xref: /linux/block/bio.c (revision 5bbfea1eacdf584d0d159e38c01ee190162706d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 struct bio_alloc_cache {
29 	struct bio_list		free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
91 	if (!bslab->slab)
92 		goto fail_alloc_slab;
93 
94 	bslab->slab_ref = 1;
95 	bslab->slab_size = size;
96 
97 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
98 		return bslab;
99 
100 	kmem_cache_destroy(bslab->slab);
101 
102 fail_alloc_slab:
103 	kfree(bslab);
104 	return NULL;
105 }
106 
107 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
108 {
109 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
110 }
111 
112 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
113 {
114 	unsigned int size = bs_bio_slab_size(bs);
115 	struct bio_slab *bslab;
116 
117 	mutex_lock(&bio_slab_lock);
118 	bslab = xa_load(&bio_slabs, size);
119 	if (bslab)
120 		bslab->slab_ref++;
121 	else
122 		bslab = create_bio_slab(size);
123 	mutex_unlock(&bio_slab_lock);
124 
125 	if (bslab)
126 		return bslab->slab;
127 	return NULL;
128 }
129 
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 	struct bio_slab *bslab = NULL;
133 	unsigned int slab_size = bs_bio_slab_size(bs);
134 
135 	mutex_lock(&bio_slab_lock);
136 
137 	bslab = xa_load(&bio_slabs, slab_size);
138 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 		goto out;
140 
141 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
142 
143 	WARN_ON(!bslab->slab_ref);
144 
145 	if (--bslab->slab_ref)
146 		goto out;
147 
148 	xa_erase(&bio_slabs, slab_size);
149 
150 	kmem_cache_destroy(bslab->slab);
151 	kfree(bslab);
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
158 {
159 	BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
160 
161 	if (nr_vecs == BIO_MAX_VECS)
162 		mempool_free(bv, pool);
163 	else if (nr_vecs > BIO_INLINE_VECS)
164 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
165 }
166 
167 /*
168  * Make the first allocation restricted and don't dump info on allocation
169  * failures, since we'll fall back to the mempool in case of failure.
170  */
171 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
172 {
173 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
174 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
175 }
176 
177 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
178 		gfp_t gfp_mask)
179 {
180 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
181 
182 	if (WARN_ON_ONCE(!bvs))
183 		return NULL;
184 
185 	/*
186 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
187 	 * We also rely on this in the bvec_free path.
188 	 */
189 	*nr_vecs = bvs->nr_vecs;
190 
191 	/*
192 	 * Try a slab allocation first for all smaller allocations.  If that
193 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
194 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
195 	 */
196 	if (*nr_vecs < BIO_MAX_VECS) {
197 		struct bio_vec *bvl;
198 
199 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
200 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
201 			return bvl;
202 		*nr_vecs = BIO_MAX_VECS;
203 	}
204 
205 	return mempool_alloc(pool, gfp_mask);
206 }
207 
208 void bio_uninit(struct bio *bio)
209 {
210 #ifdef CONFIG_BLK_CGROUP
211 	if (bio->bi_blkg) {
212 		blkg_put(bio->bi_blkg);
213 		bio->bi_blkg = NULL;
214 	}
215 #endif
216 	if (bio_integrity(bio))
217 		bio_integrity_free(bio);
218 
219 	bio_crypt_free_ctx(bio);
220 }
221 EXPORT_SYMBOL(bio_uninit);
222 
223 static void bio_free(struct bio *bio)
224 {
225 	struct bio_set *bs = bio->bi_pool;
226 	void *p;
227 
228 	bio_uninit(bio);
229 
230 	if (bs) {
231 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
232 
233 		/*
234 		 * If we have front padding, adjust the bio pointer before freeing
235 		 */
236 		p = bio;
237 		p -= bs->front_pad;
238 
239 		mempool_free(p, &bs->bio_pool);
240 	} else {
241 		/* Bio was allocated by bio_kmalloc() */
242 		kfree(bio);
243 	}
244 }
245 
246 /*
247  * Users of this function have their own bio allocation. Subsequently,
248  * they must remember to pair any call to bio_init() with bio_uninit()
249  * when IO has completed, or when the bio is released.
250  */
251 void bio_init(struct bio *bio, struct bio_vec *table,
252 	      unsigned short max_vecs)
253 {
254 	bio->bi_next = NULL;
255 	bio->bi_bdev = NULL;
256 	bio->bi_opf = 0;
257 	bio->bi_flags = 0;
258 	bio->bi_ioprio = 0;
259 	bio->bi_write_hint = 0;
260 	bio->bi_status = 0;
261 	bio->bi_iter.bi_sector = 0;
262 	bio->bi_iter.bi_size = 0;
263 	bio->bi_iter.bi_idx = 0;
264 	bio->bi_iter.bi_bvec_done = 0;
265 	bio->bi_end_io = NULL;
266 	bio->bi_private = NULL;
267 #ifdef CONFIG_BLK_CGROUP
268 	bio->bi_blkg = NULL;
269 	bio->bi_issue.value = 0;
270 #ifdef CONFIG_BLK_CGROUP_IOCOST
271 	bio->bi_iocost_cost = 0;
272 #endif
273 #endif
274 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
275 	bio->bi_crypt_context = NULL;
276 #endif
277 #ifdef CONFIG_BLK_DEV_INTEGRITY
278 	bio->bi_integrity = NULL;
279 #endif
280 	bio->bi_vcnt = 0;
281 
282 	atomic_set(&bio->__bi_remaining, 1);
283 	atomic_set(&bio->__bi_cnt, 1);
284 
285 	bio->bi_max_vecs = max_vecs;
286 	bio->bi_io_vec = table;
287 	bio->bi_pool = NULL;
288 }
289 EXPORT_SYMBOL(bio_init);
290 
291 /**
292  * bio_reset - reinitialize a bio
293  * @bio:	bio to reset
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
301 void bio_reset(struct bio *bio)
302 {
303 	bio_uninit(bio);
304 	memset(bio, 0, BIO_RESET_BYTES);
305 	atomic_set(&bio->__bi_remaining, 1);
306 }
307 EXPORT_SYMBOL(bio_reset);
308 
309 static struct bio *__bio_chain_endio(struct bio *bio)
310 {
311 	struct bio *parent = bio->bi_private;
312 
313 	if (bio->bi_status && !parent->bi_status)
314 		parent->bi_status = bio->bi_status;
315 	bio_put(bio);
316 	return parent;
317 }
318 
319 static void bio_chain_endio(struct bio *bio)
320 {
321 	bio_endio(__bio_chain_endio(bio));
322 }
323 
324 /**
325  * bio_chain - chain bio completions
326  * @bio: the target bio
327  * @parent: the parent bio of @bio
328  *
329  * The caller won't have a bi_end_io called when @bio completes - instead,
330  * @parent's bi_end_io won't be called until both @parent and @bio have
331  * completed; the chained bio will also be freed when it completes.
