xref: /linux/block/bio.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26 
27 #define ALLOC_CACHE_THRESHOLD	16
28 #define ALLOC_CACHE_MAX		256
29 
30 struct bio_alloc_cache {
31 	struct bio		*free_list;
32 	struct bio		*free_list_irq;
33 	unsigned int		nr;
34 	unsigned int		nr_irq;
35 };
36 
37 static struct biovec_slab {
38 	int nr_vecs;
39 	char *name;
40 	struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 	{ .nr_vecs = 16, .name = "biovec-16" },
43 	{ .nr_vecs = 64, .name = "biovec-64" },
44 	{ .nr_vecs = 128, .name = "biovec-128" },
45 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47 
48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 	switch (nr_vecs) {
51 	/* smaller bios use inline vecs */
52 	case 5 ... 16:
53 		return &bvec_slabs[0];
54 	case 17 ... 64:
55 		return &bvec_slabs[1];
56 	case 65 ... 128:
57 		return &bvec_slabs[2];
58 	case 129 ... BIO_MAX_VECS:
59 		return &bvec_slabs[3];
60 	default:
61 		BUG();
62 		return NULL;
63 	}
64 }
65 
66 /*
67  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68  * IO code that does not need private memory pools.
69  */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72 
73 /*
74  * Our slab pool management
75  */
76 struct bio_slab {
77 	struct kmem_cache *slab;
78 	unsigned int slab_ref;
79 	unsigned int slab_size;
80 	char name[8];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84 
85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88 
89 	if (!bslab)
90 		return NULL;
91 
92 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 	bslab->slab = kmem_cache_create(bslab->name, size,
94 			ARCH_KMALLOC_MINALIGN,
95 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 	if (!bslab->slab)
97 		goto fail_alloc_slab;
98 
99 	bslab->slab_ref = 1;
100 	bslab->slab_size = size;
101 
102 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 		return bslab;
104 
105 	kmem_cache_destroy(bslab->slab);
106 
107 fail_alloc_slab:
108 	kfree(bslab);
109 	return NULL;
110 }
111 
112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116 
117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 	unsigned int size = bs_bio_slab_size(bs);
120 	struct bio_slab *bslab;
121 
122 	mutex_lock(&bio_slab_lock);
123 	bslab = xa_load(&bio_slabs, size);
124 	if (bslab)
125 		bslab->slab_ref++;
126 	else
127 		bslab = create_bio_slab(size);
128 	mutex_unlock(&bio_slab_lock);
129 
130 	if (bslab)
131 		return bslab->slab;
132 	return NULL;
133 }
134 
135 static void bio_put_slab(struct bio_set *bs)
136 {
137 	struct bio_slab *bslab = NULL;
138 	unsigned int slab_size = bs_bio_slab_size(bs);
139 
140 	mutex_lock(&bio_slab_lock);
141 
142 	bslab = xa_load(&bio_slabs, slab_size);
143 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 		goto out;
145 
146 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147 
148 	WARN_ON(!bslab->slab_ref);
149 
150 	if (--bslab->slab_ref)
151 		goto out;
152 
153 	xa_erase(&bio_slabs, slab_size);
154 
155 	kmem_cache_destroy(bslab->slab);
156 	kfree(bslab);
157 
158 out:
159 	mutex_unlock(&bio_slab_lock);
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 	BUG_ON(nr_vecs > BIO_MAX_VECS);
165 
166 	if (nr_vecs == BIO_MAX_VECS)
167 		mempool_free(bv, pool);
168 	else if (nr_vecs > BIO_INLINE_VECS)
169 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171 
172 /*
173  * Make the first allocation restricted and don't dump info on allocation
174  * failures, since we'll fall back to the mempool in case of failure.
175  */
176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181 
182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 		gfp_t gfp_mask)
184 {
185 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186 
187 	if (WARN_ON_ONCE(!bvs))
188 		return NULL;
189 
190 	/*
191 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 	 * We also rely on this in the bvec_free path.
193 	 */
194 	*nr_vecs = bvs->nr_vecs;
195 
196 	/*
197 	 * Try a slab allocation first for all smaller allocations.  If that
198 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 	 */
201 	if (*nr_vecs < BIO_MAX_VECS) {
202 		struct bio_vec *bvl;
203 
204 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 			return bvl;
207 		*nr_vecs = BIO_MAX_VECS;
208 	}
209 
210 	return mempool_alloc(pool, gfp_mask);
211 }
212 
213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 	if (bio->bi_blkg) {
217 		blkg_put(bio->bi_blkg);
218 		bio->bi_blkg = NULL;
219 	}
220 #endif
221 	if (bio_integrity(bio))
222 		bio_integrity_free(bio);
223 
224 	bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227 
228 static void bio_free(struct bio *bio)
229 {
230 	struct bio_set *bs = bio->bi_pool;
231 	void *p = bio;
232 
233 	WARN_ON_ONCE(!bs);
234 
235 	bio_uninit(bio);
236 	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 	mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239 
240 /*
241  * Users of this function have their own bio allocation. Subsequently,
242  * they must remember to pair any call to bio_init() with bio_uninit()
243  * when IO has completed, or when the bio is released.
244  */
245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 	      unsigned short max_vecs, blk_opf_t opf)
247 {
248 	bio->bi_next = NULL;
249 	bio->bi_bdev = bdev;
250 	bio->bi_opf = opf;
251 	bio->bi_flags = 0;
252 	bio->bi_ioprio = 0;
253 	bio->bi_write_hint = 0;
254 	bio->bi_status = 0;
255 	bio->bi_iter.bi_sector = 0;
256 	bio->bi_iter.bi_size = 0;
257 	bio->bi_iter.bi_idx = 0;
258 	bio->bi_iter.bi_bvec_done = 0;
259 	bio->bi_end_io = NULL;
260 	bio->bi_private = NULL;
261 #ifdef CONFIG_BLK_CGROUP
262 	bio->bi_blkg = NULL;
263 	bio->bi_issue.value = 0;
264 	if (bdev)
265 		bio_associate_blkg(bio);
266 #ifdef CONFIG_BLK_CGROUP_IOCOST
267 	bio->bi_iocost_cost = 0;
268 #endif
269 #endif
270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
271 	bio->bi_crypt_context = NULL;
272 #endif
273 #ifdef CONFIG_BLK_DEV_INTEGRITY
274 	bio->bi_integrity = NULL;
275 #endif
276 	bio->bi_vcnt = 0;
277 
278 	atomic_set(&bio->__bi_remaining, 1);
279 	atomic_set(&bio->__bi_cnt, 1);
280 	bio->bi_cookie = BLK_QC_T_NONE;
281 
282 	bio->bi_max_vecs = max_vecs;
283 	bio->bi_io_vec = table;
284 	bio->bi_pool = NULL;
285 }
286 EXPORT_SYMBOL(bio_init);
287 
288 /**
289  * bio_reset - reinitialize a bio
290  * @bio:	bio to reset
291  * @bdev:	block device to use the bio for
292  * @opf:	operation and flags for bio
293  *
294  * Description:
295  *   After calling bio_reset(), @bio will be in the same state as a freshly
296  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
297  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
298  *   comment in struct bio.
