xref: /linux/block/bio.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164 
165 	if (idx == BIOVEC_MAX_IDX)
166 		mempool_free(bv, pool);
167 	else {
168 		struct biovec_slab *bvs = bvec_slabs + idx;
169 
170 		kmem_cache_free(bvs->slab, bv);
171 	}
172 }
173 
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 			   mempool_t *pool)
176 {
177 	struct bio_vec *bvl;
178 
179 	/*
180 	 * see comment near bvec_array define!
181 	 */
182 	switch (nr) {
183 	case 1:
184 		*idx = 0;
185 		break;
186 	case 2 ... 4:
187 		*idx = 1;
188 		break;
189 	case 5 ... 16:
190 		*idx = 2;
191 		break;
192 	case 17 ... 64:
193 		*idx = 3;
194 		break;
195 	case 65 ... 128:
196 		*idx = 4;
197 		break;
198 	case 129 ... BIO_MAX_PAGES:
199 		*idx = 5;
200 		break;
201 	default:
202 		return NULL;
203 	}
204 
205 	/*
206 	 * idx now points to the pool we want to allocate from. only the
207 	 * 1-vec entry pool is mempool backed.
208 	 */
209 	if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 		bvl = mempool_alloc(pool, gfp_mask);
212 	} else {
213 		struct biovec_slab *bvs = bvec_slabs + *idx;
214 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215 
216 		/*
217 		 * Make this allocation restricted and don't dump info on
218 		 * allocation failures, since we'll fallback to the mempool
219 		 * in case of failure.
220 		 */
221 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222 
223 		/*
224 		 * Try a slab allocation. If this fails and __GFP_WAIT
225 		 * is set, retry with the 1-entry mempool
226 		 */
227 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 			*idx = BIOVEC_MAX_IDX;
230 			goto fallback;
231 		}
232 	}
233 
234 	return bvl;
235 }
236 
237 static void __bio_free(struct bio *bio)
238 {
239 	bio_disassociate_task(bio);
240 
241 	if (bio_integrity(bio))
242 		bio_integrity_free(bio);
243 }
244 
245 static void bio_free(struct bio *bio)
246 {
247 	struct bio_set *bs = bio->bi_pool;
248 	void *p;
249 
250 	__bio_free(bio);
251 
252 	if (bs) {
253 		if (bio_flagged(bio, BIO_OWNS_VEC))
254 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255 
256 		/*
257 		 * If we have front padding, adjust the bio pointer before freeing
258 		 */
259 		p = bio;
260 		p -= bs->front_pad;
261 
262 		mempool_free(p, bs->bio_pool);
263 	} else {
264 		/* Bio was allocated by bio_kmalloc() */
265 		kfree(bio);
266 	}
267 }
268 
269 void bio_init(struct bio *bio)
270 {
271 	memset(bio, 0, sizeof(*bio));
272 	bio->bi_flags = 1 << BIO_UPTODATE;
273 	atomic_set(&bio->bi_remaining, 1);
274 	atomic_set(&bio->bi_cnt, 1);
275 }
276 EXPORT_SYMBOL(bio_init);
277 
278 /**
279  * bio_reset - reinitialize a bio
280  * @bio:	bio to reset
281  *
282  * Description:
283  *   After calling bio_reset(), @bio will be in the same state as a freshly
284  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
285  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
286  *   comment in struct bio.
287  */
288 void bio_reset(struct bio *bio)
289 {
290 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291 
292 	__bio_free(bio);
293 
294 	memset(bio, 0, BIO_RESET_BYTES);
295 	bio->bi_flags = flags|(1 << BIO_UPTODATE);
296 	atomic_set(&bio->bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299 
300 static void bio_chain_endio(struct bio *bio, int error)
301 {
302 	bio_endio(bio->bi_private, error);
303 	bio_put(bio);
304 }
305 
306 /**
307  * bio_chain - chain bio completions
308  * @bio: the target bio
309  * @parent: the @bio's parent bio
310  *
311  * The caller won't have a bi_end_io called when @bio completes - instead,
312  * @parent's bi_end_io won't be called until both @parent and @bio have
313  * completed; the chained bio will also be freed when it completes.
314  *
315  * The caller must not set bi_private or bi_end_io in @bio.
316  */
317 void bio_chain(struct bio *bio, struct bio *parent)
318 {
319 	BUG_ON(bio->bi_private || bio->bi_end_io);
320 
321 	bio->bi_private = parent;
322 	bio->bi_end_io	= bio_chain_endio;
323 	atomic_inc(&parent->bi_remaining);
324 }
325 EXPORT_SYMBOL(bio_chain);
326 
327 static void bio_alloc_rescue(struct work_struct *work)
328 {
329 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
330 	struct bio *bio;
331 
332 	while (1) {
333 		spin_lock(&bs->rescue_lock);
334 		bio = bio_list_pop(&bs->rescue_list);
335 		spin_unlock(&bs->rescue_lock);
336 
337 		if (!bio)
338 			break;
339 
340 		generic_make_request(bio);
341 	}
342 }
343 
344 static void punt_bios_to_rescuer(struct bio_set *bs)
345 {
346 	struct bio_list punt, nopunt;
347 	struct bio *bio;
348 
349 	/*
350 	 * In order to guarantee forward progress we must punt only bios that
351 	 * were allocated from this bio_set; otherwise, if there was a bio on
352 	 * there for a stacking driver higher up in the stack, processing it
353 	 * could require allocating bios from this bio_set, and doing that from
354 	 * our own rescuer would be bad.
355 	 *
356 	 * Since bio lists are singly linked, pop them all instead of trying to
357 	 * remove from the middle of the list:
358 	 */
359 
360 	bio_list_init(&punt);
361 	bio_list_init(&nopunt);
362 
363 	while ((bio = bio_list_pop(current->bio_list)))
364 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
365 
366 	*current->bio_list = nopunt;
367 
368 	spin_lock(&bs->rescue_lock);
369 	bio_list_merge(&bs->rescue_list, &punt);
370 	spin_unlock(&bs->rescue_lock);
371 
372 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
373 }
374 
375 /**
376  * bio_alloc_bioset - allocate a bio for I/O
377  * @gfp_mask:   the GFP_ mask given to the slab allocator
378  * @nr_iovecs:	number of iovecs to pre-allocate
379  * @bs:		the bio_set to allocate from.
380  *
381  * Description:
382  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
383  *   backed by the @bs's mempool.
384  *
385  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
386  *   able to allocate a bio. This is due to the mempool guarantees. To make this
387  *   work, callers must never allocate more than 1 bio at a time from this pool.
388  *   Callers that need to allocate more than 1 bio must always submit the
389  *   previously allocated bio for IO before attempting to allocate a new one.
390  *   Failure to do so can cause deadlocks under memory pressure.
391  *
392  *   Note that when running under generic_make_request() (i.e. any block
393  *   driver), bios are not submitted until after you return - see the code in
394  *   generic_make_request() that converts recursion into iteration, to prevent
395  *   stack overflows.
396  *
397  *   This would normally mean allocating multiple bios under
398  *   generic_make_request() would be susceptible to deadlocks, but we have
399  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
400  *   thread.
401  *
402  *   However, we do not guarantee forward progress for allocations from other
403  *   mempools. Doing multiple allocations from the same mempool under
404  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
405  *   for per bio allocations.
406  *
407  *   RETURNS:
408  *   Pointer to new bio on success, NULL on failure.