332  *
333  * The caller must not set bi_private or bi_end_io in @bio.
334  */
335 void bio_chain(struct bio *bio, struct bio *parent)
336 {
337 	BUG_ON(bio->bi_private || bio->bi_end_io);
338 
339 	bio->bi_private = parent;
340 	bio->bi_end_io	= bio_chain_endio;
341 	bio_inc_remaining(parent);
342 }
343 EXPORT_SYMBOL(bio_chain);
344 
345 static void bio_alloc_rescue(struct work_struct *work)
346 {
347 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
348 	struct bio *bio;
349 
350 	while (1) {
351 		spin_lock(&bs->rescue_lock);
352 		bio = bio_list_pop(&bs->rescue_list);
353 		spin_unlock(&bs->rescue_lock);
354 
355 		if (!bio)
356 			break;
357 
358 		submit_bio_noacct(bio);
359 	}
360 }
361 
362 static void punt_bios_to_rescuer(struct bio_set *bs)
363 {
364 	struct bio_list punt, nopunt;
365 	struct bio *bio;
366 
367 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
368 		return;
369 	/*
370 	 * In order to guarantee forward progress we must punt only bios that
371 	 * were allocated from this bio_set; otherwise, if there was a bio on
372 	 * there for a stacking driver higher up in the stack, processing it
373 	 * could require allocating bios from this bio_set, and doing that from
374 	 * our own rescuer would be bad.
375 	 *
376 	 * Since bio lists are singly linked, pop them all instead of trying to
377 	 * remove from the middle of the list:
378 	 */
379 
380 	bio_list_init(&punt);
381 	bio_list_init(&nopunt);
382 
383 	while ((bio = bio_list_pop(&current->bio_list[0])))
384 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 	current->bio_list[0] = nopunt;
386 
387 	bio_list_init(&nopunt);
388 	while ((bio = bio_list_pop(&current->bio_list[1])))
389 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
390 	current->bio_list[1] = nopunt;
391 
392 	spin_lock(&bs->rescue_lock);
393 	bio_list_merge(&bs->rescue_list, &punt);
394 	spin_unlock(&bs->rescue_lock);
395 
396 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
397 }
398 
399 /**
400  * bio_alloc_bioset - allocate a bio for I/O
401  * @gfp_mask:   the GFP_* mask given to the slab allocator
402  * @nr_iovecs:	number of iovecs to pre-allocate
403  * @bs:		the bio_set to allocate from.
404  *
405  * Allocate a bio from the mempools in @bs.
406  *
407  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
408  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
409  * callers must never allocate more than 1 bio at a time from the general pool.
410  * Callers that need to allocate more than 1 bio must always submit the
411  * previously allocated bio for IO before attempting to allocate a new one.
412  * Failure to do so can cause deadlocks under memory pressure.
413  *
414  * Note that when running under submit_bio_noacct() (i.e. any block driver),
415  * bios are not submitted until after you return - see the code in
416  * submit_bio_noacct() that converts recursion into iteration, to prevent
417  * stack overflows.
418  *
419  * This would normally mean allocating multiple bios under submit_bio_noacct()
420  * would be susceptible to deadlocks, but we have
421  * deadlock avoidance code that resubmits any blocked bios from a rescuer
422  * thread.
423  *
424  * However, we do not guarantee forward progress for allocations from other
425  * mempools. Doing multiple allocations from the same mempool under
426  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
427  * for per bio allocations.
428  *
429  * Returns: Pointer to new bio on success, NULL on failure.
430  */
431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
432 			     struct bio_set *bs)
433 {
434 	gfp_t saved_gfp = gfp_mask;
435 	struct bio *bio;
436 	void *p;
437 
438 	/* should not use nobvec bioset for nr_iovecs > 0 */
439 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
440 		return NULL;
441 
442 	/*
443 	 * submit_bio_noacct() converts recursion to iteration; this means if
444 	 * we're running beneath it, any bios we allocate and submit will not be
445 	 * submitted (and thus freed) until after we return.
446 	 *
447 	 * This exposes us to a potential deadlock if we allocate multiple bios
448 	 * from the same bio_set() while running underneath submit_bio_noacct().
449 	 * If we were to allocate multiple bios (say a stacking block driver
450 	 * that was splitting bios), we would deadlock if we exhausted the
451 	 * mempool's reserve.
452 	 *
453 	 * We solve this, and guarantee forward progress, with a rescuer
454 	 * workqueue per bio_set. If we go to allocate and there are bios on
455 	 * current->bio_list, we first try the allocation without
456 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
457 	 * blocking to the rescuer workqueue before we retry with the original
458 	 * gfp_flags.
459 	 */
460 	if (current->bio_list &&
461 	    (!bio_list_empty(&current->bio_list[0]) ||
462 	     !bio_list_empty(&current->bio_list[1])) &&
463 	    bs->rescue_workqueue)
464 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
465 
466 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
467 	if (!p && gfp_mask != saved_gfp) {
468 		punt_bios_to_rescuer(bs);
469 		gfp_mask = saved_gfp;
470 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
471 	}
472 	if (unlikely(!p))
473 		return NULL;
474 
475 	bio = p + bs->front_pad;
476 	if (nr_iovecs > BIO_INLINE_VECS) {
477 		struct bio_vec *bvl = NULL;
478 
479 		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
480 		if (!bvl && gfp_mask != saved_gfp) {
481 			punt_bios_to_rescuer(bs);
482 			gfp_mask = saved_gfp;
483 			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
484 		}
485 		if (unlikely(!bvl))
486 			goto err_free;
487 
488 		bio_init(bio, bvl, nr_iovecs);
489 	} else if (nr_iovecs) {
490 		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
491 	} else {
492 		bio_init(bio, NULL, 0);
493 	}
494 
495 	bio->bi_pool = bs;
496 	return bio;
497 
498 err_free:
499 	mempool_free(p, &bs->bio_pool);
500 	return NULL;
501 }
502 EXPORT_SYMBOL(bio_alloc_bioset);
503 
504 /**
505  * bio_kmalloc - kmalloc a bio for I/O
506  * @gfp_mask:   the GFP_* mask given to the slab allocator
507  * @nr_iovecs:	number of iovecs to pre-allocate
508  *
509  * Use kmalloc to allocate and initialize a bio.
