xref: /linux/block/bio.c (revision 3d9f96d850e4bbfae24dc9aee03033dd77c81596)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164 
165 	if (idx == BIOVEC_MAX_IDX)
166 		mempool_free(bv, pool);
167 	else {
168 		struct biovec_slab *bvs = bvec_slabs + idx;
169 
170 		kmem_cache_free(bvs->slab, bv);
171 	}
172 }
173 
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 			   mempool_t *pool)
176 {
177 	struct bio_vec *bvl;
178 
179 	/*
180 	 * see comment near bvec_array define!
181 	 */
182 	switch (nr) {
183 	case 1:
184 		*idx = 0;
185 		break;
186 	case 2 ... 4:
187 		*idx = 1;
188 		break;
189 	case 5 ... 16:
190 		*idx = 2;
191 		break;
192 	case 17 ... 64:
193 		*idx = 3;
194 		break;
195 	case 65 ... 128:
196 		*idx = 4;
197 		break;
198 	case 129 ... BIO_MAX_PAGES:
199 		*idx = 5;
200 		break;
201 	default:
202 		return NULL;
203 	}
204 
205 	/*
206 	 * idx now points to the pool we want to allocate from. only the
207 	 * 1-vec entry pool is mempool backed.
208 	 */
209 	if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 		bvl = mempool_alloc(pool, gfp_mask);
212 	} else {
213 		struct biovec_slab *bvs = bvec_slabs + *idx;
214 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215 
216 		/*
217 		 * Make this allocation restricted and don't dump info on
218 		 * allocation failures, since we'll fallback to the mempool
219 		 * in case of failure.
220 		 */
221 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222 
223 		/*
224 		 * Try a slab allocation. If this fails and __GFP_WAIT
225 		 * is set, retry with the 1-entry mempool
226 		 */
227 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 			*idx = BIOVEC_MAX_IDX;
230 			goto fallback;
231 		}
232 	}
233 
234 	return bvl;
235 }
236 
237 static void __bio_free(struct bio *bio)
238 {
239 	bio_disassociate_task(bio);
240 
241 	if (bio_integrity(bio))
242 		bio_integrity_free(bio);
243 }
244 
245 static void bio_free(struct bio *bio)
246 {
247 	struct bio_set *bs = bio->bi_pool;
248 	void *p;
249 
250 	__bio_free(bio);
251 
252 	if (bs) {
253 		if (bio_flagged(bio, BIO_OWNS_VEC))
254 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255 
256 		/*
257 		 * If we have front padding, adjust the bio pointer before freeing
258 		 */
259 		p = bio;
260 		p -= bs->front_pad;
261 
262 		mempool_free(p, bs->bio_pool);
263 	} else {
264 		/* Bio was allocated by bio_kmalloc() */
265 		kfree(bio);
266 	}
267 }
268 
269 void bio_init(struct bio *bio)
270 {
271 	memset(bio, 0, sizeof(*bio));
272 	bio->bi_flags = 1 << BIO_UPTODATE;
273 	atomic_set(&bio->__bi_remaining, 1);
274 	atomic_set(&bio->__bi_cnt, 1);
275 }
276 EXPORT_SYMBOL(bio_init);
277 
278 /**
279  * bio_reset - reinitialize a bio
280  * @bio:	bio to reset
281  *
282  * Description:
283  *   After calling bio_reset(), @bio will be in the same state as a freshly
284  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
285  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
286  *   comment in struct bio.
287  */
288 void bio_reset(struct bio *bio)
289 {
290 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291 
292 	__bio_free(bio);
293 
294 	memset(bio, 0, BIO_RESET_BYTES);
295 	bio->bi_flags = flags | (1 << BIO_UPTODATE);
296 	atomic_set(&bio->__bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299 
300 static void bio_chain_endio(struct bio *bio, int error)
301 {
302 	bio_endio(bio->bi_private, error);
303 	bio_put(bio);
304 }
305 
306 /*
307  * Increment chain count for the bio. Make sure the CHAIN flag update
308  * is visible before the raised count.
309  */
310 static inline void bio_inc_remaining(struct bio *bio)
311 {
312 	bio->bi_flags |= (1 << BIO_CHAIN);
313 	smp_mb__before_atomic();
314 	atomic_inc(&bio->__bi_remaining);
315 }
316 
317 /**
318  * bio_chain - chain bio completions
319  * @bio: the target bio
320  * @parent: the @bio's parent bio
321  *
322  * The caller won't have a bi_end_io called when @bio completes - instead,
323  * @parent's bi_end_io won't be called until both @parent and @bio have
324  * completed; the chained bio will also be freed when it completes.
325  *
326  * The caller must not set bi_private or bi_end_io in @bio.
327  */
328 void bio_chain(struct bio *bio, struct bio *parent)
329 {
330 	BUG_ON(bio->bi_private || bio->bi_end_io);
331 
332 	bio->bi_private = parent;
333 	bio->bi_end_io	= bio_chain_endio;
334 	bio_inc_remaining(parent);
335 }
336 EXPORT_SYMBOL(bio_chain);
337 
338 static void bio_alloc_rescue(struct work_struct *work)
339 {
340 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
341 	struct bio *bio;
342 
343 	while (1) {
344 		spin_lock(&bs->rescue_lock);
345 		bio = bio_list_pop(&bs->rescue_list);
346 		spin_unlock(&bs->rescue_lock);
347 
348 		if (!bio)
349 			break;
350 
351 		generic_make_request(bio);
352 	}
353 }
354 
355 static void punt_bios_to_rescuer(struct bio_set *bs)
356 {
357 	struct bio_list punt, nopunt;
358 	struct bio *bio;
359 
360 	/*
361 	 * In order to guarantee forward progress we must punt only bios that
362 	 * were allocated from this bio_set; otherwise, if there was a bio on
363 	 * there for a stacking driver higher up in the stack, processing it
364 	 * could require allocating bios from this bio_set, and doing that from
365 	 * our own rescuer would be bad.
366 	 *
367 	 * Since bio lists are singly linked, pop them all instead of trying to
368 	 * remove from the middle of the list:
369 	 */
370 
371 	bio_list_init(&punt);
372 	bio_list_init(&nopunt);
373 
374 	while ((bio = bio_list_pop(current->bio_list)))
375 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
376 
377 	*current->bio_list = nopunt;
378 
379 	spin_lock(&bs->rescue_lock);
380 	bio_list_merge(&bs->rescue_list, &punt);
381 	spin_unlock(&bs->rescue_lock);
382 
383 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
384 }
385 
386 /**
387  * bio_alloc_bioset - allocate a bio for I/O
388  * @gfp_mask:   the GFP_ mask given to the slab allocator
389  * @nr_iovecs:	number of iovecs to pre-allocate
390  * @bs:		the bio_set to allocate from.
391  *
392  * Description:
393  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
394  *   backed by the @bs's mempool.
395  *
396  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
397  *   able to allocate a bio. This is due to the mempool guarantees. To make this
398  *   work, callers must never allocate more than 1 bio at a time from this pool.
399  *   Callers that need to allocate more than 1 bio must always submit the
400  *   previously allocated bio for IO before attempting to allocate a new one.
401  *   Failure to do so can cause deadlocks under memory pressure.
402  *
403  *   Note that when running under generic_make_request() (i.e. any block
404  *   driver), bios are not submitted until after you return - see the code in
405  *   generic_make_request() that converts recursion into iteration, to prevent
406  *   stack overflows.
407  *
408  *   This would normally mean allocating multiple bios under
409  *   generic_make_request() would be susceptible to deadlocks, but we have
410  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
411  *   thread.
