs are larger than the 921 * page pointers by definition this will always work. But it also 922 * means we can't use bio_add_page, so any changes to it's semantics 923 * need to be reflected here as well. 924 */ 925 bio->bi_iter.bi_size += size; 926 bio->bi_vcnt += nr_pages; 927 928 diff = (nr_pages * PAGE_SIZE - offset) - size; 929 while (nr_pages--) { 930 bv[nr_pages].bv_page = pages[nr_pages]; 931 bv[nr_pages].bv_len = PAGE_SIZE; 932 bv[nr_pages].bv_offset = 0; 933 } 934 935 bv[0].bv_offset += offset; 936 bv[0].bv_len -= offset; 937 if (diff) 938 bv[bio->bi_vcnt - 1].bv_len -= diff; 939 940 iov_iter_advance(iter, size); 941 return 0; 942 } 943 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 944 945 struct submit_bio_ret { 946 struct completion event; 947 int error; 948 }; 949 950 static void submit_bio_wait_endio(struct bio *bio) 951 { 952 struct submit_bio_ret *ret = bio->bi_private; 953 954 ret->error = bio->bi_error; 955 complete(&ret->event); 956 } 957 958 /** 959 * submit_bio_wait - submit a bio, and wait until it completes 960 * @bio: The &struct bio which describes the I/O 961 * 962 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 963 * bio_endio() on failure. 964 */ 965 int submit_bio_wait(struct bio *bio) 966 { 967 struct submit_bio_ret ret; 968 969 init_completion(&ret.event); 970 bio->bi_private = &ret; 971 bio->bi_end_io = submit_bio_wait_endio; 972 bio->bi_opf |= REQ_SYNC; 973 submit_bio(bio); 974 wait_for_completion_io(&ret.event); 975 976 return ret.error; 977 } 978 EXPORT_SYMBOL(submit_bio_wait); 979 980 /** 981 * bio_advance - increment/complete a bio by some number of bytes 982 * @bio: bio to advance 983 * @bytes: number of bytes to complete 984 * 985 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 986 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 987 * be updated on the last bvec as well. 988 * 989 * @bio will then represent the remaining, uncompleted portion of the io. 990 */ 991 void bio_advance(struct bio *bio, unsigned bytes) 992 { 993 if (bio_integrity(bio)) 994 bio_integrity_advance(bio, bytes); 995 996 bio_advance_iter(bio, &bio->bi_iter, bytes); 997 } 998 EXPORT_SYMBOL(bio_advance); 999 1000 /** 1001 * bio_alloc_pages - allocates a single page for each bvec in a bio 1002 * @bio: bio to allocate pages for 1003 * @gfp_mask: flags for allocation 1004 * 1005 * Allocates pages up to @bio->bi_vcnt. 1006 * 1007 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 1008 * freed. 1009 */ 1010 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 1011 { 1012 int i; 1013 struct bio_vec *bv; 1014 1015 bio_for_each_segment_all(bv, bio, i) { 1016 bv->bv_page = alloc_page(gfp_mask); 1017 if (!bv->bv_page) { 1018 while (--bv >= bio->bi_io_vec) 1019 __free_page(bv->bv_page); 1020 return -ENOMEM; 1021 } 1022 } 1023 1024 return 0; 1025 } 1026 EXPORT_SYMBOL(bio_alloc_pages); 1027 1028 /** 1029 * bio_copy_data - copy contents of data buffers from one chain of bios to 1030 * another 1031 * @src: source bio list 1032 * @dst: destination bio list 1033 * 1034 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 1035 * @src and @dst as linked lists of bios. 1036 * 1037 * Stops when it reaches the end of either @src or @dst - that is, copies 1038 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1039 */ 1040 void bio_copy_data(struct bio *dst, struct bio *src) 1041 { 1042 struct bvec_iter src_iter, dst_iter; 1043 struct bio_vec src_bv, dst_bv; 1044 void *src_p, *dst_p; 1045 unsigned bytes; 1046 1047 src_iter = src->bi_iter; 1048 dst_iter = dst->bi_iter; 1049 1050 while (1) { 1051 if (!src_iter.bi_size) { 1052 src = src->bi_next; 1053 if (!src) 1054 break; 1055 1056 src_iter = src->bi_iter; 1057 } 1058 1059 if (!dst_iter.bi_size) { 1060 dst = dst->bi_next; 1061 if (!dst) 1062 break; 1063 1064 dst_iter = dst->bi_iter; 1065 } 1066 1067 src_bv = bio_iter_iovec(src, src_iter); 1068 dst_bv = bio_iter_iovec(dst, dst_iter); 1069 1070 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1071 1072 src_p = kmap_atomic(src_bv.bv_page); 