409  */
410 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
411 {
412 	gfp_t saved_gfp = gfp_mask;
413 	unsigned front_pad;
414 	unsigned inline_vecs;
415 	unsigned long idx = BIO_POOL_NONE;
416 	struct bio_vec *bvl = NULL;
417 	struct bio *bio;
418 	void *p;
419 
420 	if (!bs) {
421 		if (nr_iovecs > UIO_MAXIOV)
422 			return NULL;
423 
424 		p = kmalloc(sizeof(struct bio) +
425 			    nr_iovecs * sizeof(struct bio_vec),
426 			    gfp_mask);
427 		front_pad = 0;
428 		inline_vecs = nr_iovecs;
429 	} else {
430 		/* should not use nobvec bioset for nr_iovecs > 0 */
431 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
432 			return NULL;
433 		/*
434 		 * generic_make_request() converts recursion to iteration; this
435 		 * means if we're running beneath it, any bios we allocate and
436 		 * submit will not be submitted (and thus freed) until after we
437 		 * return.
438 		 *
439 		 * This exposes us to a potential deadlock if we allocate
440 		 * multiple bios from the same bio_set() while running
441 		 * underneath generic_make_request(). If we were to allocate
442 		 * multiple bios (say a stacking block driver that was splitting
443 		 * bios), we would deadlock if we exhausted the mempool's
444 		 * reserve.
445 		 *
446 		 * We solve this, and guarantee forward progress, with a rescuer
447 		 * workqueue per bio_set. If we go to allocate and there are
448 		 * bios on current->bio_list, we first try the allocation
449 		 * without __GFP_WAIT; if that fails, we punt those bios we
450 		 * would be blocking to the rescuer workqueue before we retry
451 		 * with the original gfp_flags.
452 		 */
453 
454 		if (current->bio_list && !bio_list_empty(current->bio_list))
455 			gfp_mask &= ~__GFP_WAIT;
456 
457 		p = mempool_alloc(bs->bio_pool, gfp_mask);
458 		if (!p && gfp_mask != saved_gfp) {
459 			punt_bios_to_rescuer(bs);
460 			gfp_mask = saved_gfp;
461 			p = mempool_alloc(bs->bio_pool, gfp_mask);
462 		}
463 
464 		front_pad = bs->front_pad;
465 		inline_vecs = BIO_INLINE_VECS;
466 	}
467 
468 	if (unlikely(!p))
469 		return NULL;
470 
471 	bio = p + front_pad;
472 	bio_init(bio);
473 
474 	if (nr_iovecs > inline_vecs) {
475 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
476 		if (!bvl && gfp_mask != saved_gfp) {
477 			punt_bios_to_rescuer(bs);
478 			gfp_mask = saved_gfp;
479 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
480 		}
481 
482 		if (unlikely(!bvl))
483 			goto err_free;
484 
485 		bio->bi_flags |= 1 << BIO_OWNS_VEC;
486 	} else if (nr_iovecs) {
487 		bvl = bio->bi_inline_vecs;
488 	}
489 
490 	bio->bi_pool = bs;
491 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
492 	bio->bi_max_vecs = nr_iovecs;
493 	bio->bi_io_vec = bvl;
494 	return bio;
495 
496 err_free:
497 	mempool_free(p, bs->bio_pool);
498 	return NULL;
499 }
500 EXPORT_SYMBOL(bio_alloc_bioset);
501 
502 void zero_fill_bio(struct bio *bio)
503 {
504 	unsigned long flags;
505 	struct bio_vec bv;
506 	struct bvec_iter iter;
507 
508 	bio_for_each_segment(bv, bio, iter) {
509 		char *data = bvec_kmap_irq(&bv, &flags);
510 		memset(data, 0, bv.bv_len);
511 		flush_dcache_page(bv.bv_page);
512 		bvec_kunmap_irq(data, &flags);
513 	}
514 }
515 EXPORT_SYMBOL(zero_fill_bio);
516 
517 /**
518  * bio_put - release a reference to a bio
519  * @bio:   bio to release reference to
520  *
521  * Description:
522  *   Put a reference to a &struct bio, either one you have gotten with
523  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
524  **/
525 void bio_put(struct bio *bio)
526 {
527 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
528 
529 	/*
530 	 * last put frees it
531 	 */
532 	if (atomic_dec_and_test(&bio->bi_cnt))
533 		bio_free(bio);
534 }
535 EXPORT_SYMBOL(bio_put);
536 
537 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
538 {
539 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
540 		blk_recount_segments(q, bio);
541 
542 	return bio->bi_phys_segments;
543 }
544 EXPORT_SYMBOL(bio_phys_segments);
545 
546 /**
547  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
548  * 	@bio: destination bio
549  * 	@bio_src: bio to clone
550  *
551  *	Clone a &bio. Caller will own the returned bio, but not
552  *	the actual data it points to. Reference count of returned
553  * 	bio will be one.
554  *
555  * 	Caller must ensure that @bio_src is not freed before @bio.
556  */
557 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
558 {
559 	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
560 
561 	/*
562 	 * most users will be overriding ->bi_bdev with a new target,
563 	 * so we don't set nor calculate new physical/hw segment counts here
564 	 */
565 	bio->bi_bdev = bio_src->bi_bdev;
566 	bio->bi_flags |= 1 << BIO_CLONED;
567 	bio->bi_rw = bio_src->bi_rw;
568 	bio->bi_iter = bio_src->bi_iter;
569 	bio->bi_io_vec = bio_src->bi_io_vec;
570 }
571 EXPORT_SYMBOL(__bio_clone_fast);
572 
573 /**
574  *	bio_clone_fast - clone a bio that shares the original bio's biovec
575  *	@bio: bio to clone
576  *	@gfp_mask: allocation priority
577  *	@bs: bio_set to allocate from
578  *
579  * 	Like __bio_clone_fast, only also allocates the returned bio
580  */
581 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
582 {
583 	struct bio *b;
584 
585 	b = bio_alloc_bioset(gfp_mask, 0, bs);
586 	if (!b)
587 		return NULL;
588 
589 	__bio_clone_fast(b, bio);
590 
591 	if (bio_integrity(bio)) {
592 		int ret;
593 
594 		ret = bio_integrity_clone(b, bio, gfp_mask);
595 
596 		if (ret < 0) {
597 			bio_put(b);
598 			return NULL;
599 		}
600 	}
601 
602 	return b;
603 }
604 EXPORT_SYMBOL(bio_clone_fast);
605 
606 /**
607  * 	bio_clone_bioset - clone a bio
608  * 	@bio_src: bio to clone
609  *	@gfp_mask: allocation priority
610  *	@bs: bio_set to allocate from
611  *
612  *	Clone bio. Caller will own the returned bio, but not the actual data it
613  *	points to. Reference count of returned bio will be one.
614  */
615 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
616 			     struct bio_set *bs)
617 {
618 	struct bvec_iter iter;
619 	struct bio_vec bv;
620 	struct bio *bio;
621 
622 	/*
623 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
624 	 * bio_src->bi_io_vec to bio->bi_io_vec.
625 	 *
626 	 * We can't do that anymore, because:
627 	 *
628 	 *  - The point of cloning the biovec is to produce a bio with a biovec
629 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
630 	 *
631 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
632 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
633 	 *    But the clone should succeed as long as the number of biovecs we
634 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
635 	 *
636 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
637 	 *    that does not own the bio - reason being drivers don't use it for
638 	 *    iterating over the biovec anymore, so expecting it to be kept up
639 	 *    to date (i.e. for clones that share the parent biovec) is just
640 	 *    asking for trouble and would force extra work on
641 	 *    __bio_clone_fast() anyways.
