1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio-integrity.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/highmem.h> 19 #include <linux/blk-crypto.h> 20 #include <linux/xarray.h> 21 22 #include <trace/events/block.h> 23 #include "blk.h" 24 #include "blk-rq-qos.h" 25 #include "blk-cgroup.h" 26 27 #define ALLOC_CACHE_THRESHOLD 16 28 #define ALLOC_CACHE_MAX 256 29 30 struct bio_alloc_cache { 31 struct bio *free_list; 32 struct bio *free_list_irq; 33 unsigned int nr; 34 unsigned int nr_irq; 35 }; 36 37 static struct biovec_slab { 38 int nr_vecs; 39 char *name; 40 struct kmem_cache *slab; 41 } bvec_slabs[] __read_mostly = { 42 { .nr_vecs = 16, .name = "biovec-16" }, 43 { .nr_vecs = 64, .name = "biovec-64" }, 44 { .nr_vecs = 128, .name = "biovec-128" }, 45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 46 }; 47 48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs) 49 { 50 switch (nr_vecs) { 51 /* smaller bios use inline vecs */ 52 case 5 ... 16: 53 return &bvec_slabs[0]; 54 case 17 ... 64: 55 return &bvec_slabs[1]; 56 case 65 ... 128: 57 return &bvec_slabs[2]; 58 case 129 ... BIO_MAX_VECS: 59 return &bvec_slabs[3]; 60 default: 61 BUG(); 62 return NULL; 63 } 64 } 65 66 /* 67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 68 * IO code that does not need private memory pools. 69 */ 70 struct bio_set fs_bio_set; 71 EXPORT_SYMBOL(fs_bio_set); 72 73 /* 74 * Our slab pool management 75 */ 76 struct bio_slab { 77 struct kmem_cache *slab; 78 unsigned int slab_ref; 79 unsigned int slab_size; 80 char name[8]; 81 }; 82 static DEFINE_MUTEX(bio_slab_lock); 83 static DEFINE_XARRAY(bio_slabs); 84 85 static struct bio_slab *create_bio_slab(unsigned int size) 86 { 87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 88 89 if (!bslab) 90 return NULL; 91 92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 93 bslab->slab = kmem_cache_create(bslab->name, size, 94 ARCH_KMALLOC_MINALIGN, 95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 96 if (!bslab->slab) 97 goto fail_alloc_slab; 98 99 bslab->slab_ref = 1; 100 bslab->slab_size = size; 101 102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 103 return bslab; 104 105 kmem_cache_destroy(bslab->slab); 106 107 fail_alloc_slab: 108 kfree(bslab); 109 return NULL; 110 } 111 112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs) 113 { 114 return bs->front_pad + sizeof(struct bio) + bs->back_pad; 115 } 116 117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 118 { 119 unsigned int size = bs_bio_slab_size(bs); 120 struct bio_slab *bslab; 121 122 mutex_lock(&bio_slab_lock); 123 bslab = xa_load(&bio_slabs, size); 124 if (bslab) 125 bslab->slab_ref++; 126 else 127 bslab = create_bio_slab(size); 128 mutex_unlock(&bio_slab_lock); 129 130 if (bslab) 131 return bslab->slab; 132 return NULL; 133 } 134 135 static void bio_put_slab(struct bio_set *bs) 136 { 137 struct bio_slab *bslab = NULL; 138 unsigned int slab_size = bs_bio_slab_size(bs); 139 140 mutex_lock(&bio_slab_lock); 141 142 bslab = xa_load(&bio_slabs, slab_size); 143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 144 goto out; 145 146 WARN_ON_ONCE(bslab->slab != bs->bio_slab); 147 148 WARN_ON(!bslab->slab_ref); 149 150 if (--bslab->slab_ref) 151 goto out; 152 153 xa_erase(&bio_slabs, slab_size); 154 155 kmem_cache_destroy(bslab->slab); 156 kfree(bslab); 157 158 out: 159 mutex_unlock(&bio_slab_lock); 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 163 { 164 BUG_ON(nr_vecs > BIO_MAX_VECS); 165 166 if (nr_vecs == BIO_MAX_VECS) 167 mempool_free(bv, pool); 168 else if (nr_vecs > BIO_INLINE_VECS) 169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 170 } 171 172 /* 173 * Make the first allocation restricted and don't dump info on allocation 174 * failures, since we'll fall back to the mempool in case of failure. 175 */ 176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp) 177 { 178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 180 } 181 182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 183 gfp_t gfp_mask) 184 { 185 struct biovec_slab *bvs = biovec_slab(*nr_vecs); 186 187 if (WARN_ON_ONCE(!bvs)) 188 return NULL; 189 190 /* 191 * Upgrade the nr_vecs request to take full advantage of the allocation. 192 * We also rely on this in the bvec_free path. 193 */ 194 *nr_vecs = bvs->nr_vecs; 195 196 /* 197 * Try a slab allocation first for all smaller allocations. If that 198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 199 * The mempool is sized to handle up to BIO_MAX_VECS entries. 200 */ 201 if (*nr_vecs < BIO_MAX_VECS) { 202 struct bio_vec *bvl; 203 204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 206 return bvl; 207 *nr_vecs = BIO_MAX_VECS; 208 } 209 210 return mempool_alloc(pool, gfp_mask); 211 } 212 213 void bio_uninit(struct bio *bio) 214 { 215 #ifdef CONFIG_BLK_CGROUP 216 if (bio->bi_blkg) { 217 blkg_put(bio->bi_blkg); 218 bio->bi_blkg = NULL; 219 } 220 #endif 221 if (bio_integrity(bio)) 222 bio_integrity_free(bio); 223 224 bio_crypt_free_ctx(bio); 225 } 226 EXPORT_SYMBOL(bio_uninit); 227 228 static void bio_free(struct bio *bio) 229 { 230 struct bio_set *bs = bio->bi_pool; 231 void *p = bio; 232 233 WARN_ON_ONCE(!bs); 234 235 bio_uninit(bio); 236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 237 mempool_free(p - bs->front_pad, &bs->bio_pool); 238 } 239 240 /* 241 * Users of this function have their own bio allocation. Subsequently, 242 * they must remember to pair any call to bio_init() with bio_uninit() 243 * when IO has completed, or when the bio is released. 244 */ 245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 246 unsigned short max_vecs, blk_opf_t opf) 247 { 248 bio->bi_next = NULL; 249 bio->bi_bdev = bdev; 250 bio->bi_opf = opf; 251 bio->bi_flags = 0; 252 bio->bi_ioprio = 0; 253 bio->bi_write_hint = 0; 254 bio->bi_status = 0; 255 bio->bi_iter.bi_sector = 0; 256 bio->bi_iter.bi_size = 0; 257 bio->bi_iter.bi_idx = 0; 258 bio->bi_iter.bi_bvec_done = 0; 259 bio->bi_end_io = NULL; 260 bio->bi_private = NULL; 261 #ifdef CONFIG_BLK_CGROUP 262 bio->bi_blkg = NULL; 263 bio->bi_issue.value = 0; 264 if (bdev) 265 bio_associate_blkg(bio); 266 #ifdef CONFIG_BLK_CGROUP_IOCOST 267 bio->bi_iocost_cost = 0; 268 #endif 269 #endif 270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 271 bio->bi_crypt_context = NULL; 272 #endif 273 #ifdef CONFIG_BLK_DEV_INTEGRITY 274 bio->bi_integrity = NULL; 275 #endif 276 bio->bi_vcnt = 0; 277 278 atomic_set(&bio->__bi_remaining, 1); 279 atomic_set(&bio->__bi_cnt, 1); 280 bio->bi_cookie = BLK_QC_T_NONE; 281 282 bio->bi_max_vecs = max_vecs; 283 bio->bi_io_vec = table; 284 bio->bi_pool = NULL; 285 } 286 EXPORT_SYMBOL(bio_init); 287 288 /** 289 * bio_reset - reinitialize a bio 290 * @bio: bio to reset 291 * @bdev: block device to use the bio for 292 * @opf: operation and flags for bio 293 * 294 * Description: 295 * After calling bio_reset(), @bio will be in the same state as a freshly 296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 297 * preserved are the ones that are initialized by bio_alloc_bioset(). See 298 * comment in struct bio. 299 */ 300 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) 301 { 302 bio_uninit(bio); 303 memset(bio, 0, BIO_RESET_BYTES); 304 atomic_set(&bio->__bi_remaining, 1); 305 bio->bi_bdev = bdev; 306 if (bio->bi_bdev) 307 bio_associate_blkg(bio); 308 bio->bi_opf = opf; 309 } 310 EXPORT_SYMBOL(bio_reset); 311 312 static struct bio *__bio_chain_endio(struct bio *bio) 313 { 314 struct bio *parent = bio->bi_private; 315 316 if (bio->bi_status && !parent->bi_status) 317 parent->bi_status = bio->bi_status; 318 bio_put(bio); 319 return parent; 320 } 321 322 static void bio_chain_endio(struct bio *bio) 323 { 324 bio_endio(__bio_chain_endio(bio)); 325 } 326 327 /** 328 * bio_chain - chain bio completions 329 * @bio: the target bio 330 * @parent: the parent bio of @bio 331 * 332 * The caller won't have a bi_end_io called when @bio completes - instead, 333 * @parent's bi_end_io won't be called until both @parent and @bio have 334 * completed; the chained bio will also be freed when it completes. 335 * 336 * The caller must not set bi_private or bi_end_io in @bio. 337 */ 338 void bio_chain(struct bio *bio, struct bio *parent) 339 { 340 BUG_ON(bio->bi_private || bio->bi_end_io); 341 342 bio->bi_private = parent; 343 bio->bi_end_io = bio_chain_endio; 344 bio_inc_remaining(parent); 345 } 346 EXPORT_SYMBOL(bio_chain); 347 348 /** 349 * bio_chain_and_submit - submit a bio after chaining it to another one 350 * @prev: bio to chain and submit 351 * @new: bio to chain to 352 * 353 * If @prev is non-NULL, chain it to @new and submit it. 354 * 355 * Return: @new. 356 */ 357 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new) 358 { 359 if (prev) { 360 bio_chain(prev, new); 361 submit_bio(prev); 362 } 363 return new; 364 } 365 366 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 367 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) 368 { 369 return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp)); 370 } 371 EXPORT_SYMBOL_GPL(blk_next_bio); 372 373 static void bio_alloc_rescue(struct work_struct *work) 374 { 375 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 376 struct bio *bio; 377 378 while (1) { 379 spin_lock(&bs->rescue_lock); 380 bio = bio_list_pop(&bs->rescue_list); 381 spin_unlock(&bs->rescue_lock); 382 383 if (!bio) 384 break; 385 386 submit_bio_noacct(bio); 387 } 388 } 389 390 static void punt_bios_to_rescuer(struct bio_set *bs) 391 { 392 struct bio_list punt, nopunt; 393 struct bio *bio; 394 395 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 396 return; 397 /* 398 * In order to guarantee forward progress we must punt only bios that 399 * were allocated from this bio_set; otherwise, if there was a bio on 400 * there for a stacking driver higher up in the stack, processing it 401 * could require allocating bios from this bio_set, and doing that from 402 * our own rescuer would be bad. 403 * 404 * Since bio lists are singly linked, pop them all instead of trying to 405 * remove from the middle of the list: 406 */ 407 408 bio_list_init(&punt); 409 bio_list_init(&nopunt); 410 411 while ((bio = bio_list_pop(¤t->bio_list[0]))) 412 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 413 current->bio_list[0] = nopunt; 414 415 bio_list_init(&nopunt); 416 while ((bio = bio_list_pop(¤t->bio_list[1]))) 417 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 418 current->bio_list[1] = nopunt; 419 420 spin_lock(&bs->rescue_lock); 421 bio_list_merge(&bs->rescue_list, &punt); 422 spin_unlock(&bs->rescue_lock); 423 424 queue_work(bs->rescue_workqueue, &bs->rescue_work); 425 } 426 427 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache) 428 { 429 unsigned long flags; 430 431 /* cache->free_list must be empty */ 432 if (WARN_ON_ONCE(cache->free_list)) 433 return; 434 435 local_irq_save(flags); 436 cache->free_list = cache->free_list_irq; 437 cache->free_list_irq = NULL; 438 cache->nr += cache->nr_irq; 439 cache->nr_irq = 0; 440 local_irq_restore(flags); 441 } 442 443 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 444 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, 445 struct bio_set *bs) 446 { 447 struct bio_alloc_cache *cache; 448 struct bio *bio; 449 450 cache = per_cpu_ptr(bs->cache, get_cpu()); 451 if (!cache->free_list) { 452 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD) 453 bio_alloc_irq_cache_splice(cache); 454 if (!cache->free_list) { 455 put_cpu(); 456 return NULL; 457 } 458 } 459 bio = cache->free_list; 460 cache->free_list = bio->bi_next; 461 cache->nr--; 462 put_cpu(); 463 464 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); 465 bio->bi_pool = bs; 466 return bio; 467 } 468 469 /** 470 * bio_alloc_bioset - allocate a bio for I/O 471 * @bdev: block device to allocate the bio for (can be %NULL) 472 * @nr_vecs: number of bvecs to pre-allocate 473 * @opf: operation and flags for bio 474 * @gfp_mask: the GFP_* mask given to the slab allocator 475 * @bs: the bio_set to allocate from. 476 * 477 * Allocate a bio from the mempools in @bs. 478 * 479 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 480 * allocate a bio. This is due to the mempool guarantees. To make this work, 481 * callers must never allocate more than 1 bio at a time from the general pool. 482 * Callers that need to allocate more than 1 bio must always submit the 483 * previously allocated bio for IO before attempting to allocate a new one. 484 * Failure to do so can cause deadlocks under memory pressure. 485 * 486 * Note that when running under submit_bio_noacct() (i.e. any block driver), 487 * bios are not submitted until after you return - see the code in 488 * submit_bio_noacct() that converts recursion into iteration, to prevent 489 * stack overflows. 490 * 491 * This would normally mean allocating multiple bios under submit_bio_noacct() 492 * would be susceptible to deadlocks, but we have 493 * deadlock avoidance code that resubmits any blocked bios from a rescuer 494 * thread. 495 * 496 * However, we do not guarantee forward progress for allocations from other 497 * mempools. Doing multiple allocations from the same mempool under 498 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 499 * for per bio allocations. 500 * 501 * Returns: Pointer to new bio on success, NULL on failure. 502 */ 503 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 504 blk_opf_t opf, gfp_t gfp_mask, 505 struct bio_set *bs) 506 { 507 gfp_t saved_gfp = gfp_mask; 508 struct bio *bio; 509 void *p; 510 511 /* should not use nobvec bioset for nr_vecs > 0 */ 512 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 513 return NULL; 514 515 if (opf & REQ_ALLOC_CACHE) { 516 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 517 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 518 gfp_mask, bs); 519 if (bio) 520 return bio; 521 /* 522 * No cached bio available, bio returned below marked with 523 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. 