510  *
511  * Returns: Pointer to new bio on success, NULL on failure.
512  */
513 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
514 {
515 	struct bio *bio;
516 
517 	if (nr_iovecs > UIO_MAXIOV)
518 		return NULL;
519 
520 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
521 	if (unlikely(!bio))
522 		return NULL;
523 	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
524 	bio->bi_pool = NULL;
525 	return bio;
526 }
527 EXPORT_SYMBOL(bio_kmalloc);
528 
529 void zero_fill_bio(struct bio *bio)
530 {
531 	struct bio_vec bv;
532 	struct bvec_iter iter;
533 
534 	bio_for_each_segment(bv, bio, iter)
535 		memzero_bvec(&bv);
536 }
537 EXPORT_SYMBOL(zero_fill_bio);
538 
539 /**
540  * bio_truncate - truncate the bio to small size of @new_size
541  * @bio:	the bio to be truncated
542  * @new_size:	new size for truncating the bio
543  *
544  * Description:
545  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
546  *   REQ_OP_READ, zero the truncated part. This function should only
547  *   be used for handling corner cases, such as bio eod.
548  */
549 void bio_truncate(struct bio *bio, unsigned new_size)
550 {
551 	struct bio_vec bv;
552 	struct bvec_iter iter;
553 	unsigned int done = 0;
554 	bool truncated = false;
555 
556 	if (new_size >= bio->bi_iter.bi_size)
557 		return;
558 
559 	if (bio_op(bio) != REQ_OP_READ)
560 		goto exit;
561 
562 	bio_for_each_segment(bv, bio, iter) {
563 		if (done + bv.bv_len > new_size) {
564 			unsigned offset;
565 
566 			if (!truncated)
567 				offset = new_size - done;
568 			else
569 				offset = 0;
570 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
571 			truncated = true;
572 		}
573 		done += bv.bv_len;
574 	}
575 
576  exit:
577 	/*
578 	 * Don't touch bvec table here and make it really immutable, since
579 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
580 	 * in its .end_bio() callback.
581 	 *
582 	 * It is enough to truncate bio by updating .bi_size since we can make
583 	 * correct bvec with the updated .bi_size for drivers.
584 	 */
585 	bio->bi_iter.bi_size = new_size;
586 }
587 
588 /**
589  * guard_bio_eod - truncate a BIO to fit the block device
590  * @bio:	bio to truncate
591  *
592  * This allows us to do IO even on the odd last sectors of a device, even if the
593  * block size is some multiple of the physical sector size.
594  *
595  * We'll just truncate the bio to the size of the device, and clear the end of
596  * the buffer head manually.  Truly out-of-range accesses will turn into actual
597  * I/O errors, this only handles the "we need to be able to do I/O at the final
598  * sector" case.
599  */
600 void guard_bio_eod(struct bio *bio)
601 {
602 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
603 
604 	if (!maxsector)
605 		return;
606 
607 	/*
608 	 * If the *whole* IO is past the end of the device,
609 	 * let it through, and the IO layer will turn it into
610 	 * an EIO.
611 	 */
612 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
613 		return;
614 
615 	maxsector -= bio->bi_iter.bi_sector;
616 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
617 		return;
618 
619 	bio_truncate(bio, maxsector << 9);
620 }
621 
622 #define ALLOC_CACHE_MAX		512
623 #define ALLOC_CACHE_SLACK	 64
624 
625 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
626 				  unsigned int nr)
627 {
628 	unsigned int i = 0;
629 	struct bio *bio;
630 
631 	while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
632 		cache->nr--;
633 		bio_free(bio);
634 		if (++i == nr)
635 			break;
636 	}
637 }
638 
639 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
640 {
641 	struct bio_set *bs;
642 
643 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
644 	if (bs->cache) {
645 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
646 
647 		bio_alloc_cache_prune(cache, -1U);
648 	}
649 	return 0;
650 }
651 
652 static void bio_alloc_cache_destroy(struct bio_set *bs)
653 {
654 	int cpu;
655 
656 	if (!bs->cache)
657 		return;
658 
659 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
660 	for_each_possible_cpu(cpu) {
661 		struct bio_alloc_cache *cache;
662 
663 		cache = per_cpu_ptr(bs->cache, cpu);
664 		bio_alloc_cache_prune(cache, -1U);
665 	}
666 	free_percpu(bs->cache);
667 }
668 
669 /**
670  * bio_put - release a reference to a bio
671  * @bio:   bio to release reference to
672  *
673  * Description:
674  *   Put a reference to a &struct bio, either one you have gotten with
675  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
676  **/
677 void bio_put(struct bio *bio)
678 {
679 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
680 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
681 		if (!atomic_dec_and_test(&bio->__bi_cnt))
682 			return;
683 	}
684 
685 	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
686 		struct bio_alloc_cache *cache;
687 
688 		bio_uninit(bio);
689 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
690 		bio_list_add_head(&cache->free_list, bio);
691 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
692 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
693 		put_cpu();
694 	} else {
695 		bio_free(bio);
696 	}
697 }
698 EXPORT_SYMBOL(bio_put);
699 
700 /**
701  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
702  * 	@bio: destination bio
703  * 	@bio_src: bio to clone
704  *
705  *	Clone a &bio. Caller will own the returned bio, but not
706  *	the actual data it points to. Reference count of returned
707  * 	bio will be one.
708  *
709  * 	Caller must ensure that @bio_src is not freed before @bio.
