1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio-integrity.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/blk-crypto.h> 20 #include <linux/xarray.h> 21 22 #include <trace/events/block.h> 23 #include "blk.h" 24 #include "blk-rq-qos.h" 25 #include "blk-cgroup.h" 26 27 #define ALLOC_CACHE_THRESHOLD 16 28 #define ALLOC_CACHE_MAX 256 29 30 struct bio_alloc_cache { 31 struct bio *free_list; 32 struct bio *free_list_irq; 33 unsigned int nr; 34 unsigned int nr_irq; 35 }; 36 37 static struct biovec_slab { 38 int nr_vecs; 39 char *name; 40 struct kmem_cache *slab; 41 } bvec_slabs[] __read_mostly = { 42 { .nr_vecs = 16, .name = "biovec-16" }, 43 { .nr_vecs = 64, .name = "biovec-64" }, 44 { .nr_vecs = 128, .name = "biovec-128" }, 45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 46 }; 47 48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 49 { 50 switch (nr_vecs) { 51 /* smaller bios use inline vecs */ 52 case 5 ... 16: 53 return &bvec_slabs[0]; 54 case 17 ... 64: 55 return &bvec_slabs[1]; 56 case 65 ... 128: 57 return &bvec_slabs[2]; 58 case 129 ... BIO_MAX_VECS: 59 return &bvec_slabs[3]; 60 default: 61 BUG(); 62 return NULL; 63 } 64 } 65 66 /* 67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 68 * IO code that does not need private memory pools. 69 */ 70 struct bio_set fs_bio_set; 71 EXPORT_SYMBOL(fs_bio_set); 72 73 /* 74 * Our slab pool management 75 */ 76 struct bio_slab { 77 struct kmem_cache *slab; 78 unsigned int slab_ref; 79 unsigned int slab_size; 80 char name[12]; 81 }; 82 static DEFINE_MUTEX(bio_slab_lock); 83 static DEFINE_XARRAY(bio_slabs); 84 85 static struct bio_slab *create_bio_slab(unsigned int size) 86 { 87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 88 89 if (!bslab) 90 return NULL; 91 92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 93 bslab->slab = kmem_cache_create(bslab->name, size, 94 ARCH_KMALLOC_MINALIGN, 95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 96 if (!bslab->slab) 97 goto fail_alloc_slab; 98 99 bslab->slab_ref = 1; 100 bslab->slab_size = size; 101 102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 103 return bslab; 104 105 kmem_cache_destroy(bslab->slab); 106 107 fail_alloc_slab: 108 kfree(bslab); 109 return NULL; 110 } 111 112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 113 { 114 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 115 } 116 117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 118 { 119 unsigned int size = bs_bio_slab_size(bs); 120 struct bio_slab *bslab; 121 122 mutex_lock(&bio_slab_lock); 123 bslab = xa_load(&bio_slabs, size); 124 if (bslab) 125 bslab->slab_ref++; 126 else 127 bslab = create_bio_slab(size); 128 mutex_unlock(&bio_slab_lock); 129 130 if (bslab) 131 return bslab->slab; 132 return NULL; 133 } 134 135 static void bio_put_slab(struct bio_set *bs) 136 { 137 struct bio_slab *bslab = NULL; 138 unsigned int slab_size = bs_bio_slab_size(bs); 139 140 mutex_lock(&bio_slab_lock); 141 142 bslab = xa_load(&bio_slabs, slab_size); 143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 144 goto out; 145 146 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 147 148 WARN_ON(!bslab->slab_ref); 149 150 if (--bslab->slab_ref) 151 goto out; 152 153 xa_erase(&bio_slabs, slab_size); 154 155 kmem_cache_destroy(bslab->slab); 156 kfree(bslab); 157 158 out: 159 mutex_unlock(&bio_slab_lock); 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 163 { 164 BUG_ON(nr_vecs > BIO_MAX_VECS); 165 166 if (nr_vecs == BIO_MAX_VECS) 167 mempool_free(bv, pool); 168 else if (nr_vecs > BIO_INLINE_VECS) 169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 170 } 171 172 /* 173 * Make the first allocation restricted and don't dump info on allocation 174 * failures, since we'll fall back to the mempool in case of failure. 175 */ 176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 177 { 178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 180 } 181 182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 183 gfp_t gfp_mask) 184 { 185 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 186 187 if (WARN_ON_ONCE(!bvs)) 188 return NULL; 189 190 /* 191 * Upgrade the nr_vecs request to take full advantage of the allocation. 192 * We also rely on this in the bvec_free path. 193 */ 194 *nr_vecs = bvs->nr_vecs; 195 196 /* 197 * Try a slab allocation first for all smaller allocations. If that 198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 199 * The mempool is sized to handle up to BIO_MAX_VECS entries. 200 */ 201 if (*nr_vecs < BIO_MAX_VECS) { 202 struct bio_vec *bvl; 203 204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 206 return bvl; 207 *nr_vecs = BIO_MAX_VECS; 208 } 209 210 return mempool_alloc(pool, gfp_mask); 211 } 212 213 void bio_uninit(struct bio *bio) 214 { 215 #ifdef CONFIG_BLK_CGROUP 216 if (bio->bi_blkg) { 217 blkg_put(bio->bi_blkg); 218 bio->bi_blkg = NULL; 219 } 220 #endif 221 if (bio_integrity(bio)) 222 bio_integrity_free(bio); 223 224 bio_crypt_free_ctx(bio); 225 } 226 EXPORT_SYMBOL(bio_uninit); 227 228 static void bio_free(struct bio *bio) 229 { 230 struct bio_set *bs = bio->bi_pool; 231 void *p = bio; 232 233 WARN_ON_ONCE(!bs); 234 235 bio_uninit(bio); 236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 237 mempool_free(p - bs->front_pad, &bs->bio_pool); 238 } 239 240 /* 241 * Users of this function have their own bio allocation. Subsequently, 242 * they must remember to pair any call to bio_init() with bio_uninit() 243 * when IO has completed, or when the bio is released. 244 */ 245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 246 unsigned short max_vecs, blk_opf_t opf) 247 { 248 bio->bi_next = NULL; 249 bio->bi_bdev = bdev; 250 bio->bi_opf = opf; 251 bio->bi_flags = 0; 252 bio->bi_ioprio = 0; 253 bio->bi_write_hint = 0; 254 bio->bi_write_stream = 0; 255 bio->bi_status = 0; 256 bio->bi_bvec_gap_bit = 0; 257 bio->bi_iter.bi_sector = 0; 258 bio->bi_iter.bi_size = 0; 259 bio->bi_iter.bi_idx = 0; 260 bio->bi_iter.bi_bvec_done = 0; 261 bio->bi_end_io = NULL; 262 bio->bi_private = NULL; 263 #ifdef CONFIG_BLK_CGROUP 264 bio->bi_blkg = NULL; 265 bio->issue_time_ns = 0; 266 if (bdev) 267 bio_associate_blkg(bio); 268 #ifdef CONFIG_BLK_CGROUP_IOCOST 269 bio->bi_iocost_cost = 0; 270 #endif 271 #endif 272 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 273 bio->bi_crypt_context = NULL; 274 #endif 275 #ifdef CONFIG_BLK_DEV_INTEGRITY 276 bio->bi_integrity = NULL; 277 #endif 278 bio->bi_vcnt = 0; 279 280 atomic_set(&bio->__bi_remaining, 1); 281 atomic_set(&bio->__bi_cnt, 1); 282 bio->bi_cookie = BLK_QC_T_NONE; 283 284 bio->bi_max_vecs = max_vecs; 285 bio->bi_io_vec = table; 286 bio->bi_pool = NULL; 287 } 288 EXPORT_SYMBOL(bio_init); 289 290 /** 291 * bio_reset - reinitialize a bio 292 * @bio: bio to reset 293 * @bdev: block device to use the bio for 294 * @opf: operation and flags for bio 295 * 296 * Description: 297 * After calling bio_reset(), @bio will be in the same state as a freshly 298 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 299 * preserved are the ones that are initialized by bio_alloc_bioset(). See 300 * comment in struct bio. 301 */ 302 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) 303 { 304 bio_uninit(bio); 305 memset(bio, 0, BIO_RESET_BYTES); 306 atomic_set(&bio->__bi_remaining, 1); 307 bio->bi_bdev = bdev; 308 if (bio->bi_bdev) 309 bio_associate_blkg(bio); 310 bio->bi_opf = opf; 311 } 312 EXPORT_SYMBOL(bio_reset); 313 314 static struct bio *__bio_chain_endio(struct bio *bio) 315 { 316 struct bio *parent = bio->bi_private; 317 318 if (bio->bi_status && !parent->bi_status) 319 parent->bi_status = bio->bi_status; 320 bio_put(bio); 321 return parent; 322 } 323 324 /* 325 * This function should only be used as a flag and must never be called. 