412  *
413  *   However, we do not guarantee forward progress for allocations from other
414  *   mempools. Doing multiple allocations from the same mempool under
415  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
416  *   for per bio allocations.
417  *
418  *   RETURNS:
419  *   Pointer to new bio on success, NULL on failure.
420  */
421 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
422 {
423 	gfp_t saved_gfp = gfp_mask;
424 	unsigned front_pad;
425 	unsigned inline_vecs;
426 	unsigned long idx = BIO_POOL_NONE;
427 	struct bio_vec *bvl = NULL;
428 	struct bio *bio;
429 	void *p;
430 
431 	if (!bs) {
432 		if (nr_iovecs > UIO_MAXIOV)
433 			return NULL;
434 
435 		p = kmalloc(sizeof(struct bio) +
436 			    nr_iovecs * sizeof(struct bio_vec),
437 			    gfp_mask);
438 		front_pad = 0;
439 		inline_vecs = nr_iovecs;
440 	} else {
441 		/* should not use nobvec bioset for nr_iovecs > 0 */
442 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
443 			return NULL;
444 		/*
445 		 * generic_make_request() converts recursion to iteration; this
446 		 * means if we're running beneath it, any bios we allocate and
447 		 * submit will not be submitted (and thus freed) until after we
448 		 * return.
449 		 *
450 		 * This exposes us to a potential deadlock if we allocate
451 		 * multiple bios from the same bio_set() while running
452 		 * underneath generic_make_request(). If we were to allocate
453 		 * multiple bios (say a stacking block driver that was splitting
454 		 * bios), we would deadlock if we exhausted the mempool's
455 		 * reserve.
456 		 *
457 		 * We solve this, and guarantee forward progress, with a rescuer
458 		 * workqueue per bio_set. If we go to allocate and there are
459 		 * bios on current->bio_list, we first try the allocation
460 		 * without __GFP_WAIT; if that fails, we punt those bios we
461 		 * would be blocking to the rescuer workqueue before we retry
462 		 * with the original gfp_flags.
463 		 */
464 
465 		if (current->bio_list && !bio_list_empty(current->bio_list))
466 			gfp_mask &= ~__GFP_WAIT;
467 
468 		p = mempool_alloc(bs->bio_pool, gfp_mask);
469 		if (!p && gfp_mask != saved_gfp) {
470 			punt_bios_to_rescuer(bs);
471 			gfp_mask = saved_gfp;
472 			p = mempool_alloc(bs->bio_pool, gfp_mask);
473 		}
474 
475 		front_pad = bs->front_pad;
476 		inline_vecs = BIO_INLINE_VECS;
477 	}
478 
479 	if (unlikely(!p))
480 		return NULL;
481 
482 	bio = p + front_pad;
483 	bio_init(bio);
484 
485 	if (nr_iovecs > inline_vecs) {
486 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
487 		if (!bvl && gfp_mask != saved_gfp) {
488 			punt_bios_to_rescuer(bs);
489 			gfp_mask = saved_gfp;
490 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
491 		}
492 
493 		if (unlikely(!bvl))
494 			goto err_free;
495 
496 		bio->bi_flags |= 1 << BIO_OWNS_VEC;
497 	} else if (nr_iovecs) {
498 		bvl = bio->bi_inline_vecs;
499 	}
500 
501 	bio->bi_pool = bs;
502 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
503 	bio->bi_max_vecs = nr_iovecs;
504 	bio->bi_io_vec = bvl;
505 	return bio;
506 
507 err_free:
508 	mempool_free(p, bs->bio_pool);
509 	return NULL;
510 }
511 EXPORT_SYMBOL(bio_alloc_bioset);
512 
513 void zero_fill_bio(struct bio *bio)
514 {
515 	unsigned long flags;
516 	struct bio_vec bv;
517 	struct bvec_iter iter;
518 
519 	bio_for_each_segment(bv, bio, iter) {
520 		char *data = bvec_kmap_irq(&bv, &flags);
521 		memset(data, 0, bv.bv_len);
522 		flush_dcache_page(bv.bv_page);
523 		bvec_kunmap_irq(data, &flags);
524 	}
525 }
526 EXPORT_SYMBOL(zero_fill_bio);
527 
528 /**
529  * bio_put - release a reference to a bio
530  * @bio:   bio to release reference to
531  *
532  * Description:
533  *   Put a reference to a &struct bio, either one you have gotten with
534  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
535  **/
536 void bio_put(struct bio *bio)
537 {
538 	if (!bio_flagged(bio, BIO_REFFED))
539 		bio_free(bio);
540 	else {
541 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
542 
543 		/*
544 		 * last put frees it
545 		 */
546 		if (atomic_dec_and_test(&bio->__bi_cnt))
547 			bio_free(bio);
548 	}
549 }
550 EXPORT_SYMBOL(bio_put);
551 
552 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
553 {
554 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
555 		blk_recount_segments(q, bio);
556 
557 	return bio->bi_phys_segments;
558 }
559 EXPORT_SYMBOL(bio_phys_segments);
560 
561 /**
562  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
563  * 	@bio: destination bio
564  * 	@bio_src: bio to clone
565  *
566  *	Clone a &bio. Caller will own the returned bio, but not
567  *	the actual data it points to. Reference count of returned
568  * 	bio will be one.
569  *
570  * 	Caller must ensure that @bio_src is not freed before @bio.
571  */
572 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
573 {
574 	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
575 
576 	/*
577 	 * most users will be overriding ->bi_bdev with a new target,
578 	 * so we don't set nor calculate new physical/hw segment counts here
579 	 */
580 	bio->bi_bdev = bio_src->bi_bdev;
581 	bio->bi_flags |= 1 << BIO_CLONED;
582 	bio->bi_rw = bio_src->bi_rw;
583 	bio->bi_iter = bio_src->bi_iter;
584 	bio->bi_io_vec = bio_src->bi_io_vec;
585 }
586 EXPORT_SYMBOL(__bio_clone_fast);
587 
588 /**
589  *	bio_clone_fast - clone a bio that shares the original bio's biovec
590  *	@bio: bio to clone
591  *	@gfp_mask: allocation priority
592  *	@bs: bio_set to allocate from
593  *
594  * 	Like __bio_clone_fast, only also allocates the returned bio
595  */
596 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
597 {
598 	struct bio *b;
599 
600 	b = bio_alloc_bioset(gfp_mask, 0, bs);
601 	if (!b)
602 		return NULL;
603 
604 	__bio_clone_fast(b, bio);
605 
606 	if (bio_integrity(bio)) {
607 		int ret;
608 
609 		ret = bio_integrity_clone(b, bio, gfp_mask);
610 
611 		if (ret < 0) {
612 			bio_put(b);
613 			return NULL;
614 		}
615 	}
616 
617 	return b;
618 }
619 EXPORT_SYMBOL(bio_clone_fast);
620 
621 /**
622  * 	bio_clone_bioset - clone a bio
623  * 	@bio_src: bio to clone
624  *	@gfp_mask: allocation priority
625  *	@bs: bio_set to allocate from
626  *
627  *	Clone bio. Caller will own the returned bio, but not the actual data it
628  *	points to. Reference count of returned bio will be one.
629  */
630 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
631 			     struct bio_set *bs)
632 {
633 	struct bvec_iter iter;
634 	struct bio_vec bv;
635 	struct bio *bio;
636 
637 	/*
638 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
639 	 * bio_src->bi_io_vec to bio->bi_io_vec.
