1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/blk-crypto.h> 21 #include <linux/xarray.h> 22 23 #include <trace/events/block.h> 24 #include "blk.h" 25 #include "blk-rq-qos.h" 26 #include "blk-cgroup.h" 27 28 struct bio_alloc_cache { 29 struct bio *free_list; 30 unsigned int nr; 31 }; 32 33 static struct biovec_slab { 34 int nr_vecs; 35 char *name; 36 struct kmem_cache *slab; 37 } bvec_slabs[] __read_mostly = { 38 { .nr_vecs = 16, .name = "biovec-16" }, 39 { .nr_vecs = 64, .name = "biovec-64" }, 40 { .nr_vecs = 128, .name = "biovec-128" }, 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 42 }; 43 44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 45 { 46 switch (nr_vecs) { 47 /* smaller bios use inline vecs */ 48 case 5 ... 16: 49 return &bvec_slabs[0]; 50 case 17 ... 64: 51 return &bvec_slabs[1]; 52 case 65 ... 128: 53 return &bvec_slabs[2]; 54 case 129 ... BIO_MAX_VECS: 55 return &bvec_slabs[3]; 56 default: 57 BUG(); 58 return NULL; 59 } 60 } 61 62 /* 63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 64 * IO code that does not need private memory pools. 65 */ 66 struct bio_set fs_bio_set; 67 EXPORT_SYMBOL(fs_bio_set); 68 69 /* 70 * Our slab pool management 71 */ 72 struct bio_slab { 73 struct kmem_cache *slab; 74 unsigned int slab_ref; 75 unsigned int slab_size; 76 char name[8]; 77 }; 78 static DEFINE_MUTEX(bio_slab_lock); 79 static DEFINE_XARRAY(bio_slabs); 80 81 static struct bio_slab *create_bio_slab(unsigned int size) 82 { 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 84 85 if (!bslab) 86 return NULL; 87 88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 89 bslab->slab = kmem_cache_create(bslab->name, size, 90 ARCH_KMALLOC_MINALIGN, 91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 92 if (!bslab->slab) 93 goto fail_alloc_slab; 94 95 bslab->slab_ref = 1; 96 bslab->slab_size = size; 97 98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 99 return bslab; 100 101 kmem_cache_destroy(bslab->slab); 102 103 fail_alloc_slab: 104 kfree(bslab); 105 return NULL; 106 } 107 108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 109 { 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 111 } 112 113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 114 { 115 unsigned int size = bs_bio_slab_size(bs); 116 struct bio_slab *bslab; 117 118 mutex_lock(&bio_slab_lock); 119 bslab = xa_load(&bio_slabs, size); 120 if (bslab) 121 bslab->slab_ref++; 122 else 123 bslab = create_bio_slab(size); 124 mutex_unlock(&bio_slab_lock); 125 126 if (bslab) 127 return bslab->slab; 128 return NULL; 129 } 130 131 static void bio_put_slab(struct bio_set *bs) 132 { 133 struct bio_slab *bslab = NULL; 134 unsigned int slab_size = bs_bio_slab_size(bs); 135 136 mutex_lock(&bio_slab_lock); 137 138 bslab = xa_load(&bio_slabs, slab_size); 139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 140 goto out; 141 142 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 143 144 WARN_ON(!bslab->slab_ref); 145 146 if (--bslab->slab_ref) 147 goto out; 148 149 xa_erase(&bio_slabs, slab_size); 150 151 kmem_cache_destroy(bslab->slab); 152 kfree(bslab); 153 154 out: 155 mutex_unlock(&bio_slab_lock); 156 } 157 158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 159 { 160 BUG_ON(nr_vecs > BIO_MAX_VECS); 161 162 if (nr_vecs == BIO_MAX_VECS) 163 mempool_free(bv, pool); 164 else if (nr_vecs > BIO_INLINE_VECS) 165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 166 } 167 168 /* 169 * Make the first allocation restricted and don't dump info on allocation 170 * failures, since we'll fall back to the mempool in case of failure. 171 */ 172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 173 { 174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 176 } 177 178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 179 gfp_t gfp_mask) 180 { 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 182 183 if (WARN_ON_ONCE(!bvs)) 184 return NULL; 185 186 /* 187 * Upgrade the nr_vecs request to take full advantage of the allocation. 188 * We also rely on this in the bvec_free path. 189 */ 190 *nr_vecs = bvs->nr_vecs; 191 192 /* 193 * Try a slab allocation first for all smaller allocations. If that 194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 195 * The mempool is sized to handle up to BIO_MAX_VECS entries. 196 */ 197 if (*nr_vecs < BIO_MAX_VECS) { 198 struct bio_vec *bvl; 199 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 202 return bvl; 203 *nr_vecs = BIO_MAX_VECS; 204 } 205 206 return mempool_alloc(pool, gfp_mask); 207 } 208 209 void bio_uninit(struct bio *bio) 210 { 211 #ifdef CONFIG_BLK_CGROUP 212 if (bio->bi_blkg) { 213 blkg_put(bio->bi_blkg); 214 bio->bi_blkg = NULL; 215 } 216 #endif 217 if (bio_integrity(bio)) 218 bio_integrity_free(bio); 219 220 bio_crypt_free_ctx(bio); 221 } 222 EXPORT_SYMBOL(bio_uninit); 223 224 static void bio_free(struct bio *bio) 225 { 226 struct bio_set *bs = bio->bi_pool; 227 void *p = bio; 228 229 WARN_ON_ONCE(!bs); 230 231 bio_uninit(bio); 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 233 mempool_free(p - bs->front_pad, &bs->bio_pool); 234 } 235 236 /* 237 * Users of this function have their own bio allocation. Subsequently, 238 * they must remember to pair any call to bio_init() with bio_uninit() 239 * when IO has completed, or when the bio is released. 240 */ 241 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 242 unsigned short max_vecs, blk_opf_t opf) 243 { 244 bio->bi_next = NULL; 245 bio->bi_bdev = bdev; 246 bio->bi_opf = opf; 247 bio->bi_flags = 0; 248 bio->bi_ioprio = 0; 249 bio->bi_status = 0; 250 bio->bi_iter.bi_sector = 0; 251 bio->bi_iter.bi_size = 0; 252 bio->bi_iter.bi_idx = 0; 253 bio->bi_iter.bi_bvec_done = 0; 254 bio->bi_end_io = NULL; 255 bio->bi_private = NULL; 256 #ifdef CONFIG_BLK_CGROUP 257 bio->bi_blkg = NULL; 258 bio->bi_issue.value = 0; 259 if (bdev) 260 bio_associate_blkg(bio); 261 #ifdef CONFIG_BLK_CGROUP_IOCOST 262 bio->bi_iocost_cost = 0; 263 #endif 264 #endif 265 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 266 bio->bi_crypt_context = NULL; 267 #endif 268 #ifdef CONFIG_BLK_DEV_INTEGRITY 269 bio->bi_integrity = NULL; 270 #endif 271 bio->bi_vcnt = 0; 272 273 atomic_set(&bio->__bi_remaining, 1); 274 atomic_set(&bio->__bi_cnt, 1); 275 bio->bi_cookie = BLK_QC_T_NONE; 276 277 bio->bi_max_vecs = max_vecs; 278 bio->bi_io_vec = table; 279 bio->bi_pool = NULL; 280 } 281 EXPORT_SYMBOL(bio_init); 282 283 /** 284 * bio_reset - reinitialize a bio 285 * @bio: bio to reset 286 * @bdev: block device to use the