1073 dst_p = kmap_atomic(dst_bv.bv_page); 1074 1075 memcpy(dst_p + dst_bv.bv_offset, 1076 src_p + src_bv.bv_offset, 1077 bytes); 1078 1079 kunmap_atomic(dst_p); 1080 kunmap_atomic(src_p); 1081 1082 bio_advance_iter(src, &src_iter, bytes); 1083 bio_advance_iter(dst, &dst_iter, bytes); 1084 } 1085 } 1086 EXPORT_SYMBOL(bio_copy_data); 1087 1088 struct bio_map_data { 1089 int is_our_pages; 1090 struct iov_iter iter; 1091 struct iovec iov[]; 1092 }; 1093 1094 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1095 gfp_t gfp_mask) 1096 { 1097 if (iov_count > UIO_MAXIOV) 1098 return NULL; 1099 1100 return kmalloc(sizeof(struct bio_map_data) + 1101 sizeof(struct iovec) * iov_count, gfp_mask); 1102 } 1103 1104 /** 1105 * bio_copy_from_iter - copy all pages from iov_iter to bio 1106 * @bio: The &struct bio which describes the I/O as destination 1107 * @iter: iov_iter as source 1108 * 1109 * Copy all pages from iov_iter to bio. 1110 * Returns 0 on success, or error on failure. 1111 */ 1112 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1113 { 1114 int i; 1115 struct bio_vec *bvec; 1116 1117 bio_for_each_segment_all(bvec, bio, i) { 1118 ssize_t ret; 1119 1120 ret = copy_page_from_iter(bvec->bv_page, 1121 bvec->bv_offset, 1122 bvec->bv_len, 1123 &iter); 1124 1125 if (!iov_iter_count(&iter)) 1126 break; 1127 1128 if (ret < bvec->bv_len) 1129 return -EFAULT; 1130 } 1131 1132 return 0; 1133 } 1134 1135 /** 1136 * bio_copy_to_iter - copy all pages from bio to iov_iter 1137 * @bio: The &struct bio which describes the I/O as source 1138 * @iter: iov_iter as destination 1139 * 1140 * Copy all pages from bio to iov_iter. 1141 * Returns 0 on success, or error on failure. 1142 */ 1143 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1144 { 1145 int i; 1146 struct bio_vec *bvec; 1147 1148 bio_for_each_segment_all(bvec, bio, i) { 1149 ssize_t ret; 1150 1151 ret = copy_page_to_iter(bvec->bv_page, 1152 bvec->bv_offset, 1153 bvec->bv_len, 1154 &iter); 1155 1156 if (!iov_iter_count(&iter)) 1157 break; 1158 1159 if (ret < bvec->bv_len) 1160 return -EFAULT; 1161 } 1162 1163 return 0; 1164 } 1165 1166 void bio_free_pages(struct bio *bio) 1167 { 1168 struct bio_vec *bvec; 1169 int i; 1170 1171 bio_for_each_segment_all(bvec, bio, i) 1172 __free_page(bvec->bv_page); 1173 } 1174 EXPORT_SYMBOL(bio_free_pages); 1175 1176 /** 1177 * bio_uncopy_user - finish previously mapped bio 1178 * @bio: bio being terminated 1179 * 1180 * Free pages allocated from bio_copy_user_iov() and write back data 1181 * to user space in case of a read. 1182 */ 1183 int bio_uncopy_user(struct bio *bio) 1184 { 1185 struct bio_map_data *bmd = bio->bi_private; 1186 int ret = 0; 1187 1188 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1189 /* 1190 * if we're in a workqueue, the request is orphaned, so 1191 * don't copy into a random user address space, just free 1192 * and return -EINTR so user space doesn't expect any data. 1193 */ 1194 if (!current->mm) 1195 ret = -EINTR; 1196 else if (bio_data_dir(bio) == READ) 1197 ret = bio_copy_to_iter(bio, bmd->iter); 1198 if (bmd->is_our_pages) 1199 bio_free_pages(bio); 1200 } 1201 kfree(bmd); 1202 bio_put(bio); 1203 return ret; 1204 } 1205 1206 /** 1207 * bio_copy_user_iov - copy user data to bio 1208 * @q: destination block queue 1209 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1210 * @iter: iovec iterator 1211 * @gfp_mask: memory allocation flags 1212 * 1213 * Prepares and returns a bio for indirect user io, bouncing data 1214 * to/from kernel pages as necessary. Must be paired with 1215 * call bio_uncopy_user() on io completion. 