640 	 *
641 	 * We can't do that anymore, because:
642 	 *
643 	 *  - The point of cloning the biovec is to produce a bio with a biovec
644 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
645 	 *
646 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
647 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
648 	 *    But the clone should succeed as long as the number of biovecs we
649 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
650 	 *
651 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
652 	 *    that does not own the bio - reason being drivers don't use it for
653 	 *    iterating over the biovec anymore, so expecting it to be kept up
654 	 *    to date (i.e. for clones that share the parent biovec) is just
655 	 *    asking for trouble and would force extra work on
656 	 *    __bio_clone_fast() anyways.
657 	 */
658 
659 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
660 	if (!bio)
661 		return NULL;
662 
663 	bio->bi_bdev		= bio_src->bi_bdev;
664 	bio->bi_rw		= bio_src->bi_rw;
665 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
666 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
667 
668 	if (bio->bi_rw & REQ_DISCARD)
669 		goto integrity_clone;
670 
671 	if (bio->bi_rw & REQ_WRITE_SAME) {
672 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
673 		goto integrity_clone;
674 	}
675 
676 	bio_for_each_segment(bv, bio_src, iter)
677 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
678 
679 integrity_clone:
680 	if (bio_integrity(bio_src)) {
681 		int ret;
682 
683 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
684 		if (ret < 0) {
685 			bio_put(bio);
686 			return NULL;
687 		}
688 	}
689 
690 	return bio;
691 }
692 EXPORT_SYMBOL(bio_clone_bioset);
693 
694 /**
695  *	bio_get_nr_vecs		- return approx number of vecs
696  *	@bdev:  I/O target
697  *
698  *	Return the approximate number of pages we can send to this target.
699  *	There's no guarantee that you will be able to fit this number of pages
700  *	into a bio, it does not account for dynamic restrictions that vary
701  *	on offset.
702  */
703 int bio_get_nr_vecs(struct block_device *bdev)
704 {
705 	struct request_queue *q = bdev_get_queue(bdev);
706 	int nr_pages;
707 
708 	nr_pages = min_t(unsigned,
709 		     queue_max_segments(q),
710 		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
711 
712 	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
713 
714 }
715 EXPORT_SYMBOL(bio_get_nr_vecs);
716 
717 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
718 			  *page, unsigned int len, unsigned int offset,
719 			  unsigned int max_sectors)
720 {
721 	int retried_segments = 0;
722 	struct bio_vec *bvec;
723 
724 	/*
725 	 * cloned bio must not modify vec list
726 	 */
727 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
728 		return 0;
729 
730 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
731 		return 0;
732 
733 	/*
734 	 * For filesystems with a blocksize smaller than the pagesize
735 	 * we will often be called with the same page as last time and
736 	 * a consecutive offset.  Optimize this special case.
737 	 */
738 	if (bio->bi_vcnt > 0) {
739 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
740 
741 		if (page == prev->bv_page &&
742 		    offset == prev->bv_offset + prev->bv_len) {
743 			unsigned int prev_bv_len = prev->bv_len;
744 			prev->bv_len += len;
745 
746 			if (q->merge_bvec_fn) {
747 				struct bvec_merge_data bvm = {
748 					/* prev_bvec is already charged in
749 					   bi_size, discharge it in order to
750 					   simulate merging updated prev_bvec
751 					   as new bvec. */
752 					.bi_bdev = bio->bi_bdev,
753 					.bi_sector = bio->bi_iter.bi_sector,
754 					.bi_size = bio->bi_iter.bi_size -
755 						prev_bv_len,
756 					.bi_rw = bio->bi_rw,
757 				};
758 
759 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
760 					prev->bv_len -= len;
761 					return 0;
762 				}
763 			}
764 
765 			bio->bi_iter.bi_size += len;
766 			goto done;
767 		}
768 
769 		/*
770 		 * If the queue doesn't support SG gaps and adding this
771 		 * offset would create a gap, disallow it.
772 		 */
773 		if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
774 		    bvec_gap_to_prev(prev, offset))
775 			return 0;
776 	}
777 
778 	if (bio->bi_vcnt >= bio->bi_max_vecs)
779 		return 0;
780 
781 	/*
782 	 * setup the new entry, we might clear it again later if we
783 	 * cannot add the page
784 	 */
785 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
786 	bvec->bv_page = page;
787 	bvec->bv_len = len;
788 	bvec->bv_offset = offset;
789 	bio->bi_vcnt++;
790 	bio->bi_phys_segments++;
791 	bio->bi_iter.bi_size += len;
792 
793 	/*
794 	 * Perform a recount if the number of segments is greater
795 	 * than queue_max_segments(q).
796 	 */
797 
798 	while (bio->bi_phys_segments > queue_max_segments(q)) {
799 
800 		if (retried_segments)
801 			goto failed;
802 
803 		retried_segments = 1;
804 		blk_recount_segments(q, bio);
805 	}
806 
807 	/*
808 	 * if queue has other restrictions (eg varying max sector size
809 	 * depending on offset), it can specify a merge_bvec_fn in the
810 	 * queue to get further control
811 	 */
812 	if (q->merge_bvec_fn) {
813 		struct bvec_merge_data bvm = {
814 			.bi_bdev = bio->bi_bdev,
815 			.bi_sector = bio->bi_iter.bi_sector,
816 			.bi_size = bio->bi_iter.bi_size - len,
817 			.bi_rw = bio->bi_rw,
818 		};
819 
820 		/*
821 		 * merge_bvec_fn() returns number of bytes it can accept
822 		 * at this offset
823 		 */
824 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
825 			goto failed;
826 	}
827 
828 	/* If we may be able to merge these biovecs, force a recount */
829 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
830 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
831 
832  done:
833 	return len;
834 
835  failed:
836 	bvec->bv_page = NULL;
837 	bvec->bv_len = 0;
838 	bvec->bv_offset = 0;
839 	bio->bi_vcnt--;
840 	bio->bi_iter.bi_size -= len;
841 	blk_recount_segments(q, bio);
842 	return 0;
843 }
844 
845 /**
846  *	bio_add_pc_page	-	attempt to add page to bio
847  *	@q: the target queue
848  *	@bio: destination bio
849  *	@page: page to add
850  *	@len: vec entry length
851  *	@offset: vec entry offset
852  *
853  *	Attempt to add a page to the bio_vec maplist. This can fail for a
854  *	number of reasons, such as the bio being full or target block device
855  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
856  *	so it is always possible to add a single page to an empty bio.
857  *
858  *	This should only be used by REQ_PC bios.
859  */
860 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
861 		    unsigned int len, unsigned int offset)
862 {
863 	return __bio_add_page(q, bio, page, len, offset,
864 			      queue_max_hw_sectors(q));
865 }
866 EXPORT_SYMBOL(bio_add_pc_page);
867 
868 /**
869  *	bio_add_page	-	attempt to add page to bio
870  *	@bio: destination bio
871  *	@page: page to add
872  *	@len: vec entry length
873  *	@offset: vec entry offset
874  *
875  *	Attempt to add a page to the bio_vec maplist. This can fail for a
876  *	number of reasons, such as the bio being full or target block device
877  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
878  *	so it is always possible to add a single page to an empty bio.