299  */
300 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
301 {
302 	bio_uninit(bio);
303 	memset(bio, 0, BIO_RESET_BYTES);
304 	atomic_set(&bio->__bi_remaining, 1);
305 	bio->bi_bdev = bdev;
306 	if (bio->bi_bdev)
307 		bio_associate_blkg(bio);
308 	bio->bi_opf = opf;
309 }
310 EXPORT_SYMBOL(bio_reset);
311 
312 static struct bio *__bio_chain_endio(struct bio *bio)
313 {
314 	struct bio *parent = bio->bi_private;
315 
316 	if (bio->bi_status && !parent->bi_status)
317 		parent->bi_status = bio->bi_status;
318 	bio_put(bio);
319 	return parent;
320 }
321 
322 static void bio_chain_endio(struct bio *bio)
323 {
324 	bio_endio(__bio_chain_endio(bio));
325 }
326 
327 /**
328  * bio_chain - chain bio completions
329  * @bio: the target bio
330  * @parent: the parent bio of @bio
331  *
332  * The caller won't have a bi_end_io called when @bio completes - instead,
333  * @parent's bi_end_io won't be called until both @parent and @bio have
334  * completed; the chained bio will also be freed when it completes.
335  *
336  * The caller must not set bi_private or bi_end_io in @bio.
337  */
338 void bio_chain(struct bio *bio, struct bio *parent)
339 {
340 	BUG_ON(bio->bi_private || bio->bi_end_io);
341 
342 	bio->bi_private = parent;
343 	bio->bi_end_io	= bio_chain_endio;
344 	bio_inc_remaining(parent);
345 }
346 EXPORT_SYMBOL(bio_chain);
347 
348 /**
349  * bio_chain_and_submit - submit a bio after chaining it to another one
350  * @prev: bio to chain and submit
351  * @new: bio to chain to
352  *
353  * If @prev is non-NULL, chain it to @new and submit it.
354  *
355  * Return: @new.
356  */
357 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
358 {
359 	if (prev) {
360 		bio_chain(prev, new);
361 		submit_bio(prev);
362 	}
363 	return new;
364 }
365 
366 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
367 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
368 {
369 	return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
370 }
371 EXPORT_SYMBOL_GPL(blk_next_bio);
372 
373 static void bio_alloc_rescue(struct work_struct *work)
374 {
375 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
376 	struct bio *bio;
377 
378 	while (1) {
379 		spin_lock(&bs->rescue_lock);
380 		bio = bio_list_pop(&bs->rescue_list);
381 		spin_unlock(&bs->rescue_lock);
382 
383 		if (!bio)
384 			break;
385 
386 		submit_bio_noacct(bio);
387 	}
388 }
389 
390 static void punt_bios_to_rescuer(struct bio_set *bs)
391 {
392 	struct bio_list punt, nopunt;
393 	struct bio *bio;
394 
395 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
396 		return;
397 	/*
398 	 * In order to guarantee forward progress we must punt only bios that
399 	 * were allocated from this bio_set; otherwise, if there was a bio on
400 	 * there for a stacking driver higher up in the stack, processing it
401 	 * could require allocating bios from this bio_set, and doing that from
402 	 * our own rescuer would be bad.
403 	 *
404 	 * Since bio lists are singly linked, pop them all instead of trying to
405 	 * remove from the middle of the list:
406 	 */
407 
408 	bio_list_init(&punt);
409 	bio_list_init(&nopunt);
410 
411 	while ((bio = bio_list_pop(&current->bio_list[0])))
412 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
413 	current->bio_list[0] = nopunt;
414 
415 	bio_list_init(&nopunt);
416 	while ((bio = bio_list_pop(&current->bio_list[1])))
417 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
418 	current->bio_list[1] = nopunt;
419 
420 	spin_lock(&bs->rescue_lock);
421 	bio_list_merge(&bs->rescue_list, &punt);
422 	spin_unlock(&bs->rescue_lock);
423 
424 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
425 }
426 
427 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
428 {
429 	unsigned long flags;
430 
431 	/* cache->free_list must be empty */
432 	if (WARN_ON_ONCE(cache->free_list))
433 		return;
434 
435 	local_irq_save(flags);
436 	cache->free_list = cache->free_list_irq;
437 	cache->free_list_irq = NULL;
438 	cache->nr += cache->nr_irq;
439 	cache->nr_irq = 0;
440 	local_irq_restore(flags);
441 }
442 
443 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
444 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
445 		struct bio_set *bs)
446 {
447 	struct bio_alloc_cache *cache;
448 	struct bio *bio;
449 
450 	cache = per_cpu_ptr(bs->cache, get_cpu());
451 	if (!cache->free_list) {
452 		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
453 			bio_alloc_irq_cache_splice(cache);
454 		if (!cache->free_list) {
455 			put_cpu();
456 			return NULL;
457 		}
458 	}
459 	bio = cache->free_list;
460 	cache->free_list = bio->bi_next;
461 	cache->nr--;
462 	put_cpu();
463 
464 	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
465 	bio->bi_pool = bs;
466 	return bio;
467 }
468 
469 /**
470  * bio_alloc_bioset - allocate a bio for I/O
471  * @bdev:	block device to allocate the bio for (can be %NULL)
472  * @nr_vecs:	number of bvecs to pre-allocate
473  * @opf:	operation and flags for bio
474  * @gfp_mask:   the GFP_* mask given to the slab allocator
475  * @bs:		the bio_set to allocate from.
476  *
477  * Allocate a bio from the mempools in @bs.
478  *
479  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
480  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
481  * callers must never allocate more than 1 bio at a time from the general pool.
482  * Callers that need to allocate more than 1 bio must always submit the
483  * previously allocated bio for IO before attempting to allocate a new one.
484  * Failure to do so can cause deadlocks under memory pressure.
485  *
486  * Note that when running under submit_bio_noacct() (i.e. any block driver),
487  * bios are not submitted until after you return - see the code in
488  * submit_bio_noacct() that converts recursion into iteration, to prevent
489  * stack overflows.
490  *
491  * This would normally mean allocating multiple bios under submit_bio_noacct()
492  * would be susceptible to deadlocks, but we have
493  * deadlock avoidance code that resubmits any blocked bios from a rescuer
494  * thread.
495  *
496  * However, we do not guarantee forward progress for allocations from other
497  * mempools. Doing multiple allocations from the same mempool under
498  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
499  * for per bio allocations.
500  *
501  * Returns: Pointer to new bio on success, NULL on failure.