1216 */ 1217 struct bio *bio_copy_user_iov(struct request_queue *q, 1218 struct rq_map_data *map_data, 1219 const struct iov_iter *iter, 1220 gfp_t gfp_mask) 1221 { 1222 struct bio_map_data *bmd; 1223 struct page *page; 1224 struct bio *bio; 1225 int i, ret; 1226 int nr_pages = 0; 1227 unsigned int len = iter->count; 1228 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1229 1230 for (i = 0; i < iter->nr_segs; i++) { 1231 unsigned long uaddr; 1232 unsigned long end; 1233 unsigned long start; 1234 1235 uaddr = (unsigned long) iter->iov[i].iov_base; 1236 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1237 >> PAGE_SHIFT; 1238 start = uaddr >> PAGE_SHIFT; 1239 1240 /* 1241 * Overflow, abort 1242 */ 1243 if (end < start) 1244 return ERR_PTR(-EINVAL); 1245 1246 nr_pages += end - start; 1247 } 1248 1249 if (offset) 1250 nr_pages++; 1251 1252 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1253 if (!bmd) 1254 return ERR_PTR(-ENOMEM); 1255 1256 /* 1257 * We need to do a deep copy of the iov_iter including the iovecs. 1258 * The caller provided iov might point to an on-stack or otherwise 1259 * shortlived one. 1260 */ 1261 bmd->is_our_pages = map_data ? 0 : 1; 1262 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1263 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1264 iter->nr_segs, iter->count); 1265 1266 ret = -ENOMEM; 1267 bio = bio_kmalloc(gfp_mask, nr_pages); 1268 if (!bio) 1269 goto out_bmd; 1270 1271 ret = 0; 1272 1273 if (map_data) { 1274 nr_pages = 1 << map_data->page_order; 1275 i = map_data->offset / PAGE_SIZE; 1276 } 1277 while (len) { 1278 unsigned int bytes = PAGE_SIZE; 1279 1280 bytes -= offset; 1281 1282 if (bytes > len) 1283 bytes = len; 1284 1285 if (map_data) { 1286 if (i == map_data->nr_entries * nr_pages) { 1287 ret = -ENOMEM; 1288 break; 1289 } 1290 1291 page = map_data->pages[i / nr_pages]; 1292 page += (i % nr_pages); 1293 1294 i++; 1295 } else { 1296 page = alloc_page(q->bounce_gfp | gfp_mask); 1297 if (!page) { 1298 ret = -ENOMEM; 1299 break; 1300 } 1301 } 1302 1303 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1304 break; 1305 1306 len -= bytes; 1307 offset = 0; 1308 } 1309 1310 if (ret) 1311 goto cleanup; 1312 1313 /* 1314 * success 1315 */ 1316 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1317 (map_data && map_data->from_user)) { 1318 ret = bio_copy_from_iter(bio, *iter); 1319 if (ret) 1320 goto cleanup; 1321 } 1322 1323 bio->bi_private = bmd; 1324 return bio; 1325 cleanup: 1326 if (!map_data) 1327 bio_free_pages(bio); 1328 bio_put(bio); 1329 out_bmd: 1330 kfree(bmd); 1331 return ERR_PTR(ret); 1332 } 1333 1334 /** 1335 * bio_map_user_iov - map user iovec into bio 1336 * @q: the struct request_queue for the bio 1337 * @iter: iovec iterator 1338 * @gfp_mask: memory allocation flags 1339 * 1340 * Map the user space address into a bio suitable for io to a block 1341 * device. Returns an error pointer in case of error. 1342 */ 1343 struct bio *bio_map_user_iov(struct request_queue *q, 1344 const struct iov_iter *iter, 1345 gfp_t gfp_mask) 1346 { 1347 int j; 1348 int nr_pages = 0; 1349 struct page **pages; 1350 struct bio *bio; 1351 int cur_page = 0; 1352 int ret, offset; 1353 struct iov_iter i; 1354 struct iovec iov; 1355 1356 iov_for_each(iov, i, *iter) { 1357 unsigned long uaddr = (unsigned long) iov.iov_base; 1358 unsigned long len = iov.iov_len; 1359 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1360 unsigned long start = uaddr >> PAGE_SHIFT; 1361 1362 /* 1363 * Overflow, abort 1364 */ 1365 if (end < start) 1366 return ERR_PTR(-EINVAL); 1367 1368 nr_pages += end - start; 1369 /* 1370 * buffer must be aligned to at least logical block size for now 1371 */ 1372 if (uaddr & queue_dma_alignment(q)) 1373 return ERR_PTR(-EINVAL); 1374 } 1375 1376 if (!nr_pages) 1377 return ERR_PTR(-EINVAL); 1378 1379 bio = bio_kmalloc(gfp_mask, nr_pages); 1380 if (!bio) 1381 return ERR_PTR(-ENOMEM); 1382 1383 ret = -ENOMEM; 1384 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1385 if (!pages) 1386 goto out; 1387 1388 iov_for_each(iov, i, *iter) { 1389 unsigned long uaddr = (unsigned long) iov.iov_base; 1390 unsigned long len = iov.iov_len; 1391 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1392 unsigned long start = uaddr >> PAGE_SHIFT; 1393 const int local_nr_pages = end - start; 1394 const int page_limit = cur_page + local_nr_pages; 1395 1396 ret = get_user_pages_fast(uaddr, local_nr_pages, 1397 (iter->type & WRITE) != WRITE, 1398 &pages[cur_page]); 1399 if (ret < local_nr_pages) { 1400 ret = -EFAULT; 1401 goto out_unmap; 1402 } 1403 1404 offset = offset_in_page(uaddr); 1405 for (j = cur_page; j < page_limit; j++) { 1406 unsigned int bytes = PAGE_SIZE - offset; 1407 1408 if (len <= 0) 1409 break; 1410 1411 if (bytes > len) 1412 bytes = len; 1413 1414 /* 1415 * sorry... 