xref: /linux/block/bio.c (revision 5f67eef6dff39421215e9134f1eaae51b67a73b7)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4   */
5  #include <linux/mm.h>
6  #include <linux/swap.h>
7  #include <linux/bio.h>
8  #include <linux/blkdev.h>
9  #include <linux/uio.h>
10  #include <linux/iocontext.h>
11  #include <linux/slab.h>
12  #include <linux/init.h>
13  #include <linux/kernel.h>
14  #include <linux/export.h>
15  #include <linux/mempool.h>
16  #include <linux/workqueue.h>
17  #include <linux/cgroup.h>
18  #include <linux/highmem.h>
19  #include <linux/blk-crypto.h>
20  #include <linux/xarray.h>
21  
22  #include <trace/events/block.h>
23  #include "blk.h"
24  #include "blk-rq-qos.h"
25  #include "blk-cgroup.h"
26  
27  #define ALLOC_CACHE_THRESHOLD	16
28  #define ALLOC_CACHE_MAX		256
29  
30  struct bio_alloc_cache {
31  	struct bio		*free_list;
32  	struct bio		*free_list_irq;
33  	unsigned int		nr;
34  	unsigned int		nr_irq;
35  };
36  
37  static struct biovec_slab {
38  	int nr_vecs;
39  	char *name;
40  	struct kmem_cache *slab;
41  } bvec_slabs[] __read_mostly = {
42  	{ .nr_vecs = 16, .name = "biovec-16" },
43  	{ .nr_vecs = 64, .name = "biovec-64" },
44  	{ .nr_vecs = 128, .name = "biovec-128" },
45  	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46  };
47  
48  static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49  {
50  	switch (nr_vecs) {
51  	/* smaller bios use inline vecs */
52  	case 5 ... 16:
53  		return &bvec_slabs[0];
54  	case 17 ... 64:
55  		return &bvec_slabs[1];
56  	case 65 ... 128:
57  		return &bvec_slabs[2];
58  	case 129 ... BIO_MAX_VECS:
59  		return &bvec_slabs[3];
60  	default:
61  		BUG();
62  		return NULL;
63  	}
64  }
65  
66  /*
67   * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68   * IO code that does not need private memory pools.
69   */
70  struct bio_set fs_bio_set;
71  EXPORT_SYMBOL(fs_bio_set);
72  
73  /*
74   * Our slab pool management
75   */
76  struct bio_slab {
77  	struct kmem_cache *slab;
78  	unsigned int slab_ref;
79  	unsigned int slab_size;
80  	char name[8];
81  };
82  static DEFINE_MUTEX(bio_slab_lock);
83  static DEFINE_XARRAY(bio_slabs);
84  
85  static struct bio_slab *create_bio_slab(unsigned int size)
86  {
87  	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88  
89  	if (!bslab)
90  		return NULL;
91  
92  	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93  	bslab->slab = kmem_cache_create(bslab->name, size,
94  			ARCH_KMALLOC_MINALIGN,
95  			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96  	if (!bslab->slab)
97  		goto fail_alloc_slab;
98  
99  	bslab->slab_ref = 1;
100  	bslab->slab_size = size;
101  
102  	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103  		return bslab;
104  
105  	kmem_cache_destroy(bslab->slab);
106  
107  fail_alloc_slab:
108  	kfree(bslab);
109  	return NULL;
110  }
111  
112  static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113  {
114  	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115  }
116  
117  static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118  {
119  	unsigned int size = bs_bio_slab_size(bs);
120  	struct bio_slab *bslab;
121  
122  	mutex_lock(&bio_slab_lock);
123  	bslab = xa_load(&bio_slabs, size);
124  	if (bslab)
125  		bslab->slab_ref++;
126  	else
127  		bslab = create_bio_slab(size);
128  	mutex_unlock(&bio_slab_lock);
129  
130  	if (bslab)
131  		return bslab->slab;
132  	return NULL;
133  }
134  
135  static void bio_put_slab(struct bio_set *bs)
136  {
137  	struct bio_slab *bslab = NULL;
138  	unsigned int slab_size = bs_bio_slab_size(bs);
139  
140  	mutex_lock(&bio_slab_lock);
141  
142  	bslab = xa_load(&bio_slabs, slab_size);
143  	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144  		goto out;
145  
146  	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147  
148  	WARN_ON(!bslab->slab_ref);
149  
150  	if (--bslab->slab_ref)
151  		goto out;
152  
153  	xa_erase(&bio_slabs, slab_size);
154  
155  	kmem_cache_destroy(bslab->slab);
156  	kfree(bslab);
157  
158  out:
159  	mutex_unlock(&bio_slab_lock);
160  }
161  
162  void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163  {
164  	BUG_ON(nr_vecs > BIO_MAX_VECS);
165  
166  	if (nr_vecs == BIO_MAX_VECS)
167  		mempool_free(bv, pool);
168  	else if (nr_vecs > BIO_INLINE_VECS)
169  		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170  }
171  
172  /*
173   * Make the first allocation restricted and don't dump info on allocation
174   * failures, since we'll fall back to the mempool in case of failure.
175   */
176  static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177  {
178  	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179  		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180  }
181  
182  struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183  		gfp_t gfp_mask)
184  {
185  	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186  
187  	if (WARN_ON_ONCE(!bvs))
188  		return NULL;
189  
190  	/*
191  	 * Upgrade the nr_vecs request to take full advantage of the allocation.
192  	 * We also rely on this in the bvec_free path.
193  	 */
194  	*nr_vecs = bvs->nr_vecs;
195  
196  	/*
197  	 * Try a slab allocation first for all smaller allocations.  If that
198  	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199  	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200  	 */
201  	if (*nr_vecs < BIO_MAX_VECS) {
202  		struct bio_vec *bvl;
203  
204  		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205  		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206  			return bvl;
207  		*nr_vecs = BIO_MAX_VECS;
208  	}
209  
210  	return mempool_alloc(pool, gfp_mask);
211  }
212  
213  void bio_uninit(struct bio *bio)
214  {
215  #ifdef CONFIG_BLK_CGROUP
216  	if (bio->bi_blkg) {
217  		blkg_put(bio->bi_blkg);
218  		bio->bi_blkg = NULL;
219  	}
220  #endif
221  	if (bio_integrity(bio))
222  		bio_integrity_free(bio);
223  
224  	bio_crypt_free_ctx(bio);
225  }
226  EXPORT_SYMBOL(bio_uninit);
227  
228  static void bio_free(struct bio *bio)
229  {
230  	struct bio_set *bs = bio->bi_pool;
231  	void *p = bio;
232  
233  	WARN_ON_ONCE(!bs);
234  
235  	bio_uninit(bio);
236  	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237  	mempool_free(p - bs->front_pad, &bs->bio_pool);
238  }
239  
240  /*
241   * Users of this function have their own bio allocation. Subsequently,
242   * they must remember to pair any call to bio_init() with bio_uninit()
243   * when IO has completed, or when the bio is released.