502  */
503 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
504 			     blk_opf_t opf, gfp_t gfp_mask,
505 			     struct bio_set *bs)
506 {
507 	gfp_t saved_gfp = gfp_mask;
508 	struct bio *bio;
509 	void *p;
510 
511 	/* should not use nobvec bioset for nr_vecs > 0 */
512 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
513 		return NULL;
514 
515 	if (opf & REQ_ALLOC_CACHE) {
516 		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
517 			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
518 						     gfp_mask, bs);
519 			if (bio)
520 				return bio;
521 			/*
522 			 * No cached bio available, bio returned below marked with
523 			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
524 			 */
525 		} else {
526 			opf &= ~REQ_ALLOC_CACHE;
527 		}
528 	}
529 
530 	/*
531 	 * submit_bio_noacct() converts recursion to iteration; this means if
532 	 * we're running beneath it, any bios we allocate and submit will not be
533 	 * submitted (and thus freed) until after we return.
534 	 *
535 	 * This exposes us to a potential deadlock if we allocate multiple bios
536 	 * from the same bio_set() while running underneath submit_bio_noacct().
537 	 * If we were to allocate multiple bios (say a stacking block driver
538 	 * that was splitting bios), we would deadlock if we exhausted the
539 	 * mempool's reserve.
540 	 *
541 	 * We solve this, and guarantee forward progress, with a rescuer
542 	 * workqueue per bio_set. If we go to allocate and there are bios on
543 	 * current->bio_list, we first try the allocation without
544 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
545 	 * blocking to the rescuer workqueue before we retry with the original
546 	 * gfp_flags.
547 	 */
548 	if (current->bio_list &&
549 	    (!bio_list_empty(&current->bio_list[0]) ||
550 	     !bio_list_empty(&current->bio_list[1])) &&
551 	    bs->rescue_workqueue)
552 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
553 
554 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
555 	if (!p && gfp_mask != saved_gfp) {
556 		punt_bios_to_rescuer(bs);
557 		gfp_mask = saved_gfp;
558 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
559 	}
560 	if (unlikely(!p))
561 		return NULL;
562 	if (!mempool_is_saturated(&bs->bio_pool))
563 		opf &= ~REQ_ALLOC_CACHE;
564 
565 	bio = p + bs->front_pad;
566 	if (nr_vecs > BIO_INLINE_VECS) {
567 		struct bio_vec *bvl = NULL;
568 
569 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
570 		if (!bvl && gfp_mask != saved_gfp) {
571 			punt_bios_to_rescuer(bs);
572 			gfp_mask = saved_gfp;
573 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
574 		}
575 		if (unlikely(!bvl))
576 			goto err_free;
577 
578 		bio_init(bio, bdev, bvl, nr_vecs, opf);
579 	} else if (nr_vecs) {
580 		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
581 	} else {
582 		bio_init(bio, bdev, NULL, 0, opf);
583 	}
584 
585 	bio->bi_pool = bs;
586 	return bio;
587 
588 err_free:
589 	mempool_free(p, &bs->bio_pool);
590 	return NULL;
591 }
592 EXPORT_SYMBOL(bio_alloc_bioset);
593 
594 /**
595  * bio_kmalloc - kmalloc a bio
596  * @nr_vecs:	number of bio_vecs to allocate
597  * @gfp_mask:   the GFP_* mask given to the slab allocator
598  *
599  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
600  * using bio_init() before use.  To free a bio returned from this function use
601  * kfree() after calling bio_uninit().  A bio returned from this function can
602  * be reused by calling bio_uninit() before calling bio_init() again.
603  *
604  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
605  * function are not backed by a mempool can fail.  Do not use this function
606  * for allocations in the file system I/O path.
607  *
608  * Returns: Pointer to new bio on success, NULL on failure.
609  */
610 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
611 {
612 	struct bio *bio;
613 
614 	if (nr_vecs > UIO_MAXIOV)
615 		return NULL;
616 	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
617 }
618 EXPORT_SYMBOL(bio_kmalloc);
619 
620 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
621 {
622 	struct bio_vec bv;
623 	struct bvec_iter iter;
624 
625 	__bio_for_each_segment(bv, bio, iter, start)
626 		memzero_bvec(&bv);
627 }
628 EXPORT_SYMBOL(zero_fill_bio_iter);
629 
630 /**
631  * bio_truncate - truncate the bio to small size of @new_size
632  * @bio:	the bio to be truncated
633  * @new_size:	new size for truncating the bio
634  *
635  * Description:
636  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
637  *   REQ_OP_READ, zero the truncated part. This function should only
638  *   be used for handling corner cases, such as bio eod.
639  */
640 static void bio_truncate(struct bio *bio, unsigned new_size)
641 {
642 	struct bio_vec bv;
643 	struct bvec_iter iter;
644 	unsigned int done = 0;
645 	bool truncated = false;
646 
647 	if (new_size >= bio->bi_iter.bi_size)
648 		return;
649 
650 	if (bio_op(bio) != REQ_OP_READ)
651 		goto exit;
652 
653 	bio_for_each_segment(bv, bio, iter) {
654 		if (done + bv.bv_len > new_size) {
655 			unsigned offset;
656 
657 			if (!truncated)
658 				offset = new_size - done;
659 			else
660 				offset = 0;
661 			zero_user(bv.bv_page, bv.bv_offset + offset,
662 				  bv.bv_len - offset);
663 			truncated = true;
664 		}
665 		done += bv.bv_len;
666 	}
667 
668  exit:
669 	/*
670 	 * Don't touch bvec table here and make it really immutable, since
671 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
672 	 * in its .end_bio() callback.
673 	 *
674 	 * It is enough to truncate bio by updating .bi_size since we can make
675 	 * correct bvec with the updated .bi_size for drivers.
676 	 */
677 	bio->bi_iter.bi_size = new_size;
678 }
679 
680 /**
681  * guard_bio_eod - truncate a BIO to fit the block device
682  * @bio:	bio to truncate
683  *
684  * This allows us to do IO even on the odd last sectors of a device, even if the
685  * block size is some multiple of the physical sector size.
686  *
687  * We'll just truncate the bio to the size of the device, and clear the end of
688  * the buffer head manually.  Truly out-of-range accesses will turn into actual
689  * I/O errors, this only handles the "we need to be able to do I/O at the final
690  * sector" case.
691  */
692 void guard_bio_eod(struct bio *bio)
693 {
694 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
695 
696 	if (!maxsector)
697 		return;
698 
699 	/*
700 	 * If the *whole* IO is past the end of the device,
701 	 * let it through, and the IO layer will turn it into
702 	 * an EIO.