bio for 287 * @opf: operation and flags for bio 288 * 289 * Description: 290 * After calling bio_reset(), @bio will be in the same state as a freshly 291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 292 * preserved are the ones that are initialized by bio_alloc_bioset(). See 293 * comment in struct bio. 294 */ 295 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) 296 { 297 bio_uninit(bio); 298 memset(bio, 0, BIO_RESET_BYTES); 299 atomic_set(&bio->__bi_remaining, 1); 300 bio->bi_bdev = bdev; 301 if (bio->bi_bdev) 302 bio_associate_blkg(bio); 303 bio->bi_opf = opf; 304 } 305 EXPORT_SYMBOL(bio_reset); 306 307 static struct bio *__bio_chain_endio(struct bio *bio) 308 { 309 struct bio *parent = bio->bi_private; 310 311 if (bio->bi_status && !parent->bi_status) 312 parent->bi_status = bio->bi_status; 313 bio_put(bio); 314 return parent; 315 } 316 317 static void bio_chain_endio(struct bio *bio) 318 { 319 bio_endio(__bio_chain_endio(bio)); 320 } 321 322 /** 323 * bio_chain - chain bio completions 324 * @bio: the target bio 325 * @parent: the parent bio of @bio 326 * 327 * The caller won't have a bi_end_io called when @bio completes - instead, 328 * @parent's bi_end_io won't be called until both @parent and @bio have 329 * completed; the chained bio will also be freed when it completes. 330 * 331 * The caller must not set bi_private or bi_end_io in @bio. 332 */ 333 void bio_chain(struct bio *bio, struct bio *parent) 334 { 335 BUG_ON(bio->bi_private || bio->bi_end_io); 336 337 bio->bi_private = parent; 338 bio->bi_end_io = bio_chain_endio; 339 bio_inc_remaining(parent); 340 } 341 EXPORT_SYMBOL(bio_chain); 342 343 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 344 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) 345 { 346 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp); 347 348 if (bio) { 349 bio_chain(bio, new); 350 submit_bio(bio); 351 } 352 353 return new; 354 } 355 EXPORT_SYMBOL_GPL(blk_next_bio); 356 357 static void bio_alloc_rescue(struct work_struct *work) 358 { 359 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 360 struct bio *bio; 361 362 while (1) { 363 spin_lock(&bs->rescue_lock); 364 bio = bio_list_pop(&bs->rescue_list); 365 spin_unlock(&bs->rescue_lock); 366 367 if (!bio) 368 break; 369 370 submit_bio_noacct(bio); 371 } 372 } 373 374 static void punt_bios_to_rescuer(struct bio_set *bs) 375 { 376 struct bio_list punt, nopunt; 377 struct bio *bio; 378 379 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 380 return; 381 /* 382 * In order to guarantee forward progress we must punt only bios that 383 * were allocated from this bio_set; otherwise, if there was a bio on 384 * there for a stacking driver higher up in the stack, processing it 385 * could require allocating bios from this bio_set, and doing that from 386 * our own rescuer would be bad. 387 * 388 * Since bio lists are singly linked, pop them all instead of trying to 389 * remove from the middle of the list: 390 */ 391 392 bio_list_init(&punt); 393 bio_list_init(&nopunt); 394 395 while ((bio = bio_list_pop(¤t->bio_list[0]))) 396 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 397 current->bio_list[0] = nopunt; 398 399 bio_list_init(&nopunt); 400 while ((bio = bio_list_pop(¤t->bio_list[1]))) 401 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 402 current->bio_list[1] = nopunt; 403 404 spin_lock(&bs->rescue_lock); 405 bio_list_merge(&bs->rescue_list, &punt); 406 spin_unlock(&bs->rescue_lock); 407 408 queue_work(bs->rescue_workqueue, &bs->rescue_work); 409 } 410 411 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 412 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, 413 struct bio_set *bs) 414 { 415 struct bio_alloc_cache *cache; 416 struct bio *bio; 417 418 cache = per_cpu_ptr(bs->cache, get_cpu()); 419 if (!cache->free_list) { 420 put_cpu(); 421 return NULL; 422 } 423 bio = cache->free_list; 424 cache->free_list = bio->bi_next; 425 cache->nr--; 426 put_cpu(); 427 428 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); 429 bio->bi_pool = bs; 430 return bio; 431 } 432 433 /** 434 * bio_alloc_bioset - allocate a bio for I/O 435 * @bdev: block device to allocate the bio for (can be %NULL) 436 * @nr_vecs: number of bvecs to pre-allocate 437 * @opf: operation and flags for bio 438 * @gfp_mask: the GFP_* mask given to the slab allocator 439 * @bs: the bio_set to allocate from. 440 * 441 * Allocate a bio from the mempools in @bs. 442 * 443 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 444 * allocate a bio. This is due to the mempool guarantees. To make this work, 445 * callers must never allocate more than 1 bio at a time from the general pool. 446 * Callers that need to allocate more than 1 bio must always submit the 447 * previously allocated bio for IO before attempting to allocate a new one. 448 * Failure to do so can cause deadlocks under memory pressure. 449 * 450 * Note that when running under submit_bio_noacct() (i.e. any block driver), 451 * bios are not submitted until after you return - see the code in 452 * submit_bio_noacct() that converts recursion into iteration, to prevent 453 * stack overflows. 454 * 455 * This would normally mean allocating multiple bios under submit_bio_noacct() 456 * would be susceptible to deadlocks, but we have 457 * deadlock avoidance code that resubmits any blocked bios from a rescuer 458 * thread. 459 * 460 * However, we do not guarantee forward progress for allocations from other 461 * mempools. Doing multiple allocations from the same mempool under 462 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 463 * for per bio allocations. 464 * 465 * If REQ_ALLOC_CACHE is set, the final put of the bio MUST be done from process 466 * context, not hard/soft IRQ. 467 * 468 * Returns: Pointer to new bio on success, NULL on failure. 469 */ 470 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 471 blk_opf_t opf, gfp_t gfp_mask, 472 struct bio_set *bs) 473 { 474 gfp_t saved_gfp = gfp_mask; 475 struct bio *bio; 476 void *p; 477 478 /* should not use nobvec bioset for nr_vecs > 0 */ 479 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 480 return NULL; 481 482 if (opf & REQ_ALLOC_CACHE) { 483 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 484 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 485 gfp_mask, bs); 486 if (bio) 487 return bio; 488 /* 489 * No cached bio available, bio returned below marked with 490 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. 