524 */ 525 } else { 526 opf &= ~REQ_ALLOC_CACHE; 527 } 528 } 529 530 /* 531 * submit_bio_noacct() converts recursion to iteration; this means if 532 * we're running beneath it, any bios we allocate and submit will not be 533 * submitted (and thus freed) until after we return. 534 * 535 * This exposes us to a potential deadlock if we allocate multiple bios 536 * from the same bio_set() while running underneath submit_bio_noacct(). 537 * If we were to allocate multiple bios (say a stacking block driver 538 * that was splitting bios), we would deadlock if we exhausted the 539 * mempool's reserve. 540 * 541 * We solve this, and guarantee forward progress, with a rescuer 542 * workqueue per bio_set. If we go to allocate and there are bios on 543 * current->bio_list, we first try the allocation without 544 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 545 * blocking to the rescuer workqueue before we retry with the original 546 * gfp_flags. 547 */ 548 if (current->bio_list && 549 (!bio_list_empty(¤t->bio_list[0]) || 550 !bio_list_empty(¤t->bio_list[1])) && 551 bs->rescue_workqueue) 552 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 553 554 p = mempool_alloc(&bs->bio_pool, gfp_mask); 555 if (!p && gfp_mask != saved_gfp) { 556 punt_bios_to_rescuer(bs); 557 gfp_mask = saved_gfp; 558 p = mempool_alloc(&bs->bio_pool, gfp_mask); 559 } 560 if (unlikely(!p)) 561 return NULL; 562 if (!mempool_is_saturated(&bs->bio_pool)) 563 opf &= ~REQ_ALLOC_CACHE; 564 565 bio = p + bs->front_pad; 566 if (nr_vecs > BIO_INLINE_VECS) { 567 struct bio_vec *bvl = NULL; 568 569 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 570 if (!bvl && gfp_mask != saved_gfp) { 571 punt_bios_to_rescuer(bs); 572 gfp_mask = saved_gfp; 573 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 574 } 575 if (unlikely(!bvl)) 576 goto err_free; 577 578 bio_init(bio, bdev, bvl, nr_vecs, opf); 579 } else if (nr_vecs) { 580 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 581 } else { 582 bio_init(bio, bdev, NULL, 0, opf); 583 } 584 585 bio->bi_pool = bs; 586 return bio; 587 588 err_free: 589 mempool_free(p, &bs->bio_pool); 590 return NULL; 591 } 592 EXPORT_SYMBOL(bio_alloc_bioset); 593 594 /** 595 * bio_kmalloc - kmalloc a bio 596 * @nr_vecs: number of bio_vecs to allocate 597 * @gfp_mask: the GFP_* mask given to the slab allocator 598 * 599 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 600 * using bio_init() before use. To free a bio returned from this function use 601 * kfree() after calling bio_uninit(). A bio returned from this function can 602 * be reused by calling bio_uninit() before calling bio_init() again. 603 * 604 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 605 * function are not backed by a mempool can fail. Do not use this function 606 * for allocations in the file system I/O path. 607 * 608 * Returns: Pointer to new bio on success, NULL on failure. 609 */ 610 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 611 { 612 struct bio *bio; 613 614 if (nr_vecs > UIO_MAXIOV) 615 return NULL; 616 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); 617 } 618 EXPORT_SYMBOL(bio_kmalloc); 619 620 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 621 { 622 struct bio_vec bv; 623 struct bvec_iter iter; 624 625 __bio_for_each_segment(bv, bio, iter, start) 626 memzero_bvec(&bv); 627 } 628 EXPORT_SYMBOL(zero_fill_bio_iter); 629 630 /** 631 * bio_truncate - truncate the bio to small size of @new_size 632 * @bio: the bio to be truncated 633 * @new_size: new size for truncating the bio 634 * 635 * Description: 636 * Truncate the bio to new size of @new_size. If bio_op(bio) is 637 * REQ_OP_READ, zero the truncated part. This function should only 638 * be used for handling corner cases, such as bio eod. 639 */ 640 static void bio_truncate(struct bio *bio, unsigned new_size) 641 { 642 struct bio_vec bv; 643 struct bvec_iter iter; 644 unsigned int done = 0; 645 bool truncated = false; 646 647 if (new_size >= bio->bi_iter.bi_size) 648 return; 649 650 if (bio_op(bio) != REQ_OP_READ) 651 goto exit; 652 653 bio_for_each_segment(bv, bio, iter) { 654 if (done + bv.bv_len > new_size) { 655 unsigned offset; 656 657 if (!truncated) 658 offset = new_size - done; 659 else 660 offset = 0; 661 zero_user(bv.bv_page, bv.bv_offset + offset, 662 bv.bv_len - offset); 663 truncated = true; 664 } 665 done += bv.bv_len; 666 } 667 668 exit: 669 /* 670 * Don't touch bvec table here and make it really immutable, since 671 * fs bio user has to retrieve all pages via bio_for_each_segment_all 672 * in its .end_bio() callback. 673 * 674 * It is enough to truncate bio by updating .bi_size since we can make 675 * correct bvec with the updated .bi_size for drivers. 676 */ 677 bio->bi_iter.bi_size = new_size; 678 } 679 680 /** 681 * guard_bio_eod - truncate a BIO to fit the block device 682 * @bio: bio to truncate 683 * 684 * This allows us to do IO even on the odd last sectors of a device, even if the 685 * block size is some multiple of the physical sector size. 686 * 687 * We'll just truncate the bio to the size of the device, and clear the end of 688 * the buffer head manually. Truly out-of-range accesses will turn into actual 689 * I/O errors, this only handles the "we need to be able to do I/O at the final 690 * sector" case. 691 */ 692 void guard_bio_eod(struct bio *bio) 693 { 694 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 695 696 if (!maxsector) 697 return; 698 699 /* 700 * If the *whole* IO is past the end of the device, 701 * let it through, and the IO layer will turn it into 702 * an EIO. 703 */ 704 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 705 return; 706 707 maxsector -= bio->bi_iter.bi_sector; 708 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 709 return; 710 711 bio_truncate(bio, maxsector << 9); 712 } 713 714 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache, 715 unsigned int nr) 716 { 717 unsigned int i = 0; 718 struct bio *bio; 719 720 while ((bio = cache->free_list) != NULL) { 721 cache->free_list = bio->bi_next; 722 cache->nr--; 723 bio_free(bio); 724 if (++i == nr) 725 break; 726 } 727 return i; 728 } 729 730 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 731 unsigned int nr) 732 { 733 nr -= __bio_alloc_cache_prune(cache, nr); 734 if (!READ_ONCE(cache->free_list)) { 735 bio_alloc_irq_cache_splice(cache); 736 __bio_alloc_cache_prune(cache, nr); 737 } 738 } 739 740 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 741 { 742 struct bio_set *bs; 743 744 