703 	 */
704 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
705 		return;
706 
707 	maxsector -= bio->bi_iter.bi_sector;
708 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
709 		return;
710 
711 	bio_truncate(bio, maxsector << 9);
712 }
713 
714 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
715 				   unsigned int nr)
716 {
717 	unsigned int i = 0;
718 	struct bio *bio;
719 
720 	while ((bio = cache->free_list) != NULL) {
721 		cache->free_list = bio->bi_next;
722 		cache->nr--;
723 		bio_free(bio);
724 		if (++i == nr)
725 			break;
726 	}
727 	return i;
728 }
729 
730 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
731 				  unsigned int nr)
732 {
733 	nr -= __bio_alloc_cache_prune(cache, nr);
734 	if (!READ_ONCE(cache->free_list)) {
735 		bio_alloc_irq_cache_splice(cache);
736 		__bio_alloc_cache_prune(cache, nr);
737 	}
738 }
739 
740 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
741 {
742 	struct bio_set *bs;
743 
744 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
745 	if (bs->cache) {
746 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
747 
748 		bio_alloc_cache_prune(cache, -1U);
749 	}
750 	return 0;
751 }
752 
753 static void bio_alloc_cache_destroy(struct bio_set *bs)
754 {
755 	int cpu;
756 
757 	if (!bs->cache)
758 		return;
759 
760 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
761 	for_each_possible_cpu(cpu) {
762 		struct bio_alloc_cache *cache;
763 
764 		cache = per_cpu_ptr(bs->cache, cpu);
765 		bio_alloc_cache_prune(cache, -1U);
766 	}
767 	free_percpu(bs->cache);
768 	bs->cache = NULL;
769 }
770 
771 static inline void bio_put_percpu_cache(struct bio *bio)
772 {
773 	struct bio_alloc_cache *cache;
774 
775 	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
776 	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
777 		goto out_free;
778 
779 	if (in_task()) {
780 		bio_uninit(bio);
781 		bio->bi_next = cache->free_list;
782 		/* Not necessary but helps not to iopoll already freed bios */
783 		bio->bi_bdev = NULL;
784 		cache->free_list = bio;
785 		cache->nr++;
786 	} else if (in_hardirq()) {
787 		lockdep_assert_irqs_disabled();
788 
789 		bio_uninit(bio);
790 		bio->bi_next = cache->free_list_irq;
791 		cache->free_list_irq = bio;
792 		cache->nr_irq++;
793 	} else {
794 		goto out_free;
795 	}
796 	put_cpu();
797 	return;
798 out_free:
799 	put_cpu();
800 	bio_free(bio);
801 }
802 
803 /**
804  * bio_put - release a reference to a bio
805  * @bio:   bio to release reference to
806  *
807  * Description:
808  *   Put a reference to a &struct bio, either one you have gotten with
809  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
810  **/
811 void bio_put(struct bio *bio)
812 {
813 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
814 		BUG_ON(!atomic_read(&bio->__bi_cnt));
815 		if (!atomic_dec_and_test(&bio->__bi_cnt))
816 			return;
817 	}
818 	if (bio->bi_opf & REQ_ALLOC_CACHE)
819 		bio_put_percpu_cache(bio);
820 	else
821 		bio_free(bio);
822 }
823 EXPORT_SYMBOL(bio_put);
824 
825 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
826 {
827 	bio_set_flag(bio, BIO_CLONED);
828 	bio->bi_ioprio = bio_src->bi_ioprio;
829 	bio->bi_write_hint = bio_src->bi_write_hint;
830 	bio->bi_iter = bio_src->bi_iter;
831 
832 	if (bio->bi_bdev) {
833 		if (bio->bi_bdev == bio_src->bi_bdev &&
834 		    bio_flagged(bio_src, BIO_REMAPPED))
835 			bio_set_flag(bio, BIO_REMAPPED);
836 		bio_clone_blkg_association(bio, bio_src);
837 	}
838 
839 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
840 		return -ENOMEM;
841 	if (bio_integrity(bio_src) &&
842 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
843 		return -ENOMEM;
844 	return 0;
845 }
846 
847 /**
848  * bio_alloc_clone - clone a bio that shares the original bio's biovec
849  * @bdev: block_device to clone onto
850  * @bio_src: bio to clone from
851  * @gfp: allocation priority
852  * @bs: bio_set to allocate from
853  *
854  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
855  * bio, but not the actual data it points to.
856  *
857  * The caller must ensure that the return bio is not freed before @bio_src.
858  */
859 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
860 		gfp_t gfp, struct bio_set *bs)
861 {
862 	struct bio *bio;
863 
864 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
865 	if (!bio)
866 		return NULL;
867 
868 	if (__bio_clone(bio, bio_src, gfp) < 0) {
869 		bio_put(bio);
870 		return NULL;
871 	}
872 	bio->bi_io_vec = bio_src->bi_io_vec;
873 
874 	return bio;
875 }
876 EXPORT_SYMBOL(bio_alloc_clone);
877 
878 /**
879  * bio_init_clone - clone a bio that shares the original bio's biovec
880  * @bdev: block_device to clone onto
881  * @bio: bio to clone into
882  * @bio_src: bio to clone from
883  * @gfp: allocation priority
884  *
885  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
886  * The caller owns the returned bio, but not the actual data it points to.
887  *
888  * The caller must ensure that @bio_src is not freed before @bio.
889  */
890 int bio_init_clone(struct block_device *bdev, struct bio *bio,
891 		struct bio *bio_src, gfp_t gfp)
892 {
893 	int ret;
894 
895 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
896 	ret = __bio_clone(bio, bio_src, gfp);
897 	if (ret)
898 		bio_uninit(bio);
899 	return ret;
900 }
901 EXPORT_SYMBOL(bio_init_clone);
902 
903 /**
904  * bio_full - check if the bio is full
905  * @bio:	bio to check
906  * @len:	length of one segment to be added
907  *
908  * Return true if @bio is full and one segment with @len bytes can't be
909  * added to the bio, otherwise return false
910  */
911 static inline bool bio_full(struct bio *bio, unsigned len)
912 {
913 	if (bio->bi_vcnt >= bio->bi_max_vecs)
914 		return true;
915 	if (bio->bi_iter.bi_size > UINT_MAX - len)
916 		return true;
917 	return false;
918 }
919 
920 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
921 		unsigned int len, unsigned int off, bool *same_page)
922 {
923 	size_t bv_end = bv->bv_offset + bv->bv_len;
924 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
925 	phys_addr_t page_addr = page_to_phys(page);
926 
927 	if (vec_end_addr + 1 != page_addr + off)
928 		return false;
929 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
930 		return false;
931 	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
932 		return false;
933 
934 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
935 	if (!*same_page) {
936 		if (IS_ENABLED(CONFIG_KMSAN))
937 			return false;
938 		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
939 			return false;
940 	}
941 
942 	bv->bv_len += len;
943 	return true;
944 }
945 
946 /*
947  * Try to merge a page into a segment, while obeying the hardware segment
948  * size limit.  This is not for normal read/write bios, but for passthrough
949  * or Zone Append operations that we can't split.