244   */
245  void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246  	      unsigned short max_vecs, blk_opf_t opf)
247  {
248  	bio->bi_next = NULL;
249  	bio->bi_bdev = bdev;
250  	bio->bi_opf = opf;
251  	bio->bi_flags = 0;
252  	bio->bi_ioprio = 0;
253  	bio->bi_write_hint = 0;
254  	bio->bi_status = 0;
255  	bio->bi_iter.bi_sector = 0;
256  	bio->bi_iter.bi_size = 0;
257  	bio->bi_iter.bi_idx = 0;
258  	bio->bi_iter.bi_bvec_done = 0;
259  	bio->bi_end_io = NULL;
260  	bio->bi_private = NULL;
261  #ifdef CONFIG_BLK_CGROUP
262  	bio->bi_blkg = NULL;
263  	bio->bi_issue.value = 0;
264  	if (bdev)
265  		bio_associate_blkg(bio);
266  #ifdef CONFIG_BLK_CGROUP_IOCOST
267  	bio->bi_iocost_cost = 0;
268  #endif
269  #endif
270  #ifdef CONFIG_BLK_INLINE_ENCRYPTION
271  	bio->bi_crypt_context = NULL;
272  #endif
273  #ifdef CONFIG_BLK_DEV_INTEGRITY
274  	bio->bi_integrity = NULL;
275  #endif
276  	bio->bi_vcnt = 0;
277  
278  	atomic_set(&bio->__bi_remaining, 1);
279  	atomic_set(&bio->__bi_cnt, 1);
280  	bio->bi_cookie = BLK_QC_T_NONE;
281  
282  	bio->bi_max_vecs = max_vecs;
283  	bio->bi_io_vec = table;
284  	bio->bi_pool = NULL;
285  }
286  EXPORT_SYMBOL(bio_init);
287  
288  /**
289   * bio_reset - reinitialize a bio
290   * @bio:	bio to reset
291   * @bdev:	block device to use the bio for
292   * @opf:	operation and flags for bio
293   *
294   * Description:
295   *   After calling bio_reset(), @bio will be in the same state as a freshly
296   *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
297   *   preserved are the ones that are initialized by bio_alloc_bioset(). See
298   *   comment in struct bio.
299   */
300  void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
301  {
302  	bio_uninit(bio);
303  	memset(bio, 0, BIO_RESET_BYTES);
304  	atomic_set(&bio->__bi_remaining, 1);
305  	bio->bi_bdev = bdev;
306  	if (bio->bi_bdev)
307  		bio_associate_blkg(bio);
308  	bio->bi_opf = opf;
309  }
310  EXPORT_SYMBOL(bio_reset);
311  
312  static struct bio *__bio_chain_endio(struct bio *bio)
313  {
314  	struct bio *parent = bio->bi_private;
315  
316  	if (bio->bi_status && !parent->bi_status)
317  		parent->bi_status = bio->bi_status;
318  	bio_put(bio);
319  	return parent;
320  }
321  
322  static void bio_chain_endio(struct bio *bio)
323  {
324  	bio_endio(__bio_chain_endio(bio));
325  }
326  
327  /**
328   * bio_chain - chain bio completions
329   * @bio: the target bio
330   * @parent: the parent bio of @bio
331   *
332   * The caller won't have a bi_end_io called when @bio completes - instead,
333   * @parent's bi_end_io won't be called until both @parent and @bio have
334   * completed; the chained bio will also be freed when it completes.
335   *
336   * The caller must not set bi_private or bi_end_io in @bio.
337   */
338  void bio_chain(struct bio *bio, struct bio *parent)
339  {
340  	BUG_ON(bio->bi_private || bio->bi_end_io);
341  
342  	bio->bi_private = parent;
343  	bio->bi_end_io	= bio_chain_endio;
344  	bio_inc_remaining(parent);
345  }
346  EXPORT_SYMBOL(bio_chain);
347  
348  /**
349   * bio_chain_and_submit - submit a bio after chaining it to another one
350   * @prev: bio to chain and submit
351   * @new: bio to chain to
352   *
353   * If @prev is non-NULL, chain it to @new and submit it.
354   *
355   * Return: @new.
356   */
357  struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
358  {
359  	if (prev) {
360  		bio_chain(prev, new);
361  		submit_bio(prev);
362  	}
363  	return new;
364  }
365  
366  struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
367  		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
368  {
369  	return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
370  }
371  EXPORT_SYMBOL_GPL(blk_next_bio);
372  
373  static void bio_alloc_rescue(struct work_struct *work)
374  {
375  	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
376  	struct bio *bio;
377  
378  	while (1) {
379  		spin_lock(&bs->rescue_lock);
380  		bio = bio_list_pop(&bs->rescue_list);
381  		spin_unlock(&bs->rescue_lock);
382  
383  		if (!bio)
384  			break;
385  
386  		submit_bio_noacct(bio);
387  	}
388  }
389  
390  static void punt_bios_to_rescuer(struct bio_set *bs)
391  {
392  	struct bio_list punt, nopunt;
393  	struct bio *bio;
394  
395  	if (WARN_ON_ONCE(!bs->rescue_workqueue))
396  		return;
397  	/*
398  	 * In order to guarantee forward progress we must punt only bios that
399  	 * were allocated from this bio_set; otherwise, if there was a bio on
400  	 * there for a stacking driver higher up in the stack, processing it
401  	 * could require allocating bios from this bio_set, and doing that from
402  	 * our own rescuer would be bad.
403  	 *
404  	 * Since bio lists are singly linked, pop them all instead of trying to
405  	 * remove from the middle of the list:
406  	 */
407  
408  	bio_list_init(&punt);
409  	bio_list_init(&nopunt);
410  
411  	while ((bio = bio_list_pop(&current->bio_list[0])))
412  		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
413  	current->bio_list[0] = nopunt;
414  
415  	bio_list_init(&nopunt);
416  	while ((bio = bio_list_pop(&current->bio_list[1])))
417  		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
418  	current->bio_list[1] = nopunt;
419  
420  	spin_lock(&bs->rescue_lock);
421  	bio_list_merge(&bs->rescue_list, &punt);
422  	spin_unlock(&bs->rescue_lock);
423  
424  	queue_work(bs->rescue_workqueue, &bs->rescue_work);
425  }
426  
427  static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
428  {
429  	unsigned long flags;
430  
431  	/* cache->free_list must be empty */
432  	if (WARN_ON_ONCE(cache->free_list))
433  		return;
434  
435  	local_irq_save(flags);
436  	cache->free_list = cache->free_list_irq;
437  	cache->free_list_irq = NULL;
438  	cache->nr += cache->nr_irq;
439  	cache->nr_irq = 0;
440  	local_irq_restore(flags);
441  }
442  
443  static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
444  		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
445  		struct bio_set *bs)
446  {
447  	struct bio_alloc_cache *cache;
448  	struct bio *bio;
449  
450  	cache = per_cpu_ptr(bs->cache, get_cpu());
451  	if (!cache->free_list) {
452  		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
453  			bio_alloc_irq_cache_splice(cache);
454  		if (!cache->free_list) {
455  			put_cpu();
456  			return NULL;
457  		}
458  	}
459  	bio = cache->free_list;
460  	cache->free_list = bio->bi_next;
461  	cache->nr--;
462  	put_cpu();
463  
464  	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
465  	bio->bi_pool = bs;
466  	return bio;
467  }
468  
469  /**
470   * bio_alloc_bioset - allocate a bio for I/O
471   * @bdev:	block device to allocate the bio for (can be %NULL)
472   * @nr_vecs:	number of bvecs to pre-allocate
473   * @opf:	operation and flags for bio
474   * @gfp_mask:   the GFP_* mask given to the slab allocator
475   * @bs:		the bio_set to allocate from.
476   *
477   * Allocate a bio from the mempools in @bs.