879  */
880 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
881 		 unsigned int offset)
882 {
883 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
884 	unsigned int max_sectors;
885 
886 	max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
887 	if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
888 		max_sectors = len >> 9;
889 
890 	return __bio_add_page(q, bio, page, len, offset, max_sectors);
891 }
892 EXPORT_SYMBOL(bio_add_page);
893 
894 struct submit_bio_ret {
895 	struct completion event;
896 	int error;
897 };
898 
899 static void submit_bio_wait_endio(struct bio *bio, int error)
900 {
901 	struct submit_bio_ret *ret = bio->bi_private;
902 
903 	ret->error = error;
904 	complete(&ret->event);
905 }
906 
907 /**
908  * submit_bio_wait - submit a bio, and wait until it completes
909  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
910  * @bio: The &struct bio which describes the I/O
911  *
912  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
913  * bio_endio() on failure.
914  */
915 int submit_bio_wait(int rw, struct bio *bio)
916 {
917 	struct submit_bio_ret ret;
918 
919 	rw |= REQ_SYNC;
920 	init_completion(&ret.event);
921 	bio->bi_private = &ret;
922 	bio->bi_end_io = submit_bio_wait_endio;
923 	submit_bio(rw, bio);
924 	wait_for_completion(&ret.event);
925 
926 	return ret.error;
927 }
928 EXPORT_SYMBOL(submit_bio_wait);
929 
930 /**
931  * bio_advance - increment/complete a bio by some number of bytes
932  * @bio:	bio to advance
933  * @bytes:	number of bytes to complete
934  *
935  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
936  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
937  * be updated on the last bvec as well.
938  *
939  * @bio will then represent the remaining, uncompleted portion of the io.
940  */
941 void bio_advance(struct bio *bio, unsigned bytes)
942 {
943 	if (bio_integrity(bio))
944 		bio_integrity_advance(bio, bytes);
945 
946 	bio_advance_iter(bio, &bio->bi_iter, bytes);
947 }
948 EXPORT_SYMBOL(bio_advance);
949 
950 /**
951  * bio_alloc_pages - allocates a single page for each bvec in a bio
952  * @bio: bio to allocate pages for
953  * @gfp_mask: flags for allocation
954  *
955  * Allocates pages up to @bio->bi_vcnt.
956  *
957  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
958  * freed.
959  */
960 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
961 {
962 	int i;
963 	struct bio_vec *bv;
964 
965 	bio_for_each_segment_all(bv, bio, i) {
966 		bv->bv_page = alloc_page(gfp_mask);
967 		if (!bv->bv_page) {
968 			while (--bv >= bio->bi_io_vec)
969 				__free_page(bv->bv_page);
970 			return -ENOMEM;
971 		}
972 	}
973 
974 	return 0;
975 }
976 EXPORT_SYMBOL(bio_alloc_pages);
977 
978 /**
979  * bio_copy_data - copy contents of data buffers from one chain of bios to
980  * another
981  * @src: source bio list
982  * @dst: destination bio list
983  *
984  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
985  * @src and @dst as linked lists of bios.
986  *
987  * Stops when it reaches the end of either @src or @dst - that is, copies
988  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
989  */
990 void bio_copy_data(struct bio *dst, struct bio *src)
991 {
992 	struct bvec_iter src_iter, dst_iter;
993 	struct bio_vec src_bv, dst_bv;
994 	void *src_p, *dst_p;
995 	unsigned bytes;
996 
997 	src_iter = src->bi_iter;
998 	dst_iter = dst->bi_iter;
999 
1000 	while (1) {
1001 		if (!src_iter.bi_size) {
1002 			src = src->bi_next;
1003 			if (!src)
1004 				break;
1005 
1006 			src_iter = src->bi_iter;
1007 		}
1008 
1009 		if (!dst_iter.bi_size) {
1010 			dst = dst->bi_next;
1011 			if (!dst)
1012 				break;
1013 
1014 			dst_iter = dst->bi_iter;
1015 		}
1016 
1017 		src_bv = bio_iter_iovec(src, src_iter);
1018 		dst_bv = bio_iter_iovec(dst, dst_iter);
1019 
1020 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1021 
1022 		src_p = kmap_atomic(src_bv.bv_page);
1023 		dst_p = kmap_atomic(dst_bv.bv_page);
1024 
1025 		memcpy(dst_p + dst_bv.bv_offset,
1026 		       src_p + src_bv.bv_offset,
1027 		       bytes);
1028 
1029 		kunmap_atomic(dst_p);
1030 		kunmap_atomic(src_p);
1031 
1032 		bio_advance_iter(src, &src_iter, bytes);
1033 		bio_advance_iter(dst, &dst_iter, bytes);
1034 	}
1035 }
1036 EXPORT_SYMBOL(bio_copy_data);
1037 
1038 struct bio_map_data {
1039 	int is_our_pages;
1040 	struct iov_iter iter;
1041 	struct iovec iov[];
1042 };
1043 
1044 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1045 					       gfp_t gfp_mask)
1046 {
1047 	if (iov_count > UIO_MAXIOV)
1048 		return NULL;
1049 
1050 	return kmalloc(sizeof(struct bio_map_data) +
1051 		       sizeof(struct iovec) * iov_count, gfp_mask);
1052 }
1053 
1054 /**
1055  * bio_copy_from_iter - copy all pages from iov_iter to bio
1056  * @bio: The &struct bio which describes the I/O as destination
1057  * @iter: iov_iter as source
1058  *
1059  * Copy all pages from iov_iter to bio.
1060  * Returns 0 on success, or error on failure.
1061  */
1062 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1063 {
1064 	int i;
1065 	struct bio_vec *bvec;
1066 
1067 	bio_for_each_segment_all(bvec, bio, i) {
1068 		ssize_t ret;
1069 
1070 		ret = copy_page_from_iter(bvec->bv_page,
1071 					  bvec->bv_offset,
1072 					  bvec->bv_len,
1073 					  &iter);
1074 
1075 		if (!iov_iter_count(&iter))
1076 			break;
1077 
1078 		if (ret < bvec->bv_len)
1079 			return -EFAULT;
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 /**
1086  * bio_copy_to_iter - copy all pages from bio to iov_iter
1087  * @bio: The &struct bio which describes the I/O as source
1088  * @iter: iov_iter as destination
1089  *
1090  * Copy all pages from bio to iov_iter.
1091  * Returns 0 on success, or error on failure.
1092  */
1093 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1094 {
1095 	int i;
1096 	struct bio_vec *bvec;
1097 
1098 	bio_for_each_segment_all(bvec, bio, i) {
1099 		ssize_t ret;
1100 
1101 		ret = copy_page_to_iter(bvec->bv_page,
1102 					bvec->bv_offset,
1103 					bvec->bv_len,
1104 					&iter);
1105 
1106 		if (!iov_iter_count(&iter))
1107 			break;
1108 
1109 		if (ret < bvec->bv_len)
1110 			return -EFAULT;
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 static void bio_free_pages(struct bio *bio)
1117 {
1118 	struct bio_vec *bvec;
1119 	int i;
1120 
1121 	bio_for_each_segment_all(bvec, bio, i)
1122 		__free_page(bvec->bv_page);
1123 }
1124 
1125 /**
1126  *	bio_uncopy_user	-	finish previously mapped bio
1127  *	@bio: bio being terminated
1128  *
1129  *	Free pages allocated from bio_copy_user_iov() and write back data
1130  *	to user space in case of a read.
1131  */
1132 int bio_uncopy_user(struct bio *bio)
1133 {
1134 	struct bio_map_data *bmd = bio->bi_private;
1135 	int ret = 0;
1136 
1137 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1138 		/*
1139 		 * if we're in a workqueue, the request is orphaned, so
1140 		 * don't copy into a random user address space, just free.