642 	 */
643 
644 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
645 	if (!bio)
646 		return NULL;
647 
648 	bio->bi_bdev		= bio_src->bi_bdev;
649 	bio->bi_rw		= bio_src->bi_rw;
650 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
651 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
652 
653 	if (bio->bi_rw & REQ_DISCARD)
654 		goto integrity_clone;
655 
656 	if (bio->bi_rw & REQ_WRITE_SAME) {
657 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
658 		goto integrity_clone;
659 	}
660 
661 	bio_for_each_segment(bv, bio_src, iter)
662 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
663 
664 integrity_clone:
665 	if (bio_integrity(bio_src)) {
666 		int ret;
667 
668 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
669 		if (ret < 0) {
670 			bio_put(bio);
671 			return NULL;
672 		}
673 	}
674 
675 	return bio;
676 }
677 EXPORT_SYMBOL(bio_clone_bioset);
678 
679 /**
680  *	bio_get_nr_vecs		- return approx number of vecs
681  *	@bdev:  I/O target
682  *
683  *	Return the approximate number of pages we can send to this target.
684  *	There's no guarantee that you will be able to fit this number of pages
685  *	into a bio, it does not account for dynamic restrictions that vary
686  *	on offset.
687  */
688 int bio_get_nr_vecs(struct block_device *bdev)
689 {
690 	struct request_queue *q = bdev_get_queue(bdev);
691 	int nr_pages;
692 
693 	nr_pages = min_t(unsigned,
694 		     queue_max_segments(q),
695 		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
696 
697 	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
698 
699 }
700 EXPORT_SYMBOL(bio_get_nr_vecs);
701 
702 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
703 			  *page, unsigned int len, unsigned int offset,
704 			  unsigned int max_sectors)
705 {
706 	int retried_segments = 0;
707 	struct bio_vec *bvec;
708 
709 	/*
710 	 * cloned bio must not modify vec list
711 	 */
712 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
713 		return 0;
714 
715 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
716 		return 0;
717 
718 	/*
719 	 * For filesystems with a blocksize smaller than the pagesize
720 	 * we will often be called with the same page as last time and
721 	 * a consecutive offset.  Optimize this special case.
722 	 */
723 	if (bio->bi_vcnt > 0) {
724 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
725 
726 		if (page == prev->bv_page &&
727 		    offset == prev->bv_offset + prev->bv_len) {
728 			unsigned int prev_bv_len = prev->bv_len;
729 			prev->bv_len += len;
730 
731 			if (q->merge_bvec_fn) {
732 				struct bvec_merge_data bvm = {
733 					/* prev_bvec is already charged in
734 					   bi_size, discharge it in order to
735 					   simulate merging updated prev_bvec
736 					   as new bvec. */
737 					.bi_bdev = bio->bi_bdev,
738 					.bi_sector = bio->bi_iter.bi_sector,
739 					.bi_size = bio->bi_iter.bi_size -
740 						prev_bv_len,
741 					.bi_rw = bio->bi_rw,
742 				};
743 
744 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
745 					prev->bv_len -= len;
746 					return 0;
747 				}
748 			}
749 
750 			bio->bi_iter.bi_size += len;
751 			goto done;
752 		}
753 
754 		/*
755 		 * If the queue doesn't support SG gaps and adding this
756 		 * offset would create a gap, disallow it.
757 		 */
758 		if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
759 		    bvec_gap_to_prev(prev, offset))
760 			return 0;
761 	}
762 
763 	if (bio->bi_vcnt >= bio->bi_max_vecs)
764 		return 0;
765 
766 	/*
767 	 * setup the new entry, we might clear it again later if we
768 	 * cannot add the page
769 	 */
770 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
771 	bvec->bv_page = page;
772 	bvec->bv_len = len;
773 	bvec->bv_offset = offset;
774 	bio->bi_vcnt++;
775 	bio->bi_phys_segments++;
776 	bio->bi_iter.bi_size += len;
777 
778 	/*
779 	 * Perform a recount if the number of segments is greater
780 	 * than queue_max_segments(q).
781 	 */
782 
783 	while (bio->bi_phys_segments > queue_max_segments(q)) {
784 
785 		if (retried_segments)
786 			goto failed;
787 
788 		retried_segments = 1;
789 		blk_recount_segments(q, bio);
790 	}
791 
792 	/*
793 	 * if queue has other restrictions (eg varying max sector size
794 	 * depending on offset), it can specify a merge_bvec_fn in the
795 	 * queue to get further control
796 	 */
797 	if (q->merge_bvec_fn) {
798 		struct bvec_merge_data bvm = {
799 			.bi_bdev = bio->bi_bdev,
800 			.bi_sector = bio->bi_iter.bi_sector,
801 			.bi_size = bio->bi_iter.bi_size - len,
802 			.bi_rw = bio->bi_rw,
803 		};
804 
805 		/*
806 		 * merge_bvec_fn() returns number of bytes it can accept
807 		 * at this offset
808 		 */
809 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
810 			goto failed;
811 	}
812 
813 	/* If we may be able to merge these biovecs, force a recount */
814 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
815 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
816 
817  done:
818 	return len;
819 
820  failed:
821 	bvec->bv_page = NULL;
822 	bvec->bv_len = 0;
823 	bvec->bv_offset = 0;
824 	bio->bi_vcnt--;
825 	bio->bi_iter.bi_size -= len;
826 	blk_recount_segments(q, bio);
827 	return 0;
828 }
829 
830 /**
831  *	bio_add_pc_page	-	attempt to add page to bio
832  *	@q: the target queue
833  *	@bio: destination bio
834  *	@page: page to add
835  *	@len: vec entry length
836  *	@offset: vec entry offset
837  *
838  *	Attempt to add a page to the bio_vec maplist. This can fail for a
839  *	number of reasons, such as the bio being full or target block device
840  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
841  *	so it is always possible to add a single page to an empty bio.
842  *
843  *	This should only be used by REQ_PC bios.
844  */
845 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
846 		    unsigned int len, unsigned int offset)
847 {
848 	return __bio_add_page(q, bio, page, len, offset,
849 			      queue_max_hw_sectors(q));
850 }
851 EXPORT_SYMBOL(bio_add_pc_page);
852 
853 /**
854  *	bio_add_page	-	attempt to add page to bio
855  *	@bio: destination bio
856  *	@page: page to add
857  *	@len: vec entry length
858  *	@offset: vec entry offset
859  *
860  *	Attempt to add a page to the bio_vec maplist. This can fail for a
861  *	number of reasons, such as the bio being full or target block device
862  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
863  *	so it is always possible to add a single page to an empty bio.
864  */
865 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
866 		 unsigned int offset)
867 {
868 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
869 	unsigned int max_sectors;
870 
871 	max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
872 	if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
873 		max_sectors = len >> 9;
874 
875 	return __bio_add_page(q, bio, page, len, offset, max_sectors);
876 }
877 EXPORT_SYMBOL(bio_add_page);
878 
879 struct submit_bio_ret {
880 	struct completion event;
881 	int error;
882 };
883 
884 static void submit_bio_wait_endio(struct bio *bio, int error)
885 {
886 	struct submit_bio_ret *ret = bio->bi_private;
887 
888 	ret->error = error;
889 	complete(&ret->event);
890 }
891 
892 /**
893  * submit_bio_wait - submit a bio, and wait until it completes
894  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
895  * @bio: The &struct bio which describes the I/O
896  *
897  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
898  * bio_endio() on failure.