1416 */ 1417 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1418 bytes) 1419 break; 1420 1421 len -= bytes; 1422 offset = 0; 1423 } 1424 1425 cur_page = j; 1426 /* 1427 * release the pages we didn't map into the bio, if any 1428 */ 1429 while (j < page_limit) 1430 put_page(pages[j++]); 1431 } 1432 1433 kfree(pages); 1434 1435 bio_set_flag(bio, BIO_USER_MAPPED); 1436 1437 /* 1438 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1439 * it would normally disappear when its bi_end_io is run. 1440 * however, we need it for the unmap, so grab an extra 1441 * reference to it 1442 */ 1443 bio_get(bio); 1444 return bio; 1445 1446 out_unmap: 1447 for (j = 0; j < nr_pages; j++) { 1448 if (!pages[j]) 1449 break; 1450 put_page(pages[j]); 1451 } 1452 out: 1453 kfree(pages); 1454 bio_put(bio); 1455 return ERR_PTR(ret); 1456 } 1457 1458 static void __bio_unmap_user(struct bio *bio) 1459 { 1460 struct bio_vec *bvec; 1461 int i; 1462 1463 /* 1464 * make sure we dirty pages we wrote to 1465 */ 1466 bio_for_each_segment_all(bvec, bio, i) { 1467 if (bio_data_dir(bio) == READ) 1468 set_page_dirty_lock(bvec->bv_page); 1469 1470 put_page(bvec->bv_page); 1471 } 1472 1473 bio_put(bio); 1474 } 1475 1476 /** 1477 * bio_unmap_user - unmap a bio 1478 * @bio: the bio being unmapped 1479 * 1480 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1481 * process context. 1482 * 1483 * bio_unmap_user() may sleep. 1484 */ 1485 void bio_unmap_user(struct bio *bio) 1486 { 1487 __bio_unmap_user(bio); 1488 bio_put(bio); 1489 } 1490 1491 static void bio_map_kern_endio(struct bio *bio) 1492 { 1493 bio_put(bio); 1494 } 1495 1496 /** 1497 * bio_map_kern - map kernel address into bio 1498 * @q: the struct request_queue for the bio 1499 * @data: pointer to buffer to map 1500 * @len: length in bytes 1501 * @gfp_mask: allocation flags for bio allocation 1502 * 1503 * Map the kernel address into a bio suitable for io to a block 1504 * device. Returns an error pointer in case of error. 1505 */ 1506 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1507 gfp_t gfp_mask) 1508 { 1509 unsigned long kaddr = (unsigned long)data; 1510 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1511 unsigned long start = kaddr >> PAGE_SHIFT; 1512 const int nr_pages = end - start; 1513 int offset, i; 1514 struct bio *bio; 1515 1516 bio = bio_kmalloc(gfp_mask, nr_pages); 1517 if (!bio) 1518 return ERR_PTR(-ENOMEM); 1519 1520 offset = offset_in_page(kaddr); 1521 for (i = 0; i < nr_pages; i++) { 1522 unsigned int bytes = PAGE_SIZE - offset; 1523 1524 if (len <= 0) 1525 break; 1526 1527 if (bytes > len) 1528 bytes = len; 1529 1530 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1531 offset) < bytes) { 1532 /* we don't support partial mappings */ 1533 bio_put(bio); 1534 return ERR_PTR(-EINVAL); 1535 } 1536 1537 data += bytes; 1538 len -= bytes; 1539 offset = 0; 1540 } 1541 1542 bio->bi_end_io = bio_map_kern_endio; 1543 return bio; 1544 } 1545 EXPORT_SYMBOL(bio_map_kern); 1546 1547 static void bio_copy_kern_endio(struct bio *bio) 1548 { 1549 bio_free_pages(bio); 1550 bio_put(bio); 1551 } 1552 1553 static void bio_copy_kern_endio_read(struct bio *bio) 1554 { 1555 char *p = bio->bi_private; 1556 struct bio_vec *bvec; 1557 int i; 1558 1559 bio_for_each_segment_all(bvec, bio, i) { 1560 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1561 p += bvec->bv_len; 1562 } 1563 1564 bio_copy_kern_endio(bio); 1565 } 1566 1567 /** 1568 * bio_copy_kern - copy kernel address into bio 1569 * @q: the struct request_queue for the bio 1570 * @data: pointer to buffer to copy 1571 * @len: length in bytes 1572 * @gfp_mask: allocation flags for bio and page allocation 1573 * @reading: data direction is READ 1574 * 1575 * copy the kernel address into a bio suitable for io to a block 1576 * device. Returns an error pointer in case of error. 