326 * If execution reaches here, it indicates a serious programming error. 327 */ 328 static void bio_chain_endio(struct bio *bio) 329 { 330 BUG(); 331 } 332 333 /** 334 * bio_chain - chain bio completions 335 * @bio: the target bio 336 * @parent: the parent bio of @bio 337 * 338 * The caller won't have a bi_end_io called when @bio completes - instead, 339 * @parent's bi_end_io won't be called until both @parent and @bio have 340 * completed; the chained bio will also be freed when it completes. 341 * 342 * The caller must not set bi_private or bi_end_io in @bio. 343 */ 344 void bio_chain(struct bio *bio, struct bio *parent) 345 { 346 BUG_ON(bio->bi_private || bio->bi_end_io); 347 348 bio->bi_private = parent; 349 bio->bi_end_io = bio_chain_endio; 350 bio_inc_remaining(parent); 351 } 352 EXPORT_SYMBOL(bio_chain); 353 354 /** 355 * bio_chain_and_submit - submit a bio after chaining it to another one 356 * @prev: bio to chain and submit 357 * @new: bio to chain to 358 * 359 * If @prev is non-NULL, chain it to @new and submit it. 360 * 361 * Return: @new. 362 */ 363 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new) 364 { 365 if (prev) { 366 bio_chain(prev, new); 367 submit_bio(prev); 368 } 369 return new; 370 } 371 372 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 373 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) 374 { 375 return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp)); 376 } 377 EXPORT_SYMBOL_GPL(blk_next_bio); 378 379 static void bio_alloc_rescue(struct work_struct *work) 380 { 381 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 382 struct bio *bio; 383 384 while (1) { 385 spin_lock(&bs->rescue_lock); 386 bio = bio_list_pop(&bs->rescue_list); 387 spin_unlock(&bs->rescue_lock); 388 389 if (!bio) 390 break; 391 392 submit_bio_noacct(bio); 393 } 394 } 395 396 static void punt_bios_to_rescuer(struct bio_set *bs) 397 { 398 struct bio_list punt, nopunt; 399 struct bio *bio; 400 401 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 402 return; 403 /* 404 * In order to guarantee forward progress we must punt only bios that 405 * were allocated from this bio_set; otherwise, if there was a bio on 406 * there for a stacking driver higher up in the stack, processing it 407 * could require allocating bios from this bio_set, and doing that from 408 * our own rescuer would be bad. 409 * 410 * Since bio lists are singly linked, pop them all instead of trying to 411 * remove from the middle of the list: 412 */ 413 414 bio_list_init(&punt); 415 bio_list_init(&nopunt); 416 417 while ((bio = bio_list_pop(¤t->bio_list[0]))) 418 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 419 current->bio_list[0] = nopunt; 420 421 bio_list_init(&nopunt); 422 while ((bio = bio_list_pop(¤t->bio_list[1]))) 423 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 424 current->bio_list[1] = nopunt; 425 426 spin_lock(&bs->rescue_lock); 427 bio_list_merge(&bs->rescue_list, &punt); 428 spin_unlock(&bs->rescue_lock); 429 430 queue_work(bs->rescue_workqueue, &bs->rescue_work); 431 } 432 433 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache) 434 { 435 unsigned long flags; 436 437 /* cache->free_list must be empty */ 438 if (WARN_ON_ONCE(cache->free_list)) 439 return; 440 441 local_irq_save(flags); 442 cache->free_list = cache->free_list_irq; 443 cache->free_list_irq = NULL; 444 cache->nr += cache->nr_irq; 445 cache->nr_irq = 0; 446 local_irq_restore(flags); 447 } 448 449 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 450 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, 451 struct bio_set *bs) 452 { 453 struct bio_alloc_cache *cache; 454 struct bio *bio; 455 456 cache = per_cpu_ptr(bs->cache, get_cpu()); 457 if (!cache->free_list) { 458 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD) 459 bio_alloc_irq_cache_splice(cache); 460 if (!cache->free_list) { 461 put_cpu(); 462 return NULL; 463 } 464 } 465 bio = cache->free_list; 466 cache->free_list = bio->bi_next; 467 cache->nr--; 468 put_cpu(); 469 470 if (nr_vecs) 471 bio_init_inline(bio, bdev, nr_vecs, opf); 472 else 473 bio_init(bio, bdev, NULL, nr_vecs, opf); 474 bio->bi_pool = bs; 475 return bio; 476 } 477 478 /** 479 * bio_alloc_bioset - allocate a bio for I/O 480 * @bdev: block device to allocate the bio for (can be %NULL) 481 * @nr_vecs: number of bvecs to pre-allocate 482 * @opf: operation and flags for bio 483 * @gfp_mask: the GFP_* mask given to the slab allocator 484 * @bs: the bio_set to allocate from. 485 * 486 * Allocate a bio from the mempools in @bs. 487 * 488 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 489 * allocate a bio. This is due to the mempool guarantees. To make this work, 490 * callers must never allocate more than 1 bio at a time from the general pool. 491 * Callers that need to allocate more than 1 bio must always submit the 492 * previously allocated bio for IO before attempting to allocate a new one. 493 * Failure to do so can cause deadlocks under memory pressure. 494 * 495 * Note that when running under submit_bio_noacct() (i.e. any block driver), 496 * bios are not submitted until after you return - see the code in 497 * submit_bio_noacct() that converts recursion into iteration, to prevent 498 * stack overflows. 499 * 500 * This would normally mean allocating multiple bios under submit_bio_noacct() 501 * would be susceptible to deadlocks, but we have 502 * deadlock avoidance code that resubmits any blocked bios from a rescuer 503 * thread. 504 * 505 * However, we do not guarantee forward progress for allocations from other 506 * mempools. Doing multiple allocations from the same mempool under 507 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 508 * for per bio allocations. 509 * 510 * Returns: Pointer to new bio on success, NULL on failure. 