710  */
711 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
712 {
713 	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
714 
715 	/*
716 	 * most users will be overriding ->bi_bdev with a new target,
717 	 * so we don't set nor calculate new physical/hw segment counts here
718 	 */
719 	bio->bi_bdev = bio_src->bi_bdev;
720 	bio_set_flag(bio, BIO_CLONED);
721 	if (bio_flagged(bio_src, BIO_THROTTLED))
722 		bio_set_flag(bio, BIO_THROTTLED);
723 	if (bio_flagged(bio_src, BIO_REMAPPED))
724 		bio_set_flag(bio, BIO_REMAPPED);
725 	bio->bi_opf = bio_src->bi_opf;
726 	bio->bi_ioprio = bio_src->bi_ioprio;
727 	bio->bi_write_hint = bio_src->bi_write_hint;
728 	bio->bi_iter = bio_src->bi_iter;
729 	bio->bi_io_vec = bio_src->bi_io_vec;
730 
731 	bio_clone_blkg_association(bio, bio_src);
732 	blkcg_bio_issue_init(bio);
733 }
734 EXPORT_SYMBOL(__bio_clone_fast);
735 
736 /**
737  *	bio_clone_fast - clone a bio that shares the original bio's biovec
738  *	@bio: bio to clone
739  *	@gfp_mask: allocation priority
740  *	@bs: bio_set to allocate from
741  *
742  * 	Like __bio_clone_fast, only also allocates the returned bio
743  */
744 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
745 {
746 	struct bio *b;
747 
748 	b = bio_alloc_bioset(gfp_mask, 0, bs);
749 	if (!b)
750 		return NULL;
751 
752 	__bio_clone_fast(b, bio);
753 
754 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
755 		goto err_put;
756 
757 	if (bio_integrity(bio) &&
758 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
759 		goto err_put;
760 
761 	return b;
762 
763 err_put:
764 	bio_put(b);
765 	return NULL;
766 }
767 EXPORT_SYMBOL(bio_clone_fast);
768 
769 const char *bio_devname(struct bio *bio, char *buf)
770 {
771 	return bdevname(bio->bi_bdev, buf);
772 }
773 EXPORT_SYMBOL(bio_devname);
774 
775 static inline bool page_is_mergeable(const struct bio_vec *bv,
776 		struct page *page, unsigned int len, unsigned int off,
777 		bool *same_page)
778 {
779 	size_t bv_end = bv->bv_offset + bv->bv_len;
780 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
781 	phys_addr_t page_addr = page_to_phys(page);
782 
783 	if (vec_end_addr + 1 != page_addr + off)
784 		return false;
785 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
786 		return false;
787 
788 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
789 	if (*same_page)
790 		return true;
791 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
792 }
793 
794 /*
795  * Try to merge a page into a segment, while obeying the hardware segment
796  * size limit.  This is not for normal read/write bios, but for passthrough
797  * or Zone Append operations that we can't split.
798  */
799 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
800 				 struct page *page, unsigned len,
801 				 unsigned offset, bool *same_page)
802 {
803 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
804 	unsigned long mask = queue_segment_boundary(q);
805 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
806 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
807 
808 	if ((addr1 | mask) != (addr2 | mask))
809 		return false;
810 	if (bv->bv_len + len > queue_max_segment_size(q))
811 		return false;
812 	return __bio_try_merge_page(bio, page, len, offset, same_page);
813 }
814 
815 /**
816  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
817  * @q: the target queue
818  * @bio: destination bio
819  * @page: page to add
820  * @len: vec entry length
821  * @offset: vec entry offset
822  * @max_sectors: maximum number of sectors that can be added
823  * @same_page: return if the segment has been merged inside the same page
824  *
825  * Add a page to a bio while respecting the hardware max_sectors, max_segment
826  * and gap limitations.
827  */
828 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
829 		struct page *page, unsigned int len, unsigned int offset,
830 		unsigned int max_sectors, bool *same_page)
831 {
832 	struct bio_vec *bvec;
833 
834 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
835 		return 0;
836 
837 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
838 		return 0;
839 
840 	if (bio->bi_vcnt > 0) {
841 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
842 			return len;
843 
844 		/*
845 		 * If the queue doesn't support SG gaps and adding this segment
846 		 * would create a gap, disallow it.
847 		 */
848 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
849 		if (bvec_gap_to_prev(q, bvec, offset))
850 			return 0;
851 	}
852 
853 	if (bio_full(bio, len))
854 		return 0;
855 
856 	if (bio->bi_vcnt >= queue_max_segments(q))
857 		return 0;
858 
859 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
860 	bvec->bv_page = page;
861 	bvec->bv_len = len;
862 	bvec->bv_offset = offset;
863 	bio->bi_vcnt++;
864 	bio->bi_iter.bi_size += len;
865 	return len;
866 }
867 
868 /**
869  * bio_add_pc_page	- attempt to add page to passthrough bio
870  * @q: the target queue
871  * @bio: destination bio
872  * @page: page to add
873  * @len: vec entry length
874  * @offset: vec entry offset
875  *
876  * Attempt to add a page to the bio_vec maplist. This can fail for a
877  * number of reasons, such as the bio being full or target block device
878  * limitations. The target block device must allow bio's up to PAGE_SIZE,
879  * so it is always possible to add a single page to an empty bio.
880  *
881  * This should only be used by passthrough bios.
882  */
883 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
884 		struct page *page, unsigned int len, unsigned int offset)
885 {
886 	bool same_page = false;
887 	return bio_add_hw_page(q, bio, page, len, offset,
888 			queue_max_hw_sectors(q), &same_page);
889 }
890 EXPORT_SYMBOL(bio_add_pc_page);
891 
892 /**
893  * bio_add_zone_append_page - attempt to add page to zone-append bio
894  * @bio: destination bio
895  * @page: page to add
896  * @len: vec entry length
897  * @offset: vec entry offset
898  *
899  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
900  * for a zone-append request. This can fail for a number of reasons, such as the
901  * bio being full or the target block device is not a zoned block device or
902  * other limitations of the target block device. The target block device must
903  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
904  * to an empty bio.
905  *
906  * Returns: number of bytes added to the bio, or 0 in case of a failure.
907  */
908 int bio_add_zone_append_page(struct bio *bio, struct page *page,
909 			     unsigned int len, unsigned int offset)
910 {
911 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
912 	bool same_page = false;
913 
914 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
915 		return 0;
916 
917 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
918 		return 0;
919 
920 	return bio_add_hw_page(q, bio, page, len, offset,
921 			       queue_max_zone_append_sectors(q), &same_page);
922 }
923 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
924 
925 /**
926  * __bio_try_merge_page - try appending data to an existing bvec.
927  * @bio: destination bio
928  * @page: start page to add
929  * @len: length of the data to add
930  * @off: offset of the data relative to @page
931  * @same_page: return if the segment has been merged inside the same page
932  *
933  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
934  * useful optimisation for file systems with a block size smaller than the
935  * page size.