899  */
900 int submit_bio_wait(int rw, struct bio *bio)
901 {
902 	struct submit_bio_ret ret;
903 
904 	rw |= REQ_SYNC;
905 	init_completion(&ret.event);
906 	bio->bi_private = &ret;
907 	bio->bi_end_io = submit_bio_wait_endio;
908 	submit_bio(rw, bio);
909 	wait_for_completion(&ret.event);
910 
911 	return ret.error;
912 }
913 EXPORT_SYMBOL(submit_bio_wait);
914 
915 /**
916  * bio_advance - increment/complete a bio by some number of bytes
917  * @bio:	bio to advance
918  * @bytes:	number of bytes to complete
919  *
920  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
921  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
922  * be updated on the last bvec as well.
923  *
924  * @bio will then represent the remaining, uncompleted portion of the io.
925  */
926 void bio_advance(struct bio *bio, unsigned bytes)
927 {
928 	if (bio_integrity(bio))
929 		bio_integrity_advance(bio, bytes);
930 
931 	bio_advance_iter(bio, &bio->bi_iter, bytes);
932 }
933 EXPORT_SYMBOL(bio_advance);
934 
935 /**
936  * bio_alloc_pages - allocates a single page for each bvec in a bio
937  * @bio: bio to allocate pages for
938  * @gfp_mask: flags for allocation
939  *
940  * Allocates pages up to @bio->bi_vcnt.
941  *
942  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
943  * freed.
944  */
945 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
946 {
947 	int i;
948 	struct bio_vec *bv;
949 
950 	bio_for_each_segment_all(bv, bio, i) {
951 		bv->bv_page = alloc_page(gfp_mask);
952 		if (!bv->bv_page) {
953 			while (--bv >= bio->bi_io_vec)
954 				__free_page(bv->bv_page);
955 			return -ENOMEM;
956 		}
957 	}
958 
959 	return 0;
960 }
961 EXPORT_SYMBOL(bio_alloc_pages);
962 
963 /**
964  * bio_copy_data - copy contents of data buffers from one chain of bios to
965  * another
966  * @src: source bio list
967  * @dst: destination bio list
968  *
969  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
970  * @src and @dst as linked lists of bios.
971  *
972  * Stops when it reaches the end of either @src or @dst - that is, copies
973  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
974  */
975 void bio_copy_data(struct bio *dst, struct bio *src)
976 {
977 	struct bvec_iter src_iter, dst_iter;
978 	struct bio_vec src_bv, dst_bv;
979 	void *src_p, *dst_p;
980 	unsigned bytes;
981 
982 	src_iter = src->bi_iter;
983 	dst_iter = dst->bi_iter;
984 
985 	while (1) {
986 		if (!src_iter.bi_size) {
987 			src = src->bi_next;
988 			if (!src)
989 				break;
990 
991 			src_iter = src->bi_iter;
992 		}
993 
994 		if (!dst_iter.bi_size) {
995 			dst = dst->bi_next;
996 			if (!dst)
997 				break;
998 
999 			dst_iter = dst->bi_iter;
1000 		}
1001 
1002 		src_bv = bio_iter_iovec(src, src_iter);
1003 		dst_bv = bio_iter_iovec(dst, dst_iter);
1004 
1005 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1006 
1007 		src_p = kmap_atomic(src_bv.bv_page);
1008 		dst_p = kmap_atomic(dst_bv.bv_page);
1009 
1010 		memcpy(dst_p + dst_bv.bv_offset,
1011 		       src_p + src_bv.bv_offset,
1012 		       bytes);
1013 
1014 		kunmap_atomic(dst_p);
1015 		kunmap_atomic(src_p);
1016 
1017 		bio_advance_iter(src, &src_iter, bytes);
1018 		bio_advance_iter(dst, &dst_iter, bytes);
1019 	}
1020 }
1021 EXPORT_SYMBOL(bio_copy_data);
1022 
1023 struct bio_map_data {
1024 	int is_our_pages;
1025 	struct iov_iter iter;
1026 	struct iovec iov[];
1027 };
1028 
1029 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1030 					       gfp_t gfp_mask)
1031 {
1032 	if (iov_count > UIO_MAXIOV)
1033 		return NULL;
1034 
1035 	return kmalloc(sizeof(struct bio_map_data) +
1036 		       sizeof(struct iovec) * iov_count, gfp_mask);
1037 }
1038 
1039 /**
1040  * bio_copy_from_iter - copy all pages from iov_iter to bio
1041  * @bio: The &struct bio which describes the I/O as destination
1042  * @iter: iov_iter as source
1043  *
1044  * Copy all pages from iov_iter to bio.
1045  * Returns 0 on success, or error on failure.
1046  */
1047 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1048 {
1049 	int i;
1050 	struct bio_vec *bvec;
1051 
1052 	bio_for_each_segment_all(bvec, bio, i) {
1053 		ssize_t ret;
1054 
1055 		ret = copy_page_from_iter(bvec->bv_page,
1056 					  bvec->bv_offset,
1057 					  bvec->bv_len,
1058 					  &iter);
1059 
1060 		if (!iov_iter_count(&iter))
1061 			break;
1062 
1063 		if (ret < bvec->bv_len)
1064 			return -EFAULT;
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 /**
1071  * bio_copy_to_iter - copy all pages from bio to iov_iter
1072  * @bio: The &struct bio which describes the I/O as source
1073  * @iter: iov_iter as destination
1074  *
1075  * Copy all pages from bio to iov_iter.
1076  * Returns 0 on success, or error on failure.
1077  */
1078 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1079 {
1080 	int i;
1081 	struct bio_vec *bvec;
1082 
1083 	bio_for_each_segment_all(bvec, bio, i) {
1084 		ssize_t ret;
1085 
1086 		ret = copy_page_to_iter(bvec->bv_page,
1087 					bvec->bv_offset,
1088 					bvec->bv_len,
1089 					&iter);
1090 
1091 		if (!iov_iter_count(&iter))
1092 			break;
1093 
1094 		if (ret < bvec->bv_len)
1095 			return -EFAULT;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 static void bio_free_pages(struct bio *bio)
1102 {
1103 	struct bio_vec *bvec;
1104 	int i;
1105 
1106 	bio_for_each_segment_all(bvec, bio, i)
1107 		__free_page(bvec->bv_page);
1108 }
1109 
1110 /**
1111  *	bio_uncopy_user	-	finish previously mapped bio
1112  *	@bio: bio being terminated
1113  *
1114  *	Free pages allocated from bio_copy_user_iov() and write back data
1115  *	to user space in case of a read.
1116  */
1117 int bio_uncopy_user(struct bio *bio)
1118 {
1119 	struct bio_map_data *bmd = bio->bi_private;
1120 	int ret = 0;
1121 
1122 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1123 		/*
1124 		 * if we're in a workqueue, the request is orphaned, so
1125 		 * don't copy into a random user address space, just free.