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 745 if (bs->cache) { 746 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 747 748 bio_alloc_cache_prune(cache, -1U); 749 } 750 return 0; 751 } 752 753 static void bio_alloc_cache_destroy(struct bio_set *bs) 754 { 755 int cpu; 756 757 if (!bs->cache) 758 return; 759 760 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 761 for_each_possible_cpu(cpu) { 762 struct bio_alloc_cache *cache; 763 764 cache = per_cpu_ptr(bs->cache, cpu); 765 bio_alloc_cache_prune(cache, -1U); 766 } 767 free_percpu(bs->cache); 768 bs->cache = NULL; 769 } 770 771 static inline void bio_put_percpu_cache(struct bio *bio) 772 { 773 struct bio_alloc_cache *cache; 774 775 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 776 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) 777 goto out_free; 778 779 if (in_task()) { 780 bio_uninit(bio); 781 bio->bi_next = cache->free_list; 782 /* Not necessary but helps not to iopoll already freed bios */ 783 bio->bi_bdev = NULL; 784 cache->free_list = bio; 785 cache->nr++; 786 } else if (in_hardirq()) { 787 lockdep_assert_irqs_disabled(); 788 789 bio_uninit(bio); 790 bio->bi_next = cache->free_list_irq; 791 cache->free_list_irq = bio; 792 cache->nr_irq++; 793 } else { 794 goto out_free; 795 } 796 put_cpu(); 797 return; 798 out_free: 799 put_cpu(); 800 bio_free(bio); 801 } 802 803 /** 804 * bio_put - release a reference to a bio 805 * @bio: bio to release reference to 806 * 807 * Description: 808 * Put a reference to a &struct bio, either one you have gotten with 809 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 810 **/ 811 void bio_put(struct bio *bio) 812 { 813 if (unlikely(bio_flagged(bio, BIO_REFFED))) { 814 BUG_ON(!atomic_read(&bio->__bi_cnt)); 815 if (!atomic_dec_and_test(&bio->__bi_cnt)) 816 return; 817 } 818 if (bio->bi_opf & REQ_ALLOC_CACHE) 819 bio_put_percpu_cache(bio); 820 else 821 bio_free(bio); 822 } 823 EXPORT_SYMBOL(bio_put); 824 825 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 826 { 827 bio_set_flag(bio, BIO_CLONED); 828 bio->bi_ioprio = bio_src->bi_ioprio; 829 bio->bi_write_hint = bio_src->bi_write_hint; 830 bio->bi_iter = bio_src->bi_iter; 831 832 if (bio->bi_bdev) { 833 if (bio->bi_bdev == bio_src->bi_bdev && 834 bio_flagged(bio_src, BIO_REMAPPED)) 835 bio_set_flag(bio, BIO_REMAPPED); 836 bio_clone_blkg_association(bio, bio_src); 837 } 838 839 if (bio_crypt_clone(bio, bio_src, gfp) < 0) 840 return -ENOMEM; 841 if (bio_integrity(bio_src) && 842 bio_integrity_clone(bio, bio_src, gfp) < 0) 843 return -ENOMEM; 844 return 0; 845 } 846 847 /** 848 * bio_alloc_clone - clone a bio that shares the original bio's biovec 849 * @bdev: block_device to clone onto 850 * @bio_src: bio to clone from 851 * @gfp: allocation priority 852 * @bs: bio_set to allocate from 853 * 854 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 855 * bio, but not the actual data it points to. 856 * 857 * The caller must ensure that the return bio is not freed before @bio_src. 858 */ 859 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 860 gfp_t gfp, struct bio_set *bs) 861 { 862 struct bio *bio; 863 864 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 865 if (!bio) 866 return NULL; 867 868 if (__bio_clone(bio, bio_src, gfp) < 0) { 869 bio_put(bio); 870 return NULL; 871 } 872 bio->bi_io_vec = bio_src->bi_io_vec; 873 874 return bio; 875 } 876 EXPORT_SYMBOL(bio_alloc_clone); 877 878 /** 879 * bio_init_clone - clone a bio that shares the original bio's biovec 880 * @bdev: block_device to clone onto 881 * @bio: bio to clone into 882 * @bio_src: bio to clone from 883 * @gfp: allocation priority 884 * 885 * Initialize a new bio in caller provided memory that is a clone of @bio_src. 886 * The caller owns the returned bio, but not the actual data it points to. 887 * 888 * The caller must ensure that @bio_src is not freed before @bio. 889 */ 890 int bio_init_clone(struct block_device *bdev, struct bio *bio, 891 struct bio *bio_src, gfp_t gfp) 892 { 893 int ret; 894 895 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 896 ret = __bio_clone(bio, bio_src, gfp); 897 if (ret) 898 bio_uninit(bio); 899 return ret; 900 } 901 EXPORT_SYMBOL(bio_init_clone); 902 903 /** 904 * bio_full - check if the bio is full 905 * @bio: bio to check 906 * @len: length of one segment to be added 907 * 908 * Return true if @bio is full and one segment with @len bytes can't be 909 * added to the bio, otherwise return false 910 */ 911 static inline bool bio_full(struct bio *bio, unsigned len) 912 { 913 if (bio->bi_vcnt >= bio->bi_max_vecs) 914 return true; 915 if (bio->bi_iter.bi_size > UINT_MAX - len) 916 return true; 917 return false; 918 } 919 920 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page, 921 unsigned int len, unsigned int off, bool *same_page) 922 { 923 size_t bv_end = bv->bv_offset + bv->bv_len; 924 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 925 phys_addr_t page_addr = page_to_phys(page); 926 927 if (vec_end_addr + 1 != page_addr + off) 928 return false; 929 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 930 return false; 931 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page)) 932 return false; 933 934 *same_page = ((vec_end_addr & PAGE_MASK) == ((page_addr + off) & 935 PAGE_MASK)); 936 if (!*same_page) { 937 if (IS_ENABLED(CONFIG_KMSAN)) 938 return false; 939 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE) 940 return false; 941 } 942 943 bv->bv_len += len; 944 return true; 945 } 946 947 /* 948 * Try to merge a page into a segment, while obeying the hardware segment 949 * size limit. This is not for normal read/write bios, but for passthrough 950 * or Zone Append operations that we can't split. 951 */ 952 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 953 struct page *page, unsigned len, unsigned offset, 954 bool *same_page) 955 { 956 unsigned long mask = queue_segment_boundary(q); 957 phys_addr_t addr1 = bvec_phys(bv); 958 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 959 960 if ((addr1 | mask) != (addr2 | mask)) 961 return false; 962 if (len > queue_max_segment_size(q) - bv->bv_len) 963 return false; 964 return bvec_try_merge_page(bv, page, len, offset, same_page); 965 } 966 967 /** 968 * bio_add_hw_page - attempt to add a page to a bio with hw constraints 969 * @q: the target queue 970 * @bio: destination bio 971 * @page: page to add 972 * @len: vec entry length 973 * @offset: vec entry offset 974 * @max_sectors: maximum number of sectors that can be added 975 * @same_page: return if the segment has been merged inside the same page 976 * 977 * Add a page to a bio while respecting the hardware max_sectors, max_segment 978 * and gap limitations. 