950  */
951 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
952 		struct page *page, unsigned len, unsigned offset,
953 		bool *same_page)
954 {
955 	unsigned long mask = queue_segment_boundary(q);
956 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
957 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
958 
959 	if ((addr1 | mask) != (addr2 | mask))
960 		return false;
961 	if (len > queue_max_segment_size(q) - bv->bv_len)
962 		return false;
963 	return bvec_try_merge_page(bv, page, len, offset, same_page);
964 }
965 
966 /**
967  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
968  * @q: the target queue
969  * @bio: destination bio
970  * @page: page to add
971  * @len: vec entry length
972  * @offset: vec entry offset
973  * @max_sectors: maximum number of sectors that can be added
974  * @same_page: return if the segment has been merged inside the same page
975  *
976  * Add a page to a bio while respecting the hardware max_sectors, max_segment
977  * and gap limitations.
978  */
979 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
980 		struct page *page, unsigned int len, unsigned int offset,
981 		unsigned int max_sectors, bool *same_page)
982 {
983 	unsigned int max_size = max_sectors << SECTOR_SHIFT;
984 
985 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
986 		return 0;
987 
988 	len = min3(len, max_size, queue_max_segment_size(q));
989 	if (len > max_size - bio->bi_iter.bi_size)
990 		return 0;
991 
992 	if (bio->bi_vcnt > 0) {
993 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
994 
995 		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
996 				same_page)) {
997 			bio->bi_iter.bi_size += len;
998 			return len;
999 		}
1000 
1001 		if (bio->bi_vcnt >=
1002 		    min(bio->bi_max_vecs, queue_max_segments(q)))
1003 			return 0;
1004 
1005 		/*
1006 		 * If the queue doesn't support SG gaps and adding this segment
1007 		 * would create a gap, disallow it.
1008 		 */
1009 		if (bvec_gap_to_prev(&q->limits, bv, offset))
1010 			return 0;
1011 	}
1012 
1013 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
1014 	bio->bi_vcnt++;
1015 	bio->bi_iter.bi_size += len;
1016 	return len;
1017 }
1018 
1019 /**
1020  * bio_add_pc_page	- attempt to add page to passthrough bio
1021  * @q: the target queue
1022  * @bio: destination bio
1023  * @page: page to add
1024  * @len: vec entry length
1025  * @offset: vec entry offset
1026  *
1027  * Attempt to add a page to the bio_vec maplist. This can fail for a
1028  * number of reasons, such as the bio being full or target block device
1029  * limitations. The target block device must allow bio's up to PAGE_SIZE,
1030  * so it is always possible to add a single page to an empty bio.
1031  *
1032  * This should only be used by passthrough bios.
1033  */
1034 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1035 		struct page *page, unsigned int len, unsigned int offset)
1036 {
1037 	bool same_page = false;
1038 	return bio_add_hw_page(q, bio, page, len, offset,
1039 			queue_max_hw_sectors(q), &same_page);
1040 }
1041 EXPORT_SYMBOL(bio_add_pc_page);
1042 
1043 /**
1044  * bio_add_zone_append_page - attempt to add page to zone-append bio
1045  * @bio: destination bio
1046  * @page: page to add
1047  * @len: vec entry length
1048  * @offset: vec entry offset
1049  *
1050  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1051  * for a zone-append request. This can fail for a number of reasons, such as the
1052  * bio being full or the target block device is not a zoned block device or
1053  * other limitations of the target block device. The target block device must
1054  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1055  * to an empty bio.
1056  *
1057  * Returns: number of bytes added to the bio, or 0 in case of a failure.
1058  */
1059 int bio_add_zone_append_page(struct bio *bio, struct page *page,
1060 			     unsigned int len, unsigned int offset)
1061 {
1062 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1063 	bool same_page = false;
1064 
1065 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1066 		return 0;
1067 
1068 	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1069 		return 0;
1070 
1071 	return bio_add_hw_page(q, bio, page, len, offset,
1072 			       queue_max_zone_append_sectors(q), &same_page);
1073 }
1074 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1075 
1076 /**
1077  * __bio_add_page - add page(s) to a bio in a new segment
1078  * @bio: destination bio
1079  * @page: start page to add
1080  * @len: length of the data to add, may cross pages
1081  * @off: offset of the data relative to @page, may cross pages
1082  *
1083  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1084  * that @bio has space for another bvec.
1085  */
1086 void __bio_add_page(struct bio *bio, struct page *page,
1087 		unsigned int len, unsigned int off)
1088 {
1089 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1090 	WARN_ON_ONCE(bio_full(bio, len));
1091 
1092 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
1093 	bio->bi_iter.bi_size += len;
1094 	bio->bi_vcnt++;
1095 }
1096 EXPORT_SYMBOL_GPL(__bio_add_page);
1097 
1098 /**
1099  *	bio_add_page	-	attempt to add page(s) to bio
1100  *	@bio: destination bio
1101  *	@page: start page to add
1102  *	@len: vec entry length, may cross pages
1103  *	@offset: vec entry offset relative to @page, may cross pages
1104  *
1105  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1106  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1107  */
1108 int bio_add_page(struct bio *bio, struct page *page,
1109 		 unsigned int len, unsigned int offset)
1110 {
1111 	bool same_page = false;
1112 
1113 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1114 		return 0;
1115 	if (bio->bi_iter.bi_size > UINT_MAX - len)
1116 		return 0;
1117 
1118 	if (bio->bi_vcnt > 0 &&
1119 	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1120 				page, len, offset, &same_page)) {
1121 		bio->bi_iter.bi_size += len;
1122 		return len;
1123 	}
1124 
1125 	if (bio->bi_vcnt >= bio->bi_max_vecs)
1126 		return 0;
1127 	__bio_add_page(bio, page, len, offset);
1128 	return len;
1129 }
1130 EXPORT_SYMBOL(bio_add_page);
1131 
1132 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1133 			  size_t off)
1134 {
1135 	WARN_ON_ONCE(len > UINT_MAX);
1136 	WARN_ON_ONCE(off > UINT_MAX);
1137 	__bio_add_page(bio, &folio->page, len, off);
1138 }
1139 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1140 
1141 /**
1142  * bio_add_folio - Attempt to add part of a folio to a bio.
1143  * @bio: BIO to add to.
1144  * @folio: Folio to add.
1145  * @len: How many bytes from the folio to add.
1146  * @off: First byte in this folio to add.
1147  *
1148  * Filesystems that use folios can call this function instead of calling
1149  * bio_add_page() for each page in the folio.  If @off is bigger than
1150  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1151  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1152  *
1153  * Return: Whether the addition was successful.