491 */ 492 } else { 493 opf &= ~REQ_ALLOC_CACHE; 494 } 495 } 496 497 /* 498 * submit_bio_noacct() converts recursion to iteration; this means if 499 * we're running beneath it, any bios we allocate and submit will not be 500 * submitted (and thus freed) until after we return. 501 * 502 * This exposes us to a potential deadlock if we allocate multiple bios 503 * from the same bio_set() while running underneath submit_bio_noacct(). 504 * If we were to allocate multiple bios (say a stacking block driver 505 * that was splitting bios), we would deadlock if we exhausted the 506 * mempool's reserve. 507 * 508 * We solve this, and guarantee forward progress, with a rescuer 509 * workqueue per bio_set. If we go to allocate and there are bios on 510 * current->bio_list, we first try the allocation without 511 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 512 * blocking to the rescuer workqueue before we retry with the original 513 * gfp_flags. 514 */ 515 if (current->bio_list && 516 (!bio_list_empty(¤t->bio_list[0]) || 517 !bio_list_empty(¤t->bio_list[1])) && 518 bs->rescue_workqueue) 519 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 520 521 p = mempool_alloc(&bs->bio_pool, gfp_mask); 522 if (!p && gfp_mask != saved_gfp) { 523 punt_bios_to_rescuer(bs); 524 gfp_mask = saved_gfp; 525 p = mempool_alloc(&bs->bio_pool, gfp_mask); 526 } 527 if (unlikely(!p)) 528 return NULL; 529 530 bio = p + bs->front_pad; 531 if (nr_vecs > BIO_INLINE_VECS) { 532 struct bio_vec *bvl = NULL; 533 534 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 535 if (!bvl && gfp_mask != saved_gfp) { 536 punt_bios_to_rescuer(bs); 537 gfp_mask = saved_gfp; 538 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 539 } 540 if (unlikely(!bvl)) 541 goto err_free; 542 543 bio_init(bio, bdev, bvl, nr_vecs, opf); 544 } else if (nr_vecs) { 545 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 546 } else { 547 bio_init(bio, bdev, NULL, 0, opf); 548 } 549 550 bio->bi_pool = bs; 551 return bio; 552 553 err_free: 554 mempool_free(p, &bs->bio_pool); 555 return NULL; 556 } 557 EXPORT_SYMBOL(bio_alloc_bioset); 558 559 /** 560 * bio_kmalloc - kmalloc a bio 561 * @nr_vecs: number of bio_vecs to allocate 562 * @gfp_mask: the GFP_* mask given to the slab allocator 563 * 564 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 565 * using bio_init() before use. To free a bio returned from this function use 566 * kfree() after calling bio_uninit(). A bio returned from this function can 567 * be reused by calling bio_uninit() before calling bio_init() again. 568 * 569 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 570 * function are not backed by a mempool can can fail. Do not use this function 571 * for allocations in the file system I/O path. 572 * 573 * Returns: Pointer to new bio on success, NULL on failure. 574 */ 575 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 576 { 577 struct bio *bio; 578 579 if (nr_vecs > UIO_MAXIOV) 580 return NULL; 581 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); 582 } 583 EXPORT_SYMBOL(bio_kmalloc); 584 585 void zero_fill_bio(struct bio *bio) 586 { 587 struct bio_vec bv; 588 struct bvec_iter iter; 589 590 bio_for_each_segment(bv, bio, iter) 591 memzero_bvec(&bv); 592 } 593 EXPORT_SYMBOL(zero_fill_bio); 594 595 /** 596 * bio_truncate - truncate the bio to small size of @new_size 597 * @bio: the bio to be truncated 598 * @new_size: new size for truncating the bio 599 * 600 * Description: 601 * Truncate the bio to new size of @new_size. If bio_op(bio) is 602 * REQ_OP_READ, zero the truncated part. This function should only 603 * be used for handling corner cases, such as bio eod. 604 */ 605 static void bio_truncate(struct bio *bio, unsigned new_size) 606 { 607 struct bio_vec bv; 608 struct bvec_iter iter; 609 unsigned int done = 0; 610 bool truncated = false; 611 612 if (new_size >= bio->bi_iter.bi_size) 613 return; 614 615 if (bio_op(bio) != REQ_OP_READ) 616 goto exit; 617 618 bio_for_each_segment(bv, bio, iter) { 619 if (done + bv.bv_len > new_size) { 620 unsigned offset; 621 622 if (!truncated) 623 offset = new_size - done; 624 else 625 offset = 0; 626 zero_user(bv.bv_page, bv.bv_offset + offset, 627 bv.bv_len - offset); 628 truncated = true; 629 } 630 done += bv.bv_len; 631 } 632 633 exit: 634 /* 635 * Don't touch bvec table here and make it really immutable, since 636 * fs bio user has to retrieve all pages via bio_for_each_segment_all 637 * in its .end_bio() callback. 638 * 639 * It is enough to truncate bio by updating .bi_size since we can make 640 * correct bvec with the updated .bi_size for drivers. 641 */ 642 bio->bi_iter.bi_size = new_size; 643 } 644 645 /** 646 * guard_bio_eod - truncate a BIO to fit the block device 647 * @bio: bio to truncate 648 * 649 * This allows us to do IO even on the odd last sectors of a device, even if the 650 * block size is some multiple of the physical sector size. 651 * 652 * We'll just truncate the bio to the size of the device, and clear the end of 653 * the buffer head manually. Truly out-of-range accesses will turn into actual 654 * I/O errors, this only handles the "we need to be able to do I/O at the final 655 * sector" case. 656 */ 657 void guard_bio_eod(struct bio *bio) 658 { 659 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 660 661 if (!maxsector) 662 return; 663 664 /* 665 * If the *whole* IO is past the end of the device, 666 * let it through, and the IO layer will turn it into 667 * an EIO. 668 */ 669 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 670 return; 671 672 maxsector -= bio->bi_iter.bi_sector; 673 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 674 return; 675 676 bio_truncate(bio, maxsector << 9); 677 } 678 679 #define ALLOC_CACHE_MAX 512 680 #define ALLOC_CACHE_SLACK 64 681 682 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 683 unsigned int nr) 684 { 685 unsigned int i = 0; 686 struct bio *bio; 687 688 while ((bio = cache->free_list) != NULL) { 689 cache->free_list = bio->bi_next; 690 cache->nr--; 691 bio_free(bio); 692 if (++i == nr) 693 break; 694 } 695 } 696 697 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 698 { 699 struct bio_set *bs; 700 701 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 702 if (bs->cache) { 703 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 704 705 bio_alloc_cache_prune(cache, -1U); 706 } 707 return 0; 708 } 709 710 static void bio_alloc_cache_destroy(struct bio_set *bs) 711 { 712 int cpu; 713 714 if (!bs->cache) 715 return; 716 717 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 718 