511 */ 512 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 513 blk_opf_t opf, gfp_t gfp_mask, 514 struct bio_set *bs) 515 { 516 gfp_t saved_gfp = gfp_mask; 517 struct bio *bio; 518 void *p; 519 520 /* should not use nobvec bioset for nr_vecs > 0 */ 521 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 522 return NULL; 523 524 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 525 opf |= REQ_ALLOC_CACHE; 526 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 527 gfp_mask, bs); 528 if (bio) 529 return bio; 530 /* 531 * No cached bio available, bio returned below marked with 532 * REQ_ALLOC_CACHE to participate in per-cpu alloc cache. 533 */ 534 } else 535 opf &= ~REQ_ALLOC_CACHE; 536 537 /* 538 * submit_bio_noacct() converts recursion to iteration; this means if 539 * we're running beneath it, any bios we allocate and submit will not be 540 * submitted (and thus freed) until after we return. 541 * 542 * This exposes us to a potential deadlock if we allocate multiple bios 543 * from the same bio_set() while running underneath submit_bio_noacct(). 544 * If we were to allocate multiple bios (say a stacking block driver 545 * that was splitting bios), we would deadlock if we exhausted the 546 * mempool's reserve. 547 * 548 * We solve this, and guarantee forward progress, with a rescuer 549 * workqueue per bio_set. If we go to allocate and there are bios on 550 * current->bio_list, we first try the allocation without 551 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 552 * blocking to the rescuer workqueue before we retry with the original 553 * gfp_flags. 554 */ 555 if (current->bio_list && 556 (!bio_list_empty(¤t->bio_list[0]) || 557 !bio_list_empty(¤t->bio_list[1])) && 558 bs->rescue_workqueue) 559 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 560 561 p = mempool_alloc(&bs->bio_pool, gfp_mask); 562 if (!p && gfp_mask != saved_gfp) { 563 punt_bios_to_rescuer(bs); 564 gfp_mask = saved_gfp; 565 p = mempool_alloc(&bs->bio_pool, gfp_mask); 566 } 567 if (unlikely(!p)) 568 return NULL; 569 if (!mempool_is_saturated(&bs->bio_pool)) 570 opf &= ~REQ_ALLOC_CACHE; 571 572 bio = p + bs->front_pad; 573 if (nr_vecs > BIO_INLINE_VECS) { 574 struct bio_vec *bvl = NULL; 575 576 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 577 if (!bvl && gfp_mask != saved_gfp) { 578 punt_bios_to_rescuer(bs); 579 gfp_mask = saved_gfp; 580 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 581 } 582 if (unlikely(!bvl)) 583 goto err_free; 584 585 bio_init(bio, bdev, bvl, nr_vecs, opf); 586 } else if (nr_vecs) { 587 bio_init_inline(bio, bdev, BIO_INLINE_VECS, opf); 588 } else { 589 bio_init(bio, bdev, NULL, 0, opf); 590 } 591 592 bio->bi_pool = bs; 593 return bio; 594 595 err_free: 596 mempool_free(p, &bs->bio_pool); 597 return NULL; 598 } 599 EXPORT_SYMBOL(bio_alloc_bioset); 600 601 /** 602 * bio_kmalloc - kmalloc a bio 603 * @nr_vecs: number of bio_vecs to allocate 604 * @gfp_mask: the GFP_* mask given to the slab allocator 605 * 606 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 607 * using bio_init() before use. To free a bio returned from this function use 608 * kfree() after calling bio_uninit(). A bio returned from this function can 609 * be reused by calling bio_uninit() before calling bio_init() again. 610 * 611 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 612 * function are not backed by a mempool can fail. Do not use this function 613 * for allocations in the file system I/O path. 614 * 615 * Returns: Pointer to new bio on success, NULL on failure. 616 */ 617 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 618 { 619 struct bio *bio; 620 621 if (nr_vecs > BIO_MAX_INLINE_VECS) 622 return NULL; 623 return kmalloc(sizeof(*bio) + nr_vecs * sizeof(struct bio_vec), 624 gfp_mask); 625 } 626 EXPORT_SYMBOL(bio_kmalloc); 627 628 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 629 { 630 struct bio_vec bv; 631 struct bvec_iter iter; 632 633 __bio_for_each_segment(bv, bio, iter, start) 634 memzero_bvec(&bv); 635 } 636 EXPORT_SYMBOL(zero_fill_bio_iter); 637 638 /** 639 * bio_truncate - truncate the bio to small size of @new_size 640 * @bio: the bio to be truncated 641 * @new_size: new size for truncating the bio 642 * 643 * Description: 644 * Truncate the bio to new size of @new_size. If bio_op(bio) is 645 * REQ_OP_READ, zero the truncated part. This function should only 646 * be used for handling corner cases, such as bio eod. 647 */ 648 static void bio_truncate(struct bio *bio, unsigned new_size) 649 { 650 struct bio_vec bv; 651 struct bvec_iter iter; 652 unsigned int done = 0; 653 bool truncated = false; 654 655 if (new_size >= bio->bi_iter.bi_size) 656 return; 657 658 if (bio_op(bio) != REQ_OP_READ) 659 goto exit; 660 661 bio_for_each_segment(bv, bio, iter) { 662 if (done + bv.bv_len > new_size) { 663 size_t offset; 664 665 if (!truncated) 666 offset = new_size - done; 667 else 668 offset = 0; 669 memzero_page(bv.bv_page, bv.bv_offset + offset, 670 bv.bv_len - offset); 671 truncated = true; 672 } 673 done += bv.bv_len; 674 } 675 676 exit: 677 /* 678 * Don't touch bvec table here and make it really immutable, since 679 * fs bio user has to retrieve all pages via bio_for_each_segment_all 680 * in its .end_bio() callback. 681 * 682 * It is enough to truncate bio by updating .bi_size since we can make 683 * correct bvec with the updated .bi_size for drivers. 684 */ 685 bio->bi_iter.bi_size = new_size; 686 } 687 688 /** 689 * guard_bio_eod - truncate a BIO to fit the block device 690 * @bio: bio to truncate 691 * 692 * This allows us to do IO even on the odd last sectors of a device, even if the 693 * block size is some multiple of the physical sector size. 694 * 695 * We'll just truncate the bio to the size of the device, and clear the end of 696 * the buffer head manually. Truly out-of-range accesses will turn into actual 697 * I/O errors, this only handles the "we need to be able to do I/O at the final 698 * sector" case. 699 */ 700 void guard_bio_eod(struct bio *bio) 701 { 702 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 703 704 if (!maxsector) 705 return; 706 707 /* 708 * If the *whole* IO is past the end of the device, 709 * let it through, and the IO layer will turn it into 710 * an EIO. 711 */ 712 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 713 return; 714 715 maxsector -= bio->bi_iter.bi_sector; 716 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 717 return; 718 719 bio_truncate(bio, maxsector << 9); 720 } 721 722 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache, 723 unsigned int nr) 724 { 725 unsigned int i = 0; 726 struct bio *bio; 727 728 while ((bio = cache->free_list) != NULL) { 729 cache->free_list = bio->bi_next; 730 cache->nr--; 731 bio_free(bio); 732 if (++i == nr) 733 break; 734 } 735 return i; 736 } 737 738 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 739 unsigned int nr) 740 { 741 nr -= __bio_alloc_cache_prune(cache, nr); 742 if (!READ_ONCE(cache->free_list)) { 743 bio_alloc_irq_cache_splice(cache); 744 __bio_alloc_cache_prune(cache, nr); 745 } 746 } 747 748 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 749 { 750 struct