1154  */
1155 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1156 		   size_t off)
1157 {
1158 	if (len > UINT_MAX || off > UINT_MAX)
1159 		return false;
1160 	return bio_add_page(bio, &folio->page, len, off) > 0;
1161 }
1162 EXPORT_SYMBOL(bio_add_folio);
1163 
1164 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1165 {
1166 	struct folio_iter fi;
1167 
1168 	bio_for_each_folio_all(fi, bio) {
1169 		struct page *page;
1170 		size_t nr_pages;
1171 
1172 		if (mark_dirty) {
1173 			folio_lock(fi.folio);
1174 			folio_mark_dirty(fi.folio);
1175 			folio_unlock(fi.folio);
1176 		}
1177 		page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
1178 		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1179 			   fi.offset / PAGE_SIZE + 1;
1180 		do {
1181 			bio_release_page(bio, page++);
1182 		} while (--nr_pages != 0);
1183 	}
1184 }
1185 EXPORT_SYMBOL_GPL(__bio_release_pages);
1186 
1187 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1188 {
1189 	size_t size = iov_iter_count(iter);
1190 
1191 	WARN_ON_ONCE(bio->bi_max_vecs);
1192 
1193 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1194 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1195 		size_t max_sectors = queue_max_zone_append_sectors(q);
1196 
1197 		size = min(size, max_sectors << SECTOR_SHIFT);
1198 	}
1199 
1200 	bio->bi_vcnt = iter->nr_segs;
1201 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1202 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1203 	bio->bi_iter.bi_size = size;
1204 	bio_set_flag(bio, BIO_CLONED);
1205 }
1206 
1207 static int bio_iov_add_page(struct bio *bio, struct page *page,
1208 		unsigned int len, unsigned int offset)
1209 {
1210 	bool same_page = false;
1211 
1212 	if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1213 		return -EIO;
1214 
1215 	if (bio->bi_vcnt > 0 &&
1216 	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1217 				page, len, offset, &same_page)) {
1218 		bio->bi_iter.bi_size += len;
1219 		if (same_page)
1220 			bio_release_page(bio, page);
1221 		return 0;
1222 	}
1223 	__bio_add_page(bio, page, len, offset);
1224 	return 0;
1225 }
1226 
1227 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1228 		unsigned int len, unsigned int offset)
1229 {
1230 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1231 	bool same_page = false;
1232 
1233 	if (bio_add_hw_page(q, bio, page, len, offset,
1234 			queue_max_zone_append_sectors(q), &same_page) != len)
1235 		return -EINVAL;
1236 	if (same_page)
1237 		bio_release_page(bio, page);
1238 	return 0;
1239 }
1240 
1241 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1242 
1243 /**
1244  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1245  * @bio: bio to add pages to
1246  * @iter: iov iterator describing the region to be mapped
1247  *
1248  * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1249  * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1250  * For a multi-segment *iter, this function only adds pages from the next
1251  * non-empty segment of the iov iterator.
1252  */
1253 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1254 {
1255 	iov_iter_extraction_t extraction_flags = 0;
1256 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1257 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1258 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1259 	struct page **pages = (struct page **)bv;
1260 	ssize_t size, left;
1261 	unsigned len, i = 0;
1262 	size_t offset;
1263 	int ret = 0;
1264 
1265 	/*
1266 	 * Move page array up in the allocated memory for the bio vecs as far as
1267 	 * possible so that we can start filling biovecs from the beginning
1268 	 * without overwriting the temporary page array.
1269 	 */
1270 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1271 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1272 
1273 	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1274 		extraction_flags |= ITER_ALLOW_P2PDMA;
1275 
1276 	/*
1277 	 * Each segment in the iov is required to be a block size multiple.
1278 	 * However, we may not be able to get the entire segment if it spans
1279 	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1280 	 * result to ensure the bio's total size is correct. The remainder of
1281 	 * the iov data will be picked up in the next bio iteration.
1282 	 */
1283 	size = iov_iter_extract_pages(iter, &pages,
1284 				      UINT_MAX - bio->bi_iter.bi_size,
1285 				      nr_pages, extraction_flags, &offset);
1286 	if (unlikely(size <= 0))
1287 		return size ? size : -EFAULT;
1288 
1289 	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1290 
1291 	if (bio->bi_bdev) {
1292 		size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1293 		iov_iter_revert(iter, trim);
1294 		size -= trim;
1295 	}
1296 
1297 	if (unlikely(!size)) {
1298 		ret = -EFAULT;
1299 		goto out;
1300 	}
1301 
1302 	for (left = size, i = 0; left > 0; left -= len, i++) {
1303 		struct page *page = pages[i];
1304 
1305 		len = min_t(size_t, PAGE_SIZE - offset, left);
1306 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1307 			ret = bio_iov_add_zone_append_page(bio, page, len,
1308 					offset);
1309 			if (ret)
1310 				break;
1311 		} else
1312 			bio_iov_add_page(bio, page, len, offset);
1313 
1314 		offset = 0;
1315 	}
1316 
1317 	iov_iter_revert(iter, left);
1318 out:
1319 	while (i < nr_pages)
1320 		bio_release_page(bio, pages[i++]);
1321 
1322 	return ret;
1323 }
1324 
1325 /**
1326  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1327  * @bio: bio to add pages to
1328  * @iter: iov iterator describing the region to be added
1329  *
1330  * This takes either an iterator pointing to user memory, or one pointing to
1331  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1332  * map them into the kernel. On IO completion, the caller should put those
1333  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1334  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1335  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1336  * completed by a call to ->ki_complete() or returns with an error other than
1337  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1338  * on IO completion. If it isn't, then pages should be released.
1339  *
1340  * The function tries, but does not guarantee, to pin as many pages as
1341  * fit into the bio, or are requested in @iter, whatever is smaller. If
1342  * MM encounters an error pinning the requested pages, it stops. Error
1343  * is returned only if 0 pages could be pinned.
1344  */
1345 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1346 {
1347 	int ret = 0;
1348 
1349 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1350 		return -EIO;
1351 
1352 	if (iov_iter_is_bvec(iter)) {
1353 		bio_iov_bvec_set(bio, iter);
1354 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1355 		return 0;
1356 	}
1357 
1358 	if (iov_iter_extract_will_pin(iter))
1359 		bio_set_flag(bio, BIO_PAGE_PINNED);
1360 	do {
1361 		ret = __bio_iov_iter_get_pages(bio, iter);
1362 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1363 
1364 	return bio->bi_vcnt ? 0 : ret;
1365 }
1366 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1367 
1368 static void submit_bio_wait_endio(struct bio *bio)
1369 {
1370 	complete(bio->bi_private);
1371 }
1372 
1373 /**
1374  * submit_bio_wait - submit a bio, and wait until it completes
1375  * @bio: The &struct bio which describes the I/O
1376  *
1377  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1378  * bio_endio() on failure.
1379  *
1380  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1381  * result in bio reference to be consumed. The caller must drop the reference
1382  * on his own.