1126 		 */
1127 		if (current->mm && bio_data_dir(bio) == READ)
1128 			ret = bio_copy_to_iter(bio, bmd->iter);
1129 		if (bmd->is_our_pages)
1130 			bio_free_pages(bio);
1131 	}
1132 	kfree(bmd);
1133 	bio_put(bio);
1134 	return ret;
1135 }
1136 EXPORT_SYMBOL(bio_uncopy_user);
1137 
1138 /**
1139  *	bio_copy_user_iov	-	copy user data to bio
1140  *	@q:		destination block queue
1141  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1142  *	@iter:		iovec iterator
1143  *	@gfp_mask:	memory allocation flags
1144  *
1145  *	Prepares and returns a bio for indirect user io, bouncing data
1146  *	to/from kernel pages as necessary. Must be paired with
1147  *	call bio_uncopy_user() on io completion.
1148  */
1149 struct bio *bio_copy_user_iov(struct request_queue *q,
1150 			      struct rq_map_data *map_data,
1151 			      const struct iov_iter *iter,
1152 			      gfp_t gfp_mask)
1153 {
1154 	struct bio_map_data *bmd;
1155 	struct page *page;
1156 	struct bio *bio;
1157 	int i, ret;
1158 	int nr_pages = 0;
1159 	unsigned int len = iter->count;
1160 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1161 
1162 	for (i = 0; i < iter->nr_segs; i++) {
1163 		unsigned long uaddr;
1164 		unsigned long end;
1165 		unsigned long start;
1166 
1167 		uaddr = (unsigned long) iter->iov[i].iov_base;
1168 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1169 			>> PAGE_SHIFT;
1170 		start = uaddr >> PAGE_SHIFT;
1171 
1172 		/*
1173 		 * Overflow, abort
1174 		 */
1175 		if (end < start)
1176 			return ERR_PTR(-EINVAL);
1177 
1178 		nr_pages += end - start;
1179 	}
1180 
1181 	if (offset)
1182 		nr_pages++;
1183 
1184 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1185 	if (!bmd)
1186 		return ERR_PTR(-ENOMEM);
1187 
1188 	/*
1189 	 * We need to do a deep copy of the iov_iter including the iovecs.
1190 	 * The caller provided iov might point to an on-stack or otherwise
1191 	 * shortlived one.
1192 	 */
1193 	bmd->is_our_pages = map_data ? 0 : 1;
1194 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1195 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1196 			iter->nr_segs, iter->count);
1197 
1198 	ret = -ENOMEM;
1199 	bio = bio_kmalloc(gfp_mask, nr_pages);
1200 	if (!bio)
1201 		goto out_bmd;
1202 
1203 	if (iter->type & WRITE)
1204 		bio->bi_rw |= REQ_WRITE;
1205 
1206 	ret = 0;
1207 
1208 	if (map_data) {
1209 		nr_pages = 1 << map_data->page_order;
1210 		i = map_data->offset / PAGE_SIZE;
1211 	}
1212 	while (len) {
1213 		unsigned int bytes = PAGE_SIZE;
1214 
1215 		bytes -= offset;
1216 
1217 		if (bytes > len)
1218 			bytes = len;
1219 
1220 		if (map_data) {
1221 			if (i == map_data->nr_entries * nr_pages) {
1222 				ret = -ENOMEM;
1223 				break;
1224 			}
1225 
1226 			page = map_data->pages[i / nr_pages];
1227 			page += (i % nr_pages);
1228 
1229 			i++;
1230 		} else {
1231 			page = alloc_page(q->bounce_gfp | gfp_mask);
1232 			if (!page) {
1233 				ret = -ENOMEM;
1234 				break;
1235 			}
1236 		}
1237 
1238 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1239 			break;
1240 
1241 		len -= bytes;
1242 		offset = 0;
1243 	}
1244 
1245 	if (ret)
1246 		goto cleanup;
1247 
1248 	/*
1249 	 * success
1250 	 */
1251 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1252 	    (map_data && map_data->from_user)) {
1253 		ret = bio_copy_from_iter(bio, *iter);
1254 		if (ret)
1255 			goto cleanup;
1256 	}
1257 
1258 	bio->bi_private = bmd;
1259 	return bio;
1260 cleanup:
1261 	if (!map_data)
1262 		bio_free_pages(bio);
1263 	bio_put(bio);
1264 out_bmd:
1265 	kfree(bmd);
1266 	return ERR_PTR(ret);
1267 }
1268 
1269 /**
1270  *	bio_map_user_iov - map user iovec into bio
1271  *	@q:		the struct request_queue for the bio
1272  *	@iter:		iovec iterator
1273  *	@gfp_mask:	memory allocation flags
1274  *
1275  *	Map the user space address into a bio suitable for io to a block
1276  *	device. Returns an error pointer in case of error.
1277  */
1278 struct bio *bio_map_user_iov(struct request_queue *q,
1279 			     const struct iov_iter *iter,
1280 			     gfp_t gfp_mask)
1281 {
1282 	int j;
1283 	int nr_pages = 0;
1284 	struct page **pages;
1285 	struct bio *bio;
1286 	int cur_page = 0;
1287 	int ret, offset;
1288 	struct iov_iter i;
1289 	struct iovec iov;
1290 
1291 	iov_for_each(iov, i, *iter) {
1292 		unsigned long uaddr = (unsigned long) iov.iov_base;
1293 		unsigned long len = iov.iov_len;
1294 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1295 		unsigned long start = uaddr >> PAGE_SHIFT;
1296 
1297 		/*
1298 		 * Overflow, abort
1299 		 */
1300 		if (end < start)
1301 			return ERR_PTR(-EINVAL);
1302 
1303 		nr_pages += end - start;
1304 		/*
1305 		 * buffer must be aligned to at least hardsector size for now
1306 		 */
1307 		if (uaddr & queue_dma_alignment(q))
1308 			return ERR_PTR(-EINVAL);
1309 	}
1310 
1311 	if (!nr_pages)
1312 		return ERR_PTR(-EINVAL);
1313 
1314 	bio = bio_kmalloc(gfp_mask, nr_pages);
1315 	if (!bio)
1316 		return ERR_PTR(-ENOMEM);
1317 
1318 	ret = -ENOMEM;
1319 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1320 	if (!pages)
1321 		goto out;
1322 
1323 	iov_for_each(iov, i, *iter) {
1324 		unsigned long uaddr = (unsigned long) iov.iov_base;
1325 		unsigned long len = iov.iov_len;
1326 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1327 		unsigned long start = uaddr >> PAGE_SHIFT;
1328 		const int local_nr_pages = end - start;
1329 		const int page_limit = cur_page + local_nr_pages;
1330 
1331 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1332 				(iter->type & WRITE) != WRITE,
1333 				&pages[cur_page]);
1334 		if (ret < local_nr_pages) {
1335 			ret = -EFAULT;
1336 			goto out_unmap;
1337 		}
1338 
1339 		offset = uaddr & ~PAGE_MASK;
1340 		for (j = cur_page; j < page_limit; j++) {
1341 			unsigned int bytes = PAGE_SIZE - offset;
1342 
1343 			if (len <= 0)
1344 				break;
1345 
1346 			if (bytes > len)
1347 				bytes = len;
1348 
1349 			/*
1350 			 * sorry...
1351 			 */
1352 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1353 					    bytes)
1354 				break;
1355 
1356 			len -= bytes;
1357 			offset = 0;
1358 		}
1359 
1360 		cur_page = j;
1361 		/*
1362 		 * release the pages we didn't map into the bio, if any
1363 		 */
1364 		while (j < page_limit)
1365 			page_cache_release(pages[j++]);
1366 	}
1367 
1368 	kfree(pages);
1369 
1370 	/*
1371 	 * set data direction, and check if mapped pages need bouncing
1372 	 */
1373 	if (iter->type & WRITE)
1374 		bio->bi_rw |= REQ_WRITE;
1375 
1376 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1377 
1378 	/*
1379 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1380 	 * it would normally disappear when its bi_end_io is run.