bio_set *bs; 751 752 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 753 if (bs->cache) { 754 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 755 756 bio_alloc_cache_prune(cache, -1U); 757 } 758 return 0; 759 } 760 761 static void bio_alloc_cache_destroy(struct bio_set *bs) 762 { 763 int cpu; 764 765 if (!bs->cache) 766 return; 767 768 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 769 for_each_possible_cpu(cpu) { 770 struct bio_alloc_cache *cache; 771 772 cache = per_cpu_ptr(bs->cache, cpu); 773 bio_alloc_cache_prune(cache, -1U); 774 } 775 free_percpu(bs->cache); 776 bs->cache = NULL; 777 } 778 779 static inline void bio_put_percpu_cache(struct bio *bio) 780 { 781 struct bio_alloc_cache *cache; 782 783 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 784 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) 785 goto out_free; 786 787 if (in_task()) { 788 bio_uninit(bio); 789 bio->bi_next = cache->free_list; 790 /* Not necessary but helps not to iopoll already freed bios */ 791 bio->bi_bdev = NULL; 792 cache->free_list = bio; 793 cache->nr++; 794 } else if (in_hardirq()) { 795 lockdep_assert_irqs_disabled(); 796 797 bio_uninit(bio); 798 bio->bi_next = cache->free_list_irq; 799 cache->free_list_irq = bio; 800 cache->nr_irq++; 801 } else { 802 goto out_free; 803 } 804 put_cpu(); 805 return; 806 out_free: 807 put_cpu(); 808 bio_free(bio); 809 } 810 811 /** 812 * bio_put - release a reference to a bio 813 * @bio: bio to release reference to 814 * 815 * Description: 816 * Put a reference to a &struct bio, either one you have gotten with 817 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 818 **/ 819 void bio_put(struct bio *bio) 820 { 821 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 822 BUG_ON(!atomic_read(&bio->__bi_cnt)); 823 if (!atomic_dec_and_test(&bio->__bi_cnt)) 824 return; 825 } 826 if (bio->bi_opf & REQ_ALLOC_CACHE) 827 bio_put_percpu_cache(bio); 828 else 829 bio_free(bio); 830 } 831 EXPORT_SYMBOL(bio_put); 832 833 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 834 { 835 bio_set_flag(bio, BIO_CLONED); 836 bio->bi_ioprio = bio_src->bi_ioprio; 837 bio->bi_write_hint = bio_src->bi_write_hint; 838 bio->bi_write_stream = bio_src->bi_write_stream; 839 bio->bi_iter = bio_src->bi_iter; 840 841 if (bio->bi_bdev) { 842 if (bio->bi_bdev == bio_src->bi_bdev && 843 bio_flagged(bio_src, BIO_REMAPPED)) 844 bio_set_flag(bio, BIO_REMAPPED); 845 bio_clone_blkg_association(bio, bio_src); 846 } 847 848 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 849 return -ENOMEM; 850 if (bio_integrity(bio_src) && 851 bio_integrity_clone(bio, bio_src, gfp) < 0) 852 return -ENOMEM; 853 return 0; 854 } 855 856 /** 857 * bio_alloc_clone - clone a bio that shares the original bio's biovec 858 * @bdev: block_device to clone onto 859 * @bio_src: bio to clone from 860 * @gfp: allocation priority 861 * @bs: bio_set to allocate from 862 * 863 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 864 * bio, but not the actual data it points to. 865 * 866 * The caller must ensure that the return bio is not freed before @bio_src. 867 */ 868 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 869 gfp_t gfp, struct bio_set *bs) 870 { 871 struct bio *bio; 872 873 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 874 if (!bio) 875 return NULL; 876 877 if (__bio_clone(bio, bio_src, gfp) < 0) { 878 bio_put(bio); 879 return NULL; 880 } 881 bio->bi_io_vec = bio_src->bi_io_vec; 882 883 return bio; 884 } 885 EXPORT_SYMBOL(bio_alloc_clone); 886 887 /** 888 * bio_init_clone - clone a bio that shares the original bio's biovec 889 * @bdev: block_device to clone onto 890 * @bio: bio to clone into 891 * @bio_src: bio to clone from 892 * @gfp: allocation priority 893 * 894 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 895 * The caller owns the returned bio, but not the actual data it points to. 896 * 897 * The caller must ensure that @bio_src is not freed before @bio. 898 */ 899 int bio_init_clone(struct block_device *bdev, struct bio *bio, 900 struct bio *bio_src, gfp_t gfp) 901 { 902 int ret; 903 904 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 905 ret = __bio_clone(bio, bio_src, gfp); 906 if (ret) 907 bio_uninit(bio); 908 return ret; 909 } 910 EXPORT_SYMBOL(bio_init_clone); 911 912 /** 913 * bio_full - check if the bio is full 914 * @bio: bio to check 915 * @len: length of one segment to be added 916 * 917 * Return true if @bio is full and one segment with @len bytes can't be 918 * added to the bio, otherwise return false 919 */ 920 static inline bool bio_full(struct bio *bio, unsigned len) 921 { 922 if (bio->bi_vcnt >= bio->bi_max_vecs) 923 return true; 924 if (bio->bi_iter.bi_size > UINT_MAX - len) 925 return true; 926 return false; 927 } 928 929 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page, 930 unsigned int len, unsigned int off) 931 { 932 size_t bv_end = bv->bv_offset + bv->bv_len; 933 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 934 phys_addr_t page_addr = page_to_phys(page); 935 936 if (vec_end_addr + 1 != page_addr + off) 937 return false; 938 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 939 return false; 940 941 if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) { 942 if (IS_ENABLED(CONFIG_KMSAN)) 943 return false; 944 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE) 945 return false; 946 } 947 948 bv->bv_len += len; 949 return true; 950 } 951 952 /* 953 * Try to merge a page into a segment, while obeying the hardware segment 954 * size limit. 955 * 956 * This is kept around for the integrity metadata, which is still tries 957 * to build the initial bio to the hardware limit and doesn't have proper 958 * helpers to split. Hopefully this will go away soon. 959 */ 960 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 961 struct page *page, unsigned len, unsigned offset) 962 { 963 unsigned long mask = queue_segment_boundary(q); 964 phys_addr_t addr1 = bvec_phys(bv); 965 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 966 967 if ((addr1 | mask) != (addr2 | mask)) 968 return false; 969 if (len > queue_max_segment_size(q) - bv->bv_len) 970 return false; 971 return bvec_try_merge_page(bv, page, len, offset); 972 } 973 974 /** 975 * __bio_add_page - add page(s) to a bio in a new segment 976 * @bio: destination bio 977 * @page: start page to add 978 * @len: length of the data to add, may cross pages 979 * @off: offset of the data relative to @page, may cross pages 980 * 981 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 982 * that @bio has space for another bvec. 983 */ 984 void __bio_add_page(struct bio *bio, struct page *page, 985 unsigned int len, unsigned int off) 986 { 987 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 988 WARN_ON_ONCE(bio_full(bio, len)); 989 990 if (is_pci_p2pdma_page(page)) 991 bio->bi_opf |= REQ_NOMERGE; 992 993 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off); 994 bio->bi_iter.bi_size += len; 995 bio->bi_vcnt++; 996 } 997 EXPORT_SYMBOL_GPL(__bio_add_page); 998 999 /** 1000 * bio_add_virt_nofail - add data in the direct kernel mapping to a bio 1001 * @bio: destination bio 1002 * @vaddr: data to add 1003 * @len: length of the data to add, may cross pages 1004 * 1005 * Add the data at @vaddr to @bio. The caller must have ensure a segment 1006 * is available for the added data. No merging into an existing segment 1007 * will be performed. 