936  *
937  * Warn if (@len, @off) crosses pages in case that @same_page is true.
938  *
939  * Return %true on success or %false on failure.
940  */
941 bool __bio_try_merge_page(struct bio *bio, struct page *page,
942 		unsigned int len, unsigned int off, bool *same_page)
943 {
944 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
945 		return false;
946 
947 	if (bio->bi_vcnt > 0) {
948 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
949 
950 		if (page_is_mergeable(bv, page, len, off, same_page)) {
951 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
952 				*same_page = false;
953 				return false;
954 			}
955 			bv->bv_len += len;
956 			bio->bi_iter.bi_size += len;
957 			return true;
958 		}
959 	}
960 	return false;
961 }
962 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
963 
964 /**
965  * __bio_add_page - add page(s) to a bio in a new segment
966  * @bio: destination bio
967  * @page: start page to add
968  * @len: length of the data to add, may cross pages
969  * @off: offset of the data relative to @page, may cross pages
970  *
971  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
972  * that @bio has space for another bvec.
973  */
974 void __bio_add_page(struct bio *bio, struct page *page,
975 		unsigned int len, unsigned int off)
976 {
977 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
978 
979 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
980 	WARN_ON_ONCE(bio_full(bio, len));
981 
982 	bv->bv_page = page;
983 	bv->bv_offset = off;
984 	bv->bv_len = len;
985 
986 	bio->bi_iter.bi_size += len;
987 	bio->bi_vcnt++;
988 
989 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
990 		bio_set_flag(bio, BIO_WORKINGSET);
991 }
992 EXPORT_SYMBOL_GPL(__bio_add_page);
993 
994 /**
995  *	bio_add_page	-	attempt to add page(s) to bio
996  *	@bio: destination bio
997  *	@page: start page to add
998  *	@len: vec entry length, may cross pages
999  *	@offset: vec entry offset relative to @page, may cross pages
1000  *
1001  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1002  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1003  */
1004 int bio_add_page(struct bio *bio, struct page *page,
1005 		 unsigned int len, unsigned int offset)
1006 {
1007 	bool same_page = false;
1008 
1009 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1010 		if (bio_full(bio, len))
1011 			return 0;
1012 		__bio_add_page(bio, page, len, offset);
1013 	}
1014 	return len;
1015 }
1016 EXPORT_SYMBOL(bio_add_page);
1017 
1018 void bio_release_pages(struct bio *bio, bool mark_dirty)
1019 {
1020 	struct bvec_iter_all iter_all;
1021 	struct bio_vec *bvec;
1022 
1023 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
1024 		return;
1025 
1026 	bio_for_each_segment_all(bvec, bio, iter_all) {
1027 		if (mark_dirty && !PageCompound(bvec->bv_page))
1028 			set_page_dirty_lock(bvec->bv_page);
1029 		put_page(bvec->bv_page);
1030 	}
1031 }
1032 EXPORT_SYMBOL_GPL(bio_release_pages);
1033 
1034 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1035 {
1036 	WARN_ON_ONCE(bio->bi_max_vecs);
1037 
1038 	bio->bi_vcnt = iter->nr_segs;
1039 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1040 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1041 	bio->bi_iter.bi_size = iter->count;
1042 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1043 	bio_set_flag(bio, BIO_CLONED);
1044 }
1045 
1046 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1047 {
1048 	__bio_iov_bvec_set(bio, iter);
1049 	iov_iter_advance(iter, iter->count);
1050 	return 0;
1051 }
1052 
1053 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1054 {
1055 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1056 	struct iov_iter i = *iter;
1057 
1058 	iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1059 	__bio_iov_bvec_set(bio, &i);
1060 	iov_iter_advance(iter, i.count);
1061 	return 0;
1062 }
1063 
1064 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1065 {
1066 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1067 
1068 	for (i = 0; i < nr; i++)
1069 		put_page(pages[i]);
1070 }
1071 
1072 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1073 
1074 /**
1075  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1076  * @bio: bio to add pages to
1077  * @iter: iov iterator describing the region to be mapped
1078  *
1079  * Pins pages from *iter and appends them to @bio's bvec array. The
1080  * pages will have to be released using put_page() when done.
1081  * For multi-segment *iter, this function only adds pages from the
1082  * next non-empty segment of the iov iterator.
1083  */
1084 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1085 {
1086 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1087 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1088 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1089 	struct page **pages = (struct page **)bv;
1090 	bool same_page = false;
1091 	ssize_t size, left;
1092 	unsigned len, i;
1093 	size_t offset;
1094 
1095 	/*
1096 	 * Move page array up in the allocated memory for the bio vecs as far as
1097 	 * possible so that we can start filling biovecs from the beginning
1098 	 * without overwriting the temporary page array.
1099 	*/
1100 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1101 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1102 
1103 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1104 	if (unlikely(size <= 0))
1105 		return size ? size : -EFAULT;
1106 
1107 	for (left = size, i = 0; left > 0; left -= len, i++) {
1108 		struct page *page = pages[i];
1109 
1110 		len = min_t(size_t, PAGE_SIZE - offset, left);
1111 
1112 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1113 			if (same_page)
1114 				put_page(page);
1115 		} else {
1116 			if (WARN_ON_ONCE(bio_full(bio, len))) {
1117 				bio_put_pages(pages + i, left, offset);
1118 				return -EINVAL;
1119 			}
1120 			__bio_add_page(bio, page, len, offset);
1121 		}
1122 		offset = 0;
1123 	}
1124 
1125 	iov_iter_advance(iter, size);
1126 	return 0;
1127 }
1128 
1129 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1130 {
1131 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1132 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1133 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1134 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1135 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1136 	struct page **pages = (struct page **)bv;
1137 	ssize_t size, left;
1138 	unsigned len, i;
1139 	size_t offset;
1140 	int ret = 0;
1141 
1142 	if (WARN_ON_ONCE(!max_append_sectors))
1143 		return 0;
1144 
1145 	/*
1146 	 * Move page array up in the allocated memory for the bio vecs as far as
1147 	 * possible so that we can start filling biovecs from the beginning
1148 	 * without overwriting the temporary page array.