1577 */ 1578 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1579 gfp_t gfp_mask, int reading) 1580 { 1581 unsigned long kaddr = (unsigned long)data; 1582 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1583 unsigned long start = kaddr >> PAGE_SHIFT; 1584 struct bio *bio; 1585 void *p = data; 1586 int nr_pages = 0; 1587 1588 /* 1589 * Overflow, abort 1590 */ 1591 if (end < start) 1592 return ERR_PTR(-EINVAL); 1593 1594 nr_pages = end - start; 1595 bio = bio_kmalloc(gfp_mask, nr_pages); 1596 if (!bio) 1597 return ERR_PTR(-ENOMEM); 1598 1599 while (len) { 1600 struct page *page; 1601 unsigned int bytes = PAGE_SIZE; 1602 1603 if (bytes > len) 1604 bytes = len; 1605 1606 page = alloc_page(q->bounce_gfp | gfp_mask); 1607 if (!page) 1608 goto cleanup; 1609 1610 if (!reading) 1611 memcpy(page_address(page), p, bytes); 1612 1613 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1614 break; 1615 1616 len -= bytes; 1617 p += bytes; 1618 } 1619 1620 if (reading) { 1621 bio->bi_end_io = bio_copy_kern_endio_read; 1622 bio->bi_private = data; 1623 } else { 1624 bio->bi_end_io = bio_copy_kern_endio; 1625 } 1626 1627 return bio; 1628 1629 cleanup: 1630 bio_free_pages(bio); 1631 bio_put(bio); 1632 return ERR_PTR(-ENOMEM); 1633 } 1634 1635 /* 1636 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1637 * for performing direct-IO in BIOs. 1638 * 1639 * The problem is that we cannot run set_page_dirty() from interrupt context 1640 * because the required locks are not interrupt-safe. So what we can do is to 1641 * mark the pages dirty _before_ performing IO. And in interrupt context, 1642 * check that the pages are still dirty. If so, fine. If not, redirty them 1643 * in process context. 1644 * 1645 * We special-case compound pages here: normally this means reads into hugetlb 1646 * pages. The logic in here doesn't really work right for compound pages 1647 * because the VM does not uniformly chase down the head page in all cases. 1648 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1649 * handle them at all. So we skip compound pages here at an early stage. 1650 * 1651 * Note that this code is very hard to test under normal circumstances because 1652 * direct-io pins the pages with get_user_pages(). This makes 1653 * is_page_cache_freeable return false, and the VM will not clean the pages. 1654 * But other code (eg, flusher threads) could clean the pages if they are mapped 1655 * pagecache. 1656 * 1657 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1658 * deferred bio dirtying paths. 1659 */ 1660 1661 /* 1662 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1663 */ 1664 void bio_set_pages_dirty(struct bio *bio) 1665 { 1666 struct bio_vec *bvec; 1667 int i; 1668 1669 bio_for_each_segment_all(bvec, bio, i) { 1670 struct page *page = bvec->bv_page; 1671 1672 if (page && !PageCompound(page)) 1673 set_page_dirty_lock(page); 1674 } 1675 } 1676 1677 static void bio_release_pages(struct bio *bio) 1678 { 1679 struct bio_vec *bvec; 1680 int i; 1681 1682 bio_for_each_segment_all(bvec, bio, i) { 1683 struct page *page = bvec->bv_page; 1684 1685 if (page) 1686 put_page(page); 1687 } 1688 } 1689 1690 /* 1691 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1692 * If they are, then fine. If, however, some pages are clean then they must 1693 * have been written out during the direct-IO read. So we take another ref on 1694 * the BIO and the offending pages and re-dirty the pages in process context. 