478   *
479   * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
480   * allocate a bio.  This is due to the mempool guarantees.  To make this work,
481   * callers must never allocate more than 1 bio at a time from the general pool.
482   * Callers that need to allocate more than 1 bio must always submit the
483   * previously allocated bio for IO before attempting to allocate a new one.
484   * Failure to do so can cause deadlocks under memory pressure.
485   *
486   * Note that when running under submit_bio_noacct() (i.e. any block driver),
487   * bios are not submitted until after you return - see the code in
488   * submit_bio_noacct() that converts recursion into iteration, to prevent
489   * stack overflows.
490   *
491   * This would normally mean allocating multiple bios under submit_bio_noacct()
492   * would be susceptible to deadlocks, but we have
493   * deadlock avoidance code that resubmits any blocked bios from a rescuer
494   * thread.
495   *
496   * However, we do not guarantee forward progress for allocations from other
497   * mempools. Doing multiple allocations from the same mempool under
498   * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
499   * for per bio allocations.
500   *
501   * Returns: Pointer to new bio on success, NULL on failure.
502   */
503  struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
504  			     blk_opf_t opf, gfp_t gfp_mask,
505  			     struct bio_set *bs)
506  {
507  	gfp_t saved_gfp = gfp_mask;
508  	struct bio *bio;
509  	void *p;
510  
511  	/* should not use nobvec bioset for nr_vecs > 0 */
512  	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
513  		return NULL;
514  
515  	if (opf & REQ_ALLOC_CACHE) {
516  		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
517  			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
518  						     gfp_mask, bs);
519  			if (bio)
520  				return bio;
521  			/*
522  			 * No cached bio available, bio returned below marked with
523  			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
524  			 */
525  		} else {
526  			opf &= ~REQ_ALLOC_CACHE;
527  		}
528  	}
529  
530  	/*
531  	 * submit_bio_noacct() converts recursion to iteration; this means if
532  	 * we're running beneath it, any bios we allocate and submit will not be
533  	 * submitted (and thus freed) until after we return.
534  	 *
535  	 * This exposes us to a potential deadlock if we allocate multiple bios
536  	 * from the same bio_set() while running underneath submit_bio_noacct().
537  	 * If we were to allocate multiple bios (say a stacking block driver
538  	 * that was splitting bios), we would deadlock if we exhausted the
539  	 * mempool's reserve.
540  	 *
541  	 * We solve this, and guarantee forward progress, with a rescuer
542  	 * workqueue per bio_set. If we go to allocate and there are bios on
543  	 * current->bio_list, we first try the allocation without
544  	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
545  	 * blocking to the rescuer workqueue before we retry with the original
546  	 * gfp_flags.
547  	 */
548  	if (current->bio_list &&
549  	    (!bio_list_empty(&current->bio_list[0]) ||
550  	     !bio_list_empty(&current->bio_list[1])) &&
551  	    bs->rescue_workqueue)
552  		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
553  
554  	p = mempool_alloc(&bs->bio_pool, gfp_mask);
555  	if (!p && gfp_mask != saved_gfp) {
556  		punt_bios_to_rescuer(bs);
557  		gfp_mask = saved_gfp;
558  		p = mempool_alloc(&bs->bio_pool, gfp_mask);
559  	}
560  	if (unlikely(!p))
561  		return NULL;
562  	if (!mempool_is_saturated(&bs->bio_pool))
563  		opf &= ~REQ_ALLOC_CACHE;
564  
565  	bio = p + bs->front_pad;
566  	if (nr_vecs > BIO_INLINE_VECS) {
567  		struct bio_vec *bvl = NULL;
568  
569  		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
570  		if (!bvl && gfp_mask != saved_gfp) {
571  			punt_bios_to_rescuer(bs);
572  			gfp_mask = saved_gfp;
573  			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
574  		}
575  		if (unlikely(!bvl))
576  			goto err_free;
577  
578  		bio_init(bio, bdev, bvl, nr_vecs, opf);
579  	} else if (nr_vecs) {
580  		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
581  	} else {
582  		bio_init(bio, bdev, NULL, 0, opf);
583  	}
584  
585  	bio->bi_pool = bs;
586  	return bio;
587  
588  err_free:
589  	mempool_free(p, &bs->bio_pool);
590  	return NULL;
591  }
592  EXPORT_SYMBOL(bio_alloc_bioset);
593  
594  /**
595   * bio_kmalloc - kmalloc a bio
596   * @nr_vecs:	number of bio_vecs to allocate
597   * @gfp_mask:   the GFP_* mask given to the slab allocator
598   *
599   * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
600   * using bio_init() before use.  To free a bio returned from this function use
601   * kfree() after calling bio_uninit().  A bio returned from this function can
602   * be reused by calling bio_uninit() before calling bio_init() again.
603   *
604   * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
605   * function are not backed by a mempool can fail.  Do not use this function
606   * for allocations in the file system I/O path.
607   *
608   * Returns: Pointer to new bio on success, NULL on failure.
609   */
610  struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
611  {
612  	struct bio *bio;
613  
614  	if (nr_vecs > UIO_MAXIOV)
615  		return NULL;
616  	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
617  }
618  EXPORT_SYMBOL(bio_kmalloc);
619  
620  void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
621  {
622  	struct bio_vec bv;
623  	struct bvec_iter iter;
624  
625  	__bio_for_each_segment(bv, bio, iter, start)
626  		memzero_bvec(&bv);
627  }
628  EXPORT_SYMBOL(zero_fill_bio_iter);
629  
630  /**
631   * bio_truncate - truncate the bio to small size of @new_size
632   * @bio:	the bio to be truncated
633   * @new_size:	new size for truncating the bio
634   *
635   * Description:
636   *   Truncate the bio to new size of @new_size. If bio_op(bio) is
637   *   REQ_OP_READ, zero the truncated part. This function should only
638   *   be used for handling corner cases, such as bio eod.
639   */
640  static void bio_truncate(struct bio *bio, unsigned new_size)
641  {
642  	struct bio_vec bv;
643  	struct bvec_iter iter;
644  	unsigned int done = 0;
645  	bool truncated = false;
646  
647  	if (new_size >= bio->bi_iter.bi_size)
648  		return;
649  
650  	if (bio_op(bio) != REQ_OP_READ)
651  		goto exit;
652  
653  	bio_for_each_segment(bv, bio, iter) {
654  		if (done + bv.bv_len > new_size) {
655  			unsigned offset;
656  
657  			if (!truncated)
658  				offset = new_size - done;
659  			else
660  				offset = 0;
661  			zero_user(bv.bv_page, bv.bv_offset + offset,
662  				  bv.bv_len - offset);
663  			truncated = true;
664  		}
665  		done += bv.bv_len;
666  	}
667  
668   exit:
669  	/*
670  	 * Don't touch bvec table here and make it really immutable, since
671  	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
672  	 * in its .end_bio() callback.
673  	 *
674  	 * It is enough to truncate bio by updating .bi_size since we can make
675  	 * correct bvec with the updated .bi_size for drivers.
676  	 */
677  	bio->bi_iter.bi_size = new_size;
678  }
679  
680  /**
681   * guard_bio_eod - truncate a BIO to fit the block device
682   * @bio:	bio to truncate
683   *
684   * This allows us to do IO even on the odd last sectors of a device, even if the
685   * block size is some multiple of the physical sector size.