for_each_possible_cpu(cpu) { 719 struct bio_alloc_cache *cache; 720 721 cache = per_cpu_ptr(bs->cache, cpu); 722 bio_alloc_cache_prune(cache, -1U); 723 } 724 free_percpu(bs->cache); 725 bs->cache = NULL; 726 } 727 728 /** 729 * bio_put - release a reference to a bio 730 * @bio: bio to release reference to 731 * 732 * Description: 733 * Put a reference to a &struct bio, either one you have gotten with 734 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 735 **/ 736 void bio_put(struct bio *bio) 737 { 738 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 739 BUG_ON(!atomic_read(&bio->__bi_cnt)); 740 if (!atomic_dec_and_test(&bio->__bi_cnt)) 741 return; 742 } 743 744 if (bio->bi_opf & REQ_ALLOC_CACHE) { 745 struct bio_alloc_cache *cache; 746 747 bio_uninit(bio); 748 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 749 bio->bi_next = cache->free_list; 750 cache->free_list = bio; 751 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK) 752 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK); 753 put_cpu(); 754 } else { 755 bio_free(bio); 756 } 757 } 758 EXPORT_SYMBOL(bio_put); 759 760 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 761 { 762 bio_set_flag(bio, BIO_CLONED); 763 bio->bi_ioprio = bio_src->bi_ioprio; 764 bio->bi_iter = bio_src->bi_iter; 765 766 if (bio->bi_bdev) { 767 if (bio->bi_bdev == bio_src->bi_bdev && 768 bio_flagged(bio_src, BIO_REMAPPED)) 769 bio_set_flag(bio, BIO_REMAPPED); 770 bio_clone_blkg_association(bio, bio_src); 771 } 772 773 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 774 return -ENOMEM; 775 if (bio_integrity(bio_src) && 776 bio_integrity_clone(bio, bio_src, gfp) < 0) 777 return -ENOMEM; 778 return 0; 779 } 780 781 /** 782 * bio_alloc_clone - clone a bio that shares the original bio's biovec 783 * @bdev: block_device to clone onto 784 * @bio_src: bio to clone from 785 * @gfp: allocation priority 786 * @bs: bio_set to allocate from 787 * 788 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 789 * bio, but not the actual data it points to. 790 * 791 * The caller must ensure that the return bio is not freed before @bio_src. 792 */ 793 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 794 gfp_t gfp, struct bio_set *bs) 795 { 796 struct bio *bio; 797 798 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 799 if (!bio) 800 return NULL; 801 802 if (__bio_clone(bio, bio_src, gfp) < 0) { 803 bio_put(bio); 804 return NULL; 805 } 806 bio->bi_io_vec = bio_src->bi_io_vec; 807 808 return bio; 809 } 810 EXPORT_SYMBOL(bio_alloc_clone); 811 812 /** 813 * bio_init_clone - clone a bio that shares the original bio's biovec 814 * @bdev: block_device to clone onto 815 * @bio: bio to clone into 816 * @bio_src: bio to clone from 817 * @gfp: allocation priority 818 * 819 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 820 * The caller owns the returned bio, but not the actual data it points to. 821 * 822 * The caller must ensure that @bio_src is not freed before @bio. 823 */ 824 int bio_init_clone(struct block_device *bdev, struct bio *bio, 825 struct bio *bio_src, gfp_t gfp) 826 { 827 int ret; 828 829 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 830 ret = __bio_clone(bio, bio_src, gfp); 831 if (ret) 832 bio_uninit(bio); 833 return ret; 834 } 835 EXPORT_SYMBOL(bio_init_clone); 836 837 /** 838 * bio_full - check if the bio is full 839 * @bio: bio to check 840 * @len: length of one segment to be added 841 * 842 * Return true if @bio is full and one segment with @len bytes can't be 843 * added to the bio, otherwise return false 844 */ 845 static inline bool bio_full(struct bio *bio, unsigned len) 846 { 847 if (bio->bi_vcnt >= bio->bi_max_vecs) 848 return true; 849 if (bio->bi_iter.bi_size > UINT_MAX - len) 850 return true; 851 return false; 852 } 853 854 static inline bool page_is_mergeable(const struct bio_vec *bv, 855 struct page *page, unsigned int len, unsigned int off, 856 bool *same_page) 857 { 858 size_t bv_end = bv->bv_offset + bv->bv_len; 859 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 860 phys_addr_t page_addr = page_to_phys(page); 861 862 if (vec_end_addr + 1 != page_addr + off) 863 return false; 864 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 865 return false; 866 867 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 868 if (*same_page) 869 return true; 870 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); 871 } 872 873 /** 874 * __bio_try_merge_page - try appending data to an existing bvec. 875 * @bio: destination bio 876 * @page: start page to add 877 * @len: length of the data to add 878 * @off: offset of the data relative to @page 879 * @same_page: return if the segment has been merged inside the same page 880 * 881 * Try to add the data at @page + @off to the last bvec of @bio. This is a 882 * useful optimisation for file systems with a block size smaller than the 883 * page size. 884 * 885 * Warn if (@len, @off) crosses pages in case that @same_page is true. 886 * 887 * Return %true on success or %false on failure. 888 */ 889 static bool __bio_try_merge_page(struct bio *bio, struct page *page, 890 unsigned int len, unsigned int off, bool *same_page) 891 { 892 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 893 return false; 894 895 if (bio->bi_vcnt > 0) { 896 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 897 898 if (page_is_mergeable(bv, page, len, off, same_page)) { 899 if (bio->bi_iter.bi_size > UINT_MAX - len) { 900 *same_page = false; 901 return false; 902 } 903 bv->bv_len += len; 904 bio->bi_iter.bi_size += len; 905 return true; 906 } 907 } 908 return false; 909 } 910 911 /* 912 * Try to merge a page into a segment, while obeying the hardware segment 913 * size limit. This is not for normal read/write bios, but for passthrough 914 * or Zone Append operations that we can't split. 915 */ 916 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, 917 struct page *page, unsigned len, 918 unsigned offset, bool *same_page) 919 { 920 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 921 unsigned long mask = queue_segment_boundary(q); 922 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 923 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 924 925 if ((addr1 | mask) != (addr2 | mask)) 926 return false; 927 if (bv->bv_len + len > queue_max_segment_size(q)) 928 return false; 929 return __bio_try_merge_page(bio, page, len, offset, same_page); 930 } 931 932 /** 933 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 934 * @q: the target queue 935 * @bio: destination bio 936 * @page: page to add 937 * @len: vec entry length 938 * @offset: vec entry offset 939 * @max_sectors: maximum number of sectors that can be added 940 * @same_page: return if the segment has been merged inside the same page 941 * 942 * Add a page to a bio while respecting the hardware max_sectors, max_segment 943 * and gap limitations. 