1008 */ 1009 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len) 1010 { 1011 __bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr)); 1012 } 1013 EXPORT_SYMBOL_GPL(bio_add_virt_nofail); 1014 1015 /** 1016 * bio_add_page - attempt to add page(s) to bio 1017 * @bio: destination bio 1018 * @page: start page to add 1019 * @len: vec entry length, may cross pages 1020 * @offset: vec entry offset relative to @page, may cross pages 1021 * 1022 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1023 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1024 */ 1025 int bio_add_page(struct bio *bio, struct page *page, 1026 unsigned int len, unsigned int offset) 1027 { 1028 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1029 return 0; 1030 if (bio->bi_iter.bi_size > UINT_MAX - len) 1031 return 0; 1032 1033 if (bio->bi_vcnt > 0) { 1034 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 1035 1036 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page)) 1037 return 0; 1038 1039 if (bvec_try_merge_page(bv, page, len, offset)) { 1040 bio->bi_iter.bi_size += len; 1041 return len; 1042 } 1043 } 1044 1045 if (bio->bi_vcnt >= bio->bi_max_vecs) 1046 return 0; 1047 __bio_add_page(bio, page, len, offset); 1048 return len; 1049 } 1050 EXPORT_SYMBOL(bio_add_page); 1051 1052 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 1053 size_t off) 1054 { 1055 unsigned long nr = off / PAGE_SIZE; 1056 1057 WARN_ON_ONCE(len > UINT_MAX); 1058 __bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE); 1059 } 1060 EXPORT_SYMBOL_GPL(bio_add_folio_nofail); 1061 1062 /** 1063 * bio_add_folio - Attempt to add part of a folio to a bio. 1064 * @bio: BIO to add to. 1065 * @folio: Folio to add. 1066 * @len: How many bytes from the folio to add. 1067 * @off: First byte in this folio to add. 1068 * 1069 * Filesystems that use folios can call this function instead of calling 1070 * bio_add_page() for each page in the folio. If @off is bigger than 1071 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1072 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1073 * 1074 * Return: Whether the addition was successful. 1075 */ 1076 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1077 size_t off) 1078 { 1079 unsigned long nr = off / PAGE_SIZE; 1080 1081 if (len > UINT_MAX) 1082 return false; 1083 return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0; 1084 } 1085 EXPORT_SYMBOL(bio_add_folio); 1086 1087 /** 1088 * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio 1089 * @bio: destination bio 1090 * @vaddr: vmalloc address to add 1091 * @len: total length in bytes of the data to add 1092 * 1093 * Add data starting at @vaddr to @bio and return how many bytes were added. 1094 * This may be less than the amount originally asked. Returns 0 if no data 1095 * could be added to @bio. 1096 * 1097 * This helper calls flush_kernel_vmap_range() for the range added. For reads 1098 * the caller still needs to manually call invalidate_kernel_vmap_range() in 1099 * the completion handler. 1100 */ 1101 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len) 1102 { 1103 unsigned int offset = offset_in_page(vaddr); 1104 1105 len = min(len, PAGE_SIZE - offset); 1106 if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len) 1107 return 0; 1108 if (op_is_write(bio_op(bio))) 1109 flush_kernel_vmap_range(vaddr, len); 1110 return len; 1111 } 1112 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk); 1113 1114 /** 1115 * bio_add_vmalloc - add a vmalloc region to a bio 1116 * @bio: destination bio 1117 * @vaddr: vmalloc address to add 1118 * @len: total length in bytes of the data to add 1119 * 1120 * Add data starting at @vaddr to @bio. Return %true on success or %false if 1121 * @bio does not have enough space for the payload. 1122 * 1123 * This helper calls flush_kernel_vmap_range() for the range added. For reads 1124 * the caller still needs to manually call invalidate_kernel_vmap_range() in 1125 * the completion handler. 1126 */ 1127 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len) 1128 { 1129 do { 1130 unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len); 1131 1132 if (!added) 1133 return false; 1134 vaddr += added; 1135 len -= added; 1136 } while (len); 1137 1138 return true; 1139 } 1140 EXPORT_SYMBOL_GPL(bio_add_vmalloc); 1141 1142 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1143 { 1144 struct folio_iter fi; 1145 1146 bio_for_each_folio_all(fi, bio) { 1147 size_t nr_pages; 1148 1149 if (mark_dirty) { 1150 folio_lock(fi.folio); 1151 folio_mark_dirty(fi.folio); 1152 folio_unlock(fi.folio); 1153 } 1154 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE - 1155 fi.offset / PAGE_SIZE + 1; 1156 unpin_user_folio(fi.folio, nr_pages); 1157 } 1158 } 1159 EXPORT_SYMBOL_GPL(__bio_release_pages); 1160 1161 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter) 1162 { 1163 WARN_ON_ONCE(bio->bi_max_vecs); 1164 1165 bio->bi_vcnt = iter->nr_segs; 1166 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1167 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1168 bio->bi_iter.bi_size = iov_iter_count(iter); 1169 bio_set_flag(bio, BIO_CLONED); 1170 } 1171 1172 static unsigned int get_contig_folio_len(unsigned int *num_pages, 1173 struct page **pages, unsigned int i, 1174 struct folio *folio, size_t left, 1175 size_t offset) 1176 { 1177 size_t bytes = left; 1178 size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes); 1179 unsigned int j; 1180 1181 /* 1182 * We might COW a single page in the middle of 1183 * a large folio, so we have to check that all 1184 * pages belong to the same folio. 1185 */ 1186 bytes -= contig_sz; 1187 for (j = i + 1; j < i + *num_pages; j++) { 1188 size_t next = min_t(size_t, PAGE_SIZE, bytes); 1189 1190 if (page_folio(pages[j]) != folio || 1191 pages[j] != pages[j - 1] + 1) { 1192 break; 1193 } 1194 contig_sz += next; 1195 bytes -= next; 1196 } 1197 *num_pages = j - i; 1198 1199 return contig_sz; 1200 } 1201 1202 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1203 1204 /** 1205 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1206 * @bio: bio to add pages to 1207 * @iter: iov iterator describing the region to be mapped 1208 * 1209 * Extracts pages from *iter and appends them to @bio's bvec array. The pages 1210 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag. 1211 * For a multi-segment *iter, this function only adds pages from the next 1212 * non-empty segment of the iov iterator. 