979 */ 980 int bio_add_hw_page(struct request_queue *q, struct bio *bio, 981 struct page *page, unsigned int len, unsigned int offset, 982 unsigned int max_sectors, bool *same_page) 983 { 984 unsigned int max_size = max_sectors << SECTOR_SHIFT; 985 986 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 987 return 0; 988 989 len = min3(len, max_size, queue_max_segment_size(q)); 990 if (len > max_size - bio->bi_iter.bi_size) 991 return 0; 992 993 if (bio->bi_vcnt > 0) { 994 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 995 996 if (bvec_try_merge_hw_page(q, bv, page, len, offset, 997 same_page)) { 998 bio->bi_iter.bi_size += len; 999 return len; 1000 } 1001 1002 if (bio->bi_vcnt >= 1003 min(bio->bi_max_vecs, queue_max_segments(q))) 1004 return 0; 1005 1006 /* 1007 * If the queue doesn't support SG gaps and adding this segment 1008 * would create a gap, disallow it. 1009 */ 1010 if (bvec_gap_to_prev(&q->limits, bv, offset)) 1011 return 0; 1012 } 1013 1014 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset); 1015 bio->bi_vcnt++; 1016 bio->bi_iter.bi_size += len; 1017 return len; 1018 } 1019 1020 /** 1021 * bio_add_hw_folio - attempt to add a folio to a bio with hw constraints 1022 * @q: the target queue 1023 * @bio: destination bio 1024 * @folio: folio to add 1025 * @len: vec entry length 1026 * @offset: vec entry offset in the folio 1027 * @max_sectors: maximum number of sectors that can be added 1028 * @same_page: return if the segment has been merged inside the same folio 1029 * 1030 * Add a folio to a bio while respecting the hardware max_sectors, max_segment 1031 * and gap limitations. 1032 */ 1033 int bio_add_hw_folio(struct request_queue *q, struct bio *bio, 1034 struct folio *folio, size_t len, size_t offset, 1035 unsigned int max_sectors, bool *same_page) 1036 { 1037 if (len > UINT_MAX || offset > UINT_MAX) 1038 return 0; 1039 return bio_add_hw_page(q, bio, folio_page(folio, 0), len, offset, 1040 max_sectors, same_page); 1041 } 1042 1043 /** 1044 * bio_add_pc_page - attempt to add page to passthrough bio 1045 * @q: the target queue 1046 * @bio: destination bio 1047 * @page: page to add 1048 * @len: vec entry length 1049 * @offset: vec entry offset 1050 * 1051 * Attempt to add a page to the bio_vec maplist. This can fail for a 1052 * number of reasons, such as the bio being full or target block device 1053 * limitations. The target block device must allow bio's up to PAGE_SIZE, 1054 * so it is always possible to add a single page to an empty bio. 1055 * 1056 * This should only be used by passthrough bios. 1057 */ 1058 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 1059 struct page *page, unsigned int len, unsigned int offset) 1060 { 1061 bool same_page = false; 1062 return bio_add_hw_page(q, bio, page, len, offset, 1063 queue_max_hw_sectors(q), &same_page); 1064 } 1065 EXPORT_SYMBOL(bio_add_pc_page); 1066 1067 /** 1068 * __bio_add_page - add page(s) to a bio in a new segment 1069 * @bio: destination bio 1070 * @page: start page to add 1071 * @len: length of the data to add, may cross pages 1072 * @off: offset of the data relative to @page, may cross pages 1073 * 1074 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 1075 * that @bio has space for another bvec. 1076 */ 1077 void __bio_add_page(struct bio *bio, struct page *page, 1078 unsigned int len, unsigned int off) 1079 { 1080 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 1081 WARN_ON_ONCE(bio_full(bio, len)); 1082 1083 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off); 1084 bio->bi_iter.bi_size += len; 1085 bio->bi_vcnt++; 1086 } 1087 EXPORT_SYMBOL_GPL(__bio_add_page); 1088 1089 /** 1090 * bio_add_page - attempt to add page(s) to bio 1091 * @bio: destination bio 1092 * @page: start page to add 1093 * @len: vec entry length, may cross pages 1094 * @offset: vec entry offset relative to @page, may cross pages 1095 * 1096 * Attempt to add page(s) to the bio_vec maplist. This will only fail 1097 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 1098 */ 1099 int bio_add_page(struct bio *bio, struct page *page, 1100 unsigned int len, unsigned int offset) 1101 { 1102 bool same_page = false; 1103 1104 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1105 return 0; 1106 if (bio->bi_iter.bi_size > UINT_MAX - len) 1107 return 0; 1108 1109 if (bio->bi_vcnt > 0 && 1110 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 1111 page, len, offset, &same_page)) { 1112 bio->bi_iter.bi_size += len; 1113 return len; 1114 } 1115 1116 if (bio->bi_vcnt >= bio->bi_max_vecs) 1117 return 0; 1118 __bio_add_page(bio, page, len, offset); 1119 return len; 1120 } 1121 EXPORT_SYMBOL(bio_add_page); 1122 1123 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 1124 size_t off) 1125 { 1126 WARN_ON_ONCE(len > UINT_MAX); 1127 WARN_ON_ONCE(off > UINT_MAX); 1128 __bio_add_page(bio, &folio->page, len, off); 1129 } 1130 EXPORT_SYMBOL_GPL(bio_add_folio_nofail); 1131 1132 /** 1133 * bio_add_folio - Attempt to add part of a folio to a bio. 1134 * @bio: BIO to add to. 1135 * @folio: Folio to add. 1136 * @len: How many bytes from the folio to add. 1137 * @off: First byte in this folio to add. 1138 * 1139 * Filesystems that use folios can call this function instead of calling 1140 * bio_add_page() for each page in the folio. If @off is bigger than 1141 * PAGE_SIZE, this function can create a bio_vec that starts in a page 1142 * after the bv_page. BIOs do not support folios that are 4GiB or larger. 1143 * 1144 * Return: Whether the addition was successful. 1145 */ 1146 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 1147 size_t off) 1148 { 1149 if (len > UINT_MAX || off > UINT_MAX) 1150 return false; 1151 return bio_add_page(bio, &folio->page, len, off) > 0; 1152 } 1153 EXPORT_SYMBOL(bio_add_folio); 1154 1155 void __bio_release_pages(struct bio *bio, bool mark_dirty) 1156 { 1157 struct folio_iter fi; 1158 1159 bio_for_each_folio_all(fi, bio) { 1160 size_t nr_pages; 1161 1162 if (mark_dirty) { 1163 folio_lock(fi.folio); 1164 folio_mark_dirty(fi.folio); 1165 folio_unlock(fi.folio); 1166 } 1167 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE - 1168 fi.offset / PAGE_SIZE + 1; 1169 unpin_user_folio(fi.folio, nr_pages); 1170 } 1171 } 1172 EXPORT_SYMBOL_GPL(__bio_release_pages); 1173 1174 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter) 1175 { 1176 WARN_ON_ONCE(bio->bi_max_vecs); 1177 1178 bio->bi_vcnt = iter->nr_segs; 1179 bio->bi_io_vec = (struct bio_vec *)iter->bvec; 1180 bio->bi_iter.bi_bvec_done = iter->iov_offset; 1181 bio->bi_iter.bi_size = iov_iter_count(iter); 1182 bio_set_flag(bio, BIO_CLONED); 1183 } 1184 1185 static int bio_iov_add_folio(struct bio *bio, struct folio *folio, size_t len, 1186 size_t offset) 1187 { 1188 bool same_page = false; 1189 1190 if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len)) 1191 return -EIO; 1192 1193 if (bio->bi_vcnt > 0 && 1194 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 1195 folio_page(folio, 0), len, offset, 1196 &same_page)) { 1197 bio->bi_iter.bi_size += len; 1198 if (same_page && bio_flagged(bio, BIO_PAGE_PINNED)) 1199 unpin_user_folio(folio, 1); 1200 return 0; 1201 } 1202 bio_add_folio_nofail(bio, folio, len, offset); 1203 return 0; 1204 } 1205 1206 static unsigned int get_contig_folio_len(unsigned int *num_pages, 1207 struct page **pages, unsigned int i, 1208 struct folio *folio, size_t left, 1209 size_t offset) 1210 { 1211 size_t bytes = left; 1212 size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes); 1213 unsigned int j; 1214 1215 /* 1216 * We might COW a single page in the middle of 1217 * a large folio, so we have to check that all 1218 * pages belong to the same folio. 