944 */ 945 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 946 struct page *page, unsigned int len, unsigned int offset, 947 unsigned int max_sectors, bool *same_page) 948 { 949 struct bio_vec *bvec; 950 951 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 952 return 0; 953 954 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) 955 return 0; 956 957 if (bio->bi_vcnt > 0) { 958 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) 959 return len; 960 961 /* 962 * If the queue doesn't support SG gaps and adding this segment 963 * would create a gap, disallow it. 964 */ 965 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 966 if (bvec_gap_to_prev(&q->limits, bvec, offset)) 967 return 0; 968 } 969 970 if (bio_full(bio, len)) 971 return 0; 972 973 if (bio->bi_vcnt >= queue_max_segments(q)) 974 return 0; 975 976 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 977 bvec->bv_page = page; 978 bvec->bv_len = len; 979 bvec->bv_offset = offset; 980 bio->bi_vcnt++; 981 bio->bi_iter.bi_size += len; 982 return len; 983 } 984 985 /** 986 * bio_add_pc_page - attempt to add page to passthrough bio 987 * @q: the target queue 988 * @bio: destination bio 989 * @page: page to add 990 * @len: vec entry length 991 * @offset: vec entry offset 992 * 993 * Attempt to add a page to the bio_vec maplist. This can fail for a 994 * number of reasons, such as the bio being full or target block device 995 * limitations. The target block device must allow bio's up to PAGE_SIZE, 996 * so it is always possible to add a single page to an empty bio. 997 * 998 * This should only be used by passthrough bios. 999 */ 1000 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 1001 struct page *page, unsigned int len, unsigned int offset) 1002 { 1003 bool same_page = false; 1004 return bio_add_hw_page(q, bio, page, len, offset, 1005 queue_max_hw_sectors(q), &same_page); 1006 } 1007 EXPORT_SYMBOL(bio_add_pc_page); 1008 1009 /** 1010 * bio_add_zone_append_page - attempt to add page to zone-append bio 1011 * @bio: destination bio 1012 * @page: page to add 1013 * @len: vec entry length 1014 * @offset: vec entry offset 1015 * 1016 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 1017 * for a zone-append request. This can fail for a number of reasons, such as the 1018 * bio being full or the target block device is not a zoned block device or 1019 * other limitations of the target block device. The target block device must 1020 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 1021 * to an empty bio. 1022 * 1023 * Returns: number of bytes added to the bio, or 0 in case of a failure. 1024 */ 1025 int bio_add_zone_append_page(struct bio *bio, struct page *page, 1026 unsigned int len, unsigned int offset) 1027 { 1028 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1029 bool same_page = false; 1030 1031 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 1032 return 0; 1033 1034 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev))) 1035 return 0; 1036 1037 return bio_add_hw_page(q, bio, page, len, offset, 1038 queue_max_zone_append_sectors(q), &same_page); 1039 } 1040 EXPORT_SYMBOL_GPL(bio_add_zone_append_page); 1041 1042 /** 1043 * __bio_add_page - add page(s) to a bio in a new segment 1044 * @bio: destination bio 1045 * @page: start page to add 1046 * @len: length of the data to add, may cross pages 1047 * @off: offset of the data relative to @page, may cross pages 1048 * 1049 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 1050 * that @bio has space for another bvec. 1051 */ 1052 void __bio_add_page(struct bio *bio, struct page *page, 1053 unsigned int len, unsigned int off) 1054 { 1055 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 1056 1057 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 1058 WARN_ON_ONCE(bio_full(bio, len)); 1059 1060 bv->bv_page = page; 1061 bv->bv_offset = off; 1062 bv->bv_len = len; 1063 1064 bio->bi_iter.bi_size += len; 1065 bio->bi_vcnt++; 1066 } 1067 EXPORT_SYMBOL_GPL(__bio_add_page); 1068 1069 /** 1070 * bio_add_page - attempt to add page(s) to bio 1071 * @bio: destination bio 1072 * @page: start page to add 1073 * @len: vec entry length, may cross pages 1074 * @offset: vec entry offset relative to @page, may cross pages 1075 * 1076 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1077 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1078 */ 1079 int bio_add_page(struct bio *bio, struct page *page, 1080 unsigned int len, unsigned int offset) 1081 { 1082 bool same_page = false; 1083 1084 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1085 if (bio_full(bio, len)) 1086 return 0; 1087 __bio_add_page(bio, page, len, offset); 1088 } 1089 return len; 1090 } 1091 EXPORT_SYMBOL(bio_add_page); 1092 1093 /** 1094 * bio_add_folio - Attempt to add part of a folio to a bio. 1095 * @bio: BIO to add to. 1096 * @folio: Folio to add. 1097 * @len: How many bytes from the folio to add. 1098 * @off: First byte in this folio to add. 1099 * 1100 * Filesystems that use folios can call this function instead of calling 1101 * bio_add_page() for each page in the folio. If @off is bigger than 1102 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1103 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1104 * 1105 * Return: Whether the addition was successful. 