1213 */ 1214 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1215 { 1216 iov_iter_extraction_t extraction_flags = 0; 1217 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1218 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1219 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1220 struct page **pages = (struct page **)bv; 1221 ssize_t size; 1222 unsigned int num_pages, i = 0; 1223 size_t offset, folio_offset, left, len; 1224 int ret = 0; 1225 1226 /* 1227 * Move page array up in the allocated memory for the bio vecs as far as 1228 * possible so that we can start filling biovecs from the beginning 1229 * without overwriting the temporary page array. 1230 */ 1231 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1232 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1233 1234 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue)) 1235 extraction_flags |= ITER_ALLOW_P2PDMA; 1236 1237 size = iov_iter_extract_pages(iter, &pages, 1238 UINT_MAX - bio->bi_iter.bi_size, 1239 nr_pages, extraction_flags, &offset); 1240 if (unlikely(size <= 0)) 1241 return size ? size : -EFAULT; 1242 1243 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); 1244 for (left = size, i = 0; left > 0; left -= len, i += num_pages) { 1245 struct page *page = pages[i]; 1246 struct folio *folio = page_folio(page); 1247 unsigned int old_vcnt = bio->bi_vcnt; 1248 1249 folio_offset = ((size_t)folio_page_idx(folio, page) << 1250 PAGE_SHIFT) + offset; 1251 1252 len = min(folio_size(folio) - folio_offset, left); 1253 1254 num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1255 1256 if (num_pages > 1) 1257 len = get_contig_folio_len(&num_pages, pages, i, 1258 folio, left, offset); 1259 1260 if (!bio_add_folio(bio, folio, len, folio_offset)) { 1261 WARN_ON_ONCE(1); 1262 ret = -EINVAL; 1263 goto out; 1264 } 1265 1266 if (bio_flagged(bio, BIO_PAGE_PINNED)) { 1267 /* 1268 * We're adding another fragment of a page that already 1269 * was part of the last segment. Undo our pin as the 1270 * page was pinned when an earlier fragment of it was 1271 * added to the bio and __bio_release_pages expects a 1272 * single pin per page. 1273 */ 1274 if (offset && bio->bi_vcnt == old_vcnt) 1275 unpin_user_folio(folio, 1); 1276 } 1277 offset = 0; 1278 } 1279 1280 iov_iter_revert(iter, left); 1281 out: 1282 while (i < nr_pages) 1283 bio_release_page(bio, pages[i++]); 1284 1285 return ret; 1286 } 1287 1288 /* 1289 * Aligns the bio size to the len_align_mask, releasing excessive bio vecs that 1290 * __bio_iov_iter_get_pages may have inserted, and reverts the trimmed length 1291 * for the next iteration. 1292 */ 1293 static int bio_iov_iter_align_down(struct bio *bio, struct iov_iter *iter, 1294 unsigned len_align_mask) 1295 { 1296 size_t nbytes = bio->bi_iter.bi_size & len_align_mask; 1297 1298 if (!nbytes) 1299 return 0; 1300 1301 iov_iter_revert(iter, nbytes); 1302 bio->bi_iter.bi_size -= nbytes; 1303 do { 1304 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 1305 1306 if (nbytes < bv->bv_len) { 1307 bv->bv_len -= nbytes; 1308 break; 1309 } 1310 1311 bio_release_page(bio, bv->bv_page); 1312 bio->bi_vcnt--; 1313 nbytes -= bv->bv_len; 1314 } while (nbytes); 1315 1316 if (!bio->bi_vcnt) 1317 return -EFAULT; 1318 return 0; 1319 } 1320 1321 /** 1322 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1323 * @bio: bio to add pages to 1324 * @iter: iov iterator describing the region to be added 1325 * @len_align_mask: the mask to align the total size to, 0 for any length 1326 * 1327 * This takes either an iterator pointing to user memory, or one pointing to 1328 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1329 * map them into the kernel. On IO completion, the caller should put those 1330 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1331 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1332 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1333 * completed by a call to ->ki_complete() or returns with an error other than 1334 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1335 * on IO completion. If it isn't, then pages should be released. 1336 * 1337 * The function tries, but does not guarantee, to pin as many pages as 1338 * fit into the bio, or are requested in @iter, whatever is smaller. If 1339 * MM encounters an error pinning the requested pages, it stops. Error 1340 * is returned only if 0 pages could be pinned. 1341 */ 1342 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter, 1343 unsigned len_align_mask) 1344 { 1345 int ret = 0; 1346 1347 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1348 return -EIO; 1349 1350 if (iov_iter_is_bvec(iter)) { 1351 bio_iov_bvec_set(bio, iter); 1352 iov_iter_advance(iter, bio->bi_iter.bi_size); 1353 return 0; 1354 } 1355 1356 if (iov_iter_extract_will_pin(iter)) 1357 bio_set_flag(bio, BIO_PAGE_PINNED); 1358 do { 1359 ret = __bio_iov_iter_get_pages(bio, iter); 1360 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1361 1362 if (bio->bi_vcnt) 1363 return bio_iov_iter_align_down(bio, iter, len_align_mask); 1364 return ret; 1365 } 1366 1367 static void submit_bio_wait_endio(struct bio *bio) 1368 { 1369 complete(bio->bi_private); 1370 } 1371 1372 /** 1373 * submit_bio_wait - submit a bio, and wait until it completes 1374 * @bio: The &struct bio which describes the I/O 1375 * 1376 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1377 * bio_endio() on failure. 1378 * 1379 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1380 * result in bio reference to be consumed. The caller must drop the reference 1381 * on his own. 1382 */ 1383 int submit_bio_wait(struct bio *bio) 1384 { 1385 DECLARE_COMPLETION_ONSTACK_MAP(done, 1386 bio->bi_bdev->bd_disk->lockdep_map); 1387 1388 bio->bi_private = &done; 1389 bio->bi_end_io = submit_bio_wait_endio; 1390 bio->bi_opf |= REQ_SYNC; 1391 submit_bio(bio); 1392 blk_wait_io(&done); 1393 1394 return blk_status_to_errno(bio->bi_status); 1395 } 1396 EXPORT_SYMBOL(submit_bio_wait); 1397 1398 /** 1399 * bdev_rw_virt - synchronously read into / write from kernel mapping 1400 * @bdev: block device to access 1401 * @sector: sector to access 1402 * @data: data to read/write 1403 * @len: length in byte to read/write 1404 * @op: operation (e.g. REQ_OP_READ/REQ_OP_WRITE) 1405 * 1406 * Performs synchronous I/O to @bdev for @data/@len. @data must be in 1407 * the kernel direct mapping and not a vmalloc address. 