686   *
687   * We'll just truncate the bio to the size of the device, and clear the end of
688   * the buffer head manually.  Truly out-of-range accesses will turn into actual
689   * I/O errors, this only handles the "we need to be able to do I/O at the final
690   * sector" case.
691   */
692  void guard_bio_eod(struct bio *bio)
693  {
694  	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
695  
696  	if (!maxsector)
697  		return;
698  
699  	/*
700  	 * If the *whole* IO is past the end of the device,
701  	 * let it through, and the IO layer will turn it into
702  	 * an EIO.
703  	 */
704  	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
705  		return;
706  
707  	maxsector -= bio->bi_iter.bi_sector;
708  	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
709  		return;
710  
711  	bio_truncate(bio, maxsector << 9);
712  }
713  
714  static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
715  				   unsigned int nr)
716  {
717  	unsigned int i = 0;
718  	struct bio *bio;
719  
720  	while ((bio = cache->free_list) != NULL) {
721  		cache->free_list = bio->bi_next;
722  		cache->nr--;
723  		bio_free(bio);
724  		if (++i == nr)
725  			break;
726  	}
727  	return i;
728  }
729  
730  static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
731  				  unsigned int nr)
732  {
733  	nr -= __bio_alloc_cache_prune(cache, nr);
734  	if (!READ_ONCE(cache->free_list)) {
735  		bio_alloc_irq_cache_splice(cache);
736  		__bio_alloc_cache_prune(cache, nr);
737  	}
738  }
739  
740  static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
741  {
742  	struct bio_set *bs;
743  
744  	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
745  	if (bs->cache) {
746  		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
747  
748  		bio_alloc_cache_prune(cache, -1U);
749  	}
750  	return 0;
751  }
752  
753  static void bio_alloc_cache_destroy(struct bio_set *bs)
754  {
755  	int cpu;
756  
757  	if (!bs->cache)
758  		return;
759  
760  	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
761  	for_each_possible_cpu(cpu) {
762  		struct bio_alloc_cache *cache;
763  
764  		cache = per_cpu_ptr(bs->cache, cpu);
765  		bio_alloc_cache_prune(cache, -1U);
766  	}
767  	free_percpu(bs->cache);
768  	bs->cache = NULL;
769  }
770  
771  static inline void bio_put_percpu_cache(struct bio *bio)
772  {
773  	struct bio_alloc_cache *cache;
774  
775  	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
776  	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
777  		goto out_free;
778  
779  	if (in_task()) {
780  		bio_uninit(bio);
781  		bio->bi_next = cache->free_list;
782  		/* Not necessary but helps not to iopoll already freed bios */
783  		bio->bi_bdev = NULL;
784  		cache->free_list = bio;
785  		cache->nr++;
786  	} else if (in_hardirq()) {
787  		lockdep_assert_irqs_disabled();
788  
789  		bio_uninit(bio);
790  		bio->bi_next = cache->free_list_irq;
791  		cache->free_list_irq = bio;
792  		cache->nr_irq++;
793  	} else {
794  		goto out_free;
795  	}
796  	put_cpu();
797  	return;
798  out_free:
799  	put_cpu();
800  	bio_free(bio);
801  }
802  
803  /**
804   * bio_put - release a reference to a bio
805   * @bio:   bio to release reference to
806   *
807   * Description:
808   *   Put a reference to a &struct bio, either one you have gotten with
809   *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
810   **/
811  void bio_put(struct bio *bio)
812  {
813  	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
814  		BUG_ON(!atomic_read(&bio->__bi_cnt));
815  		if (!atomic_dec_and_test(&bio->__bi_cnt))
816  			return;
817  	}
818  	if (bio->bi_opf & REQ_ALLOC_CACHE)
819  		bio_put_percpu_cache(bio);
820  	else
821  		bio_free(bio);
822  }
823  EXPORT_SYMBOL(bio_put);
824  
825  static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
826  {
827  	bio_set_flag(bio, BIO_CLONED);
828  	bio->bi_ioprio = bio_src->bi_ioprio;
829  	bio->bi_write_hint = bio_src->bi_write_hint;
830  	bio->bi_iter = bio_src->bi_iter;
831  
832  	if (bio->bi_bdev) {
833  		if (bio->bi_bdev == bio_src->bi_bdev &&
834  		    bio_flagged(bio_src, BIO_REMAPPED))
835  			bio_set_flag(bio, BIO_REMAPPED);
836  		bio_clone_blkg_association(bio, bio_src);
837  	}
838  
839  	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
840  		return -ENOMEM;
841  	if (bio_integrity(bio_src) &&
842  	    bio_integrity_clone(bio, bio_src, gfp) < 0)
843  		return -ENOMEM;
844  	return 0;
845  }
846  
847  /**
848   * bio_alloc_clone - clone a bio that shares the original bio's biovec
849   * @bdev: block_device to clone onto
850   * @bio_src: bio to clone from
851   * @gfp: allocation priority
852   * @bs: bio_set to allocate from
853   *
854   * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
855   * bio, but not the actual data it points to.
856   *
857   * The caller must ensure that the return bio is not freed before @bio_src.
858   */
859  struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
860  		gfp_t gfp, struct bio_set *bs)
861  {
862  	struct bio *bio;
863  
864  	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
865  	if (!bio)
866  		return NULL;
867  
868  	if (__bio_clone(bio, bio_src, gfp) < 0) {
869  		bio_put(bio);
870  		return NULL;
871  	}
872  	bio->bi_io_vec = bio_src->bi_io_vec;
873  
874  	return bio;
875  }
876  EXPORT_SYMBOL(bio_alloc_clone);
877  
878  /**
879   * bio_init_clone - clone a bio that shares the original bio's biovec
880   * @bdev: block_device to clone onto
881   * @bio: bio to clone into
882   * @bio_src: bio to clone from
883   * @gfp: allocation priority
884   *
885   * Initialize a new bio in caller provided memory that is a clone of @bio_src.
886   * The caller owns the returned bio, but not the actual data it points to.
887   *
888   * The caller must ensure that @bio_src is not freed before @bio.
889   */
890  int bio_init_clone(struct block_device *bdev, struct bio *bio,
891  		struct bio *bio_src, gfp_t gfp)
892  {
893  	int ret;
894  
895  	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
896  	ret = __bio_clone(bio, bio_src, gfp);
897  	if (ret)
898  		bio_uninit(bio);
899  	return ret;
900  }
901  EXPORT_SYMBOL(bio_init_clone);
902  
903  /**
904   * bio_full - check if the bio is full
905   * @bio:	bio to check
906   * @len:	length of one segment to be added
907   *
908   * Return true if @bio is full and one segment with @len bytes can't be
909   * added to the bio, otherwise return false
910   */
911  static inline bool bio_full(struct bio *bio, unsigned len)
912  {
913  	if (bio->bi_vcnt >= bio->bi_max_vecs)
914  		return true;
915  	if (bio->bi_iter.bi_size > UINT_MAX - len)
916  		return true;
917  	return false;
918  }
919  
920  static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
921  		unsigned int len, unsigned int off, bool *same_page)
922  {
923  	size_t bv_end = bv->bv_offset + bv->bv_len;
924  	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
925  	phys_addr_t page_addr = page_to_phys(page);
926  
927  	if (vec_end_addr + 1 != page_addr + off)
928  		return false;
929  	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
930  		return false;
931  	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
932  		return false;
933  
934  	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
935  	if (!*same_page) {
936  		if (IS_ENABLED(CONFIG_KMSAN))
937  			return false;
938  		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
939  			return false;
940  	}
941  
942  	bv->bv_len += len;
943  	return true;
944  }
945  
946  /*
947   * Try to merge a page into a segment, while obeying the hardware segment
948   * size limit.  This is not for normal read/write bios, but for passthrough
949   * or Zone Append operations that we can't split.