1383  */
1384 int submit_bio_wait(struct bio *bio)
1385 {
1386 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1387 			bio->bi_bdev->bd_disk->lockdep_map);
1388 
1389 	bio->bi_private = &done;
1390 	bio->bi_end_io = submit_bio_wait_endio;
1391 	bio->bi_opf |= REQ_SYNC;
1392 	submit_bio(bio);
1393 	blk_wait_io(&done);
1394 
1395 	return blk_status_to_errno(bio->bi_status);
1396 }
1397 EXPORT_SYMBOL(submit_bio_wait);
1398 
1399 static void bio_wait_end_io(struct bio *bio)
1400 {
1401 	complete(bio->bi_private);
1402 	bio_put(bio);
1403 }
1404 
1405 /*
1406  * bio_await_chain - ends @bio and waits for every chained bio to complete
1407  */
1408 void bio_await_chain(struct bio *bio)
1409 {
1410 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1411 			bio->bi_bdev->bd_disk->lockdep_map);
1412 
1413 	bio->bi_private = &done;
1414 	bio->bi_end_io = bio_wait_end_io;
1415 	bio_endio(bio);
1416 	blk_wait_io(&done);
1417 }
1418 
1419 void __bio_advance(struct bio *bio, unsigned bytes)
1420 {
1421 	if (bio_integrity(bio))
1422 		bio_integrity_advance(bio, bytes);
1423 
1424 	bio_crypt_advance(bio, bytes);
1425 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1426 }
1427 EXPORT_SYMBOL(__bio_advance);
1428 
1429 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1430 			struct bio *src, struct bvec_iter *src_iter)
1431 {
1432 	while (src_iter->bi_size && dst_iter->bi_size) {
1433 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1434 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1435 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1436 		void *src_buf = bvec_kmap_local(&src_bv);
1437 		void *dst_buf = bvec_kmap_local(&dst_bv);
1438 
1439 		memcpy(dst_buf, src_buf, bytes);
1440 
1441 		kunmap_local(dst_buf);
1442 		kunmap_local(src_buf);
1443 
1444 		bio_advance_iter_single(src, src_iter, bytes);
1445 		bio_advance_iter_single(dst, dst_iter, bytes);
1446 	}
1447 }
1448 EXPORT_SYMBOL(bio_copy_data_iter);
1449 
1450 /**
1451  * bio_copy_data - copy contents of data buffers from one bio to another
1452  * @src: source bio
1453  * @dst: destination bio
1454  *
1455  * Stops when it reaches the end of either @src or @dst - that is, copies
1456  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1457  */
1458 void bio_copy_data(struct bio *dst, struct bio *src)
1459 {
1460 	struct bvec_iter src_iter = src->bi_iter;
1461 	struct bvec_iter dst_iter = dst->bi_iter;
1462 
1463 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1464 }
1465 EXPORT_SYMBOL(bio_copy_data);
1466 
1467 void bio_free_pages(struct bio *bio)
1468 {
1469 	struct bio_vec *bvec;
1470 	struct bvec_iter_all iter_all;
1471 
1472 	bio_for_each_segment_all(bvec, bio, iter_all)
1473 		__free_page(bvec->bv_page);
1474 }
1475 EXPORT_SYMBOL(bio_free_pages);
1476 
1477 /*
1478  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1479  * for performing direct-IO in BIOs.
1480  *
1481  * The problem is that we cannot run folio_mark_dirty() from interrupt context
1482  * because the required locks are not interrupt-safe.  So what we can do is to
1483  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1484  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1485  * in process context.
1486  *
1487  * Note that this code is very hard to test under normal circumstances because
1488  * direct-io pins the pages with get_user_pages().  This makes
1489  * is_page_cache_freeable return false, and the VM will not clean the pages.
1490  * But other code (eg, flusher threads) could clean the pages if they are mapped
1491  * pagecache.
1492  *
1493  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1494  * deferred bio dirtying paths.
1495  */
1496 
1497 /*
1498  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1499  */
1500 void bio_set_pages_dirty(struct bio *bio)
1501 {
1502 	struct folio_iter fi;
1503 
1504 	bio_for_each_folio_all(fi, bio) {
1505 		folio_lock(fi.folio);
1506 		folio_mark_dirty(fi.folio);
1507 		folio_unlock(fi.folio);
1508 	}
1509 }
1510 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1511 
1512 /*
1513  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1514  * If they are, then fine.  If, however, some pages are clean then they must
1515  * have been written out during the direct-IO read.  So we take another ref on
1516  * the BIO and re-dirty the pages in process context.
1517  *
1518  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1519  * here on.  It will unpin each page and will run one bio_put() against the
1520  * BIO.
1521  */
1522 
1523 static void bio_dirty_fn(struct work_struct *work);
1524 
1525 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1526 static DEFINE_SPINLOCK(bio_dirty_lock);
1527 static struct bio *bio_dirty_list;
1528 
1529 /*
1530  * This runs in process context
1531  */
1532 static void bio_dirty_fn(struct work_struct *work)
1533 {
1534 	struct bio *bio, *next;
1535 
1536 	spin_lock_irq(&bio_dirty_lock);
1537 	next = bio_dirty_list;
1538 	bio_dirty_list = NULL;
1539 	spin_unlock_irq(&bio_dirty_lock);
1540 
1541 	while ((bio = next) != NULL) {
1542 		next = bio->bi_private;
1543 
1544 		bio_release_pages(bio, true);
1545 		bio_put(bio);
1546 	}
1547 }
1548 
1549 void bio_check_pages_dirty(struct bio *bio)
1550 {
1551 	struct folio_iter fi;
1552 	unsigned long flags;
1553 
1554 	bio_for_each_folio_all(fi, bio) {
1555 		if (!folio_test_dirty(fi.folio))
1556 			goto defer;
1557 	}
1558 
1559 	bio_release_pages(bio, false);
1560 	bio_put(bio);
1561 	return;
1562 defer:
1563 	spin_lock_irqsave(&bio_dirty_lock, flags);
1564 	bio->bi_private = bio_dirty_list;
1565 	bio_dirty_list = bio;
1566 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1567 	schedule_work(&bio_dirty_work);
1568 }
1569 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1570 
1571 static inline bool bio_remaining_done(struct bio *bio)
1572 {
1573 	/*
1574 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1575 	 * we always end io on the first invocation.
1576 	 */
1577 	if (!bio_flagged(bio, BIO_CHAIN))
1578 		return true;
1579 
1580 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1581 
1582 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1583 		bio_clear_flag(bio, BIO_CHAIN);
1584 		return true;
1585 	}
1586 
1587 	return false;
1588 }
1589 
1590 /**
1591  * bio_endio - end I/O on a bio
1592  * @bio:	bio
1593  *
1594  * Description:
1595  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1596  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1597  *   bio unless they own it and thus know that it has an end_io function.
1598  *
1599  *   bio_endio() can be called several times on a bio that has been chained
1600  *   using bio_chain().  The ->bi_end_io() function will only be called the
1601  *   last time.
1602  **/
1603 void bio_endio(struct bio *bio)
1604 {
1605 again:
1606 	if (!bio_remaining_done(bio))
1607 		return;
1608 	if (!bio_integrity_endio(bio))
1609 		return;
1610 
1611 	blk_zone_bio_endio(bio);
1612 
1613 	rq_qos_done_bio(bio);
1614 
1615 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1616 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1617 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1618 	}
1619 
1620 	/*
1621 	 * Need to have a real endio function for chained bios, otherwise
1622 	 * various corner cases will break (like stacking block devices that
1623 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1624 	 * recursion and blowing the stack. Tail call optimization would
1625 	 * handle this, but compiling with frame pointers also disables
1626 	 * gcc's sibling call optimization.