1219 */ 1220 bytes -= contig_sz; 1221 for (j = i + 1; j < i + *num_pages; j++) { 1222 size_t next = min_t(size_t, PAGE_SIZE, bytes); 1223 1224 if (page_folio(pages[j]) != folio || 1225 pages[j] != pages[j - 1] + 1) { 1226 break; 1227 } 1228 contig_sz += next; 1229 bytes -= next; 1230 } 1231 *num_pages = j - i; 1232 1233 return contig_sz; 1234 } 1235 1236 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 1237 1238 /** 1239 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 1240 * @bio: bio to add pages to 1241 * @iter: iov iterator describing the region to be mapped 1242 * 1243 * Extracts pages from *iter and appends them to @bio's bvec array. The pages 1244 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag. 1245 * For a multi-segment *iter, this function only adds pages from the next 1246 * non-empty segment of the iov iterator. 1247 */ 1248 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1249 { 1250 iov_iter_extraction_t extraction_flags = 0; 1251 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 1252 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 1253 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 1254 struct page **pages = (struct page **)bv; 1255 ssize_t size; 1256 unsigned int num_pages, i = 0; 1257 size_t offset, folio_offset, left, len; 1258 int ret = 0; 1259 1260 /* 1261 * Move page array up in the allocated memory for the bio vecs as far as 1262 * possible so that we can start filling biovecs from the beginning 1263 * without overwriting the temporary page array. 1264 */ 1265 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 1266 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 1267 1268 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue)) 1269 extraction_flags |= ITER_ALLOW_P2PDMA; 1270 1271 /* 1272 * Each segment in the iov is required to be a block size multiple. 1273 * However, we may not be able to get the entire segment if it spans 1274 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the 1275 * result to ensure the bio's total size is correct. The remainder of 1276 * the iov data will be picked up in the next bio iteration. 1277 */ 1278 size = iov_iter_extract_pages(iter, &pages, 1279 UINT_MAX - bio->bi_iter.bi_size, 1280 nr_pages, extraction_flags, &offset); 1281 if (unlikely(size <= 0)) 1282 return size ? size : -EFAULT; 1283 1284 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); 1285 1286 if (bio->bi_bdev) { 1287 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1); 1288 iov_iter_revert(iter, trim); 1289 size -= trim; 1290 } 1291 1292 if (unlikely(!size)) { 1293 ret = -EFAULT; 1294 goto out; 1295 } 1296 1297 for (left = size, i = 0; left > 0; left -= len, i += num_pages) { 1298 struct page *page = pages[i]; 1299 struct folio *folio = page_folio(page); 1300 1301 folio_offset = ((size_t)folio_page_idx(folio, page) << 1302 PAGE_SHIFT) + offset; 1303 1304 len = min(folio_size(folio) - folio_offset, left); 1305 1306 num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1307 1308 if (num_pages > 1) 1309 len = get_contig_folio_len(&num_pages, pages, i, 1310 folio, left, offset); 1311 1312 bio_iov_add_folio(bio, folio, len, folio_offset); 1313 offset = 0; 1314 } 1315 1316 iov_iter_revert(iter, left); 1317 out: 1318 while (i < nr_pages) 1319 bio_release_page(bio, pages[i++]); 1320 1321 return ret; 1322 } 1323 1324 /** 1325 * bio_iov_iter_get_pages - add user or kernel pages to a bio 1326 * @bio: bio to add pages to 1327 * @iter: iov iterator describing the region to be added 1328 * 1329 * This takes either an iterator pointing to user memory, or one pointing to 1330 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 1331 * map them into the kernel. On IO completion, the caller should put those 1332 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 1333 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 1334 * to ensure the bvecs and pages stay referenced until the submitted I/O is 1335 * completed by a call to ->ki_complete() or returns with an error other than 1336 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 1337 * on IO completion. If it isn't, then pages should be released. 1338 * 1339 * The function tries, but does not guarantee, to pin as many pages as 1340 * fit into the bio, or are requested in @iter, whatever is smaller. If 1341 * MM encounters an error pinning the requested pages, it stops. Error 1342 * is returned only if 0 pages could be pinned. 1343 */ 1344 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 1345 { 1346 int ret = 0; 1347 1348 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 1349 return -EIO; 1350 1351 if (iov_iter_is_bvec(iter)) { 1352 bio_iov_bvec_set(bio, iter); 1353 iov_iter_advance(iter, bio->bi_iter.bi_size); 1354 return 0; 1355 } 1356 1357 if (iov_iter_extract_will_pin(iter)) 1358 bio_set_flag(bio, BIO_PAGE_PINNED); 1359 do { 1360 ret = __bio_iov_iter_get_pages(bio, iter); 1361 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 1362 1363 return bio->bi_vcnt ? 0 : ret; 1364 } 1365 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 1366 1367 static void submit_bio_wait_endio(struct bio *bio) 1368 { 1369 complete(bio->bi_private); 1370 } 1371 1372 /** 1373 * submit_bio_wait - submit a bio, and wait until it completes 1374 * @bio: The &struct bio which describes the I/O 1375 * 1376 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 1377 * bio_endio() on failure. 