950   */
951  bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
952  		struct page *page, unsigned len, unsigned offset,
953  		bool *same_page)
954  {
955  	unsigned long mask = queue_segment_boundary(q);
956  	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
957  	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
958  
959  	if ((addr1 | mask) != (addr2 | mask))
960  		return false;
961  	if (len > queue_max_segment_size(q) - bv->bv_len)
962  		return false;
963  	return bvec_try_merge_page(bv, page, len, offset, same_page);
964  }
965  
966  /**
967   * bio_add_hw_page - attempt to add a page to a bio with hw constraints
968   * @q: the target queue
969   * @bio: destination bio
970   * @page: page to add
971   * @len: vec entry length
972   * @offset: vec entry offset
973   * @max_sectors: maximum number of sectors that can be added
974   * @same_page: return if the segment has been merged inside the same page
975   *
976   * Add a page to a bio while respecting the hardware max_sectors, max_segment
977   * and gap limitations.
978   */
979  int bio_add_hw_page(struct request_queue *q, struct bio *bio,
980  		struct page *page, unsigned int len, unsigned int offset,
981  		unsigned int max_sectors, bool *same_page)
982  {
983  	unsigned int max_size = max_sectors << SECTOR_SHIFT;
984  
985  	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
986  		return 0;
987  
988  	len = min3(len, max_size, queue_max_segment_size(q));
989  	if (len > max_size - bio->bi_iter.bi_size)
990  		return 0;
991  
992  	if (bio->bi_vcnt > 0) {
993  		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
994  
995  		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
996  				same_page)) {
997  			bio->bi_iter.bi_size += len;
998  			return len;
999  		}
1000  
1001  		if (bio->bi_vcnt >=
1002  		    min(bio->bi_max_vecs, queue_max_segments(q)))
1003  			return 0;
1004  
1005  		/*
1006  		 * If the queue doesn't support SG gaps and adding this segment
1007  		 * would create a gap, disallow it.
1008  		 */
1009  		if (bvec_gap_to_prev(&q->limits, bv, offset))
1010  			return 0;
1011  	}
1012  
1013  	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
1014  	bio->bi_vcnt++;
1015  	bio->bi_iter.bi_size += len;
1016  	return len;
1017  }
1018  
1019  /**
1020   * bio_add_pc_page	- attempt to add page to passthrough bio
1021   * @q: the target queue
1022   * @bio: destination bio
1023   * @page: page to add
1024   * @len: vec entry length
1025   * @offset: vec entry offset
1026   *
1027   * Attempt to add a page to the bio_vec maplist. This can fail for a
1028   * number of reasons, such as the bio being full or target block device
1029   * limitations. The target block device must allow bio's up to PAGE_SIZE,
1030   * so it is always possible to add a single page to an empty bio.
1031   *
1032   * This should only be used by passthrough bios.
1033   */
1034  int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1035  		struct page *page, unsigned int len, unsigned int offset)
1036  {
1037  	bool same_page = false;
1038  	return bio_add_hw_page(q, bio, page, len, offset,
1039  			queue_max_hw_sectors(q), &same_page);
1040  }
1041  EXPORT_SYMBOL(bio_add_pc_page);
1042  
1043  /**
1044   * bio_add_zone_append_page - attempt to add page to zone-append bio
1045   * @bio: destination bio
1046   * @page: page to add
1047   * @len: vec entry length
1048   * @offset: vec entry offset
1049   *
1050   * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1051   * for a zone-append request. This can fail for a number of reasons, such as the
1052   * bio being full or the target block device is not a zoned block device or
1053   * other limitations of the target block device. The target block device must
1054   * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1055   * to an empty bio.
1056   *
1057   * Returns: number of bytes added to the bio, or 0 in case of a failure.
1058   */
1059  int bio_add_zone_append_page(struct bio *bio, struct page *page,
1060  			     unsigned int len, unsigned int offset)
1061  {
1062  	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1063  	bool same_page = false;
1064  
1065  	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1066  		return 0;
1067  
1068  	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1069  		return 0;
1070  
1071  	return bio_add_hw_page(q, bio, page, len, offset,
1072  			       queue_max_zone_append_sectors(q), &same_page);
1073  }
1074  EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1075  
1076  /**
1077   * __bio_add_page - add page(s) to a bio in a new segment
1078   * @bio: destination bio
1079   * @page: start page to add
1080   * @len: length of the data to add, may cross pages
1081   * @off: offset of the data relative to @page, may cross pages
1082   *
1083   * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1084   * that @bio has space for another bvec.
1085   */
1086  void __bio_add_page(struct bio *bio, struct page *page,
1087  		unsigned int len, unsigned int off)
1088  {
1089  	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1090  	WARN_ON_ONCE(bio_full(bio, len));
1091  
1092  	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
1093  	bio->bi_iter.bi_size += len;
1094  	bio->bi_vcnt++;
1095  }
1096  EXPORT_SYMBOL_GPL(__bio_add_page);
1097  
1098  /**
1099   *	bio_add_page	-	attempt to add page(s) to bio
1100   *	@bio: destination bio
1101   *	@page: start page to add
1102   *	@len: vec entry length, may cross pages
1103   *	@offset: vec entry offset relative to @page, may cross pages
1104   *
1105   *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1106   *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1107   */
1108  int bio_add_page(struct bio *bio, struct page *page,
1109  		 unsigned int len, unsigned int offset)
1110  {
1111  	bool same_page = false;
1112  
1113  	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1114  		return 0;
1115  	if (bio->bi_iter.bi_size > UINT_MAX - len)
1116  		return 0;
1117  
1118  	if (bio->bi_vcnt > 0 &&
1119  	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1120  				page, len, offset, &same_page)) {
1121  		bio->bi_iter.bi_size += len;
1122  		return len;
1123  	}
1124  
1125  	if (bio->bi_vcnt >= bio->bi_max_vecs)
1126  		return 0;
1127  	__bio_add_page(bio, page, len, offset);
1128  	return len;
1129  }
1130  EXPORT_SYMBOL(bio_add_page);
1131  
1132  void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1133  			  size_t off)
1134  {
1135  	WARN_ON_ONCE(len > UINT_MAX);
1136  	WARN_ON_ONCE(off > UINT_MAX);
1137  	__bio_add_page(bio, &folio->page, len, off);
1138  }
1139  EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1140  
1141  /**
1142   * bio_add_folio - Attempt to add part of a folio to a bio.
1143   * @bio: BIO to add to.
1144   * @folio: Folio to add.
1145   * @len: How many bytes from the folio to add.
1146   * @off: First byte in this folio to add.
1147   *
1148   * Filesystems that use folios can call this function instead of calling
1149   * bio_add_page() for each page in the folio.  If @off is bigger than
1150   * PAGE_SIZE, this function can create a bio_vec that starts in a page
1151   * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1152   *
1153   * Return: Whether the addition was successful.