1149 	 */
1150 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1151 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1152 
1153 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1154 	if (unlikely(size <= 0))
1155 		return size ? size : -EFAULT;
1156 
1157 	for (left = size, i = 0; left > 0; left -= len, i++) {
1158 		struct page *page = pages[i];
1159 		bool same_page = false;
1160 
1161 		len = min_t(size_t, PAGE_SIZE - offset, left);
1162 		if (bio_add_hw_page(q, bio, page, len, offset,
1163 				max_append_sectors, &same_page) != len) {
1164 			bio_put_pages(pages + i, left, offset);
1165 			ret = -EINVAL;
1166 			break;
1167 		}
1168 		if (same_page)
1169 			put_page(page);
1170 		offset = 0;
1171 	}
1172 
1173 	iov_iter_advance(iter, size - left);
1174 	return ret;
1175 }
1176 
1177 /**
1178  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1179  * @bio: bio to add pages to
1180  * @iter: iov iterator describing the region to be added
1181  *
1182  * This takes either an iterator pointing to user memory, or one pointing to
1183  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1184  * map them into the kernel. On IO completion, the caller should put those
1185  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1186  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1187  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1188  * completed by a call to ->ki_complete() or returns with an error other than
1189  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1190  * on IO completion. If it isn't, then pages should be released.
1191  *
1192  * The function tries, but does not guarantee, to pin as many pages as
1193  * fit into the bio, or are requested in @iter, whatever is smaller. If
1194  * MM encounters an error pinning the requested pages, it stops. Error
1195  * is returned only if 0 pages could be pinned.
1196  *
1197  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1198  * responsible for setting BIO_WORKINGSET if necessary.
1199  */
1200 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1201 {
1202 	int ret = 0;
1203 
1204 	if (iov_iter_is_bvec(iter)) {
1205 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1206 			return bio_iov_bvec_set_append(bio, iter);
1207 		return bio_iov_bvec_set(bio, iter);
1208 	}
1209 
1210 	do {
1211 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1212 			ret = __bio_iov_append_get_pages(bio, iter);
1213 		else
1214 			ret = __bio_iov_iter_get_pages(bio, iter);
1215 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1216 
1217 	/* don't account direct I/O as memory stall */
1218 	bio_clear_flag(bio, BIO_WORKINGSET);
1219 	return bio->bi_vcnt ? 0 : ret;
1220 }
1221 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1222 
1223 static void submit_bio_wait_endio(struct bio *bio)
1224 {
1225 	complete(bio->bi_private);
1226 }
1227 
1228 /**
1229  * submit_bio_wait - submit a bio, and wait until it completes
1230  * @bio: The &struct bio which describes the I/O
1231  *
1232  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1233  * bio_endio() on failure.
1234  *
1235  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1236  * result in bio reference to be consumed. The caller must drop the reference
1237  * on his own.
1238  */
1239 int submit_bio_wait(struct bio *bio)
1240 {
1241 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1242 			bio->bi_bdev->bd_disk->lockdep_map);
1243 	unsigned long hang_check;
1244 
1245 	bio->bi_private = &done;
1246 	bio->bi_end_io = submit_bio_wait_endio;
1247 	bio->bi_opf |= REQ_SYNC;
1248 	submit_bio(bio);
1249 
1250 	/* Prevent hang_check timer from firing at us during very long I/O */
1251 	hang_check = sysctl_hung_task_timeout_secs;
1252 	if (hang_check)
1253 		while (!wait_for_completion_io_timeout(&done,
1254 					hang_check * (HZ/2)))
1255 			;
1256 	else
1257 		wait_for_completion_io(&done);
1258 
1259 	return blk_status_to_errno(bio->bi_status);
1260 }
1261 EXPORT_SYMBOL(submit_bio_wait);
1262 
1263 /**
1264  * bio_advance - increment/complete a bio by some number of bytes
1265  * @bio:	bio to advance
1266  * @bytes:	number of bytes to complete
1267  *
1268  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1269  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1270  * be updated on the last bvec as well.
1271  *
1272  * @bio will then represent the remaining, uncompleted portion of the io.
1273  */
1274 void bio_advance(struct bio *bio, unsigned bytes)
1275 {
1276 	if (bio_integrity(bio))
1277 		bio_integrity_advance(bio, bytes);
1278 
1279 	bio_crypt_advance(bio, bytes);
1280 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1281 }
1282 EXPORT_SYMBOL(bio_advance);
1283 
1284 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1285 			struct bio *src, struct bvec_iter *src_iter)
1286 {
1287 	while (src_iter->bi_size && dst_iter->bi_size) {
1288 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1289 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1290 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1291 		void *src_buf;
1292 
1293 		src_buf = bvec_kmap_local(&src_bv);
1294 		memcpy_to_bvec(&dst_bv, src_buf);
1295 		kunmap_local(src_buf);
1296 
1297 		bio_advance_iter_single(src, src_iter, bytes);
1298 		bio_advance_iter_single(dst, dst_iter, bytes);
1299 	}
1300 }
1301 EXPORT_SYMBOL(bio_copy_data_iter);
1302 
1303 /**
1304  * bio_copy_data - copy contents of data buffers from one bio to another
1305  * @src: source bio
1306  * @dst: destination bio
1307  *
1308  * Stops when it reaches the end of either @src or @dst - that is, copies
1309  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1310  */
1311 void bio_copy_data(struct bio *dst, struct bio *src)
1312 {
1313 	struct bvec_iter src_iter = src->bi_iter;
1314 	struct bvec_iter dst_iter = dst->bi_iter;
1315 
1316 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1317 }
1318 EXPORT_SYMBOL(bio_copy_data);
1319 
1320 void bio_free_pages(struct bio *bio)
1321 {
1322 	struct bio_vec *bvec;
1323 	struct bvec_iter_all iter_all;
1324 
1325 	bio_for_each_segment_all(bvec, bio, iter_all)
1326 		__free_page(bvec->bv_page);
1327 }
1328 EXPORT_SYMBOL(bio_free_pages);
1329 
1330 /*
1331  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1332  * for performing direct-IO in BIOs.
1333  *
1334  * The problem is that we cannot run set_page_dirty() from interrupt context
1335  * because the required locks are not interrupt-safe.  So what we can do is to
1336  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1337  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1338  * in process context.
1339  *
1340  * We special-case compound pages here: normally this means reads into hugetlb
1341  * pages.  The logic in here doesn't really work right for compound pages
1342  * because the VM does not uniformly chase down the head page in all cases.