1106 */ 1107 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1108 size_t off) 1109 { 1110 if (len > UINT_MAX || off > UINT_MAX) 1111 return false; 1112 return bio_add_page(bio, &folio->page, len, off) > 0; 1113 } 1114 1115 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1116 { 1117 struct bvec_iter_all iter_all; 1118 struct bio_vec *bvec; 1119 1120 bio_for_each_segment_all(bvec, bio, iter_all) { 1121 if (mark_dirty && !PageCompound(bvec->bv_page)) 1122 set_page_dirty_lock(bvec->bv_page); 1123 put_page(bvec->bv_page); 1124 } 1125 } 1126 EXPORT_SYMBOL_GPL(__bio_release_pages); 1127 1128 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 1129 { 1130 size_t size = iov_iter_count(iter); 1131 1132 WARN_ON_ONCE(bio->bi_max_vecs); 1133 1134 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1135 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1136 size_t max_sectors = queue_max_zone_append_sectors(q); 1137 1138 size = min(size, max_sectors << SECTOR_SHIFT); 1139 } 1140 1141 bio->bi_vcnt = iter->nr_segs; 1142 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1143 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1144 bio->bi_iter.bi_size = size; 1145 bio_set_flag(bio, BIO_NO_PAGE_REF); 1146 bio_set_flag(bio, BIO_CLONED); 1147 } 1148 1149 static int bio_iov_add_page(struct bio *bio, struct page *page, 1150 unsigned int len, unsigned int offset) 1151 { 1152 bool same_page = false; 1153 1154 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 1155 __bio_add_page(bio, page, len, offset); 1156 return 0; 1157 } 1158 1159 if (same_page) 1160 put_page(page); 1161 return 0; 1162 } 1163 1164 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page, 1165 unsigned int len, unsigned int offset) 1166 { 1167 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1168 bool same_page = false; 1169 1170 if (bio_add_hw_page(q, bio, page, len, offset, 1171 queue_max_zone_append_sectors(q), &same_page) != len) 1172 return -EINVAL; 1173 if (same_page) 1174 put_page(page); 1175 return 0; 1176 } 1177 1178 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1179 1180 /** 1181 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1182 * @bio: bio to add pages to 1183 * @iter: iov iterator describing the region to be mapped 1184 * 1185 * Pins pages from *iter and appends them to @bio's bvec array. The 1186 * pages will have to be released using put_page() when done. 1187 * For multi-segment *iter, this function only adds pages from the 1188 * next non-empty segment of the iov iterator. 1189 */ 1190 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1191 { 1192 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1193 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1194 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1195 struct page **pages = (struct page **)bv; 1196 ssize_t size, left; 1197 unsigned len, i = 0; 1198 size_t offset, trim; 1199 int ret = 0; 1200 1201 /* 1202 * Move page array up in the allocated memory for the bio vecs as far as 1203 * possible so that we can start filling biovecs from the beginning 1204 * without overwriting the temporary page array. 1205 */ 1206 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1207 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1208 1209 /* 1210 * Each segment in the iov is required to be a block size multiple. 1211 * However, we may not be able to get the entire segment if it spans 1212 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the 1213 * result to ensure the bio's total size is correct. The remainder of 1214 * the iov data will be picked up in the next bio iteration. 1215 */ 1216 size = iov_iter_get_pages2(iter, pages, UINT_MAX - bio->bi_iter.bi_size, 1217 nr_pages, &offset); 1218 if (unlikely(size <= 0)) 1219 return size ? size : -EFAULT; 1220 1221 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); 1222 1223 trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1); 1224 iov_iter_revert(iter, trim); 1225 1226 size -= trim; 1227 if (unlikely(!size)) { 1228 ret = -EFAULT; 1229 goto out; 1230 } 1231 1232 for (left = size, i = 0; left > 0; left -= len, i++) { 1233 struct page *page = pages[i]; 1234 1235 len = min_t(size_t, PAGE_SIZE - offset, left); 1236 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1237 ret = bio_iov_add_zone_append_page(bio, page, len, 1238 offset); 1239 if (ret) 1240 break; 1241 } else 1242 bio_iov_add_page(bio, page, len, offset); 1243 1244 offset = 0; 1245 } 1246 1247 iov_iter_revert(iter, left); 1248 out: 1249 while (i < nr_pages) 1250 put_page(pages[i++]); 1251 1252 return ret; 1253 } 1254 1255 /** 1256 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1257 * @bio: bio to add pages to 1258 * @iter: iov iterator describing the region to be added 1259 * 1260 * This takes either an iterator pointing to user memory, or one pointing to 1261 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1262 * map them into the kernel. On IO completion, the caller should put those 1263 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1264 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1265 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1266 * completed by a call to ->ki_complete() or returns with an error other than 1267 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1268 * on IO completion. If it isn't, then pages should be released. 1269 * 1270 * The function tries, but does not guarantee, to pin as many pages as 1271 * fit into the bio, or are requested in @iter, whatever is smaller. If 1272 * MM encounters an error pinning the requested pages, it stops. Error 1273 * is returned only if 0 pages could be pinned. 1274 */ 1275 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1276 { 1277 int ret = 0; 1278 1279 if (iov_iter_is_bvec(iter)) { 1280 bio_iov_bvec_set(bio, iter); 1281 iov_iter_advance(iter, bio->bi_iter.bi_size); 1282 return 0; 1283 } 1284 1285 do { 1286 ret = __bio_iov_iter_get_pages(bio, iter); 1287 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1288 1289 return bio->bi_vcnt ? 0 : ret; 1290 } 1291 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1292 1293 static void submit_bio_wait_endio(struct bio *bio) 1294 { 1295 complete(bio->bi_private); 1296 } 1297 1298 /** 1299 * submit_bio_wait - submit a bio, and wait until it completes 1300 * @bio: The &struct bio which describes the I/O 1301 * 1302 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1303 * bio_endio() on failure. 