1141 		 */
1142 		if (current->mm && bio_data_dir(bio) == READ)
1143 			ret = bio_copy_to_iter(bio, bmd->iter);
1144 		if (bmd->is_our_pages)
1145 			bio_free_pages(bio);
1146 	}
1147 	kfree(bmd);
1148 	bio_put(bio);
1149 	return ret;
1150 }
1151 EXPORT_SYMBOL(bio_uncopy_user);
1152 
1153 /**
1154  *	bio_copy_user_iov	-	copy user data to bio
1155  *	@q:		destination block queue
1156  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1157  *	@iter:		iovec iterator
1158  *	@gfp_mask:	memory allocation flags
1159  *
1160  *	Prepares and returns a bio for indirect user io, bouncing data
1161  *	to/from kernel pages as necessary. Must be paired with
1162  *	call bio_uncopy_user() on io completion.
1163  */
1164 struct bio *bio_copy_user_iov(struct request_queue *q,
1165 			      struct rq_map_data *map_data,
1166 			      const struct iov_iter *iter,
1167 			      gfp_t gfp_mask)
1168 {
1169 	struct bio_map_data *bmd;
1170 	struct page *page;
1171 	struct bio *bio;
1172 	int i, ret;
1173 	int nr_pages = 0;
1174 	unsigned int len = iter->count;
1175 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1176 
1177 	for (i = 0; i < iter->nr_segs; i++) {
1178 		unsigned long uaddr;
1179 		unsigned long end;
1180 		unsigned long start;
1181 
1182 		uaddr = (unsigned long) iter->iov[i].iov_base;
1183 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1184 			>> PAGE_SHIFT;
1185 		start = uaddr >> PAGE_SHIFT;
1186 
1187 		/*
1188 		 * Overflow, abort
1189 		 */
1190 		if (end < start)
1191 			return ERR_PTR(-EINVAL);
1192 
1193 		nr_pages += end - start;
1194 	}
1195 
1196 	if (offset)
1197 		nr_pages++;
1198 
1199 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1200 	if (!bmd)
1201 		return ERR_PTR(-ENOMEM);
1202 
1203 	/*
1204 	 * We need to do a deep copy of the iov_iter including the iovecs.
1205 	 * The caller provided iov might point to an on-stack or otherwise
1206 	 * shortlived one.
1207 	 */
1208 	bmd->is_our_pages = map_data ? 0 : 1;
1209 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1210 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1211 			iter->nr_segs, iter->count);
1212 
1213 	ret = -ENOMEM;
1214 	bio = bio_kmalloc(gfp_mask, nr_pages);
1215 	if (!bio)
1216 		goto out_bmd;
1217 
1218 	if (iter->type & WRITE)
1219 		bio->bi_rw |= REQ_WRITE;
1220 
1221 	ret = 0;
1222 
1223 	if (map_data) {
1224 		nr_pages = 1 << map_data->page_order;
1225 		i = map_data->offset / PAGE_SIZE;
1226 	}
1227 	while (len) {
1228 		unsigned int bytes = PAGE_SIZE;
1229 
1230 		bytes -= offset;
1231 
1232 		if (bytes > len)
1233 			bytes = len;
1234 
1235 		if (map_data) {
1236 			if (i == map_data->nr_entries * nr_pages) {
1237 				ret = -ENOMEM;
1238 				break;
1239 			}
1240 
1241 			page = map_data->pages[i / nr_pages];
1242 			page += (i % nr_pages);
1243 
1244 			i++;
1245 		} else {
1246 			page = alloc_page(q->bounce_gfp | gfp_mask);
1247 			if (!page) {
1248 				ret = -ENOMEM;
1249 				break;
1250 			}
1251 		}
1252 
1253 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1254 			break;
1255 
1256 		len -= bytes;
1257 		offset = 0;
1258 	}
1259 
1260 	if (ret)
1261 		goto cleanup;
1262 
1263 	/*
1264 	 * success
1265 	 */
1266 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1267 	    (map_data && map_data->from_user)) {
1268 		ret = bio_copy_from_iter(bio, *iter);
1269 		if (ret)
1270 			goto cleanup;
1271 	}
1272 
1273 	bio->bi_private = bmd;
1274 	return bio;
1275 cleanup:
1276 	if (!map_data)
1277 		bio_free_pages(bio);
1278 	bio_put(bio);
1279 out_bmd:
1280 	kfree(bmd);
1281 	return ERR_PTR(ret);
1282 }
1283 
1284 /**
1285  *	bio_map_user_iov - map user iovec into bio
1286  *	@q:		the struct request_queue for the bio
1287  *	@iter:		iovec iterator
1288  *	@gfp_mask:	memory allocation flags
1289  *
1290  *	Map the user space address into a bio suitable for io to a block
1291  *	device. Returns an error pointer in case of error.
1292  */
1293 struct bio *bio_map_user_iov(struct request_queue *q,
1294 			     const struct iov_iter *iter,
1295 			     gfp_t gfp_mask)
1296 {
1297 	int j;
1298 	int nr_pages = 0;
1299 	struct page **pages;
1300 	struct bio *bio;
1301 	int cur_page = 0;
1302 	int ret, offset;
1303 	struct iov_iter i;
1304 	struct iovec iov;
1305 
1306 	iov_for_each(iov, i, *iter) {
1307 		unsigned long uaddr = (unsigned long) iov.iov_base;
1308 		unsigned long len = iov.iov_len;
1309 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1310 		unsigned long start = uaddr >> PAGE_SHIFT;
1311 
1312 		/*
1313 		 * Overflow, abort
1314 		 */
1315 		if (end < start)
1316 			return ERR_PTR(-EINVAL);
1317 
1318 		nr_pages += end - start;
1319 		/*
1320 		 * buffer must be aligned to at least hardsector size for now
1321 		 */
1322 		if (uaddr & queue_dma_alignment(q))
1323 			return ERR_PTR(-EINVAL);
1324 	}
1325 
1326 	if (!nr_pages)
1327 		return ERR_PTR(-EINVAL);
1328 
1329 	bio = bio_kmalloc(gfp_mask, nr_pages);
1330 	if (!bio)
1331 		return ERR_PTR(-ENOMEM);
1332 
1333 	ret = -ENOMEM;
1334 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1335 	if (!pages)
1336 		goto out;
1337 
1338 	iov_for_each(iov, i, *iter) {
1339 		unsigned long uaddr = (unsigned long) iov.iov_base;
1340 		unsigned long len = iov.iov_len;
1341 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1342 		unsigned long start = uaddr >> PAGE_SHIFT;
1343 		const int local_nr_pages = end - start;
1344 		const int page_limit = cur_page + local_nr_pages;
1345 
1346 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1347 				(iter->type & WRITE) != WRITE,
1348 				&pages[cur_page]);
1349 		if (ret < local_nr_pages) {
1350 			ret = -EFAULT;
1351 			goto out_unmap;
1352 		}
1353 
1354 		offset = uaddr & ~PAGE_MASK;
1355 		for (j = cur_page; j < page_limit; j++) {
1356 			unsigned int bytes = PAGE_SIZE - offset;
1357 
1358 			if (len <= 0)
1359 				break;
1360 
1361 			if (bytes > len)
1362 				bytes = len;
1363 
1364 			/*
1365 			 * sorry...
1366 			 */
1367 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1368 					    bytes)
1369 				break;
1370 
1371 			len -= bytes;
1372 			offset = 0;
1373 		}
1374 
1375 		cur_page = j;
1376 		/*
1377 		 * release the pages we didn't map into the bio, if any
1378 		 */
1379 		while (j < page_limit)
1380 			page_cache_release(pages[j++]);
1381 	}
1382 
1383 	kfree(pages);
1384 
1385 	/*
1386 	 * set data direction, and check if mapped pages need bouncing
1387 	 */
1388 	if (iter->type & WRITE)
1389 		bio->bi_rw |= REQ_WRITE;
1390 
1391 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1392 
1393 	/*
1394 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1395 	 * it would normally disappear when its bi_end_io is run.