1381 	 * however, we need it for the unmap, so grab an extra
1382 	 * reference to it
1383 	 */
1384 	bio_get(bio);
1385 	return bio;
1386 
1387  out_unmap:
1388 	for (j = 0; j < nr_pages; j++) {
1389 		if (!pages[j])
1390 			break;
1391 		page_cache_release(pages[j]);
1392 	}
1393  out:
1394 	kfree(pages);
1395 	bio_put(bio);
1396 	return ERR_PTR(ret);
1397 }
1398 
1399 static void __bio_unmap_user(struct bio *bio)
1400 {
1401 	struct bio_vec *bvec;
1402 	int i;
1403 
1404 	/*
1405 	 * make sure we dirty pages we wrote to
1406 	 */
1407 	bio_for_each_segment_all(bvec, bio, i) {
1408 		if (bio_data_dir(bio) == READ)
1409 			set_page_dirty_lock(bvec->bv_page);
1410 
1411 		page_cache_release(bvec->bv_page);
1412 	}
1413 
1414 	bio_put(bio);
1415 }
1416 
1417 /**
1418  *	bio_unmap_user	-	unmap a bio
1419  *	@bio:		the bio being unmapped
1420  *
1421  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1422  *	a process context.
1423  *
1424  *	bio_unmap_user() may sleep.
1425  */
1426 void bio_unmap_user(struct bio *bio)
1427 {
1428 	__bio_unmap_user(bio);
1429 	bio_put(bio);
1430 }
1431 EXPORT_SYMBOL(bio_unmap_user);
1432 
1433 static void bio_map_kern_endio(struct bio *bio, int err)
1434 {
1435 	bio_put(bio);
1436 }
1437 
1438 /**
1439  *	bio_map_kern	-	map kernel address into bio
1440  *	@q: the struct request_queue for the bio
1441  *	@data: pointer to buffer to map
1442  *	@len: length in bytes
1443  *	@gfp_mask: allocation flags for bio allocation
1444  *
1445  *	Map the kernel address into a bio suitable for io to a block
1446  *	device. Returns an error pointer in case of error.
1447  */
1448 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1449 			 gfp_t gfp_mask)
1450 {
1451 	unsigned long kaddr = (unsigned long)data;
1452 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1453 	unsigned long start = kaddr >> PAGE_SHIFT;
1454 	const int nr_pages = end - start;
1455 	int offset, i;
1456 	struct bio *bio;
1457 
1458 	bio = bio_kmalloc(gfp_mask, nr_pages);
1459 	if (!bio)
1460 		return ERR_PTR(-ENOMEM);
1461 
1462 	offset = offset_in_page(kaddr);
1463 	for (i = 0; i < nr_pages; i++) {
1464 		unsigned int bytes = PAGE_SIZE - offset;
1465 
1466 		if (len <= 0)
1467 			break;
1468 
1469 		if (bytes > len)
1470 			bytes = len;
1471 
1472 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1473 				    offset) < bytes) {
1474 			/* we don't support partial mappings */
1475 			bio_put(bio);
1476 			return ERR_PTR(-EINVAL);
1477 		}
1478 
1479 		data += bytes;
1480 		len -= bytes;
1481 		offset = 0;
1482 	}
1483 
1484 	bio->bi_end_io = bio_map_kern_endio;
1485 	return bio;
1486 }
1487 EXPORT_SYMBOL(bio_map_kern);
1488 
1489 static void bio_copy_kern_endio(struct bio *bio, int err)
1490 {
1491 	bio_free_pages(bio);
1492 	bio_put(bio);
1493 }
1494 
1495 static void bio_copy_kern_endio_read(struct bio *bio, int err)
1496 {
1497 	char *p = bio->bi_private;
1498 	struct bio_vec *bvec;
1499 	int i;
1500 
1501 	bio_for_each_segment_all(bvec, bio, i) {
1502 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1503 		p += bvec->bv_len;
1504 	}
1505 
1506 	bio_copy_kern_endio(bio, err);
1507 }
1508 
1509 /**
1510  *	bio_copy_kern	-	copy kernel address into bio
1511  *	@q: the struct request_queue for the bio
1512  *	@data: pointer to buffer to copy
1513  *	@len: length in bytes
1514  *	@gfp_mask: allocation flags for bio and page allocation
1515  *	@reading: data direction is READ
1516  *
1517  *	copy the kernel address into a bio suitable for io to a block
1518  *	device. Returns an error pointer in case of error.
1519  */
1520 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1521 			  gfp_t gfp_mask, int reading)
1522 {
1523 	unsigned long kaddr = (unsigned long)data;
1524 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1525 	unsigned long start = kaddr >> PAGE_SHIFT;
1526 	struct bio *bio;
1527 	void *p = data;
1528 	int nr_pages = 0;
1529 
1530 	/*
1531 	 * Overflow, abort
1532 	 */
1533 	if (end < start)
1534 		return ERR_PTR(-EINVAL);
1535 
1536 	nr_pages = end - start;
1537 	bio = bio_kmalloc(gfp_mask, nr_pages);
1538 	if (!bio)
1539 		return ERR_PTR(-ENOMEM);
1540 
1541 	while (len) {
1542 		struct page *page;
1543 		unsigned int bytes = PAGE_SIZE;
1544 
1545 		if (bytes > len)
1546 			bytes = len;
1547 
1548 		page = alloc_page(q->bounce_gfp | gfp_mask);
1549 		if (!page)
1550 			goto cleanup;
1551 
1552 		if (!reading)
1553 			memcpy(page_address(page), p, bytes);
1554 
1555 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1556 			break;
1557 
1558 		len -= bytes;
1559 		p += bytes;
1560 	}
1561 
1562 	if (reading) {
1563 		bio->bi_end_io = bio_copy_kern_endio_read;
1564 		bio->bi_private = data;
1565 	} else {
1566 		bio->bi_end_io = bio_copy_kern_endio;
1567 		bio->bi_rw |= REQ_WRITE;
1568 	}
1569 
1570 	return bio;
1571 
1572 cleanup:
1573 	bio_free_pages(bio);
1574 	bio_put(bio);
1575 	return ERR_PTR(-ENOMEM);
1576 }
1577 EXPORT_SYMBOL(bio_copy_kern);
1578 
1579 /*
1580  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1581  * for performing direct-IO in BIOs.
1582  *
1583  * The problem is that we cannot run set_page_dirty() from interrupt context
1584  * because the required locks are not interrupt-safe.  So what we can do is to
1585  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1586  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1587  * in process context.
1588  *
1589  * We special-case compound pages here: normally this means reads into hugetlb
1590  * pages.  The logic in here doesn't really work right for compound pages
1591  * because the VM does not uniformly chase down the head page in all cases.
1592  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1593  * handle them at all.  So we skip compound pages here at an early stage.
1594  *
1595  * Note that this code is very hard to test under normal circumstances because
1596  * direct-io pins the pages with get_user_pages().  This makes
1597  * is_page_cache_freeable return false, and the VM will not clean the pages.
1598  * But other code (eg, flusher threads) could clean the pages if they are mapped
1599  * pagecache.