1304 * 1305 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1306 * result in bio reference to be consumed. The caller must drop the reference 1307 * on his own. 1308 */ 1309 int submit_bio_wait(struct bio *bio) 1310 { 1311 DECLARE_COMPLETION_ONSTACK_MAP(done, 1312 bio->bi_bdev->bd_disk->lockdep_map); 1313 unsigned long hang_check; 1314 1315 bio->bi_private = &done; 1316 bio->bi_end_io = submit_bio_wait_endio; 1317 bio->bi_opf |= REQ_SYNC; 1318 submit_bio(bio); 1319 1320 /* Prevent hang_check timer from firing at us during very long I/O */ 1321 hang_check = sysctl_hung_task_timeout_secs; 1322 if (hang_check) 1323 while (!wait_for_completion_io_timeout(&done, 1324 hang_check * (HZ/2))) 1325 ; 1326 else 1327 wait_for_completion_io(&done); 1328 1329 return blk_status_to_errno(bio->bi_status); 1330 } 1331 EXPORT_SYMBOL(submit_bio_wait); 1332 1333 void __bio_advance(struct bio *bio, unsigned bytes) 1334 { 1335 if (bio_integrity(bio)) 1336 bio_integrity_advance(bio, bytes); 1337 1338 bio_crypt_advance(bio, bytes); 1339 bio_advance_iter(bio, &bio->bi_iter, bytes); 1340 } 1341 EXPORT_SYMBOL(__bio_advance); 1342 1343 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1344 struct bio *src, struct bvec_iter *src_iter) 1345 { 1346 while (src_iter->bi_size && dst_iter->bi_size) { 1347 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1348 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1349 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1350 void *src_buf = bvec_kmap_local(&src_bv); 1351 void *dst_buf = bvec_kmap_local(&dst_bv); 1352 1353 memcpy(dst_buf, src_buf, bytes); 1354 1355 kunmap_local(dst_buf); 1356 kunmap_local(src_buf); 1357 1358 bio_advance_iter_single(src, src_iter, bytes); 1359 bio_advance_iter_single(dst, dst_iter, bytes); 1360 } 1361 } 1362 EXPORT_SYMBOL(bio_copy_data_iter); 1363 1364 /** 1365 * bio_copy_data - copy contents of data buffers from one bio to another 1366 * @src: source bio 1367 * @dst: destination bio 1368 * 1369 * Stops when it reaches the end of either @src or @dst - that is, copies 1370 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1371 */ 1372 void bio_copy_data(struct bio *dst, struct bio *src) 1373 { 1374 struct bvec_iter src_iter = src->bi_iter; 1375 struct bvec_iter dst_iter = dst->bi_iter; 1376 1377 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1378 } 1379 EXPORT_SYMBOL(bio_copy_data); 1380 1381 void bio_free_pages(struct bio *bio) 1382 { 1383 struct bio_vec *bvec; 1384 struct bvec_iter_all iter_all; 1385 1386 bio_for_each_segment_all(bvec, bio, iter_all) 1387 __free_page(bvec->bv_page); 1388 } 1389 EXPORT_SYMBOL(bio_free_pages); 1390 1391 /* 1392 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1393 * for performing direct-IO in BIOs. 1394 * 1395 * The problem is that we cannot run set_page_dirty() from interrupt context 1396 * because the required locks are not interrupt-safe. So what we can do is to 1397 * mark the pages dirty _before_ performing IO. And in interrupt context, 1398 * check that the pages are still dirty. If so, fine. If not, redirty them 1399 * in process context. 1400 * 1401 * We special-case compound pages here: normally this means reads into hugetlb 1402 * pages. The logic in here doesn't really work right for compound pages 1403 * because the VM does not uniformly chase down the head page in all cases. 1404 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1405 * handle them at all. So we skip compound pages here at an early stage. 1406 * 1407 * Note that this code is very hard to test under normal circumstances because 1408 * direct-io pins the pages with get_user_pages(). This makes 1409 * is_page_cache_freeable return false, and the VM will not clean the pages. 1410 * But other code (eg, flusher threads) could clean the pages if they are mapped 1411 * pagecache. 1412 * 1413 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1414 * deferred bio dirtying paths. 1415 */ 1416 1417 /* 1418 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1419 */ 1420 void bio_set_pages_dirty(struct bio *bio) 1421 { 1422 struct bio_vec *bvec; 1423 struct bvec_iter_all iter_all; 1424 1425 bio_for_each_segment_all(bvec, bio, iter_all) { 1426 if (!PageCompound(bvec->bv_page)) 1427 set_page_dirty_lock(bvec->bv_page); 1428 } 1429 } 1430 1431 /* 1432 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1433 * If they are, then fine. If, however, some pages are clean then they must 1434 * have been written out during the direct-IO read. So we take another ref on 1435 * the BIO and re-dirty the pages in process context. 1436 * 1437 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1438 * here on. It will run one put_page() against each page and will run one 1439 * bio_put() against the BIO. 1440 */ 1441 1442 static void bio_dirty_fn(struct work_struct *work); 1443 1444 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1445 static DEFINE_SPINLOCK(bio_dirty_lock); 1446 static struct bio *bio_dirty_list; 1447 1448 /* 1449 * This runs in process context 1450 */ 1451 static void bio_dirty_fn(struct work_struct *work) 1452 { 1453 struct bio *bio, *next; 1454 1455 spin_lock_irq(&bio_dirty_lock); 1456 next = bio_dirty_list; 1457 bio_dirty_list = NULL; 1458 spin_unlock_irq(&bio_dirty_lock); 1459 1460 while ((bio = next) != NULL) { 1461 next = bio->bi_private; 1462 1463 bio_release_pages(bio, true); 1464 bio_put(bio); 1465 } 1466 } 1467 1468 void bio_check_pages_dirty(struct bio *bio) 1469 { 1470 struct bio_vec *bvec; 1471 unsigned long flags; 1472 struct bvec_iter_all iter_all; 1473 1474 bio_for_each_segment_all(bvec, bio, iter_all) { 1475 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1476 goto defer; 1477 } 1478 1479 bio_release_pages(bio, false); 1480 bio_put(bio); 1481 return; 1482 defer: 1483 spin_lock_irqsave(&bio_dirty_lock, flags); 1484 bio->bi_private = bio_dirty_list; 1485 bio_dirty_list = bio; 1486 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1487 schedule_work(&bio_dirty_work); 1488 } 1489 1490 static inline bool bio_remaining_done(struct bio *bio) 1491 { 1492 /* 1493 * If we're not chaining, then ->__bi_remaining is always 1 and 1494 * we always end io on the first invocation. 1495 */ 1496 if (!bio_flagged(bio, BIO_CHAIN)) 1497 return true; 1498 1499 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1500 1501 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1502 bio_clear_flag(bio, BIO_CHAIN); 1503 return true; 1504 } 1505 1506 return false; 1507 } 1508 1509 /** 1510 * bio_endio - end I/O on a bio 1511 * @bio: bio 1512 * 1513 * Description: 1514 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1515 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1516 * bio unless they own it and thus know that it has an end_io function. 1517 * 1518 * bio_endio() can be called several times on a bio that has been chained 1519 * using bio_chain(). The ->bi_end_io() function will only be called the 1520 * last time. 1521 **/ 1522 void bio_endio(struct bio *bio) 1523 { 1524 again: 1525 if (!bio_remaining_done(bio)) 1526 return; 1527 if (!bio_integrity_endio(bio)) 1528 return; 1529 1530 rq_qos_done_bio(bio); 1531 1532 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1533 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1534 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1535 } 1536 1537 /* 1538 * Need to have a real endio function for chained bios, otherwise 1539 * various corner cases will break (like stacking block devices that 1540 * save/restore bi_end_io) - however, we want to avoid unbounded 1541 * recursion and blowing the stack. Tail call optimization would 1542 * handle this, but compiling with frame pointers also disables 1543 * gcc's sibling call optimization. 