1408 */ 1409 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data, 1410 size_t len, enum req_op op) 1411 { 1412 struct bio_vec bv; 1413 struct bio bio; 1414 int error; 1415 1416 if (WARN_ON_ONCE(is_vmalloc_addr(data))) 1417 return -EIO; 1418 1419 bio_init(&bio, bdev, &bv, 1, op); 1420 bio.bi_iter.bi_sector = sector; 1421 bio_add_virt_nofail(&bio, data, len); 1422 error = submit_bio_wait(&bio); 1423 bio_uninit(&bio); 1424 return error; 1425 } 1426 EXPORT_SYMBOL_GPL(bdev_rw_virt); 1427 1428 static void bio_wait_end_io(struct bio *bio) 1429 { 1430 complete(bio->bi_private); 1431 bio_put(bio); 1432 } 1433 1434 /* 1435 * bio_await_chain - ends @bio and waits for every chained bio to complete 1436 */ 1437 void bio_await_chain(struct bio *bio) 1438 { 1439 DECLARE_COMPLETION_ONSTACK_MAP(done, 1440 bio->bi_bdev->bd_disk->lockdep_map); 1441 1442 bio->bi_private = &done; 1443 bio->bi_end_io = bio_wait_end_io; 1444 bio_endio(bio); 1445 blk_wait_io(&done); 1446 } 1447 1448 void __bio_advance(struct bio *bio, unsigned bytes) 1449 { 1450 if (bio_integrity(bio)) 1451 bio_integrity_advance(bio, bytes); 1452 1453 bio_crypt_advance(bio, bytes); 1454 bio_advance_iter(bio, &bio->bi_iter, bytes); 1455 } 1456 EXPORT_SYMBOL(__bio_advance); 1457 1458 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1459 struct bio *src, struct bvec_iter *src_iter) 1460 { 1461 while (src_iter->bi_size && dst_iter->bi_size) { 1462 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1463 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1464 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1465 void *src_buf = bvec_kmap_local(&src_bv); 1466 void *dst_buf = bvec_kmap_local(&dst_bv); 1467 1468 memcpy(dst_buf, src_buf, bytes); 1469 1470 kunmap_local(dst_buf); 1471 kunmap_local(src_buf); 1472 1473 bio_advance_iter_single(src, src_iter, bytes); 1474 bio_advance_iter_single(dst, dst_iter, bytes); 1475 } 1476 } 1477 EXPORT_SYMBOL(bio_copy_data_iter); 1478 1479 /** 1480 * bio_copy_data - copy contents of data buffers from one bio to another 1481 * @src: source bio 1482 * @dst: destination bio 1483 * 1484 * Stops when it reaches the end of either @src or @dst - that is, copies 1485 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1486 */ 1487 void bio_copy_data(struct bio *dst, struct bio *src) 1488 { 1489 struct bvec_iter src_iter = src->bi_iter; 1490 struct bvec_iter dst_iter = dst->bi_iter; 1491 1492 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1493 } 1494 EXPORT_SYMBOL(bio_copy_data); 1495 1496 void bio_free_pages(struct bio *bio) 1497 { 1498 struct bio_vec *bvec; 1499 struct bvec_iter_all iter_all; 1500 1501 bio_for_each_segment_all(bvec, bio, iter_all) 1502 __free_page(bvec->bv_page); 1503 } 1504 EXPORT_SYMBOL(bio_free_pages); 1505 1506 /* 1507 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1508 * for performing direct-IO in BIOs. 1509 * 1510 * The problem is that we cannot run folio_mark_dirty() from interrupt context 1511 * because the required locks are not interrupt-safe. So what we can do is to 1512 * mark the pages dirty _before_ performing IO. And in interrupt context, 1513 * check that the pages are still dirty. If so, fine. If not, redirty them 1514 * in process context. 1515 * 1516 * Note that this code is very hard to test under normal circumstances because 1517 * direct-io pins the pages with get_user_pages(). This makes 1518 * is_page_cache_freeable return false, and the VM will not clean the pages. 1519 * But other code (eg, flusher threads) could clean the pages if they are mapped 1520 * pagecache. 1521 * 1522 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1523 * deferred bio dirtying paths. 1524 */ 1525 1526 /* 1527 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1528 */ 1529 void bio_set_pages_dirty(struct bio *bio) 1530 { 1531 struct folio_iter fi; 1532 1533 bio_for_each_folio_all(fi, bio) { 1534 folio_lock(fi.folio); 1535 folio_mark_dirty(fi.folio); 1536 folio_unlock(fi.folio); 1537 } 1538 } 1539 EXPORT_SYMBOL_GPL(bio_set_pages_dirty); 1540 1541 /* 1542 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1543 * If they are, then fine. If, however, some pages are clean then they must 1544 * have been written out during the direct-IO read. So we take another ref on 1545 * the BIO and re-dirty the pages in process context. 1546 * 1547 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1548 * here on. It will unpin each page and will run one bio_put() against the 1549 * BIO. 1550 */ 1551 1552 static void bio_dirty_fn(struct work_struct *work); 1553 1554 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1555 static DEFINE_SPINLOCK(bio_dirty_lock); 1556 static struct bio *bio_dirty_list; 1557 1558 /* 1559 * This runs in process context 1560 */ 1561 static void bio_dirty_fn(struct work_struct *work) 1562 { 1563 struct bio *bio, *next; 1564 1565 spin_lock_irq(&bio_dirty_lock); 1566 next = bio_dirty_list; 1567 bio_dirty_list = NULL; 1568 spin_unlock_irq(&bio_dirty_lock); 1569 1570 while ((bio = next) != NULL) { 1571 next = bio->bi_private; 1572 1573 bio_release_pages(bio, true); 1574 bio_put(bio); 1575 } 1576 } 1577 1578 void bio_check_pages_dirty(struct bio *bio) 1579 { 1580 struct folio_iter fi; 1581 unsigned long flags; 1582 1583 bio_for_each_folio_all(fi, bio) { 1584 if (!folio_test_dirty(fi.folio)) 1585 goto defer; 1586 } 1587 1588 bio_release_pages(bio, false); 1589 bio_put(bio); 1590 return; 1591 defer: 1592 spin_lock_irqsave(&bio_dirty_lock, flags); 1593 bio->bi_private = bio_dirty_list; 1594 bio_dirty_list = bio; 1595 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1596 schedule_work(&bio_dirty_work); 1597 } 1598 EXPORT_SYMBOL_GPL(bio_check_pages_dirty); 1599 1600 static inline bool bio_remaining_done(struct bio *bio) 1601 { 1602 /* 1603 * If we're not chaining, then ->__bi_remaining is always 1 and 1604 * we always end io on the first invocation. 1605 */ 1606 if (!bio_flagged(bio, BIO_CHAIN)) 1607 return true; 1608 1609 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1610 1611 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1612 bio_clear_flag(bio, BIO_CHAIN); 1613 return true; 1614 } 1615 1616 return false; 1617 } 1618 1619 /** 1620 * bio_endio - end I/O on a bio 1621 * @bio: bio 1622 * 1623 * Description: 1624 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1625 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1626 * bio unless they own it and thus know that it has an end_io function. 1627 * 1628 * bio_endio() can be called several times on a bio that has been chained 1629 * using bio_chain(). The ->bi_end_io() function will only be called the 1630 * last time. 1631 **/ 1632 void bio_endio(struct bio *bio) 1633 { 1634 again: 1635 if (!bio_remaining_done(bio)) 1636 return; 1637 if (!bio_integrity_endio(bio)) 1638 return; 1639 1640 blk_zone_bio_endio(bio); 1641 1642 rq_qos_done_bio(bio); 1643 1644 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1645 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1646 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1647 } 1648 1649 /* 1650 * Need to have a real endio function for chained bios, otherwise 1651 * various corner cases will break (like stacking block devices that 1652 * save/restore bi_end_io) - however, we want to avoid unbounded 1653 * recursion and blowing the stack. Tail call optimization would 1654 * handle this, but compiling with frame pointers also disables 1655 * gcc's sibling call optimization. 