1154   */
1155  bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1156  		   size_t off)
1157  {
1158  	if (len > UINT_MAX || off > UINT_MAX)
1159  		return false;
1160  	return bio_add_page(bio, &folio->page, len, off) > 0;
1161  }
1162  EXPORT_SYMBOL(bio_add_folio);
1163  
1164  void __bio_release_pages(struct bio *bio, bool mark_dirty)
1165  {
1166  	struct folio_iter fi;
1167  
1168  	bio_for_each_folio_all(fi, bio) {
1169  		struct page *page;
1170  		size_t nr_pages;
1171  
1172  		if (mark_dirty) {
1173  			folio_lock(fi.folio);
1174  			folio_mark_dirty(fi.folio);
1175  			folio_unlock(fi.folio);
1176  		}
1177  		page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
1178  		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1179  			   fi.offset / PAGE_SIZE + 1;
1180  		do {
1181  			bio_release_page(bio, page++);
1182  		} while (--nr_pages != 0);
1183  	}
1184  }
1185  EXPORT_SYMBOL_GPL(__bio_release_pages);
1186  
1187  void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1188  {
1189  	size_t size = iov_iter_count(iter);
1190  
1191  	WARN_ON_ONCE(bio->bi_max_vecs);
1192  
1193  	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1194  		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1195  		size_t max_sectors = queue_max_zone_append_sectors(q);
1196  
1197  		size = min(size, max_sectors << SECTOR_SHIFT);
1198  	}
1199  
1200  	bio->bi_vcnt = iter->nr_segs;
1201  	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1202  	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1203  	bio->bi_iter.bi_size = size;
1204  	bio_set_flag(bio, BIO_CLONED);
1205  }
1206  
1207  static int bio_iov_add_page(struct bio *bio, struct page *page,
1208  		unsigned int len, unsigned int offset)
1209  {
1210  	bool same_page = false;
1211  
1212  	if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1213  		return -EIO;
1214  
1215  	if (bio->bi_vcnt > 0 &&
1216  	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1217  				page, len, offset, &same_page)) {
1218  		bio->bi_iter.bi_size += len;
1219  		if (same_page)
1220  			bio_release_page(bio, page);
1221  		return 0;
1222  	}
1223  	__bio_add_page(bio, page, len, offset);
1224  	return 0;
1225  }
1226  
1227  static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1228  		unsigned int len, unsigned int offset)
1229  {
1230  	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1231  	bool same_page = false;
1232  
1233  	if (bio_add_hw_page(q, bio, page, len, offset,
1234  			queue_max_zone_append_sectors(q), &same_page) != len)
1235  		return -EINVAL;
1236  	if (same_page)
1237  		bio_release_page(bio, page);
1238  	return 0;
1239  }
1240  
1241  #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1242  
1243  /**
1244   * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1245   * @bio: bio to add pages to
1246   * @iter: iov iterator describing the region to be mapped
1247   *
1248   * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1249   * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1250   * For a multi-segment *iter, this function only adds pages from the next
1251   * non-empty segment of the iov iterator.
1252   */
1253  static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1254  {
1255  	iov_iter_extraction_t extraction_flags = 0;
1256  	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1257  	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1258  	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1259  	struct page **pages = (struct page **)bv;
1260  	ssize_t size, left;
1261  	unsigned len, i = 0;
1262  	size_t offset;
1263  	int ret = 0;
1264  
1265  	/*
1266  	 * Move page array up in the allocated memory for the bio vecs as far as
1267  	 * possible so that we can start filling biovecs from the beginning
1268  	 * without overwriting the temporary page array.
1269  	 */
1270  	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1271  	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1272  
1273  	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1274  		extraction_flags |= ITER_ALLOW_P2PDMA;
1275  
1276  	/*
1277  	 * Each segment in the iov is required to be a block size multiple.
1278  	 * However, we may not be able to get the entire segment if it spans
1279  	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1280  	 * result to ensure the bio's total size is correct. The remainder of
1281  	 * the iov data will be picked up in the next bio iteration.
1282  	 */
1283  	size = iov_iter_extract_pages(iter, &pages,
1284  				      UINT_MAX - bio->bi_iter.bi_size,
1285  				      nr_pages, extraction_flags, &offset);
1286  	if (unlikely(size <= 0))
1287  		return size ? size : -EFAULT;
1288  
1289  	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1290  
1291  	if (bio->bi_bdev) {
1292  		size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1293  		iov_iter_revert(iter, trim);
1294  		size -= trim;
1295  	}
1296  
1297  	if (unlikely(!size)) {
1298  		ret = -EFAULT;
1299  		goto out;
1300  	}
1301  
1302  	for (left = size, i = 0; left > 0; left -= len, i++) {
1303  		struct page *page = pages[i];
1304  
1305  		len = min_t(size_t, PAGE_SIZE - offset, left);
1306  		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1307  			ret = bio_iov_add_zone_append_page(bio, page, len,
1308  					offset);
1309  			if (ret)
1310  				break;
1311  		} else
1312  			bio_iov_add_page(bio, page, len, offset);
1313  
1314  		offset = 0;
1315  	}
1316  
1317  	iov_iter_revert(iter, left);
1318  out:
1319  	while (i < nr_pages)
1320  		bio_release_page(bio, pages[i++]);
1321  
1322  	return ret;
1323  }
1324  
1325  /**
1326   * bio_iov_iter_get_pages - add user or kernel pages to a bio
1327   * @bio: bio to add pages to
1328   * @iter: iov iterator describing the region to be added
1329   *
1330   * This takes either an iterator pointing to user memory, or one pointing to
1331   * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1332   * map them into the kernel. On IO completion, the caller should put those
1333   * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1334   * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1335   * to ensure the bvecs and pages stay referenced until the submitted I/O is
1336   * completed by a call to ->ki_complete() or returns with an error other than
1337   * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1338   * on IO completion. If it isn't, then pages should be released.
1339   *
1340   * The function tries, but does not guarantee, to pin as many pages as
1341   * fit into the bio, or are requested in @iter, whatever is smaller. If
1342   * MM encounters an error pinning the requested pages, it stops. Error
1343   * is returned only if 0 pages could be pinned.
1344   */
1345  int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1346  {
1347  	int ret = 0;
1348  
1349  	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1350  		return -EIO;
1351  
1352  	if (iov_iter_is_bvec(iter)) {
1353  		bio_iov_bvec_set(bio, iter);
1354  		iov_iter_advance(iter, bio->bi_iter.bi_size);
1355  		return 0;
1356  	}
1357  
1358  	if (iov_iter_extract_will_pin(iter))
1359  		bio_set_flag(bio, BIO_PAGE_PINNED);
1360  	do {
1361  		ret = __bio_iov_iter_get_pages(bio, iter);
1362  	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1363  
1364  	return bio->bi_vcnt ? 0 : ret;
1365  }
1366  EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1367  
1368  static void submit_bio_wait_endio(struct bio *bio)
1369  {
1370  	complete(bio->bi_private);
1371  }
1372  
1373  /**
1374   * submit_bio_wait - submit a bio, and wait until it completes
1375   * @bio: The &struct bio which describes the I/O
1376   *
1377   * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1378   * bio_endio() on failure.
1379   *
1380   * WARNING: Unlike to how submit_bio() is usually used, this function does not
1381   * result in bio reference to be consumed. The caller must drop the reference
1382   * on his own.