1695 * 1696 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1697 * here on. It will run one put_page() against each page and will run one 1698 * bio_put() against the BIO. 1699 */ 1700 1701 static void bio_dirty_fn(struct work_struct *work); 1702 1703 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1704 static DEFINE_SPINLOCK(bio_dirty_lock); 1705 static struct bio *bio_dirty_list; 1706 1707 /* 1708 * This runs in process context 1709 */ 1710 static void bio_dirty_fn(struct work_struct *work) 1711 { 1712 unsigned long flags; 1713 struct bio *bio; 1714 1715 spin_lock_irqsave(&bio_dirty_lock, flags); 1716 bio = bio_dirty_list; 1717 bio_dirty_list = NULL; 1718 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1719 1720 while (bio) { 1721 struct bio *next = bio->bi_private; 1722 1723 bio_set_pages_dirty(bio); 1724 bio_release_pages(bio); 1725 bio_put(bio); 1726 bio = next; 1727 } 1728 } 1729 1730 void bio_check_pages_dirty(struct bio *bio) 1731 { 1732 struct bio_vec *bvec; 1733 int nr_clean_pages = 0; 1734 int i; 1735 1736 bio_for_each_segment_all(bvec, bio, i) { 1737 struct page *page = bvec->bv_page; 1738 1739 if (PageDirty(page) || PageCompound(page)) { 1740 put_page(page); 1741 bvec->bv_page = NULL; 1742 } else { 1743 nr_clean_pages++; 1744 } 1745 } 1746 1747 if (nr_clean_pages) { 1748 unsigned long flags; 1749 1750 spin_lock_irqsave(&bio_dirty_lock, flags); 1751 bio->bi_private = bio_dirty_list; 1752 bio_dirty_list = bio; 1753 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1754 schedule_work(&bio_dirty_work); 1755 } else { 1756 bio_put(bio); 1757 } 1758 } 1759 1760 void generic_start_io_acct(int rw, unsigned long sectors, 1761 struct hd_struct *part) 1762 { 1763 int cpu = part_stat_lock(); 1764 1765 part_round_stats(cpu, part); 1766 part_stat_inc(cpu, part, ios[rw]); 1767 part_stat_add(cpu, part, sectors[rw], sectors); 1768 part_inc_in_flight(part, rw); 1769 1770 part_stat_unlock(); 1771 } 1772 EXPORT_SYMBOL(generic_start_io_acct); 1773 1774 void generic_end_io_acct(int rw, struct hd_struct *part, 1775 unsigned long start_time) 1776 { 1777 unsigned long duration = jiffies - start_time; 1778 int cpu = part_stat_lock(); 1779 1780 part_stat_add(cpu, part, ticks[rw], duration); 1781 part_round_stats(cpu, part); 1782 part_dec_in_flight(part, rw); 1783 1784 part_stat_unlock(); 1785 } 1786 EXPORT_SYMBOL(generic_end_io_acct); 1787 1788 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1789 void bio_flush_dcache_pages(struct bio *bi) 1790 { 1791 struct bio_vec bvec; 1792 struct bvec_iter iter; 1793 1794 bio_for_each_segment(bvec, bi, iter) 1795 flush_dcache_page(bvec.bv_page); 1796 } 1797 EXPORT_SYMBOL(bio_flush_dcache_pages); 1798 #endif 1799 1800 static inline bool bio_remaining_done(struct bio *bio) 1801 { 1802 /* 1803 * If we're not chaining, then ->__bi_remaining is always 1 and 1804 * we always end io on the first invocation. 1805 */ 1806 if (!bio_flagged(bio, BIO_CHAIN)) 1807 return true; 1808 1809 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1810 1811 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1812 bio_clear_flag(bio, BIO_CHAIN); 1813 return true; 1814 } 1815 1816 return false; 1817 } 1818 1819 /** 1820 * bio_endio - end I/O on a bio 1821 * @bio: bio 1822 * 1823 * Description: 1824 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1825 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1826 * bio unless they own it and thus know that it has an end_io function. 1827 **/ 1828 void bio_endio(struct bio *bio) 1829 { 1830 again: 1831 if (!bio_remaining_done(bio)) 1832 return; 1833 1834 /* 1835 * Need to have a real endio function for chained bios, otherwise 1836 * various corner cases will break (like stacking block devices that 1837 * save/restore bi_end_io) - however, we want to avoid unbounded 1838 * recursion and blowing the stack. Tail call optimization would 1839 * handle this, but compiling with frame pointers also disables 1840 * gcc's sibling call optimization. 1841 */ 1842 if (bio->bi_end_io == bio_chain_endio) { 1843 bio = __bio_chain_endio(bio); 1844 goto again; 1845 } 1846 1847 if (bio->bi_end_io) 1848 bio->bi_end_io(bio); 1849 } 1850 EXPORT_SYMBOL(bio_endio); 1851 1852 /** 1853 * bio_split - split a bio 1854 * @bio: bio to split 1855 * @sectors: number of sectors to split from the front of @bio 1856 * @gfp: gfp mask 1857 * @bs: bio set to allocate from 1858 * 1859 * Allocates and returns a new bio which represents @sectors from the start of 1860 * @bio, and updates @bio to represent the remaining sectors. 