1343  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1344  * handle them at all.  So we skip compound pages here at an early stage.
1345  *
1346  * Note that this code is very hard to test under normal circumstances because
1347  * direct-io pins the pages with get_user_pages().  This makes
1348  * is_page_cache_freeable return false, and the VM will not clean the pages.
1349  * But other code (eg, flusher threads) could clean the pages if they are mapped
1350  * pagecache.
1351  *
1352  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1353  * deferred bio dirtying paths.
1354  */
1355 
1356 /*
1357  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1358  */
1359 void bio_set_pages_dirty(struct bio *bio)
1360 {
1361 	struct bio_vec *bvec;
1362 	struct bvec_iter_all iter_all;
1363 
1364 	bio_for_each_segment_all(bvec, bio, iter_all) {
1365 		if (!PageCompound(bvec->bv_page))
1366 			set_page_dirty_lock(bvec->bv_page);
1367 	}
1368 }
1369 
1370 /*
1371  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1372  * If they are, then fine.  If, however, some pages are clean then they must
1373  * have been written out during the direct-IO read.  So we take another ref on
1374  * the BIO and re-dirty the pages in process context.
1375  *
1376  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1377  * here on.  It will run one put_page() against each page and will run one
1378  * bio_put() against the BIO.
1379  */
1380 
1381 static void bio_dirty_fn(struct work_struct *work);
1382 
1383 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1384 static DEFINE_SPINLOCK(bio_dirty_lock);
1385 static struct bio *bio_dirty_list;
1386 
1387 /*
1388  * This runs in process context
1389  */
1390 static void bio_dirty_fn(struct work_struct *work)
1391 {
1392 	struct bio *bio, *next;
1393 
1394 	spin_lock_irq(&bio_dirty_lock);
1395 	next = bio_dirty_list;
1396 	bio_dirty_list = NULL;
1397 	spin_unlock_irq(&bio_dirty_lock);
1398 
1399 	while ((bio = next) != NULL) {
1400 		next = bio->bi_private;
1401 
1402 		bio_release_pages(bio, true);
1403 		bio_put(bio);
1404 	}
1405 }
1406 
1407 void bio_check_pages_dirty(struct bio *bio)
1408 {
1409 	struct bio_vec *bvec;
1410 	unsigned long flags;
1411 	struct bvec_iter_all iter_all;
1412 
1413 	bio_for_each_segment_all(bvec, bio, iter_all) {
1414 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1415 			goto defer;
1416 	}
1417 
1418 	bio_release_pages(bio, false);
1419 	bio_put(bio);
1420 	return;
1421 defer:
1422 	spin_lock_irqsave(&bio_dirty_lock, flags);
1423 	bio->bi_private = bio_dirty_list;
1424 	bio_dirty_list = bio;
1425 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1426 	schedule_work(&bio_dirty_work);
1427 }
1428 
1429 static inline bool bio_remaining_done(struct bio *bio)
1430 {
1431 	/*
1432 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1433 	 * we always end io on the first invocation.
1434 	 */
1435 	if (!bio_flagged(bio, BIO_CHAIN))
1436 		return true;
1437 
1438 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1439 
1440 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1441 		bio_clear_flag(bio, BIO_CHAIN);
1442 		return true;
1443 	}
1444 
1445 	return false;
1446 }
1447 
1448 /**
1449  * bio_endio - end I/O on a bio
1450  * @bio:	bio
1451  *
1452  * Description:
1453  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1454  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1455  *   bio unless they own it and thus know that it has an end_io function.
1456  *
1457  *   bio_endio() can be called several times on a bio that has been chained
1458  *   using bio_chain().  The ->bi_end_io() function will only be called the
1459  *   last time.
1460  **/
1461 void bio_endio(struct bio *bio)
1462 {
1463 again:
1464 	if (!bio_remaining_done(bio))
1465 		return;
1466 	if (!bio_integrity_endio(bio))
1467 		return;
1468 
1469 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1470 		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1471 
1472 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1473 		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1474 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1475 	}
1476 
1477 	/*
1478 	 * Need to have a real endio function for chained bios, otherwise
1479 	 * various corner cases will break (like stacking block devices that
1480 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1481 	 * recursion and blowing the stack. Tail call optimization would
1482 	 * handle this, but compiling with frame pointers also disables
1483 	 * gcc's sibling call optimization.
1484 	 */
1485 	if (bio->bi_end_io == bio_chain_endio) {
1486 		bio = __bio_chain_endio(bio);
1487 		goto again;
1488 	}
1489 
1490 	blk_throtl_bio_endio(bio);
1491 	/* release cgroup info */
1492 	bio_uninit(bio);
1493 	if (bio->bi_end_io)
1494 		bio->bi_end_io(bio);
1495 }
1496 EXPORT_SYMBOL(bio_endio);
1497 
1498 /**
1499  * bio_split - split a bio
1500  * @bio:	bio to split
1501  * @sectors:	number of sectors to split from the front of @bio
1502  * @gfp:	gfp mask
1503  * @bs:		bio set to allocate from
1504  *
1505  * Allocates and returns a new bio which represents @sectors from the start of
1506  * @bio, and updates @bio to represent the remaining sectors.
1507  *
1508  * Unless this is a discard request the newly allocated bio will point
1509  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1510  * neither @bio nor @bs are freed before the split bio.
1511  */
1512 struct bio *bio_split(struct bio *bio, int sectors,
1513 		      gfp_t gfp, struct bio_set *bs)
1514 {
1515 	struct bio *split;
1516 
1517 	BUG_ON(sectors <= 0);
1518 	BUG_ON(sectors >= bio_sectors(bio));
1519 
1520 	/* Zone append commands cannot be split */
1521 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1522 		return NULL;
1523 
1524 	split = bio_clone_fast(bio, gfp, bs);
1525 	if (!split)
1526 		return NULL;
1527 
1528 	split->bi_iter.bi_size = sectors << 9;
1529 
1530 	if (bio_integrity(split))
1531 		bio_integrity_trim(split);
1532 
1533 	bio_advance(bio, split->bi_iter.bi_size);
1534 
1535 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1536 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1537 
1538 	return split;
1539 }
1540 EXPORT_SYMBOL(bio_split);
1541 
1542 /**
1543  * bio_trim - trim a bio
1544  * @bio:	bio to trim
1545  * @offset:	number of sectors to trim from the front of @bio
1546  * @size:	size we want to trim @bio to, in sectors
1547  *
1548  * This function is typically used for bios that are cloned and submitted
1549  * to the underlying device in parts.