1544 */ 1545 if (bio->bi_end_io == bio_chain_endio) { 1546 bio = __bio_chain_endio(bio); 1547 goto again; 1548 } 1549 1550 blk_throtl_bio_endio(bio); 1551 /* release cgroup info */ 1552 bio_uninit(bio); 1553 if (bio->bi_end_io) 1554 bio->bi_end_io(bio); 1555 } 1556 EXPORT_SYMBOL(bio_endio); 1557 1558 /** 1559 * bio_split - split a bio 1560 * @bio: bio to split 1561 * @sectors: number of sectors to split from the front of @bio 1562 * @gfp: gfp mask 1563 * @bs: bio set to allocate from 1564 * 1565 * Allocates and returns a new bio which represents @sectors from the start of 1566 * @bio, and updates @bio to represent the remaining sectors. 1567 * 1568 * Unless this is a discard request the newly allocated bio will point 1569 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1570 * neither @bio nor @bs are freed before the split bio. 1571 */ 1572 struct bio *bio_split(struct bio *bio, int sectors, 1573 gfp_t gfp, struct bio_set *bs) 1574 { 1575 struct bio *split; 1576 1577 BUG_ON(sectors <= 0); 1578 BUG_ON(sectors >= bio_sectors(bio)); 1579 1580 /* Zone append commands cannot be split */ 1581 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1582 return NULL; 1583 1584 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1585 if (!split) 1586 return NULL; 1587 1588 split->bi_iter.bi_size = sectors << 9; 1589 1590 if (bio_integrity(split)) 1591 bio_integrity_trim(split); 1592 1593 bio_advance(bio, split->bi_iter.bi_size); 1594 1595 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1596 bio_set_flag(split, BIO_TRACE_COMPLETION); 1597 1598 return split; 1599 } 1600 EXPORT_SYMBOL(bio_split); 1601 1602 /** 1603 * bio_trim - trim a bio 1604 * @bio: bio to trim 1605 * @offset: number of sectors to trim from the front of @bio 1606 * @size: size we want to trim @bio to, in sectors 1607 * 1608 * This function is typically used for bios that are cloned and submitted 1609 * to the underlying device in parts. 1610 */ 1611 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1612 { 1613 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1614 offset + size > bio_sectors(bio))) 1615 return; 1616 1617 size <<= 9; 1618 if (offset == 0 && size == bio->bi_iter.bi_size) 1619 return; 1620 1621 bio_advance(bio, offset << 9); 1622 bio->bi_iter.bi_size = size; 1623 1624 if (bio_integrity(bio)) 1625 bio_integrity_trim(bio); 1626 } 1627 EXPORT_SYMBOL_GPL(bio_trim); 1628 1629 /* 1630 * create memory pools for biovec's in a bio_set. 1631 * use the global biovec slabs created for general use. 1632 */ 1633 int biovec_init_pool(mempool_t *pool, int pool_entries) 1634 { 1635 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1636 1637 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1638 } 1639 1640 /* 1641 * bioset_exit - exit a bioset initialized with bioset_init() 1642 * 1643 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1644 * kzalloc()). 1645 */ 1646 void bioset_exit(struct bio_set *bs) 1647 { 1648 bio_alloc_cache_destroy(bs); 1649 if (bs->rescue_workqueue) 1650 destroy_workqueue(bs->rescue_workqueue); 1651 bs->rescue_workqueue = NULL; 1652 1653 mempool_exit(&bs->bio_pool); 1654 mempool_exit(&bs->bvec_pool); 1655 1656 bioset_integrity_free(bs); 1657 if (bs->bio_slab) 1658 bio_put_slab(bs); 1659 bs->bio_slab = NULL; 1660 } 1661 EXPORT_SYMBOL(bioset_exit); 1662 1663 /** 1664 * bioset_init - Initialize a bio_set 1665 * @bs: pool to initialize 1666 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1667 * @front_pad: Number of bytes to allocate in front of the returned bio 1668 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1669 * and %BIOSET_NEED_RESCUER 1670 * 1671 * Description: 1672 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1673 * to ask for a number of bytes to be allocated in front of the bio. 1674 * Front pad allocation is useful for embedding the bio inside 1675 * another structure, to avoid allocating extra data to go with the bio. 1676 * Note that the bio must be embedded at the END of that structure always, 1677 * or things will break badly. 1678 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1679 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1680 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1681 * to dispatch queued requests when the mempool runs out of space. 1682 * 1683 */ 1684 int bioset_init(struct bio_set *bs, 1685 unsigned int pool_size, 1686 unsigned int front_pad, 1687 int flags) 1688 { 1689 bs->front_pad = front_pad; 1690 if (flags & BIOSET_NEED_BVECS) 1691 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1692 else 1693 bs->back_pad = 0; 1694 1695 spin_lock_init(&bs->rescue_lock); 1696 bio_list_init(&bs->rescue_list); 1697 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1698 1699 bs->bio_slab = bio_find_or_create_slab(bs); 1700 if (!bs->bio_slab) 1701 return -ENOMEM; 1702 1703 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1704 goto bad; 1705 1706 if ((flags & BIOSET_NEED_BVECS) && 1707 biovec_init_pool(&bs->bvec_pool, pool_size)) 1708 goto bad; 1709 1710 if (flags & BIOSET_NEED_RESCUER) { 1711 bs->rescue_workqueue = alloc_workqueue("bioset", 1712 WQ_MEM_RECLAIM, 0); 1713 if (!bs->rescue_workqueue) 1714 goto bad; 1715 } 1716 if (flags & BIOSET_PERCPU_CACHE) { 1717 bs->cache = alloc_percpu(struct bio_alloc_cache); 1718 if (!bs->cache) 1719 goto bad; 1720 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1721 } 1722 1723 return 0; 1724 bad: 1725 bioset_exit(bs); 1726 return -ENOMEM; 1727 } 1728 EXPORT_SYMBOL(bioset_init); 1729 1730 static int __init init_bio(void) 1731 { 1732 int i; 1733 1734 bio_integrity_init(); 1735 1736 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1737 struct biovec_slab *bvs = bvec_slabs + i; 1738 1739 bvs->slab = kmem_cache_create(bvs->name, 1740 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1741 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1742 } 1743 1744 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1745 bio_cpu_dead); 1746 1747 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, 1748 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) 1749 panic("bio: can't allocate bios\n"); 1750 1751 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1752 panic("bio: can't create integrity pool\n"); 1753 1754 return 0; 1755 } 1756 subsys_initcall(init_bio); 1757