1378 * 1379 * WARNING: Unlike to how submit_bio() is usually used, this function does not 1380 * result in bio reference to be consumed. The caller must drop the reference 1381 * on his own. 1382 */ 1383 int submit_bio_wait(struct bio *bio) 1384 { 1385 DECLARE_COMPLETION_ONSTACK_MAP(done, 1386 bio->bi_bdev->bd_disk->lockdep_map); 1387 1388 bio->bi_private = &done; 1389 bio->bi_end_io = submit_bio_wait_endio; 1390 bio->bi_opf |= REQ_SYNC; 1391 submit_bio(bio); 1392 blk_wait_io(&done); 1393 1394 return blk_status_to_errno(bio->bi_status); 1395 } 1396 EXPORT_SYMBOL(submit_bio_wait); 1397 1398 static void bio_wait_end_io(struct bio *bio) 1399 { 1400 complete(bio->bi_private); 1401 bio_put(bio); 1402 } 1403 1404 /* 1405 * bio_await_chain - ends @bio and waits for every chained bio to complete 1406 */ 1407 void bio_await_chain(struct bio *bio) 1408 { 1409 DECLARE_COMPLETION_ONSTACK_MAP(done, 1410 bio->bi_bdev->bd_disk->lockdep_map); 1411 1412 bio->bi_private = &done; 1413 bio->bi_end_io = bio_wait_end_io; 1414 bio_endio(bio); 1415 blk_wait_io(&done); 1416 } 1417 1418 void __bio_advance(struct bio *bio, unsigned bytes) 1419 { 1420 if (bio_integrity(bio)) 1421 bio_integrity_advance(bio, bytes); 1422 1423 bio_crypt_advance(bio, bytes); 1424 bio_advance_iter(bio, &bio->bi_iter, bytes); 1425 } 1426 EXPORT_SYMBOL(__bio_advance); 1427 1428 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1429 struct bio *src, struct bvec_iter *src_iter) 1430 { 1431 while (src_iter->bi_size && dst_iter->bi_size) { 1432 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 1433 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 1434 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 1435 void *src_buf = bvec_kmap_local(&src_bv); 1436 void *dst_buf = bvec_kmap_local(&dst_bv); 1437 1438 memcpy(dst_buf, src_buf, bytes); 1439 1440 kunmap_local(dst_buf); 1441 kunmap_local(src_buf); 1442 1443 bio_advance_iter_single(src, src_iter, bytes); 1444 bio_advance_iter_single(dst, dst_iter, bytes); 1445 } 1446 } 1447 EXPORT_SYMBOL(bio_copy_data_iter); 1448 1449 /** 1450 * bio_copy_data - copy contents of data buffers from one bio to another 1451 * @src: source bio 1452 * @dst: destination bio 1453 * 1454 * Stops when it reaches the end of either @src or @dst - that is, copies 1455 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1456 */ 1457 void bio_copy_data(struct bio *dst, struct bio *src) 1458 { 1459 struct bvec_iter src_iter = src->bi_iter; 1460 struct bvec_iter dst_iter = dst->bi_iter; 1461 1462 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1463 } 1464 EXPORT_SYMBOL(bio_copy_data); 1465 1466 void bio_free_pages(struct bio *bio) 1467 { 1468 struct bio_vec *bvec; 1469 struct bvec_iter_all iter_all; 1470 1471 bio_for_each_segment_all(bvec, bio, iter_all) 1472 __free_page(bvec->bv_page); 1473 } 1474 EXPORT_SYMBOL(bio_free_pages); 1475 1476 /* 1477 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1478 * for performing direct-IO in BIOs. 1479 * 1480 * The problem is that we cannot run folio_mark_dirty() from interrupt context 1481 * because the required locks are not interrupt-safe. So what we can do is to 1482 * mark the pages dirty _before_ performing IO. And in interrupt context, 1483 * check that the pages are still dirty. If so, fine. If not, redirty them 1484 * in process context. 1485 * 1486 * Note that this code is very hard to test under normal circumstances because 1487 * direct-io pins the pages with get_user_pages(). This makes 1488 * is_page_cache_freeable return false, and the VM will not clean the pages. 1489 * But other code (eg, flusher threads) could clean the pages if they are mapped 1490 * pagecache. 1491 * 1492 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1493 * deferred bio dirtying paths. 1494 */ 1495 1496 /* 1497 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1498 */ 1499 void bio_set_pages_dirty(struct bio *bio) 1500 { 1501 struct folio_iter fi; 1502 1503 bio_for_each_folio_all(fi, bio) { 1504 folio_lock(fi.folio); 1505 folio_mark_dirty(fi.folio); 1506 folio_unlock(fi.folio); 1507 } 1508 } 1509 EXPORT_SYMBOL_GPL(bio_set_pages_dirty); 1510 1511 /* 1512 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1513 * If they are, then fine. If, however, some pages are clean then they must 1514 * have been written out during the direct-IO read. So we take another ref on 1515 * the BIO and re-dirty the pages in process context. 1516 * 1517 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1518 * here on. It will unpin each page and will run one bio_put() against the 1519 * BIO. 1520 */ 1521 1522 static void bio_dirty_fn(struct work_struct *work); 1523 1524 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1525 static DEFINE_SPINLOCK(bio_dirty_lock); 1526 static struct bio *bio_dirty_list; 1527 1528 /* 1529 * This runs in process context 1530 */ 1531 static void bio_dirty_fn(struct work_struct *work) 1532 { 1533 struct bio *bio, *next; 1534 1535 spin_lock_irq(&bio_dirty_lock); 1536 next = bio_dirty_list; 1537 bio_dirty_list = NULL; 1538 spin_unlock_irq(&bio_dirty_lock); 1539 1540 while ((bio = next) != NULL) { 1541 next = bio->bi_private; 1542 1543 bio_release_pages(bio, true); 1544 bio_put(bio); 1545 } 1546 } 1547 1548 void bio_check_pages_dirty(struct bio *bio) 1549 { 1550 struct folio_iter fi; 1551 unsigned long flags; 1552 1553 bio_for_each_folio_all(fi, bio) { 1554 if (!folio_test_dirty(fi.folio)) 1555 goto defer; 1556 } 1557 1558 bio_release_pages(bio, false); 1559 bio_put(bio); 1560 return; 1561 defer: 1562 spin_lock_irqsave(&bio_dirty_lock, flags); 1563 bio->bi_private = bio_dirty_list; 1564 bio_dirty_list = bio; 1565 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1566 schedule_work(&bio_dirty_work); 1567 } 1568 EXPORT_SYMBOL_GPL(bio_check_pages_dirty); 1569 1570 static inline bool bio_remaining_done(struct bio *bio) 1571 { 1572 /* 1573 * If we're not chaining, then ->__bi_remaining is always 1 and 1574 * we always end io on the first invocation. 1575 */ 1576 if (!bio_flagged(bio, BIO_CHAIN)) 1577 return true; 1578 1579 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1580 1581 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1582 bio_clear_flag(bio, BIO_CHAIN); 1583 return true; 1584 } 1585 1586 return false; 1587 } 1588 1589 /** 1590 * bio_endio - end I/O on a bio 1591 * @bio: bio 1592 * 1593 * Description: 1594 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1595 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1596 * bio unless they own it and thus know that it has an end_io function. 1597 * 1598 * bio_endio() can be called several times on a bio that has been chained 1599 * using bio_chain(). The ->bi_end_io() function will only be called the 1600 * last time. 1601 **/ 1602 void bio_endio(struct bio *bio) 1603 { 1604 again: 1605 if (!bio_remaining_done(bio)) 1606 return; 1607 if (!bio_integrity_endio(bio)) 1608 return; 1609 1610 blk_zone_bio_endio(bio); 1611 1612 rq_qos_done_bio(bio); 1613 1614 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1615 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 1616 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1617 } 1618 1619 /* 1620 * Need to have a real endio function for chained bios, otherwise 1621 * various corner cases will break (like stacking block devices that 1622 * save/restore bi_end_io) - however, we want to avoid unbounded 1623 * recursion and blowing the stack. Tail call optimization would 1624 * handle this, but compiling with frame pointers also disables 1625 * gcc's sibling call optimization. 