1396 	 * however, we need it for the unmap, so grab an extra
1397 	 * reference to it
1398 	 */
1399 	bio_get(bio);
1400 	return bio;
1401 
1402  out_unmap:
1403 	for (j = 0; j < nr_pages; j++) {
1404 		if (!pages[j])
1405 			break;
1406 		page_cache_release(pages[j]);
1407 	}
1408  out:
1409 	kfree(pages);
1410 	bio_put(bio);
1411 	return ERR_PTR(ret);
1412 }
1413 
1414 static void __bio_unmap_user(struct bio *bio)
1415 {
1416 	struct bio_vec *bvec;
1417 	int i;
1418 
1419 	/*
1420 	 * make sure we dirty pages we wrote to
1421 	 */
1422 	bio_for_each_segment_all(bvec, bio, i) {
1423 		if (bio_data_dir(bio) == READ)
1424 			set_page_dirty_lock(bvec->bv_page);
1425 
1426 		page_cache_release(bvec->bv_page);
1427 	}
1428 
1429 	bio_put(bio);
1430 }
1431 
1432 /**
1433  *	bio_unmap_user	-	unmap a bio
1434  *	@bio:		the bio being unmapped
1435  *
1436  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1437  *	a process context.
1438  *
1439  *	bio_unmap_user() may sleep.
1440  */
1441 void bio_unmap_user(struct bio *bio)
1442 {
1443 	__bio_unmap_user(bio);
1444 	bio_put(bio);
1445 }
1446 EXPORT_SYMBOL(bio_unmap_user);
1447 
1448 static void bio_map_kern_endio(struct bio *bio, int err)
1449 {
1450 	bio_put(bio);
1451 }
1452 
1453 /**
1454  *	bio_map_kern	-	map kernel address into bio
1455  *	@q: the struct request_queue for the bio
1456  *	@data: pointer to buffer to map
1457  *	@len: length in bytes
1458  *	@gfp_mask: allocation flags for bio allocation
1459  *
1460  *	Map the kernel address into a bio suitable for io to a block
1461  *	device. Returns an error pointer in case of error.
1462  */
1463 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1464 			 gfp_t gfp_mask)
1465 {
1466 	unsigned long kaddr = (unsigned long)data;
1467 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1468 	unsigned long start = kaddr >> PAGE_SHIFT;
1469 	const int nr_pages = end - start;
1470 	int offset, i;
1471 	struct bio *bio;
1472 
1473 	bio = bio_kmalloc(gfp_mask, nr_pages);
1474 	if (!bio)
1475 		return ERR_PTR(-ENOMEM);
1476 
1477 	offset = offset_in_page(kaddr);
1478 	for (i = 0; i < nr_pages; i++) {
1479 		unsigned int bytes = PAGE_SIZE - offset;
1480 
1481 		if (len <= 0)
1482 			break;
1483 
1484 		if (bytes > len)
1485 			bytes = len;
1486 
1487 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1488 				    offset) < bytes) {
1489 			/* we don't support partial mappings */
1490 			bio_put(bio);
1491 			return ERR_PTR(-EINVAL);
1492 		}
1493 
1494 		data += bytes;
1495 		len -= bytes;
1496 		offset = 0;
1497 	}
1498 
1499 	bio->bi_end_io = bio_map_kern_endio;
1500 	return bio;
1501 }
1502 EXPORT_SYMBOL(bio_map_kern);
1503 
1504 static void bio_copy_kern_endio(struct bio *bio, int err)
1505 {
1506 	bio_free_pages(bio);
1507 	bio_put(bio);
1508 }
1509 
1510 static void bio_copy_kern_endio_read(struct bio *bio, int err)
1511 {
1512 	char *p = bio->bi_private;
1513 	struct bio_vec *bvec;
1514 	int i;
1515 
1516 	bio_for_each_segment_all(bvec, bio, i) {
1517 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1518 		p += bvec->bv_len;
1519 	}
1520 
1521 	bio_copy_kern_endio(bio, err);
1522 }
1523 
1524 /**
1525  *	bio_copy_kern	-	copy kernel address into bio
1526  *	@q: the struct request_queue for the bio
1527  *	@data: pointer to buffer to copy
1528  *	@len: length in bytes
1529  *	@gfp_mask: allocation flags for bio and page allocation
1530  *	@reading: data direction is READ
1531  *
1532  *	copy the kernel address into a bio suitable for io to a block
1533  *	device. Returns an error pointer in case of error.
1534  */
1535 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1536 			  gfp_t gfp_mask, int reading)
1537 {
1538 	unsigned long kaddr = (unsigned long)data;
1539 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1540 	unsigned long start = kaddr >> PAGE_SHIFT;
1541 	struct bio *bio;
1542 	void *p = data;
1543 	int nr_pages = 0;
1544 
1545 	/*
1546 	 * Overflow, abort
1547 	 */
1548 	if (end < start)
1549 		return ERR_PTR(-EINVAL);
1550 
1551 	nr_pages = end - start;
1552 	bio = bio_kmalloc(gfp_mask, nr_pages);
1553 	if (!bio)
1554 		return ERR_PTR(-ENOMEM);
1555 
1556 	while (len) {
1557 		struct page *page;
1558 		unsigned int bytes = PAGE_SIZE;
1559 
1560 		if (bytes > len)
1561 			bytes = len;
1562 
1563 		page = alloc_page(q->bounce_gfp | gfp_mask);
1564 		if (!page)
1565 			goto cleanup;
1566 
1567 		if (!reading)
1568 			memcpy(page_address(page), p, bytes);
1569 
1570 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1571 			break;
1572 
1573 		len -= bytes;
1574 		p += bytes;
1575 	}
1576 
1577 	if (reading) {
1578 		bio->bi_end_io = bio_copy_kern_endio_read;
1579 		bio->bi_private = data;
1580 	} else {
1581 		bio->bi_end_io = bio_copy_kern_endio;
1582 		bio->bi_rw |= REQ_WRITE;
1583 	}
1584 
1585 	return bio;
1586 
1587 cleanup:
1588 	bio_free_pages(bio);
1589 	bio_put(bio);
1590 	return ERR_PTR(-ENOMEM);
1591 }
1592 EXPORT_SYMBOL(bio_copy_kern);
1593 
1594 /*
1595  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1596  * for performing direct-IO in BIOs.
1597  *
1598  * The problem is that we cannot run set_page_dirty() from interrupt context
1599  * because the required locks are not interrupt-safe.  So what we can do is to
1600  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1601  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1602  * in process context.
1603  *
1604  * We special-case compound pages here: normally this means reads into hugetlb
1605  * pages.  The logic in here doesn't really work right for compound pages
1606  * because the VM does not uniformly chase down the head page in all cases.
1607  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1608  * handle them at all.  So we skip compound pages here at an early stage.
1609  *
1610  * Note that this code is very hard to test under normal circumstances because
1611  * direct-io pins the pages with get_user_pages().  This makes
1612  * is_page_cache_freeable return false, and the VM will not clean the pages.
1613  * But other code (eg, flusher threads) could clean the pages if they are mapped
1614  * pagecache.
1615  *
1616  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1617  * deferred bio dirtying paths.