1550  */
1551 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1552 {
1553 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1554 			 offset + size > bio->bi_iter.bi_size))
1555 		return;
1556 
1557 	size <<= 9;
1558 	if (offset == 0 && size == bio->bi_iter.bi_size)
1559 		return;
1560 
1561 	bio_advance(bio, offset << 9);
1562 	bio->bi_iter.bi_size = size;
1563 
1564 	if (bio_integrity(bio))
1565 		bio_integrity_trim(bio);
1566 }
1567 EXPORT_SYMBOL_GPL(bio_trim);
1568 
1569 /*
1570  * create memory pools for biovec's in a bio_set.
1571  * use the global biovec slabs created for general use.
1572  */
1573 int biovec_init_pool(mempool_t *pool, int pool_entries)
1574 {
1575 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1576 
1577 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1578 }
1579 
1580 /*
1581  * bioset_exit - exit a bioset initialized with bioset_init()
1582  *
1583  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1584  * kzalloc()).
1585  */
1586 void bioset_exit(struct bio_set *bs)
1587 {
1588 	bio_alloc_cache_destroy(bs);
1589 	if (bs->rescue_workqueue)
1590 		destroy_workqueue(bs->rescue_workqueue);
1591 	bs->rescue_workqueue = NULL;
1592 
1593 	mempool_exit(&bs->bio_pool);
1594 	mempool_exit(&bs->bvec_pool);
1595 
1596 	bioset_integrity_free(bs);
1597 	if (bs->bio_slab)
1598 		bio_put_slab(bs);
1599 	bs->bio_slab = NULL;
1600 }
1601 EXPORT_SYMBOL(bioset_exit);
1602 
1603 /**
1604  * bioset_init - Initialize a bio_set
1605  * @bs:		pool to initialize
1606  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1607  * @front_pad:	Number of bytes to allocate in front of the returned bio
1608  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1609  *              and %BIOSET_NEED_RESCUER
1610  *
1611  * Description:
1612  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1613  *    to ask for a number of bytes to be allocated in front of the bio.
1614  *    Front pad allocation is useful for embedding the bio inside
1615  *    another structure, to avoid allocating extra data to go with the bio.
1616  *    Note that the bio must be embedded at the END of that structure always,
1617  *    or things will break badly.
1618  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1619  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1620  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1621  *    dispatch queued requests when the mempool runs out of space.
1622  *
1623  */
1624 int bioset_init(struct bio_set *bs,
1625 		unsigned int pool_size,
1626 		unsigned int front_pad,
1627 		int flags)
1628 {
1629 	bs->front_pad = front_pad;
1630 	if (flags & BIOSET_NEED_BVECS)
1631 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1632 	else
1633 		bs->back_pad = 0;
1634 
1635 	spin_lock_init(&bs->rescue_lock);
1636 	bio_list_init(&bs->rescue_list);
1637 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1638 
1639 	bs->bio_slab = bio_find_or_create_slab(bs);
1640 	if (!bs->bio_slab)
1641 		return -ENOMEM;
1642 
1643 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1644 		goto bad;
1645 
1646 	if ((flags & BIOSET_NEED_BVECS) &&
1647 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1648 		goto bad;
1649 
1650 	if (flags & BIOSET_NEED_RESCUER) {
1651 		bs->rescue_workqueue = alloc_workqueue("bioset",
1652 							WQ_MEM_RECLAIM, 0);
1653 		if (!bs->rescue_workqueue)
1654 			goto bad;
1655 	}
1656 	if (flags & BIOSET_PERCPU_CACHE) {
1657 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1658 		if (!bs->cache)
1659 			goto bad;
1660 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1661 	}
1662 
1663 	return 0;
1664 bad:
1665 	bioset_exit(bs);
1666 	return -ENOMEM;
1667 }
1668 EXPORT_SYMBOL(bioset_init);
1669 
1670 /*
1671  * Initialize and setup a new bio_set, based on the settings from
1672  * another bio_set.
1673  */
1674 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1675 {
1676 	int flags;
1677 
1678 	flags = 0;
1679 	if (src->bvec_pool.min_nr)
1680 		flags |= BIOSET_NEED_BVECS;
1681 	if (src->rescue_workqueue)
1682 		flags |= BIOSET_NEED_RESCUER;
1683 
1684 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1685 }
1686 EXPORT_SYMBOL(bioset_init_from_src);
1687 
1688 /**
1689  * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1690  * @kiocb:	kiocb describing the IO
1691  * @nr_vecs:	number of iovecs to pre-allocate
1692  * @bs:		bio_set to allocate from
1693  *
1694  * Description:
1695  *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1696  *    used to check if we should dip into the per-cpu bio_set allocation
1697  *    cache. The allocation uses GFP_KERNEL internally. On return, the
1698  *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1699  *    MUST be done from process context, not hard/soft IRQ.
1700  *
1701  */
1702 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1703 			    struct bio_set *bs)
1704 {
1705 	struct bio_alloc_cache *cache;
1706 	struct bio *bio;
1707 
1708 	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1709 		return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1710 
1711 	cache = per_cpu_ptr(bs->cache, get_cpu());
1712 	bio = bio_list_pop(&cache->free_list);
1713 	if (bio) {
1714 		cache->nr--;
1715 		put_cpu();
1716 		bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1717 		bio->bi_pool = bs;
1718 		bio_set_flag(bio, BIO_PERCPU_CACHE);
1719 		return bio;
1720 	}
1721 	put_cpu();
1722 	bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1723 	bio_set_flag(bio, BIO_PERCPU_CACHE);
1724 	return bio;
1725 }
1726 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1727 
1728 static int __init init_bio(void)
1729 {
1730 	int i;
1731 
1732 	bio_integrity_init();
1733 
1734 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1735 		struct biovec_slab *bvs = bvec_slabs + i;
1736 
1737 		bvs->slab = kmem_cache_create(bvs->name,
1738 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1739 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1740 	}
1741 
1742 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1743 					bio_cpu_dead);
1744 
1745 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1746 		panic("bio: can't allocate bios\n");
1747 
1748 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1749 		panic("bio: can't create integrity pool\n");
1750 
1751 	return 0;
1752 }
1753 subsys_initcall(init_bio);
1754