1600  *
1601  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1602  * deferred bio dirtying paths.
1603  */
1604 
1605 /*
1606  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1607  */
1608 void bio_set_pages_dirty(struct bio *bio)
1609 {
1610 	struct bio_vec *bvec;
1611 	int i;
1612 
1613 	bio_for_each_segment_all(bvec, bio, i) {
1614 		struct page *page = bvec->bv_page;
1615 
1616 		if (page && !PageCompound(page))
1617 			set_page_dirty_lock(page);
1618 	}
1619 }
1620 
1621 static void bio_release_pages(struct bio *bio)
1622 {
1623 	struct bio_vec *bvec;
1624 	int i;
1625 
1626 	bio_for_each_segment_all(bvec, bio, i) {
1627 		struct page *page = bvec->bv_page;
1628 
1629 		if (page)
1630 			put_page(page);
1631 	}
1632 }
1633 
1634 /*
1635  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1636  * If they are, then fine.  If, however, some pages are clean then they must
1637  * have been written out during the direct-IO read.  So we take another ref on
1638  * the BIO and the offending pages and re-dirty the pages in process context.
1639  *
1640  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1641  * here on.  It will run one page_cache_release() against each page and will
1642  * run one bio_put() against the BIO.
1643  */
1644 
1645 static void bio_dirty_fn(struct work_struct *work);
1646 
1647 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1648 static DEFINE_SPINLOCK(bio_dirty_lock);
1649 static struct bio *bio_dirty_list;
1650 
1651 /*
1652  * This runs in process context
1653  */
1654 static void bio_dirty_fn(struct work_struct *work)
1655 {
1656 	unsigned long flags;
1657 	struct bio *bio;
1658 
1659 	spin_lock_irqsave(&bio_dirty_lock, flags);
1660 	bio = bio_dirty_list;
1661 	bio_dirty_list = NULL;
1662 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1663 
1664 	while (bio) {
1665 		struct bio *next = bio->bi_private;
1666 
1667 		bio_set_pages_dirty(bio);
1668 		bio_release_pages(bio);
1669 		bio_put(bio);
1670 		bio = next;
1671 	}
1672 }
1673 
1674 void bio_check_pages_dirty(struct bio *bio)
1675 {
1676 	struct bio_vec *bvec;
1677 	int nr_clean_pages = 0;
1678 	int i;
1679 
1680 	bio_for_each_segment_all(bvec, bio, i) {
1681 		struct page *page = bvec->bv_page;
1682 
1683 		if (PageDirty(page) || PageCompound(page)) {
1684 			page_cache_release(page);
1685 			bvec->bv_page = NULL;
1686 		} else {
1687 			nr_clean_pages++;
1688 		}
1689 	}
1690 
1691 	if (nr_clean_pages) {
1692 		unsigned long flags;
1693 
1694 		spin_lock_irqsave(&bio_dirty_lock, flags);
1695 		bio->bi_private = bio_dirty_list;
1696 		bio_dirty_list = bio;
1697 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1698 		schedule_work(&bio_dirty_work);
1699 	} else {
1700 		bio_put(bio);
1701 	}
1702 }
1703 
1704 void generic_start_io_acct(int rw, unsigned long sectors,
1705 			   struct hd_struct *part)
1706 {
1707 	int cpu = part_stat_lock();
1708 
1709 	part_round_stats(cpu, part);
1710 	part_stat_inc(cpu, part, ios[rw]);
1711 	part_stat_add(cpu, part, sectors[rw], sectors);
1712 	part_inc_in_flight(part, rw);
1713 
1714 	part_stat_unlock();
1715 }
1716 EXPORT_SYMBOL(generic_start_io_acct);
1717 
1718 void generic_end_io_acct(int rw, struct hd_struct *part,
1719 			 unsigned long start_time)
1720 {
1721 	unsigned long duration = jiffies - start_time;
1722 	int cpu = part_stat_lock();
1723 
1724 	part_stat_add(cpu, part, ticks[rw], duration);
1725 	part_round_stats(cpu, part);
1726 	part_dec_in_flight(part, rw);
1727 
1728 	part_stat_unlock();
1729 }
1730 EXPORT_SYMBOL(generic_end_io_acct);
1731 
1732 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1733 void bio_flush_dcache_pages(struct bio *bi)
1734 {
1735 	struct bio_vec bvec;
1736 	struct bvec_iter iter;
1737 
1738 	bio_for_each_segment(bvec, bi, iter)
1739 		flush_dcache_page(bvec.bv_page);
1740 }
1741 EXPORT_SYMBOL(bio_flush_dcache_pages);
1742 #endif
1743 
1744 /**
1745  * bio_endio - end I/O on a bio
1746  * @bio:	bio
1747  * @error:	error, if any
1748  *
1749  * Description:
1750  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1751  *   preferred way to end I/O on a bio, it takes care of clearing
1752  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1753  *   established -Exxxx (-EIO, for instance) error values in case
1754  *   something went wrong. No one should call bi_end_io() directly on a
1755  *   bio unless they own it and thus know that it has an end_io
1756  *   function.
1757  **/
1758 void bio_endio(struct bio *bio, int error)
1759 {
1760 	while (bio) {
1761 		BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1762 
1763 		if (error)
1764 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1765 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1766 			error = -EIO;
1767 
1768 		if (!atomic_dec_and_test(&bio->bi_remaining))
1769 			return;
1770 
1771 		/*
1772 		 * Need to have a real endio function for chained bios,
1773 		 * otherwise various corner cases will break (like stacking
1774 		 * block devices that save/restore bi_end_io) - however, we want
1775 		 * to avoid unbounded recursion and blowing the stack. Tail call
1776 		 * optimization would handle this, but compiling with frame
1777 		 * pointers also disables gcc's sibling call optimization.
1778 		 */
1779 		if (bio->bi_end_io == bio_chain_endio) {
1780 			struct bio *parent = bio->bi_private;
1781 			bio_put(bio);
1782 			bio = parent;
1783 		} else {
1784 			if (bio->bi_end_io)
1785 				bio->bi_end_io(bio, error);
1786 			bio = NULL;
1787 		}
1788 	}
1789 }
1790 EXPORT_SYMBOL(bio_endio);
1791 
1792 /**
1793  * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1794  * @bio:	bio
1795  * @error:	error, if any
1796  *
1797  * For code that has saved and restored bi_end_io; thing hard before using this
1798  * function, probably you should've cloned the entire bio.
1799  **/
1800 void bio_endio_nodec(struct bio *bio, int error)
1801 {
1802 	atomic_inc(&bio->bi_remaining);
1803 	bio_endio(bio, error);
1804 }
1805 EXPORT_SYMBOL(bio_endio_nodec);
1806 
1807 /**
1808  * bio_split - split a bio
1809  * @bio:	bio to split
1810  * @sectors:	number of sectors to split from the front of @bio
1811  * @gfp:	gfp mask
1812  * @bs:		bio set to allocate from
1813  *
1814  * Allocates and returns a new bio which represents @sectors from the start of
1815  * @bio, and updates @bio to represent the remaining sectors.
1816  *
1817  * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1818  * responsibility to ensure that @bio is not freed before the split.