1618  */
1619 
1620 /*
1621  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1622  */
1623 void bio_set_pages_dirty(struct bio *bio)
1624 {
1625 	struct bio_vec *bvec;
1626 	int i;
1627 
1628 	bio_for_each_segment_all(bvec, bio, i) {
1629 		struct page *page = bvec->bv_page;
1630 
1631 		if (page && !PageCompound(page))
1632 			set_page_dirty_lock(page);
1633 	}
1634 }
1635 
1636 static void bio_release_pages(struct bio *bio)
1637 {
1638 	struct bio_vec *bvec;
1639 	int i;
1640 
1641 	bio_for_each_segment_all(bvec, bio, i) {
1642 		struct page *page = bvec->bv_page;
1643 
1644 		if (page)
1645 			put_page(page);
1646 	}
1647 }
1648 
1649 /*
1650  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1651  * If they are, then fine.  If, however, some pages are clean then they must
1652  * have been written out during the direct-IO read.  So we take another ref on
1653  * the BIO and the offending pages and re-dirty the pages in process context.
1654  *
1655  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1656  * here on.  It will run one page_cache_release() against each page and will
1657  * run one bio_put() against the BIO.
1658  */
1659 
1660 static void bio_dirty_fn(struct work_struct *work);
1661 
1662 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1663 static DEFINE_SPINLOCK(bio_dirty_lock);
1664 static struct bio *bio_dirty_list;
1665 
1666 /*
1667  * This runs in process context
1668  */
1669 static void bio_dirty_fn(struct work_struct *work)
1670 {
1671 	unsigned long flags;
1672 	struct bio *bio;
1673 
1674 	spin_lock_irqsave(&bio_dirty_lock, flags);
1675 	bio = bio_dirty_list;
1676 	bio_dirty_list = NULL;
1677 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1678 
1679 	while (bio) {
1680 		struct bio *next = bio->bi_private;
1681 
1682 		bio_set_pages_dirty(bio);
1683 		bio_release_pages(bio);
1684 		bio_put(bio);
1685 		bio = next;
1686 	}
1687 }
1688 
1689 void bio_check_pages_dirty(struct bio *bio)
1690 {
1691 	struct bio_vec *bvec;
1692 	int nr_clean_pages = 0;
1693 	int i;
1694 
1695 	bio_for_each_segment_all(bvec, bio, i) {
1696 		struct page *page = bvec->bv_page;
1697 
1698 		if (PageDirty(page) || PageCompound(page)) {
1699 			page_cache_release(page);
1700 			bvec->bv_page = NULL;
1701 		} else {
1702 			nr_clean_pages++;
1703 		}
1704 	}
1705 
1706 	if (nr_clean_pages) {
1707 		unsigned long flags;
1708 
1709 		spin_lock_irqsave(&bio_dirty_lock, flags);
1710 		bio->bi_private = bio_dirty_list;
1711 		bio_dirty_list = bio;
1712 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1713 		schedule_work(&bio_dirty_work);
1714 	} else {
1715 		bio_put(bio);
1716 	}
1717 }
1718 
1719 void generic_start_io_acct(int rw, unsigned long sectors,
1720 			   struct hd_struct *part)
1721 {
1722 	int cpu = part_stat_lock();
1723 
1724 	part_round_stats(cpu, part);
1725 	part_stat_inc(cpu, part, ios[rw]);
1726 	part_stat_add(cpu, part, sectors[rw], sectors);
1727 	part_inc_in_flight(part, rw);
1728 
1729 	part_stat_unlock();
1730 }
1731 EXPORT_SYMBOL(generic_start_io_acct);
1732 
1733 void generic_end_io_acct(int rw, struct hd_struct *part,
1734 			 unsigned long start_time)
1735 {
1736 	unsigned long duration = jiffies - start_time;
1737 	int cpu = part_stat_lock();
1738 
1739 	part_stat_add(cpu, part, ticks[rw], duration);
1740 	part_round_stats(cpu, part);
1741 	part_dec_in_flight(part, rw);
1742 
1743 	part_stat_unlock();
1744 }
1745 EXPORT_SYMBOL(generic_end_io_acct);
1746 
1747 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1748 void bio_flush_dcache_pages(struct bio *bi)
1749 {
1750 	struct bio_vec bvec;
1751 	struct bvec_iter iter;
1752 
1753 	bio_for_each_segment(bvec, bi, iter)
1754 		flush_dcache_page(bvec.bv_page);
1755 }
1756 EXPORT_SYMBOL(bio_flush_dcache_pages);
1757 #endif
1758 
1759 static inline bool bio_remaining_done(struct bio *bio)
1760 {
1761 	/*
1762 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1763 	 * we always end io on the first invocation.
1764 	 */
1765 	if (!bio_flagged(bio, BIO_CHAIN))
1766 		return true;
1767 
1768 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1769 
1770 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1771 		clear_bit(BIO_CHAIN, &bio->bi_flags);
1772 		return true;
1773 	}
1774 
1775 	return false;
1776 }
1777 
1778 /**
1779  * bio_endio - end I/O on a bio
1780  * @bio:	bio
1781  * @error:	error, if any
1782  *
1783  * Description:
1784  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1785  *   preferred way to end I/O on a bio, it takes care of clearing
1786  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1787  *   established -Exxxx (-EIO, for instance) error values in case
1788  *   something went wrong. No one should call bi_end_io() directly on a
1789  *   bio unless they own it and thus know that it has an end_io
1790  *   function.
1791  **/
1792 void bio_endio(struct bio *bio, int error)
1793 {
1794 	while (bio) {
1795 		if (error)
1796 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1797 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1798 			error = -EIO;
1799 
1800 		if (unlikely(!bio_remaining_done(bio)))
1801 			break;
1802 
1803 		/*
1804 		 * Need to have a real endio function for chained bios,
1805 		 * otherwise various corner cases will break (like stacking
1806 		 * block devices that save/restore bi_end_io) - however, we want
1807 		 * to avoid unbounded recursion and blowing the stack. Tail call
1808 		 * optimization would handle this, but compiling with frame
1809 		 * pointers also disables gcc's sibling call optimization.
1810 		 */
1811 		if (bio->bi_end_io == bio_chain_endio) {
1812 			struct bio *parent = bio->bi_private;
1813 			bio_put(bio);
1814 			bio = parent;
1815 		} else {
1816 			if (bio->bi_end_io)
1817 				bio->bi_end_io(bio, error);
1818 			bio = NULL;
1819 		}
1820 	}
1821 }
1822 EXPORT_SYMBOL(bio_endio);
1823 
1824 /**
1825  * bio_split - split a bio
1826  * @bio:	bio to split
1827  * @sectors:	number of sectors to split from the front of @bio
1828  * @gfp:	gfp mask
1829  * @bs:		bio set to allocate from
1830  *
1831  * Allocates and returns a new bio which represents @sectors from the start of
1832  * @bio, and updates @bio to represent the remaining sectors.
1833  *
1834  * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1835  * responsibility to ensure that @bio is not freed before the split.