1383   */
1384  int submit_bio_wait(struct bio *bio)
1385  {
1386  	DECLARE_COMPLETION_ONSTACK_MAP(done,
1387  			bio->bi_bdev->bd_disk->lockdep_map);
1388  
1389  	bio->bi_private = &done;
1390  	bio->bi_end_io = submit_bio_wait_endio;
1391  	bio->bi_opf |= REQ_SYNC;
1392  	submit_bio(bio);
1393  	blk_wait_io(&done);
1394  
1395  	return blk_status_to_errno(bio->bi_status);
1396  }
1397  EXPORT_SYMBOL(submit_bio_wait);
1398  
1399  static void bio_wait_end_io(struct bio *bio)
1400  {
1401  	complete(bio->bi_private);
1402  	bio_put(bio);
1403  }
1404  
1405  /*
1406   * bio_await_chain - ends @bio and waits for every chained bio to complete
1407   */
1408  void bio_await_chain(struct bio *bio)
1409  {
1410  	DECLARE_COMPLETION_ONSTACK_MAP(done,
1411  			bio->bi_bdev->bd_disk->lockdep_map);
1412  
1413  	bio->bi_private = &done;
1414  	bio->bi_end_io = bio_wait_end_io;
1415  	bio_endio(bio);
1416  	blk_wait_io(&done);
1417  }
1418  
1419  void __bio_advance(struct bio *bio, unsigned bytes)
1420  {
1421  	if (bio_integrity(bio))
1422  		bio_integrity_advance(bio, bytes);
1423  
1424  	bio_crypt_advance(bio, bytes);
1425  	bio_advance_iter(bio, &bio->bi_iter, bytes);
1426  }
1427  EXPORT_SYMBOL(__bio_advance);
1428  
1429  void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1430  			struct bio *src, struct bvec_iter *src_iter)
1431  {
1432  	while (src_iter->bi_size && dst_iter->bi_size) {
1433  		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1434  		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1435  		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1436  		void *src_buf = bvec_kmap_local(&src_bv);
1437  		void *dst_buf = bvec_kmap_local(&dst_bv);
1438  
1439  		memcpy(dst_buf, src_buf, bytes);
1440  
1441  		kunmap_local(dst_buf);
1442  		kunmap_local(src_buf);
1443  
1444  		bio_advance_iter_single(src, src_iter, bytes);
1445  		bio_advance_iter_single(dst, dst_iter, bytes);
1446  	}
1447  }
1448  EXPORT_SYMBOL(bio_copy_data_iter);
1449  
1450  /**
1451   * bio_copy_data - copy contents of data buffers from one bio to another
1452   * @src: source bio
1453   * @dst: destination bio
1454   *
1455   * Stops when it reaches the end of either @src or @dst - that is, copies
1456   * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1457   */
1458  void bio_copy_data(struct bio *dst, struct bio *src)
1459  {
1460  	struct bvec_iter src_iter = src->bi_iter;
1461  	struct bvec_iter dst_iter = dst->bi_iter;
1462  
1463  	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1464  }
1465  EXPORT_SYMBOL(bio_copy_data);
1466  
1467  void bio_free_pages(struct bio *bio)
1468  {
1469  	struct bio_vec *bvec;
1470  	struct bvec_iter_all iter_all;
1471  
1472  	bio_for_each_segment_all(bvec, bio, iter_all)
1473  		__free_page(bvec->bv_page);
1474  }
1475  EXPORT_SYMBOL(bio_free_pages);
1476  
1477  /*
1478   * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1479   * for performing direct-IO in BIOs.
1480   *
1481   * The problem is that we cannot run folio_mark_dirty() from interrupt context
1482   * because the required locks are not interrupt-safe.  So what we can do is to
1483   * mark the pages dirty _before_ performing IO.  And in interrupt context,
1484   * check that the pages are still dirty.   If so, fine.  If not, redirty them
1485   * in process context.
1486   *
1487   * Note that this code is very hard to test under normal circumstances because
1488   * direct-io pins the pages with get_user_pages().  This makes
1489   * is_page_cache_freeable return false, and the VM will not clean the pages.
1490   * But other code (eg, flusher threads) could clean the pages if they are mapped
1491   * pagecache.
1492   *
1493   * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1494   * deferred bio dirtying paths.
1495   */
1496  
1497  /*
1498   * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1499   */
1500  void bio_set_pages_dirty(struct bio *bio)
1501  {
1502  	struct folio_iter fi;
1503  
1504  	bio_for_each_folio_all(fi, bio) {
1505  		folio_lock(fi.folio);
1506  		folio_mark_dirty(fi.folio);
1507  		folio_unlock(fi.folio);
1508  	}
1509  }
1510  EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1511  
1512  /*
1513   * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1514   * If they are, then fine.  If, however, some pages are clean then they must
1515   * have been written out during the direct-IO read.  So we take another ref on
1516   * the BIO and re-dirty the pages in process context.
1517   *
1518   * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1519   * here on.  It will unpin each page and will run one bio_put() against the
1520   * BIO.
1521   */
1522  
1523  static void bio_dirty_fn(struct work_struct *work);
1524  
1525  static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1526  static DEFINE_SPINLOCK(bio_dirty_lock);
1527  static struct bio *bio_dirty_list;
1528  
1529  /*
1530   * This runs in process context
1531   */
1532  static void bio_dirty_fn(struct work_struct *work)
1533  {
1534  	struct bio *bio, *next;
1535  
1536  	spin_lock_irq(&bio_dirty_lock);
1537  	next = bio_dirty_list;
1538  	bio_dirty_list = NULL;
1539  	spin_unlock_irq(&bio_dirty_lock);
1540  
1541  	while ((bio = next) != NULL) {
1542  		next = bio->bi_private;
1543  
1544  		bio_release_pages(bio, true);
1545  		bio_put(bio);
1546  	}
1547  }
1548  
1549  void bio_check_pages_dirty(struct bio *bio)
1550  {
1551  	struct folio_iter fi;
1552  	unsigned long flags;
1553  
1554  	bio_for_each_folio_all(fi, bio) {
1555  		if (!folio_test_dirty(fi.folio))
1556  			goto defer;
1557  	}
1558  
1559  	bio_release_pages(bio, false);
1560  	bio_put(bio);
1561  	return;
1562  defer:
1563  	spin_lock_irqsave(&bio_dirty_lock, flags);
1564  	bio->bi_private = bio_dirty_list;
1565  	bio_dirty_list = bio;
1566  	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1567  	schedule_work(&bio_dirty_work);
1568  }
1569  EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1570  
1571  static inline bool bio_remaining_done(struct bio *bio)
1572  {
1573  	/*
1574  	 * If we're not chaining, then ->__bi_remaining is always 1 and
1575  	 * we always end io on the first invocation.
1576  	 */
1577  	if (!bio_flagged(bio, BIO_CHAIN))
1578  		return true;
1579  
1580  	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1581  
1582  	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1583  		bio_clear_flag(bio, BIO_CHAIN);
1584  		return true;
1585  	}
1586  
1587  	return false;
1588  }
1589  
1590  /**
1591   * bio_endio - end I/O on a bio
1592   * @bio:	bio
1593   *
1594   * Description:
1595   *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1596   *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1597   *   bio unless they own it and thus know that it has an end_io function.
1598   *
1599   *   bio_endio() can be called several times on a bio that has been chained
1600   *   using bio_chain().  The ->bi_end_io() function will only be called the
1601   *   last time.