1626 */ 1627 if (bio->bi_end_io == bio_chain_endio) { 1628 bio = __bio_chain_endio(bio); 1629 goto again; 1630 } 1631 1632 #ifdef CONFIG_BLK_CGROUP 1633 /* 1634 * Release cgroup info. We shouldn't have to do this here, but quite 1635 * a few callers of bio_init fail to call bio_uninit, so we cover up 1636 * for that here at least for now. 1637 */ 1638 if (bio->bi_blkg) { 1639 blkg_put(bio->bi_blkg); 1640 bio->bi_blkg = NULL; 1641 } 1642 #endif 1643 1644 if (bio->bi_end_io) 1645 bio->bi_end_io(bio); 1646 } 1647 EXPORT_SYMBOL(bio_endio); 1648 1649 /** 1650 * bio_split - split a bio 1651 * @bio: bio to split 1652 * @sectors: number of sectors to split from the front of @bio 1653 * @gfp: gfp mask 1654 * @bs: bio set to allocate from 1655 * 1656 * Allocates and returns a new bio which represents @sectors from the start of 1657 * @bio, and updates @bio to represent the remaining sectors. 1658 * 1659 * Unless this is a discard request the newly allocated bio will point 1660 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 1661 * neither @bio nor @bs are freed before the split bio. 1662 */ 1663 struct bio *bio_split(struct bio *bio, int sectors, 1664 gfp_t gfp, struct bio_set *bs) 1665 { 1666 struct bio *split; 1667 1668 if (WARN_ON_ONCE(sectors <= 0)) 1669 return ERR_PTR(-EINVAL); 1670 if (WARN_ON_ONCE(sectors >= bio_sectors(bio))) 1671 return ERR_PTR(-EINVAL); 1672 1673 /* Zone append commands cannot be split */ 1674 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 1675 return ERR_PTR(-EINVAL); 1676 1677 /* atomic writes cannot be split */ 1678 if (bio->bi_opf & REQ_ATOMIC) 1679 return ERR_PTR(-EINVAL); 1680 1681 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 1682 if (!split) 1683 return ERR_PTR(-ENOMEM); 1684 1685 split->bi_iter.bi_size = sectors << 9; 1686 1687 if (bio_integrity(split)) 1688 bio_integrity_trim(split); 1689 1690 bio_advance(bio, split->bi_iter.bi_size); 1691 1692 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1693 bio_set_flag(split, BIO_TRACE_COMPLETION); 1694 1695 return split; 1696 } 1697 EXPORT_SYMBOL(bio_split); 1698 1699 /** 1700 * bio_trim - trim a bio 1701 * @bio: bio to trim 1702 * @offset: number of sectors to trim from the front of @bio 1703 * @size: size we want to trim @bio to, in sectors 1704 * 1705 * This function is typically used for bios that are cloned and submitted 1706 * to the underlying device in parts. 1707 */ 1708 void bio_trim(struct bio *bio, sector_t offset, sector_t size) 1709 { 1710 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 1711 offset + size > bio_sectors(bio))) 1712 return; 1713 1714 size <<= 9; 1715 if (offset == 0 && size == bio->bi_iter.bi_size) 1716 return; 1717 1718 bio_advance(bio, offset << 9); 1719 bio->bi_iter.bi_size = size; 1720 1721 if (bio_integrity(bio)) 1722 bio_integrity_trim(bio); 1723 } 1724 EXPORT_SYMBOL_GPL(bio_trim); 1725 1726 /* 1727 * create memory pools for biovec's in a bio_set. 1728 * use the global biovec slabs created for general use. 1729 */ 1730 int biovec_init_pool(mempool_t *pool, int pool_entries) 1731 { 1732 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 1733 1734 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1735 } 1736 1737 /* 1738 * bioset_exit - exit a bioset initialized with bioset_init() 1739 * 1740 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1741 * kzalloc()). 1742 */ 1743 void bioset_exit(struct bio_set *bs) 1744 { 1745 bio_alloc_cache_destroy(bs); 1746 if (bs->rescue_workqueue) 1747 destroy_workqueue(bs->rescue_workqueue); 1748 bs->rescue_workqueue = NULL; 1749 1750 mempool_exit(&bs->bio_pool); 1751 mempool_exit(&bs->bvec_pool); 1752 1753 bioset_integrity_free(bs); 1754 if (bs->bio_slab) 1755 bio_put_slab(bs); 1756 bs->bio_slab = NULL; 1757 } 1758 EXPORT_SYMBOL(bioset_exit); 1759 1760 /** 1761 * bioset_init - Initialize a bio_set 1762 * @bs: pool to initialize 1763 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1764 * @front_pad: Number of bytes to allocate in front of the returned bio 1765 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1766 * and %BIOSET_NEED_RESCUER 1767 * 1768 * Description: 1769 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1770 * to ask for a number of bytes to be allocated in front of the bio. 1771 * Front pad allocation is useful for embedding the bio inside 1772 * another structure, to avoid allocating extra data to go with the bio. 1773 * Note that the bio must be embedded at the END of that structure always, 1774 * or things will break badly. 1775 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1776 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 1777 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 1778 * to dispatch queued requests when the mempool runs out of space. 1779 * 1780 */ 1781 int bioset_init(struct bio_set *bs, 1782 unsigned int pool_size, 1783 unsigned int front_pad, 1784 int flags) 1785 { 1786 bs->front_pad = front_pad; 1787 if (flags & BIOSET_NEED_BVECS) 1788 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1789 else 1790 bs->back_pad = 0; 1791 1792 spin_lock_init(&bs->rescue_lock); 1793 bio_list_init(&bs->rescue_list); 1794 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1795 1796 bs->bio_slab = bio_find_or_create_slab(bs); 1797 if (!bs->bio_slab) 1798 return -ENOMEM; 1799 1800 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1801 goto bad; 1802 1803 if ((flags & BIOSET_NEED_BVECS) && 1804 biovec_init_pool(&bs->bvec_pool, pool_size)) 1805 goto bad; 1806 1807 if (flags & BIOSET_NEED_RESCUER) { 1808 bs->rescue_workqueue = alloc_workqueue("bioset", 1809 WQ_MEM_RECLAIM, 0); 1810 if (!bs->rescue_workqueue) 1811 goto bad; 1812 } 1813 if (flags & BIOSET_PERCPU_CACHE) { 1814 bs->cache = alloc_percpu(struct bio_alloc_cache); 1815 if (!bs->cache) 1816 goto bad; 1817 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 1818 } 1819 1820 return 0; 1821 bad: 1822 bioset_exit(bs); 1823 return -ENOMEM; 1824 } 1825 EXPORT_SYMBOL(bioset_init); 1826 1827 static int __init init_bio(void) 1828 { 1829 int i; 1830 1831 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags)); 1832 1833 bio_integrity_init(); 1834 1835 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 1836 struct biovec_slab *bvs = bvec_slabs + i; 1837 1838 bvs->slab = kmem_cache_create(bvs->name, 1839 bvs->nr_vecs * sizeof(struct bio_vec), 0, 1840 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1841 } 1842 1843 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 1844 bio_cpu_dead); 1845 1846 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, 1847 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) 1848 panic("bio: can't allocate bios\n"); 1849 1850 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 1851 panic("bio: can't create integrity pool\n"); 1852 1853 return 0; 1854 } 1855 subsys_initcall(init_bio); 1856