1836  */
1837 struct bio *bio_split(struct bio *bio, int sectors,
1838 		      gfp_t gfp, struct bio_set *bs)
1839 {
1840 	struct bio *split = NULL;
1841 
1842 	BUG_ON(sectors <= 0);
1843 	BUG_ON(sectors >= bio_sectors(bio));
1844 
1845 	split = bio_clone_fast(bio, gfp, bs);
1846 	if (!split)
1847 		return NULL;
1848 
1849 	split->bi_iter.bi_size = sectors << 9;
1850 
1851 	if (bio_integrity(split))
1852 		bio_integrity_trim(split, 0, sectors);
1853 
1854 	bio_advance(bio, split->bi_iter.bi_size);
1855 
1856 	return split;
1857 }
1858 EXPORT_SYMBOL(bio_split);
1859 
1860 /**
1861  * bio_trim - trim a bio
1862  * @bio:	bio to trim
1863  * @offset:	number of sectors to trim from the front of @bio
1864  * @size:	size we want to trim @bio to, in sectors
1865  */
1866 void bio_trim(struct bio *bio, int offset, int size)
1867 {
1868 	/* 'bio' is a cloned bio which we need to trim to match
1869 	 * the given offset and size.
1870 	 */
1871 
1872 	size <<= 9;
1873 	if (offset == 0 && size == bio->bi_iter.bi_size)
1874 		return;
1875 
1876 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1877 
1878 	bio_advance(bio, offset << 9);
1879 
1880 	bio->bi_iter.bi_size = size;
1881 }
1882 EXPORT_SYMBOL_GPL(bio_trim);
1883 
1884 /*
1885  * create memory pools for biovec's in a bio_set.
1886  * use the global biovec slabs created for general use.
1887  */
1888 mempool_t *biovec_create_pool(int pool_entries)
1889 {
1890 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1891 
1892 	return mempool_create_slab_pool(pool_entries, bp->slab);
1893 }
1894 
1895 void bioset_free(struct bio_set *bs)
1896 {
1897 	if (bs->rescue_workqueue)
1898 		destroy_workqueue(bs->rescue_workqueue);
1899 
1900 	if (bs->bio_pool)
1901 		mempool_destroy(bs->bio_pool);
1902 
1903 	if (bs->bvec_pool)
1904 		mempool_destroy(bs->bvec_pool);
1905 
1906 	bioset_integrity_free(bs);
1907 	bio_put_slab(bs);
1908 
1909 	kfree(bs);
1910 }
1911 EXPORT_SYMBOL(bioset_free);
1912 
1913 static struct bio_set *__bioset_create(unsigned int pool_size,
1914 				       unsigned int front_pad,
1915 				       bool create_bvec_pool)
1916 {
1917 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1918 	struct bio_set *bs;
1919 
1920 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1921 	if (!bs)
1922 		return NULL;
1923 
1924 	bs->front_pad = front_pad;
1925 
1926 	spin_lock_init(&bs->rescue_lock);
1927 	bio_list_init(&bs->rescue_list);
1928 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1929 
1930 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1931 	if (!bs->bio_slab) {
1932 		kfree(bs);
1933 		return NULL;
1934 	}
1935 
1936 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1937 	if (!bs->bio_pool)
1938 		goto bad;
1939 
1940 	if (create_bvec_pool) {
1941 		bs->bvec_pool = biovec_create_pool(pool_size);
1942 		if (!bs->bvec_pool)
1943 			goto bad;
1944 	}
1945 
1946 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1947 	if (!bs->rescue_workqueue)
1948 		goto bad;
1949 
1950 	return bs;
1951 bad:
1952 	bioset_free(bs);
1953 	return NULL;
1954 }
1955 
1956 /**
1957  * bioset_create  - Create a bio_set
1958  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1959  * @front_pad:	Number of bytes to allocate in front of the returned bio
1960  *
1961  * Description:
1962  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1963  *    to ask for a number of bytes to be allocated in front of the bio.
1964  *    Front pad allocation is useful for embedding the bio inside
1965  *    another structure, to avoid allocating extra data to go with the bio.
1966  *    Note that the bio must be embedded at the END of that structure always,
1967  *    or things will break badly.
1968  */
1969 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1970 {
1971 	return __bioset_create(pool_size, front_pad, true);
1972 }
1973 EXPORT_SYMBOL(bioset_create);
1974 
1975 /**
1976  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1977  * @pool_size:	Number of bio to cache in the mempool
1978  * @front_pad:	Number of bytes to allocate in front of the returned bio
1979  *
1980  * Description:
1981  *    Same functionality as bioset_create() except that mempool is not
1982  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1983  */
1984 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1985 {
1986 	return __bioset_create(pool_size, front_pad, false);
1987 }
1988 EXPORT_SYMBOL(bioset_create_nobvec);
1989 
1990 #ifdef CONFIG_BLK_CGROUP
1991 
1992 /**
1993  * bio_associate_blkcg - associate a bio with the specified blkcg
1994  * @bio: target bio
1995  * @blkcg_css: css of the blkcg to associate
1996  *
1997  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1998  * treat @bio as if it were issued by a task which belongs to the blkcg.
1999  *
2000  * This function takes an extra reference of @blkcg_css which will be put
2001  * when @bio is released.  The caller must own @bio and is responsible for
2002  * synchronizing calls to this function.
2003  */
2004 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2005 {
2006 	if (unlikely(bio->bi_css))
2007 		return -EBUSY;
2008 	css_get(blkcg_css);
2009 	bio->bi_css = blkcg_css;
2010 	return 0;
2011 }
2012 
2013 /**
2014  * bio_associate_current - associate a bio with %current
2015  * @bio: target bio
2016  *
2017  * Associate @bio with %current if it hasn't been associated yet.  Block
2018  * layer will treat @bio as if it were issued by %current no matter which
2019  * task actually issues it.
2020  *
2021  * This function takes an extra reference of @task's io_context and blkcg
2022  * which will be put when @bio is released.  The caller must own @bio,
2023  * ensure %current->io_context exists, and is responsible for synchronizing
2024  * calls to this function.
2025  */
2026 int bio_associate_current(struct bio *bio)
2027 {
2028 	struct io_context *ioc;
2029 
2030 	if (bio->bi_css)
2031 		return -EBUSY;
2032 
2033 	ioc = current->io_context;
2034 	if (!ioc)
2035 		return -ENOENT;
2036 
2037 	get_io_context_active(ioc);
2038 	bio->bi_ioc = ioc;
2039 	bio->bi_css = task_get_css(current, blkio_cgrp_id);
2040 	return 0;
2041 }
2042 
2043 /**
2044  * bio_disassociate_task - undo bio_associate_current()
2045  * @bio: target bio
2046  */
2047 void bio_disassociate_task(struct bio *bio)
2048 {
2049 	if (bio->bi_ioc) {
2050 		put_io_context(bio->bi_ioc);
2051 		bio->bi_ioc = NULL;
2052 	}
2053 	if (bio->bi_css) {
2054 		css_put(bio->bi_css);
2055 		bio->bi_css = NULL;
2056 	}
2057 }
2058 
2059 #endif /* CONFIG_BLK_CGROUP */
2060 
2061 static void __init biovec_init_slabs(void)
2062 {
2063 	int i;
2064 
2065 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2066 		int size;
2067 		struct biovec_slab *bvs = bvec_slabs + i;
2068 
2069 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2070 			bvs->slab = NULL;
2071 			continue;
2072 		}
2073 
2074 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2075 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2076                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2077 	}
2078 }
2079 
2080 static int __init init_bio(void)
2081 {
2082 	bio_slab_max = 2;
2083 	bio_slab_nr = 0;
2084 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2085 	if (!bio_slabs)
2086 		panic("bio: can't allocate bios\n");
2087 
2088 	bio_integrity_init();
2089 	biovec_init_slabs();
2090 
2091 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2092 	if (!fs_bio_set)
2093 		panic("bio: can't allocate bios\n");
2094 
2095 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2096 		panic("bio: can't create integrity pool\n");
2097 
2098 	return 0;
2099 }
2100 subsys_initcall(init_bio);
2101