1602   **/
1603  void bio_endio(struct bio *bio)
1604  {
1605  again:
1606  	if (!bio_remaining_done(bio))
1607  		return;
1608  	if (!bio_integrity_endio(bio))
1609  		return;
1610  
1611  	blk_zone_bio_endio(bio);
1612  
1613  	rq_qos_done_bio(bio);
1614  
1615  	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1616  		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1617  		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1618  	}
1619  
1620  	/*
1621  	 * Need to have a real endio function for chained bios, otherwise
1622  	 * various corner cases will break (like stacking block devices that
1623  	 * save/restore bi_end_io) - however, we want to avoid unbounded
1624  	 * recursion and blowing the stack. Tail call optimization would
1625  	 * handle this, but compiling with frame pointers also disables
1626  	 * gcc's sibling call optimization.
1627  	 */
1628  	if (bio->bi_end_io == bio_chain_endio) {
1629  		bio = __bio_chain_endio(bio);
1630  		goto again;
1631  	}
1632  
1633  	/* release cgroup info */
1634  	bio_uninit(bio);
1635  	if (bio->bi_end_io)
1636  		bio->bi_end_io(bio);
1637  }
1638  EXPORT_SYMBOL(bio_endio);
1639  
1640  /**
1641   * bio_split - split a bio
1642   * @bio:	bio to split
1643   * @sectors:	number of sectors to split from the front of @bio
1644   * @gfp:	gfp mask
1645   * @bs:		bio set to allocate from
1646   *
1647   * Allocates and returns a new bio which represents @sectors from the start of
1648   * @bio, and updates @bio to represent the remaining sectors.
1649   *
1650   * Unless this is a discard request the newly allocated bio will point
1651   * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1652   * neither @bio nor @bs are freed before the split bio.
1653   */
1654  struct bio *bio_split(struct bio *bio, int sectors,
1655  		      gfp_t gfp, struct bio_set *bs)
1656  {
1657  	struct bio *split;
1658  
1659  	BUG_ON(sectors <= 0);
1660  	BUG_ON(sectors >= bio_sectors(bio));
1661  
1662  	/* Zone append commands cannot be split */
1663  	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1664  		return NULL;
1665  
1666  	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1667  	if (!split)
1668  		return NULL;
1669  
1670  	split->bi_iter.bi_size = sectors << 9;
1671  
1672  	if (bio_integrity(split))
1673  		bio_integrity_trim(split);
1674  
1675  	bio_advance(bio, split->bi_iter.bi_size);
1676  
1677  	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1678  		bio_set_flag(split, BIO_TRACE_COMPLETION);
1679  
1680  	return split;
1681  }
1682  EXPORT_SYMBOL(bio_split);
1683  
1684  /**
1685   * bio_trim - trim a bio
1686   * @bio:	bio to trim
1687   * @offset:	number of sectors to trim from the front of @bio
1688   * @size:	size we want to trim @bio to, in sectors
1689   *
1690   * This function is typically used for bios that are cloned and submitted
1691   * to the underlying device in parts.
1692   */
1693  void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1694  {
1695  	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1696  			 offset + size > bio_sectors(bio)))
1697  		return;
1698  
1699  	size <<= 9;
1700  	if (offset == 0 && size == bio->bi_iter.bi_size)
1701  		return;
1702  
1703  	bio_advance(bio, offset << 9);
1704  	bio->bi_iter.bi_size = size;
1705  
1706  	if (bio_integrity(bio))
1707  		bio_integrity_trim(bio);
1708  }
1709  EXPORT_SYMBOL_GPL(bio_trim);
1710  
1711  /*
1712   * create memory pools for biovec's in a bio_set.
1713   * use the global biovec slabs created for general use.
1714   */
1715  int biovec_init_pool(mempool_t *pool, int pool_entries)
1716  {
1717  	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1718  
1719  	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1720  }
1721  
1722  /*
1723   * bioset_exit - exit a bioset initialized with bioset_init()
1724   *
1725   * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1726   * kzalloc()).
1727   */
1728  void bioset_exit(struct bio_set *bs)
1729  {
1730  	bio_alloc_cache_destroy(bs);
1731  	if (bs->rescue_workqueue)
1732  		destroy_workqueue(bs->rescue_workqueue);
1733  	bs->rescue_workqueue = NULL;
1734  
1735  	mempool_exit(&bs->bio_pool);
1736  	mempool_exit(&bs->bvec_pool);
1737  
1738  	bioset_integrity_free(bs);
1739  	if (bs->bio_slab)
1740  		bio_put_slab(bs);
1741  	bs->bio_slab = NULL;
1742  }
1743  EXPORT_SYMBOL(bioset_exit);
1744  
1745  /**
1746   * bioset_init - Initialize a bio_set
1747   * @bs:		pool to initialize
1748   * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1749   * @front_pad:	Number of bytes to allocate in front of the returned bio
1750   * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1751   *              and %BIOSET_NEED_RESCUER
1752   *
1753   * Description:
1754   *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1755   *    to ask for a number of bytes to be allocated in front of the bio.
1756   *    Front pad allocation is useful for embedding the bio inside
1757   *    another structure, to avoid allocating extra data to go with the bio.
1758   *    Note that the bio must be embedded at the END of that structure always,
1759   *    or things will break badly.
1760   *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1761   *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1762   *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1763   *    to dispatch queued requests when the mempool runs out of space.
1764   *
1765   */
1766  int bioset_init(struct bio_set *bs,
1767  		unsigned int pool_size,
1768  		unsigned int front_pad,
1769  		int flags)
1770  {
1771  	bs->front_pad = front_pad;
1772  	if (flags & BIOSET_NEED_BVECS)
1773  		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1774  	else
1775  		bs->back_pad = 0;
1776  
1777  	spin_lock_init(&bs->rescue_lock);
1778  	bio_list_init(&bs->rescue_list);
1779  	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1780  
1781  	bs->bio_slab = bio_find_or_create_slab(bs);
1782  	if (!bs->bio_slab)
1783  		return -ENOMEM;
1784  
1785  	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1786  		goto bad;
1787  
1788  	if ((flags & BIOSET_NEED_BVECS) &&
1789  	    biovec_init_pool(&bs->bvec_pool, pool_size))
1790  		goto bad;
1791  
1792  	if (flags & BIOSET_NEED_RESCUER) {
1793  		bs->rescue_workqueue = alloc_workqueue("bioset",
1794  							WQ_MEM_RECLAIM, 0);
1795  		if (!bs->rescue_workqueue)
1796  			goto bad;
1797  	}
1798  	if (flags & BIOSET_PERCPU_CACHE) {
1799  		bs->cache = alloc_percpu(struct bio_alloc_cache);
1800  		if (!bs->cache)
1801  			goto bad;
1802  		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1803  	}
1804  
1805  	return 0;
1806  bad:
1807  	bioset_exit(bs);
1808  	return -ENOMEM;
1809  }
1810  EXPORT_SYMBOL(bioset_init);
1811  
1812  static int __init init_bio(void)
1813  {
1814  	int i;
1815  
1816  	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1817  
1818  	bio_integrity_init();
1819  
1820  	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1821  		struct biovec_slab *bvs = bvec_slabs + i;
1822  
1823  		bvs->slab = kmem_cache_create(bvs->name,
1824  				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1825  				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1826  	}
1827  
1828  	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1829  					bio_cpu_dead);
1830  
1831  	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1832  			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1833  		panic("bio: can't allocate bios\n");
1834  
1835  	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1836  		panic("bio: can't create integrity pool\n");
1837  
1838  	return 0;
1839  }
1840  subsys_initcall(init_bio);
1841