1861 * 1862 * Unless this is a discard request the newly allocated bio will point 1863 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1864 * @bio is not freed before the split. 1865 */ 1866 struct bio *bio_split(struct bio *bio, int sectors, 1867 gfp_t gfp, struct bio_set *bs) 1868 { 1869 struct bio *split = NULL; 1870 1871 BUG_ON(sectors <= 0); 1872 BUG_ON(sectors >= bio_sectors(bio)); 1873 1874 split = bio_clone_fast(bio, gfp, bs); 1875 if (!split) 1876 return NULL; 1877 1878 split->bi_iter.bi_size = sectors << 9; 1879 1880 if (bio_integrity(split)) 1881 bio_integrity_trim(split, 0, sectors); 1882 1883 bio_advance(bio, split->bi_iter.bi_size); 1884 1885 return split; 1886 } 1887 EXPORT_SYMBOL(bio_split); 1888 1889 /** 1890 * bio_trim - trim a bio 1891 * @bio: bio to trim 1892 * @offset: number of sectors to trim from the front of @bio 1893 * @size: size we want to trim @bio to, in sectors 1894 */ 1895 void bio_trim(struct bio *bio, int offset, int size) 1896 { 1897 /* 'bio' is a cloned bio which we need to trim to match 1898 * the given offset and size. 1899 */ 1900 1901 size <<= 9; 1902 if (offset == 0 && size == bio->bi_iter.bi_size) 1903 return; 1904 1905 bio_clear_flag(bio, BIO_SEG_VALID); 1906 1907 bio_advance(bio, offset << 9); 1908 1909 bio->bi_iter.bi_size = size; 1910 } 1911 EXPORT_SYMBOL_GPL(bio_trim); 1912 1913 /* 1914 * create memory pools for biovec's in a bio_set. 1915 * use the global biovec slabs created for general use. 1916 */ 1917 mempool_t *biovec_create_pool(int pool_entries) 1918 { 1919 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1920 1921 return mempool_create_slab_pool(pool_entries, bp->slab); 1922 } 1923 1924 void bioset_free(struct bio_set *bs) 1925 { 1926 if (bs->rescue_workqueue) 1927 destroy_workqueue(bs->rescue_workqueue); 1928 1929 if (bs->bio_pool) 1930 mempool_destroy(bs->bio_pool); 1931 1932 if (bs->bvec_pool) 1933 mempool_destroy(bs->bvec_pool); 1934 1935 bioset_integrity_free(bs); 1936 bio_put_slab(bs); 1937 1938 kfree(bs); 1939 } 1940 EXPORT_SYMBOL(bioset_free); 1941 1942 static struct bio_set *__bioset_create(unsigned int pool_size, 1943 unsigned int front_pad, 1944 bool create_bvec_pool) 1945 { 1946 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1947 struct bio_set *bs; 1948 1949 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1950 if (!bs) 1951 return NULL; 1952 1953 bs->front_pad = front_pad; 1954 1955 spin_lock_init(&bs->rescue_lock); 1956 bio_list_init(&bs->rescue_list); 1957 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1958 1959 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1960 if (!bs->bio_slab) { 1961 kfree(bs); 1962 return NULL; 1963 } 1964 1965 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1966 if (!bs->bio_pool) 1967 goto bad; 1968 1969 if (create_bvec_pool) { 1970 bs->bvec_pool = biovec_create_pool(pool_size); 1971 if (!bs->bvec_pool) 1972 goto bad; 1973 } 1974 1975 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1976 if (!bs->rescue_workqueue) 1977 goto bad; 1978 1979 return bs; 1980 bad: 1981 bioset_free(bs); 1982 return NULL; 1983 } 1984 1985 /** 1986 * bioset_create - Create a bio_set 1987 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1988 * @front_pad: Number of bytes to allocate in front of the returned bio 1989 * 1990 * Description: 1991 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1992 * to ask for a number of bytes to be allocated in front of the bio. 1993 * Front pad allocation is useful for embedding the bio inside 1994 * another structure, to avoid allocating extra data to go with the bio. 1995 * Note that the bio must be embedded at the END of that structure always, 1996 * or things will break badly. 