1627 	 */
1628 	if (bio->bi_end_io == bio_chain_endio) {
1629 		bio = __bio_chain_endio(bio);
1630 		goto again;
1631 	}
1632 
1633 	/* release cgroup info */
1634 	bio_uninit(bio);
1635 	if (bio->bi_end_io)
1636 		bio->bi_end_io(bio);
1637 }
1638 EXPORT_SYMBOL(bio_endio);
1639 
1640 /**
1641  * bio_split - split a bio
1642  * @bio:	bio to split
1643  * @sectors:	number of sectors to split from the front of @bio
1644  * @gfp:	gfp mask
1645  * @bs:		bio set to allocate from
1646  *
1647  * Allocates and returns a new bio which represents @sectors from the start of
1648  * @bio, and updates @bio to represent the remaining sectors.
1649  *
1650  * Unless this is a discard request the newly allocated bio will point
1651  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1652  * neither @bio nor @bs are freed before the split bio.
1653  */
1654 struct bio *bio_split(struct bio *bio, int sectors,
1655 		      gfp_t gfp, struct bio_set *bs)
1656 {
1657 	struct bio *split;
1658 
1659 	BUG_ON(sectors <= 0);
1660 	BUG_ON(sectors >= bio_sectors(bio));
1661 
1662 	/* Zone append commands cannot be split */
1663 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1664 		return NULL;
1665 
1666 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1667 	if (!split)
1668 		return NULL;
1669 
1670 	split->bi_iter.bi_size = sectors << 9;
1671 
1672 	if (bio_integrity(split))
1673 		bio_integrity_trim(split);
1674 
1675 	bio_advance(bio, split->bi_iter.bi_size);
1676 
1677 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1678 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1679 
1680 	return split;
1681 }
1682 EXPORT_SYMBOL(bio_split);
1683 
1684 /**
1685  * bio_trim - trim a bio
1686  * @bio:	bio to trim
1687  * @offset:	number of sectors to trim from the front of @bio
1688  * @size:	size we want to trim @bio to, in sectors
1689  *
1690  * This function is typically used for bios that are cloned and submitted
1691  * to the underlying device in parts.
1692  */
1693 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1694 {
1695 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1696 			 offset + size > bio_sectors(bio)))
1697 		return;
1698 
1699 	size <<= 9;
1700 	if (offset == 0 && size == bio->bi_iter.bi_size)
1701 		return;
1702 
1703 	bio_advance(bio, offset << 9);
1704 	bio->bi_iter.bi_size = size;
1705 
1706 	if (bio_integrity(bio))
1707 		bio_integrity_trim(bio);
1708 }
1709 EXPORT_SYMBOL_GPL(bio_trim);
1710 
1711 /*
1712  * create memory pools for biovec's in a bio_set.
1713  * use the global biovec slabs created for general use.
1714  */
1715 int biovec_init_pool(mempool_t *pool, int pool_entries)
1716 {
1717 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1718 
1719 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1720 }
1721 
1722 /*
1723  * bioset_exit - exit a bioset initialized with bioset_init()
1724  *
1725  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1726  * kzalloc()).
1727  */
1728 void bioset_exit(struct bio_set *bs)
1729 {
1730 	bio_alloc_cache_destroy(bs);
1731 	if (bs->rescue_workqueue)
1732 		destroy_workqueue(bs->rescue_workqueue);
1733 	bs->rescue_workqueue = NULL;
1734 
1735 	mempool_exit(&bs->bio_pool);
1736 	mempool_exit(&bs->bvec_pool);
1737 
1738 	bioset_integrity_free(bs);
1739 	if (bs->bio_slab)
1740 		bio_put_slab(bs);
1741 	bs->bio_slab = NULL;
1742 }
1743 EXPORT_SYMBOL(bioset_exit);
1744 
1745 /**
1746  * bioset_init - Initialize a bio_set
1747  * @bs:		pool to initialize
1748  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1749  * @front_pad:	Number of bytes to allocate in front of the returned bio
1750  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1751  *              and %BIOSET_NEED_RESCUER
1752  *
1753  * Description:
1754  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1755  *    to ask for a number of bytes to be allocated in front of the bio.
1756  *    Front pad allocation is useful for embedding the bio inside
1757  *    another structure, to avoid allocating extra data to go with the bio.
1758  *    Note that the bio must be embedded at the END of that structure always,
1759  *    or things will break badly.
1760  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1761  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1762  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1763  *    to dispatch queued requests when the mempool runs out of space.
1764  *
1765  */
1766 int bioset_init(struct bio_set *bs,
1767 		unsigned int pool_size,
1768 		unsigned int front_pad,
1769 		int flags)
1770 {
1771 	bs->front_pad = front_pad;
1772 	if (flags & BIOSET_NEED_BVECS)
1773 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1774 	else
1775 		bs->back_pad = 0;
1776 
1777 	spin_lock_init(&bs->rescue_lock);
1778 	bio_list_init(&bs->rescue_list);
1779 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1780 
1781 	bs->bio_slab = bio_find_or_create_slab(bs);
1782 	if (!bs->bio_slab)
1783 		return -ENOMEM;
1784 
1785 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1786 		goto bad;
1787 
1788 	if ((flags & BIOSET_NEED_BVECS) &&
1789 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1790 		goto bad;
1791 
1792 	if (flags & BIOSET_NEED_RESCUER) {
1793 		bs->rescue_workqueue = alloc_workqueue("bioset",
1794 							WQ_MEM_RECLAIM, 0);
1795 		if (!bs->rescue_workqueue)
1796 			goto bad;
1797 	}
1798 	if (flags & BIOSET_PERCPU_CACHE) {
1799 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1800 		if (!bs->cache)
1801 			goto bad;
1802 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1803 	}
1804 
1805 	return 0;
1806 bad:
1807 	bioset_exit(bs);
1808 	return -ENOMEM;
1809 }
1810 EXPORT_SYMBOL(bioset_init);
1811 
1812 static int __init init_bio(void)
1813 {
1814 	int i;
1815 
1816 	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1817 
1818 	bio_integrity_init();
1819 
1820 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1821 		struct biovec_slab *bvs = bvec_slabs + i;
1822 
1823 		bvs->slab = kmem_cache_create(bvs->name,
1824 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1825 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1826 	}
1827 
1828 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1829 					bio_cpu_dead);
1830 
1831 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1832 			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1833 		panic("bio: can't allocate bios\n");
1834 
1835 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1836 		panic("bio: can't create integrity pool\n");
1837 
1838 	return 0;
1839 }
1840 subsys_initcall(init_bio);
1841