1819  */
1820 struct bio *bio_split(struct bio *bio, int sectors,
1821 		      gfp_t gfp, struct bio_set *bs)
1822 {
1823 	struct bio *split = NULL;
1824 
1825 	BUG_ON(sectors <= 0);
1826 	BUG_ON(sectors >= bio_sectors(bio));
1827 
1828 	split = bio_clone_fast(bio, gfp, bs);
1829 	if (!split)
1830 		return NULL;
1831 
1832 	split->bi_iter.bi_size = sectors << 9;
1833 
1834 	if (bio_integrity(split))
1835 		bio_integrity_trim(split, 0, sectors);
1836 
1837 	bio_advance(bio, split->bi_iter.bi_size);
1838 
1839 	return split;
1840 }
1841 EXPORT_SYMBOL(bio_split);
1842 
1843 /**
1844  * bio_trim - trim a bio
1845  * @bio:	bio to trim
1846  * @offset:	number of sectors to trim from the front of @bio
1847  * @size:	size we want to trim @bio to, in sectors
1848  */
1849 void bio_trim(struct bio *bio, int offset, int size)
1850 {
1851 	/* 'bio' is a cloned bio which we need to trim to match
1852 	 * the given offset and size.
1853 	 */
1854 
1855 	size <<= 9;
1856 	if (offset == 0 && size == bio->bi_iter.bi_size)
1857 		return;
1858 
1859 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1860 
1861 	bio_advance(bio, offset << 9);
1862 
1863 	bio->bi_iter.bi_size = size;
1864 }
1865 EXPORT_SYMBOL_GPL(bio_trim);
1866 
1867 /*
1868  * create memory pools for biovec's in a bio_set.
1869  * use the global biovec slabs created for general use.
1870  */
1871 mempool_t *biovec_create_pool(int pool_entries)
1872 {
1873 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1874 
1875 	return mempool_create_slab_pool(pool_entries, bp->slab);
1876 }
1877 
1878 void bioset_free(struct bio_set *bs)
1879 {
1880 	if (bs->rescue_workqueue)
1881 		destroy_workqueue(bs->rescue_workqueue);
1882 
1883 	if (bs->bio_pool)
1884 		mempool_destroy(bs->bio_pool);
1885 
1886 	if (bs->bvec_pool)
1887 		mempool_destroy(bs->bvec_pool);
1888 
1889 	bioset_integrity_free(bs);
1890 	bio_put_slab(bs);
1891 
1892 	kfree(bs);
1893 }
1894 EXPORT_SYMBOL(bioset_free);
1895 
1896 static struct bio_set *__bioset_create(unsigned int pool_size,
1897 				       unsigned int front_pad,
1898 				       bool create_bvec_pool)
1899 {
1900 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1901 	struct bio_set *bs;
1902 
1903 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1904 	if (!bs)
1905 		return NULL;
1906 
1907 	bs->front_pad = front_pad;
1908 
1909 	spin_lock_init(&bs->rescue_lock);
1910 	bio_list_init(&bs->rescue_list);
1911 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1912 
1913 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1914 	if (!bs->bio_slab) {
1915 		kfree(bs);
1916 		return NULL;
1917 	}
1918 
1919 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1920 	if (!bs->bio_pool)
1921 		goto bad;
1922 
1923 	if (create_bvec_pool) {
1924 		bs->bvec_pool = biovec_create_pool(pool_size);
1925 		if (!bs->bvec_pool)
1926 			goto bad;
1927 	}
1928 
1929 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1930 	if (!bs->rescue_workqueue)
1931 		goto bad;
1932 
1933 	return bs;
1934 bad:
1935 	bioset_free(bs);
1936 	return NULL;
1937 }
1938 
1939 /**
1940  * bioset_create  - Create a bio_set
1941  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1942  * @front_pad:	Number of bytes to allocate in front of the returned bio
1943  *
1944  * Description:
1945  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1946  *    to ask for a number of bytes to be allocated in front of the bio.
1947  *    Front pad allocation is useful for embedding the bio inside
1948  *    another structure, to avoid allocating extra data to go with the bio.
1949  *    Note that the bio must be embedded at the END of that structure always,
1950  *    or things will break badly.
1951  */
1952 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1953 {
1954 	return __bioset_create(pool_size, front_pad, true);
1955 }
1956 EXPORT_SYMBOL(bioset_create);
1957 
1958 /**
1959  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1960  * @pool_size:	Number of bio to cache in the mempool
1961  * @front_pad:	Number of bytes to allocate in front of the returned bio
1962  *
1963  * Description:
1964  *    Same functionality as bioset_create() except that mempool is not
1965  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1966  */
1967 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1968 {
1969 	return __bioset_create(pool_size, front_pad, false);
1970 }
1971 EXPORT_SYMBOL(bioset_create_nobvec);
1972 
1973 #ifdef CONFIG_BLK_CGROUP
1974 /**
1975  * bio_associate_current - associate a bio with %current
1976  * @bio: target bio
1977  *
1978  * Associate @bio with %current if it hasn't been associated yet.  Block
1979  * layer will treat @bio as if it were issued by %current no matter which
1980  * task actually issues it.
1981  *
1982  * This function takes an extra reference of @task's io_context and blkcg
1983  * which will be put when @bio is released.  The caller must own @bio,
1984  * ensure %current->io_context exists, and is responsible for synchronizing
1985  * calls to this function.
1986  */
1987 int bio_associate_current(struct bio *bio)
1988 {
1989 	struct io_context *ioc;
1990 	struct cgroup_subsys_state *css;
1991 
1992 	if (bio->bi_ioc)
1993 		return -EBUSY;
1994 
1995 	ioc = current->io_context;
1996 	if (!ioc)
1997 		return -ENOENT;
1998 
1999 	/* acquire active ref on @ioc and associate */
2000 	get_io_context_active(ioc);
2001 	bio->bi_ioc = ioc;
2002 
2003 	/* associate blkcg if exists */
2004 	rcu_read_lock();
2005 	css = task_css(current, blkio_cgrp_id);
2006 	if (css && css_tryget_online(css))
2007 		bio->bi_css = css;
2008 	rcu_read_unlock();
2009 
2010 	return 0;
2011 }
2012 
2013 /**
2014  * bio_disassociate_task - undo bio_associate_current()
2015  * @bio: target bio
2016  */
2017 void bio_disassociate_task(struct bio *bio)
2018 {
2019 	if (bio->bi_ioc) {
2020 		put_io_context(bio->bi_ioc);
2021 		bio->bi_ioc = NULL;
2022 	}
2023 	if (bio->bi_css) {
2024 		css_put(bio->bi_css);
2025 		bio->bi_css = NULL;
2026 	}
2027 }
2028 
2029 #endif /* CONFIG_BLK_CGROUP */
2030 
2031 static void __init biovec_init_slabs(void)
2032 {
2033 	int i;
2034 
2035 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2036 		int size;
2037 		struct biovec_slab *bvs = bvec_slabs + i;
2038 
2039 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2040 			bvs->slab = NULL;
2041 			continue;
2042 		}
2043 
2044 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2045 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2046                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2047 	}
2048 }
2049 
2050 static int __init init_bio(void)
2051 {
2052 	bio_slab_max = 2;
2053 	bio_slab_nr = 0;
2054 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2055 	if (!bio_slabs)
2056 		panic("bio: can't allocate bios\n");
2057 
2058 	bio_integrity_init();
2059 	biovec_init_slabs();
2060 
2061 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2062 	if (!fs_bio_set)
2063 		panic("bio: can't allocate bios\n");
2064 
2065 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2066 		panic("bio: can't create integrity pool\n");
2067 
2068 	return 0;
2069 }
2070 subsys_initcall(init_bio);
2071