1997 */ 1998 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1999 { 2000 return __bioset_create(pool_size, front_pad, true); 2001 } 2002 EXPORT_SYMBOL(bioset_create); 2003 2004 /** 2005 * bioset_create_nobvec - Create a bio_set without bio_vec mempool 2006 * @pool_size: Number of bio to cache in the mempool 2007 * @front_pad: Number of bytes to allocate in front of the returned bio 2008 * 2009 * Description: 2010 * Same functionality as bioset_create() except that mempool is not 2011 * created for bio_vecs. Saving some memory for bio_clone_fast() users. 2012 */ 2013 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) 2014 { 2015 return __bioset_create(pool_size, front_pad, false); 2016 } 2017 EXPORT_SYMBOL(bioset_create_nobvec); 2018 2019 #ifdef CONFIG_BLK_CGROUP 2020 2021 /** 2022 * bio_associate_blkcg - associate a bio with the specified blkcg 2023 * @bio: target bio 2024 * @blkcg_css: css of the blkcg to associate 2025 * 2026 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 2027 * treat @bio as if it were issued by a task which belongs to the blkcg. 2028 * 2029 * This function takes an extra reference of @blkcg_css which will be put 2030 * when @bio is released. The caller must own @bio and is responsible for 2031 * synchronizing calls to this function. 2032 */ 2033 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 2034 { 2035 if (unlikely(bio->bi_css)) 2036 return -EBUSY; 2037 css_get(blkcg_css); 2038 bio->bi_css = blkcg_css; 2039 return 0; 2040 } 2041 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 2042 2043 /** 2044 * bio_associate_current - associate a bio with %current 2045 * @bio: target bio 2046 * 2047 * Associate @bio with %current if it hasn't been associated yet. Block 2048 * layer will treat @bio as if it were issued by %current no matter which 2049 * task actually issues it. 2050 * 2051 * This function takes an extra reference of @task's io_context and blkcg 2052 * which will be put when @bio is released. The caller must own @bio, 2053 * ensure %current->io_context exists, and is responsible for synchronizing 2054 * calls to this function. 2055 */ 2056 int bio_associate_current(struct bio *bio) 2057 { 2058 struct io_context *ioc; 2059 2060 if (bio->bi_css) 2061 return -EBUSY; 2062 2063 ioc = current->io_context; 2064 if (!ioc) 2065 return -ENOENT; 2066 2067 get_io_context_active(ioc); 2068 bio->bi_ioc = ioc; 2069 bio->bi_css = task_get_css(current, io_cgrp_id); 2070 return 0; 2071 } 2072 EXPORT_SYMBOL_GPL(bio_associate_current); 2073 2074 /** 2075 * bio_disassociate_task - undo bio_associate_current() 2076 * @bio: target bio 2077 */ 2078 void bio_disassociate_task(struct bio *bio) 2079 { 2080 if (bio->bi_ioc) { 2081 put_io_context(bio->bi_ioc); 2082 bio->bi_ioc = NULL; 2083 } 2084 if (bio->bi_css) { 2085 css_put(bio->bi_css); 2086 bio->bi_css = NULL; 2087 } 2088 } 2089 2090 /** 2091 * bio_clone_blkcg_association - clone blkcg association from src to dst bio 2092 * @dst: destination bio 2093 * @src: source bio 2094 */ 2095 void bio_clone_blkcg_association(struct bio *dst, struct bio *src) 2096 { 2097 if (src->bi_css) 2098 WARN_ON(bio_associate_blkcg(dst, src->bi_css)); 2099 } 2100 2101 #endif /* CONFIG_BLK_CGROUP */ 2102 2103 static void __init biovec_init_slabs(void) 2104 { 2105 int i; 2106 2107 for (i = 0; i < BVEC_POOL_NR; i++) { 2108 int size; 2109 struct biovec_slab *bvs = bvec_slabs + i; 2110 2111 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2112 bvs->slab = NULL; 2113 continue; 2114 } 2115 2116 size = bvs->nr_vecs * sizeof(struct bio_vec); 2117 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2118 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2119 } 2120 } 2121 2122 static int __init init_bio(void) 2123 { 2124 bio_slab_max = 2; 2125 bio_slab_nr = 0; 2126 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2127 if (!bio_slabs) 2128 panic("bio: can't allocate bios\n"); 2129 2130 bio_integrity_init(); 2131 biovec_init_slabs(); 2132 2133 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2134 if (!fs_bio_set) 2135 panic("bio: can't allocate bios\n"); 2136 2137 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2138 panic("bio: can't create integrity pool\n"); 2139 2140 return 0; 2141 } 2142 subsys_initcall(init_bio); 2143