1656 */ 1657 if (bio->bi_end_io == bio_chain_endio) { 1658 bio = __bio_chain_endio(bio); 1659 goto again; 1660 } 1661 1662 #ifdef CONFIG_BLK_CGROUP 1663 /* 1664 * Release cgroup info. We shouldn't have to do this here, but quite 1665 * a few callers of bio_init fail to call bio_uninit, so we cover up 1666 * for that here at least for now. 1667 */ 1668 if (bio->bi_blkg) { 1669 blkg_put(bio->bi_blkg); 1670 bio->bi_blkg = NULL; 1671 } 1672 #endif 1673 1674 if (bio->bi_end_io) 1675 bio->bi_end_io(bio); 1676 } 1677 EXPORT_SYMBOL(bio_endio); 1678 1679 /** 1680 * bio_split - split a bio 1681 * @bio: bio to split 1682 * @sectors: number of sectors to split from the front of @bio 1683 * @gfp: gfp mask 1684 * @bs: bio set to allocate from 1685 * 1686 * Allocates and returns a new bio which represents @sectors from the start of 1687 * @bio, and updates @bio to represent the remaining sectors. 1688 * 1689 * Unless this is a discard request the newly allocated bio will point 1690 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1691 * neither @bio nor @bs are freed before the split bio. 1692 */ 1693 struct bio *bio_split(struct bio *bio, int sectors, 1694 gfp_t gfp, struct bio_set *bs) 1695 { 1696 struct bio *split; 1697 1698 if (WARN_ON_ONCE(sectors <= 0)) 1699 return ERR_PTR(-EINVAL); 1700 if (WARN_ON_ONCE(sectors >= bio_sectors(bio))) 1701 return ERR_PTR(-EINVAL); 1702 1703 /* Zone append commands cannot be split */ 1704 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1705 return ERR_PTR(-EINVAL); 1706 1707 /* atomic writes cannot be split */ 1708 if (bio->bi_opf & REQ_ATOMIC) 1709 return ERR_PTR(-EINVAL); 1710 1711 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1712 if (!split) 1713 return ERR_PTR(-ENOMEM); 1714 1715 split->bi_iter.bi_size = sectors << 9; 1716 1717 if (bio_integrity(split)) 1718 bio_integrity_trim(split); 1719 1720 bio_advance(bio, split->bi_iter.bi_size); 1721 1722 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1723 bio_set_flag(split, BIO_TRACE_COMPLETION); 1724 1725 return split; 1726 } 1727 EXPORT_SYMBOL(bio_split); 1728 1729 /** 1730 * bio_trim - trim a bio 1731 * @bio: bio to trim 1732 * @offset: number of sectors to trim from the front of @bio 1733 * @size: size we want to trim @bio to, in sectors 1734 * 1735 * This function is typically used for bios that are cloned and submitted 1736 * to the underlying device in parts. 1737 */ 1738 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1739 { 1740 /* We should never trim an atomic write */ 1741 if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size)) 1742 return; 1743 1744 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1745 offset + size > bio_sectors(bio))) 1746 return; 1747 1748 size <<= 9; 1749 if (offset == 0 && size == bio->bi_iter.bi_size) 1750 return; 1751 1752 bio_advance(bio, offset << 9); 1753 bio->bi_iter.bi_size = size; 1754 1755 if (bio_integrity(bio)) 1756 bio_integrity_trim(bio); 1757 } 1758 EXPORT_SYMBOL_GPL(bio_trim); 1759 1760 /* 1761 * create memory pools for biovec's in a bio_set. 1762 * use the global biovec slabs created for general use. 1763 */ 1764 int biovec_init_pool(mempool_t *pool, int pool_entries) 1765 { 1766 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1767 1768 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1769 } 1770 1771 /* 1772 * bioset_exit - exit a bioset initialized with bioset_init() 1773 * 1774 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1775 * kzalloc()). 1776 */ 1777 void bioset_exit(struct bio_set *bs) 1778 { 1779 bio_alloc_cache_destroy(bs); 1780 if (bs->rescue_workqueue) 1781 destroy_workqueue(bs->rescue_workqueue); 1782 bs->rescue_workqueue = NULL; 1783 1784 mempool_exit(&bs->bio_pool); 1785 mempool_exit(&bs->bvec_pool); 1786 1787 if (bs->bio_slab) 1788 bio_put_slab(bs); 1789 bs->bio_slab = NULL; 1790 } 1791 EXPORT_SYMBOL(bioset_exit); 1792 1793 /** 1794 * bioset_init - Initialize a bio_set 1795 * @bs: pool to initialize 1796 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1797 * @front_pad: Number of bytes to allocate in front of the returned bio 1798 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1799 * and %BIOSET_NEED_RESCUER 1800 * 1801 * Description: 1802 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1803 * to ask for a number of bytes to be allocated in front of the bio. 1804 * Front pad allocation is useful for embedding the bio inside 1805 * another structure, to avoid allocating extra data to go with the bio. 1806 * Note that the bio must be embedded at the END of that structure always, 1807 * or things will break badly. 1808 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1809 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1810 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1811 * to dispatch queued requests when the mempool runs out of space. 1812 * 1813 */ 1814 int bioset_init(struct bio_set *bs, 1815 unsigned int pool_size, 1816 unsigned int front_pad, 1817 int flags) 1818 { 1819 bs->front_pad = front_pad; 1820 if (flags & BIOSET_NEED_BVECS) 1821 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1822 else 1823 bs->back_pad = 0; 1824 1825 spin_lock_init(&bs->rescue_lock); 1826 bio_list_init(&bs->rescue_list); 1827 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1828 1829 bs->bio_slab = bio_find_or_create_slab(bs); 1830 if (!bs->bio_slab) 1831 return -ENOMEM; 1832 1833 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1834 goto bad; 1835 1836 if ((flags & BIOSET_NEED_BVECS) && 1837 biovec_init_pool(&bs->bvec_pool, pool_size)) 1838 goto bad; 1839 1840 if (flags & BIOSET_NEED_RESCUER) { 1841 bs->rescue_workqueue = alloc_workqueue("bioset", 1842 WQ_MEM_RECLAIM, 0); 1843 if (!bs->rescue_workqueue) 1844 goto bad; 1845 } 1846 if (flags & BIOSET_PERCPU_CACHE) { 1847 bs->cache = alloc_percpu(struct bio_alloc_cache); 1848 if (!bs->cache) 1849 goto bad; 1850 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1851 } 1852 1853 return 0; 1854 bad: 1855 bioset_exit(bs); 1856 return -ENOMEM; 1857 } 1858 EXPORT_SYMBOL(bioset_init); 1859 1860 static int __init init_bio(void) 1861 { 1862 int i; 1863 1864 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags)); 1865 1866 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1867 struct biovec_slab *bvs = bvec_slabs + i; 1868 1869 bvs->slab = kmem_cache_create(bvs->name, 1870 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1871 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1872 } 1873 1874 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1875 bio_cpu_dead); 1876 1877 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, 1878 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) 1879 panic("bio: can't allocate bios\n"); 1880 1881 return 0; 1882 } 1883 subsys_initcall(init_bio); 1884